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Abstract Point-of-care devices have garnered the interest of scientists in recent
years due to their capacity for on-site, bedside, and in-home surveillance in many
fields of the medical, biological, pharmaceutical, and food sciences and industries.
These devices can be categorized primarily as either portable or stationary. Due to
their simple downsizing, mobility, low cost, and low power consumption, portable
devices have attracted a great deal of interest. Recently, lateral flow assays have
gained popularity as a portable platform due to the simplicity of strip design and
the ability to detect with the naked eye. As inseparable components of lateral flow
assay, nanomaterials have played a prominent role in enhancing sensitivity due to
their large surface area, ease of functionalization, and tunable physical and chemical
characteristics based on size, shape, and composition. The conventional lateral flow
approach is an immunoassay in which gold nanoparticles with a unique plasmonic
surface property show a red color on the test and control lines to enable qualified
detection. This approach, with its quantitative limitations and limited sensitivity,
is essential for the introduction of novel nanoparticles. Numerous nanoparticles,
including quantum dots, carbon nanotubes, magnetic nanoparticles, nanoenzymes,
surface-enhanced Raman scattering nanotags, upconversion nanoparticles, and time-
resolved fluorescence nanoparticles, have been utilized in the design of lateral flow
assays to date. This chapter focuses mostly on the characteristics of various nanoparti-
cles combined with lateral flow assay and associated transduction method for readout
of signals produced by nanoparticles, as well as a critical analysis of the resulting
approaches.
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1 Introduction

Point-of-care (POC) devices have attracted unprecedented attention in recent years
due to their exceptional significance in the self-testing of biological, food, and phar-
maceutical samples, among others, with the benefits of high speed, low cost, sensi-
tivity, on-site, and user-friendly detection. The majority of the success of point-of-
care (POC) devices may be attributed to the limitations of established procedures
such as liquid chromatography coupled with tandem mass spectrometry (LC-MS/
MS), real-time polymerase chain reaction (JQPCR), and enzyme-linked immunosor-
bent assay (ELISA) [1]. These approaches mostly suffer from the disadvantages
of a lengthy procedure, a necessity for a high level of skill, and costly equipment,
which might limit their use [2]. Therefore, scientists have a significant interest in
the development and introduction of rapid reactions, simple procedures, inexpensive
and individual-centered detection technologies.

Lateral flow assay (LFA), a paper-based approach, may significantly assist the
objectives of POC technology for the advancement of home testing. This method
enables the qualitative and quantitative detection of a wide range of targets, including
proteins, antibodies, nucleic acids, whole cells, toxicants, drugs, etc., on a simple,
low-cost platform with a negligible sample volume [3]. The standard structure of
the LFA strip (4-6 mm x 6-7 cm) includes a sample pad, conjugate pad, detec-
tion pad (nitrocellulose membrane), adsorbent pad, and backing pad. These compo-
nents are composed of cellulose, glass fiber, nitrocellulose membrane, cellulose, and
polystyrene, respectively [4]. Following the assembly of the sample pad, conju-
gate pad, detection pad, and adsorbent pad on the backing pad, an appropriate
amount of reporter particle-conjugated bioreceptor (antibody, aptamer, or DNA)
can be deposited on the conjugated pad for the subsequent operation. The loading
of sample onto the sample pad results in the formation of a complex between the
target and reporter particle-conjugated bioreceptor, followed by the target’s move-
ment toward the adsorbent pad. During the passage of nitrocellulose membrane, the
target complex interacts with the detection zone on the membrane including the test
line (T-line) and control line (C-line) formed by dispensing bioreceptor of the target
(antibody, aptamer, and DNA) and anti-immunoglubin (or complementary nucleic
acid strand) on the nitrocellulose membrane, respectively [1]. Depending on the
nature of the reporter particle, in the presence and absence of the target, character-
istic lines can appear on the T-line or C-line that can be recognized with the naked
eye or an instrument.

Despite the numerous advantages of LFA, its application may be limited by several
drawbacks. Possibility of nonspecific interactions with the sample matrix in the
nitrocellulose pores and saturation of detection zones (T-line and C-line) at high
concentrations of analyte, leading to false responses, are downsides of LFA. The
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solution to these issues is sample dilution, which may result in decreased sensitivity.
Thus, there has been a need for signal amplification, which may be accomplished by
combining nanotechnology with LFA technology [5].

Nanomaterials with high surface area, stability, conductivity, and simple function-
alization can enhance the detection systems’ sensitivity, specificity, reproducibility,
repeatability, accuracy, and dependability [6]. The expanding use of nanomaterials in
biosensor production has led to the development of portable, miniaturized transduc-
tion platforms [7]. Biosensors based on nanomaterials offer ultrasensitive, fast, and
concurrent multiple detection of targets, early stage disease diagnosis and on-time
therapy, and little sample consumption [8—10]. The development of nanotechnology
can facilitate the construction of POC devices, such as LFA or microfluidic devices,
that offer tailored molecular detection in several domains, such as food safety moni-
toring, diagnostic medicine, etc. Due to the significant dependence of LFA devel-
opment on nanotechnology, this chapter focuses on the nanomaterials used in the
design of LFAs. In addition to describing characteristics and critical topics, detec-
tion methods and transduction systems are classified based on the nanomaterials’
application.

2 Nanomaterials

In recent years, nanomaterials, particularly metallic nanoparticles (NPs), have been
widely used in the design of biosensors and POC devices due to their impressive prop-
erties, which include a higher surface area to volume ratio (>107:1) with small size
(1-100 nm) compared to macro-sized particles, and inimitable chemical, physical,
optical, magnetic, and electrical properties that enable the integration of different
transducers with the LFA method [11, 12]. Due to the enhancement of LFA’s poten-
tial for both quantification and qualification purposes, it has become necessary to use
nanoparticles as labels with LFA. In addition to increasing the required sensitivity
for quantification detections, this technology can provide signals that can be read by
a variety of transducer systems. As depicted in Fig. 1, numerous nanoparticles have
been utilized in the implementation of LFA platforms, including gold nanoparticles
(AuNPs), which are widely used as label nanoparticles in colorimetry, quantum dots
(QDs), carbon nanotubes (CNTs), magnetic nanoparticles (MNPs), nanoenzymes,
surface-enhanced Raman scattering (SERS)-nanotags, upconversion nanoparticles
(UCNPs), etc. [4, 13]. Table 1 offers an overview of the different nanoparticles and
related transduction processes used for LFA signal reading.

2.1 AuNPs

AuNPs have several benefits that increase their applicability in a broad range of disci-
plines, including healthcare, engineering, the sciences, etc. Scientists are interested
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Fig. 1 Application nanoparticles in LFA and possible transduction systems

in the possibility of AuNPs being used in the design of biosensors for diagnosis and
therapy, among other uses. These advantages include high safety, redox capability,
catalytic behavior, substantial biocompatibility, great conductivity, a high surface-
to-volume ratio, surface plasmon resonance (SPR), simple detection of its red color
with the naked eye, and simple bioconjugation by antibodies, oligonucleotides, and
proteins [51]. Due to the aforementioned characteristics, AuNPs have been predomi-
nantly utilized as colorimetric markers for LFAs. In addition, additional approaches,
such as electrochemical, SPR, etc., can be combined with LFAs due to the physical
and chemical characteristics of AuNPs.

Optical biosensors capable of visual detection of targets with an inexpensive
and simple transducer that generates a signal proportional to the concentration of the
target. This signal can represent quantifiable changes in the properties of light, such as
its intensity, refraction index, and resonance frequency. Nanomaterials can generate
light or its variations by transferring electrons between energy levels, resulting in
diverse ways such as fluorescence, absorption, colorimetric, luminescence, refrac-
tometry, and SPR [52]. Due to the great sensitivity and ease of transduction of signals,
which can be conducted with the naked eye, optical detection of LFA signals has
been the most often used method in the literature [53]. Due to the straightforward
appearance of color on the T-line or C-line, the colorimetric readout has garnered a
great deal of attention for inclusion with LFAs, resulting in greater compatibility with
the goals of POC devices. Due to the special characteristics of SPR, the application
of AuNPs in LFAs has been extensively documented.
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In a straightforward and basic design of LFAs, antibody-conjugated AuNPs were
utilized as the detection agent, resulting in sandwich immunocomplex formation
and naked-eye detection by capturing antibody-immobilized sites on the nitrocel-
lulose membrane [54]. In addition, colorimetric signals may be measured by using
a strip analyzer or intensity image analyzer software. In this simple LFA design,
the sensitivity may be enhanced by optimizing the size distribution of the AuNPs.
A number of studies have revealed that the diameter of AuNPs significantly affects
the sensitivity of AuNPs-based lateral flow immunoassays (LFIA) [14, 55]. In an
enhanced design of LFA strips, two conjugation pads containing two distinct sizes of
antibody-conjugated AuNPs have been implanted in order to increase sensitivity. The
larger AuNPs can be attached to bovine serum albumin (BSA)-antibody, whereas the
smaller antibody-conjugated AuNPs are inhibited by BSA [14]. The formation of
a complex via BSA-antibody interaction on the T-line leads to the improvement of
color and sensitivity by AuNPs with a greater size. Nylated ssDNA can also be used
as a connection between AuNPs-streptavidin and AuNPs-labeled antibodies on the
T-line or C-line [56]. The in situ increase of AuNPs size (Au deposition) on the T-
line or C-line is an additional technique for sensitivity amplification. In the presence
of hydroxylamine hydrochloride, the catalytic effect of AuNPs on the reduction of
Au** ions (KAuCly) to bulk metal resulted in an increase in the size and sensitivity
of AuNPs (Fig. 2) [15, 57, 58].

Additionally, size increase can occur through the formation of aggregation.
Bioconjugation of AuNPs with complementary oligonucleotide chains results in
the formation of AuNP aggregates [16, 59]. In this design, one set of AuNPs is
associated with the amplification probe, while another group is associated with
the complementing and detecting probes. Amplification and complementary probes
hybridize to generate AuNP aggregates that are caught on the T-line and C-line.
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Fig. 2 Automatic sensitivity enhancement using KAuCly and NH,OH - HCI. Reprinted from [15],
with permission from Elsevier
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Incorporation of chemiluminescence with colorimetric method is another strategy for
enhancement of sensitivity which is done by modification of AuNPs with horseradish
peroxidase (HRP) and antibody which enable chemiluminescence and colorimetric
by reaction of luminol [17] and chromogenic agents including TMB (3,3,5,5-
tetramethylbenzidine), AEC (3-amino-9-ethylcarbazole) [60, 61]. Moreover, some
nanoparticles such as platinum (Pt) nanowires on AuNPs, can successfully replicate
the enzymatic actions on the chromogenic agents, leading to an increase in sensitivity
and color on the T-line and C-line [42]. In another strategy, after the formation of
red color on the T-line and C-line, silver deposition on the gold nanoparticles lead to
the formation of black color resulting in enhancement of sensitivity [18]. In a similar
manner, polymeric materials such as polydopamine (PDA) can be polymerized onto
the AuNPs, which has the benefits of high color intensity and sensitivity, rapid strip
detection, and biocompatibility [19]. In order to improve the sensitivity, the decora-
tion of nanosheets or nanoparticles with AuNPs such as graphite-like carbon nitride
(g-C3Ny) with high surface area, was also performed [29, 62].

Integration of strips with a screen-printed electrode (SPE) covered with biorecep-
tors on the working electrode portion permits LFA with electrochemical readout. In
this configuration, AuNPs may transport redox markers such as ferrocene [20]. Occa-
sionally, simple electrochemical LFA strips may be constructed without the addition
of redox-active spices. Current may be lowered in this design by trapping AuNPs-
antibody conjugates on the detecting zone, which is the working electrode [21].
In another design, Srisomwat et al. synergically used the advantage of automation,
delaying architecture, and electrochemical-based LFA [22]. In this design, following
the migration of hepatitis B virus (HBV) DNA down to the T-line and capture by
the DNA strand on the T-line, Au>* ions are delivered through a baffle barrier with a
delayed rate and captured on the hybridized DNA strands via electrostatic and coor-
dination interactions with the phosphate backbone. Subsequently, an anodic stripping
voltammetry (ASWYV) test was conducted, and the synthesis of AuNPs resulted in
the development of a signal owing to the decrease of Au’.

In addition to some advantages of AuNPs such as excellent electrochemical
behavior, high surface area, and considerable biocompatibility, due to their small
size and faster migration, single-step electrochemiluminescence (ECL) procedure
with mixing tripropylamine as the ECL coreactant with the sample solution can be
performed. Benefiting from this, labeling AuNPs with Ru(bpy)3>* enables the forma-
tion of sandwich immunocomplexes at the T-line, which generates an ECL signal in
the presence of a Ru(bpy);>*/tripropylamine (TPA) system (Fig. 3) [23].

2.1.1 Critical Note

Although LFIA strips with naked eye readout have been developed most frequently
as the most popular POC device in the diagnosis process, their application may be
limited by disadvantages such as qualitative detection, low sensitivity, instability of
antibodies, and possible aggregation of AuNPs in serum matrices. Some improve-
ments have been made to improve the sensitivity in an effort to resolve the issues.
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Several amplification strategies, such as deposition of Au, application of two different
sizes of AuNPs, and application of AuNPs aggregates, may appear more complicated
than the conventional simple LFA method, but they can be executed in a single stage
with greater sensitivity than the conventional method.

Another proposed amplification technique involves surrounding AuNPs with HRP
in order to perform a chemiluminescence readout. Despite its high sensitivity, this
technique may be limited by a time-consuming procedure, the need for a specific
reaction temperature (37 °C), and the instability of enzymes. Therefore, alterna-
tives to enzymes such as Pt nanoparticles are advantageous [63]. Although other
techniques that increase the color and visibility of T-line and C-line using silver
deposition [18] and polymeric materials [19] can be a valuable alternative to the
time-consuming enzymatic technique, LFA production can be made affordable by
reducing the number of antibodies required. Distribution of AuNPs on a large surface
area increases the signal and sensitivity, but the formation of a large nanocomposite
reduces the flow rate along the strip and lengthens the testing time, which may limit
the performance of this strategy and the use of membranes with small pore sizes that
increase sensitivity.

The incorporation of electrochemical approach with LFA has biocompatibility,
affordability, compactness, and downsizing capabilities that are more suitable for
POC objectives than optical techniques. This idea is implementable on a miniatur-
ized platform containing a small potentiostat, allowing for quick and on-site detec-
tion. Due to their exceptional electrochemical properties, AuNPs may be useful in
the development of LFAs based on the electrochemical method. However, certain
designs, such as ECL-based LFA, can separate LFA technology from POC objectives.
Although this technology combines the benefits of AuNPs with ECL in a synergistic
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manner, the installation of certain equipment, such as a charge-coupled device (CCD)
camera, may raise the cost of the system and restrict its applicability. In addition,
for one-step performance and automation of the detection method on the strip, a
wax-printing technique is used to create a baffle or zigzag delayed channel. In this
method, merging in the non-delayed flow adjusts the transmission of an enhancement
reagent such as Au** to the detecting zone via delayed and non-delayed channels
[15, 22]. This design has a high sensitivity and a low LOD, but its complexity and
the oxidation of the Au ions may restrict its use.

2.2 Carbon-Based Nanomaterials

Recently, carbon-based nanoparticles such as carbon nanotubes (CNTs), graphene
oxide (GO), and carbon dots (CDs) have been widely used in the design of LFA strips
due to their high contrast and dark color, low cost, high safety, simple functionaliza-
tion, portability, and excellent optical and electrochemical properties. The aforemen-
tioned benefits are in accordance with the fabrication of POC systems that aim for
immediate, inexpensive, and on-site detection of biological targets such as viruses,
proteins, DNA, etc., on a compact and portable platform [64]. Compared to AuNPs,
CNTs have a greater surface area with high binding sites that are easily functional-
ized by bioreceptors, resulting in an increased sensitivity. In addition, because of the
high contrast between black and white of CTNs, semi-quantification detection may
be performed with the naked eye or quantification detection can be conducted during
image processing using gray pixels [24]. In a research using CNTs-labeled antibodies
for methamphetamine detection, the sensitivity was determined to be 10 times higher
than AuNPs-labeled antibodies [24]. CNTs can also be adorned with AuNPs for the
immobilization of antibodies, which combines the benefits of both materials [25]. G-
C3N4, a two-dimensional (2D) nanomaterial with chemical inertness, a large surface
area, and an inexpensive manufacturing technique, is a strong choice for transporting
AuNPs (Fig. 4) [29]. Amorphous carbon nanoparticles (ANPs) are unusual nanoma-
terials with a size greater than 100 nm and a variety of single- and multi-walled CNTs
(MWCNTs). ANPs have benefits such as greater sensitivity creation in comparison to
AuNPs, non-toxicity, exceptional stability, simple functioning and conjugation, and
excellent contrast in comparison to bright backdrops due to their deep black color.
The aforementioned characteristics render ANPs appropriate for use as label anti-
bodies in the manufacture of LFA strips [26]. CDs, as carbon-based nanomaterials,
are zero-dimensional nanoparticles that possess biocompatibility, low toxicity, inert-
ness, and photostability. These functions employ CDs commonly in drug delivery
[65], imaging [66], biosensor [67], and photocatalyst [68]. Thus, the application of
CDs as labels of antibodies may be utilized for LFA technique [69]. In this way,
hybridization of CDs with other nanoparticles such as SiO, might be a useful label
for LFA, since it results in great sensitivity for the LFA approach due to its high
stability and considerable fluorescence intensity [69].
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Benefiting from the FRET effect of CDs fluorescence intensity with certain
quencher nanoparticles, such as silver nanoparticles (AgNPs), substantial absorp-
tion at the CDs fluorescence emission wavelength may occur. Li et al. constructed
a strip in this manner by immobilizing a combination of zearalenone-ovalbumin
and CD-ovalbumin on the T-line and zearalenone-ovalbumin on the C-line. In this
configuration, AgNPs-anti-zearalenone served as the acceptor (quencher) while CD-
ovalbumin served as the donor [27]. In addition to enhancing the optical charac-
teristics of CNTs, their high conductivity also allows them to be employed as the
working electrode. Zue et al. developed a concept for LFA employing CNT paper on
the C-line and Ag/AgCl ink-painted copper paper as the reference/counter electrode,
followed by lamination of the strip. In this approach, BSA-8-hydroxyguanosine on
the T-line collected AuNP—anti—8-hydroxyguanosine conjugates. The AuNP—anti—8-
hydroxyguanosine/8-hydroxyguanosine complexes then moved across the T-line and
were caught by anti-Mouse IgG on the C-line, resulting in the detection of the antigen
[21]. CNT-modified screen-printed carbon electrode (SPE) that is mounted under the
T-line using a magnet is a second design option [28]. This structure was designed to
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evaluate the enzymatic activity of acetylcholinesterase (AChE) for acetylthiocholine
(ATCh) by comparing deactivated AChE to active AChE trapped by anti-AChE on
the T-line.

2.2.1 Critical Note

Due to the insolubility of CNT in sample buffers and the slow migration of CNT in the
pores of nitrocellulose, some pre-treatment such as oxidation or surfactant binding
must be performed before CNTs may be linked to multiple bioreceptors [24]. In addi-
tion, CNT modification of the electrode is heavily dependent on organic solvents for
effective dispersion. For LFA strips, the suggested nanoparticles with high solu-
bility, such as CDs, and the benefits of easy functionalization, simple synthesis,
high safety, low cost, and high quantum yield in solid and aqueous phases are
viable candidates. Some developments, such as the inclusion of CDs with other
nanoparticles such as SiO;, result in the non-uniformity of this kind of nanoparticles
due to the co-hydrolysis of CDs and tetraethyl orthosilicate (TEOS) [69]. Although
designing FRET-based LFA strips enables on-site screening of targets in complex
matrices, such as zearalenone in cereal samples and relevant products, the qualitative,
semi-quantitative, and probable interferences of matrices may limit the scope of this
method’s use [27].

2.3 Quantum Dots (QDs)

QDs as semiconductor nanoparticles are typically a mix of elemental groups III-V
and II-VI. Due to the quantum confinement of electrons and holes in these nanopar-
ticles, continuous molecular band energy is converted to discrete energy levels,
resulting in the potential emission of fluorescence upon excitation and electron-
hole recombination. QDs with advantages of controllable size-depended emission,
high specific surface area, high fluorescence intensity, long lifetime, high binding
sites, wide absorption region, low photodegradation, and photo-bleaching, have been
widely used for designing biosensors in comparison with other organic commercial
dyes [70]. Due to the aforementioned characteristics, QDs have attracted consid-
erable interest for the creation of LFA strips to detect proteins [71], viruses [72],
pharmaceutical materials [73], and nucleic acid [74]. Although QDs indicate a high
level of sensitivity to the LFA system, it is possible to process some technologies
to increase sensitivity. Due to the formation of hydrophilic QDs in the presence of
thiolated acids, an abundance of carboxylic acids can coat the surface, facilitating
the immobilization of amino-terminated aptamers and DNAs. Thus, CdTe QDs were
combined with strand displacement amplification method for HIV-DNA detection.
This approach conducted by hybridization of hairpin HI-strand as a trigger, with
HIV-DNA leading to unraveling the hairpin structure of H1. Thus, the remaining
HI strand can hybridize with the CdTe hairpin H2 strand that has been tagged with
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QDs, followed by the release of HIV-DNA. As seen in Fig. 5, this circle may be
repeated and an amplification sample can be deposited onto the sample pad. Finally,
H1-H2-CdTe QDs hybridization was captured on the T-line by the unhybridized H2
strand sequence [30].

The employment of core/shell QDs is advised for enhancing the sensitivity of
QDs-based LAF techniques. So, CdSe/ZnS QDs are extensively employed in the
creation of biosensors, particularly, LFA strips [31]. In this method, core/shell QDs
may be constructed via multishell strategy to increase the quantum yield and sensi-
tivity of LFA technology. By preventing exciton leakage, the surrounding ZnSe/CdSe
core with a CdS/Cd,Zn;_,S/ZnS multishell may significantly increase the quantum
yield to 70% [32]. CulnZn, S, (x = 1) as acadmium-free core is capped by ZnS/ZnS
as a thick shell, which is synthesized during two independent shell growth processes
for the purpose of multishell development in LFA. This structure can provide a 77%
quantum yield [33]. In order to generate cadmium-free and environmentally accept-
able QDs, InP/ZnS core/shell QDs were encased in a silica shell for LFA design [75].
QD/Si0, nanoparticles including dendritic and porous silica particles with densely
loaded CdSe/CdS/ZnS QDs were proposed for creating LFA strips [34]. Compared
to typical sandwich-type nanospheres, in which a layer of fluorophores surrounding
the silica core, this shape significantly increases the surface area for adsorption of
QDs and makes homogenous dispersion of QDs throughout the silicon sphere prac-
tical. The accumulation of QDs in each unity led to outstanding optical properties,
colloidal stability, and simple biofunctionalization of the suggested nanoparticle. The
inclusion of beforementioned properties with LFA strips led to the establishment of
a powerful platform for the detection of C-reaction protein (CRP) in complicated
biological samples [34]. For enhancement of the sensitivity, adsorption of QDs on
the surface of biocompatible nanobeads with large surface area is another approach.
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Shao et al. produced nanobeads (Fig. 6) using sodium dodecyl sulfonate (SDS)
and poly (maleicanhydride-alt-1-octadecene) (PMAO) for this purpose, which were
subsequently coated with CdSe/ZnS QDs [35].

The readout signals from QDs-based LFA can be performed by UV light followed
by an assessment of intensities using ImageJ application or by fluorescence strip
reader. Signaling from QDs-based LFA can be accomplished by directly emitted
fluorescence intensity of QDs-labeled bioreceptors or measurement of QDs inten-
sity quenching. LFA strips can be produced by quenching emitting antigen-linked
QDs on the T-line with antibody-linked AgNPs or AuNPs utilizing an inner filter and
fluorescence resonance energy transfer (FRET), respectively [31]. Also, a nanocom-
posite of quantum dots (Biotin-QDs) and MnQO; nanosheets, which results in the
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quenching of QDs, can be used as a decoration for QDs. MnO, nanosheets are
degraded in the presence of glutathione (GSH), allowing Biotin-QDs to be collected
on a streptavidin-containing T-line [76].

2.3.1 Ciritical Note

Compared to typical AuNPs, QDs have a greater specific surface area, acceptable
biocompatibility, increased sensitivity, quicker strip migration, and simple storage
conditions. Furthermore, the simple binding of QDs to nucleic acid strands enables
the performance of displacement amplification technology, which introduced a
potent method that, in comparison to conventional methods such as loop-mediated
isothermal amplification (LAMP), recombinase polymerase amplification (RPA),
and polymerase chain reaction (PCR), is easier to operate, does not require expen-
sive biological material, and does not necessitate expert knowledge [30]. Due to the
application of the synthesis technique in an organic phase, the stability and quantum
yield of core/shell QDs might be diminished after transfer to a biological aqueous
environment, hence affecting the sensitivity of the LFA system [33]. In addition, QDs-
based LFAs are hampered by issues such as high toxicity of heavy metal elements,
limited stability, aggregation in biological samples, and a quenching effect in the
presence of biomolecules.

2.4 Magnetic Nanoparticles (MNPs)

Typically, these nanoparticles are produced using iron oxide nanoparticles (Fe;Oy,
y-Fe,03) as a foundation core, which is then coated with additional nanoparticles and
bioreceptors are immobilized. This property enables the construction of core/shell
structures for the application of LFA, such as Fe, O3 nanoparticles containing gold
[36], SiO; [37], streptavidin [38], and protein G [39]. In addition, because of their
large surface area and simple carboxyl group functionalization, Fe,O3 nanoparticles
can be directly linked to antibodies [40] or other bioreceptors. The primary flaw of
conventional MNPs is aggregation during migration along strips, which slows down
the detection process and reduces sensitivity owing to weaker antigen—antibody inter-
actions. Super-paramagnetic nanoparticles (SPMNPs) with a larger surface area and
no hysteresis have been shown to be an effective solution to this issue. SPMNPs are
ascribed to MNPs less than 20 nm in size. Furthermore, MNPs having a size between
30 and 100 nm are paramagnetic [1]. Wang et al. demonstrated the size of SPMNPs
has a substantial impact on the detection time [77]. Different magnetometers, such as
resonant coil [78], magnetoresistance [79], and planar coils [80], can read the signal
of MNPs. Magnetometers are installed above the detecting zone of the strips for this
purpose, as the existence of an external magnetic field is crucial for the emergence of
the magnetization effect of MNPs [81]. Due to the obvious brown color of Fe,O3 or
their coating by AuNPs, T-line and C-line can be read with the naked eye (Fig. 7) [36,
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39]. Incorporation of Fe,O3 nanoparticles with LFA can be allocated to the sample
preparation prior to its placement on the sample pad, extending their use beyond
signal creation. Li et al. implemented magnetic enrichment of L. monocytogenes
cells from lettuce by streptavidin-biotin interaction, DNA extraction, and detection
by AuNP-probe on LFA strip [38].

2.4.1 Critical Note

In comparison to fluorophore nanoparticles, MNPs have the benefits of reduced
background, the need for inexpensive, compact, and compact magnetometers, and
make on-site and downsized POC detection possible. Furthermore, movement along
the strips is navigable utilizing an external magnetic field. Due to limited solubility
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and dispersion in water, the use of these nanoparticles may be challenging despite
the fact that these characteristics might provide the MNPs-based LFA more credit
than other types of LFAs that need expensive and large equipment. In addition, size-
dependent issues can be attributed to aggregation and positive errors caused by MNPs
of greater sizes, or to poor magnetic signal and low sensitivity caused by MNPs of
lower sizes [77]. Another difficulty is the two-step growth of the output signal with
time, which may be regulated by the kinetics of immunoreaction [82].

2.5 Nanoenzymes

As a result of the incorporation of natural enzymes with LFA, the signal strength of
the redox reaction of chromogenic substrates-H, O, system on the detecting zone may
have increased, resulting in visible color. In addition to colorimetry, LFA can also
contain chemiluminescence owing to the benefits of nanoenzymes. This technique is
typically carried out by trapping horseradish peroxidase (HRP)-labeled antibody on
the T-line or C-line, followed by the addition of chromogenic substrates such as TMB
(3,30,5,50-tetramethylbenzidine) and ABTS (20-azino-bis(3-ethylbenzothiazole-6-
sulfonic acid) [52, 83]. Additionally, G-quadruplexe-hemin DNAzyme has enzy-
matic effects, but it has been utilized less frequently for LFA. This process often
has a number of drawbacks, including particular requirements such as temperature
(37 °C), buffer, and expense. Recently, nanoenzymes have attracted the interest of
scientists for the creation of LFAs due to their remarkable properties, which include
enzyme function mimicry, low cost, ease of manufacture, and increased stability
[84]. In this manner, nanoenzymes having peroxidase activity, such as nanoparticles
based on platinum (Pt), have been widely utilized in the construction of LFAs. The
regular inclusion of nanoenzymes with LFAs has advanced based on the coating of
AuNPs with Pt layer [41] or Pt nanowires [42], porous Pt layer [43], which boosts
the plasmonic color of AuNPs by adding chromogenic substrate to the detecting
zone (Fig. 8). In certain instances, palladium-platinum (Pd—Pt) nanoparticles were
produced for LFA design [44].

2.5.1 Critical Note

Application of nanoenzymes in LFA has benefits such as low cost, high stability,
and simple preparation, but detection requires the addition of chromogenic substrate
to the detecting zone to generate a readable signal, which makes the procedure
tedious and time-consuming. Although certain innovations, such as automating the
technique by coating and drying the strips with chromogenic substrate, can speed
up the detection, constructing the strips with additional channels for the separate
migration of chromogenic substrate in the sample solution might complicate the
LFA procedure [85].
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2.6 Other Nanoparticles

Nanoparticles have been widely utilized in the structuring of LFA strips. However,
there have been other key nanoparticles that have been less integrated with LFA and
have synergistically shared their properties with LFA to permit the high sensitivity
and accuracy necessary for POC techniques. These nanoparticles are mentioned and
briefly described in the next section. Upconversion nanoparticles (UCNPs) capable
of photon upconversion are created by doping transition metals with actinides and
lanthanides derived from rare earths. UCNPs are able to absorb a large number of
photons from the low-energy near-infrared (NIR) region and convert them into a
single photon from the high-energy ultraviolet-visible range (UV-Vis). Scientists
are more interested in the application of UCNPs in nanomedicine, biosensors, and
in vivo imaging than QDs due to their narrow and high-intensity emission, reduced
toxicity, anti-Stokes shifts, high cellular uptake, low background, and strong optical
penetration in tissue [86]. NaYF, double-doped with Yb and Er has been the most
often included UCNPs with LFA (NaYF,: Yb, Er). In this system, the matrix with
the lowest phonon energy is NaYF,. Also, Yb>* is able to absorb an infrared photon
in the host lattice, which is then transmitted to the non-radiative form of Er**, which
transforms it into visible emission [87]. Moreover, in order to enhance the intensity
and sensitivity of NaYF, UCNPs, several modifications might be made [45]. Doping
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the Ca?* ions in the shell of NaYF,:Yb, Tm@NaYF, core/shell UCNPs in this manner
can enhance the NIR emission via excitation in the NIR region. This event can occur
as aresult of lattice destruction followed by the formation of an asymmetric structure
driven by the displacement of Y** with Ca?*, resulting in a highly sensitive electron
transition (Fig. 9).

Time-resolved fluorescence nanoparticles (TRFNPs) are fluorescent lanthanide
(mostly Europium (III)) chelates nanoparticles with a hydrophobic shell that must
be modified with biofunctional groups [88]. With their extended lifetime, chem-
ical stability, large Stokes shift, and broad excitation spectrum, these nanoparticles
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significantly minimize interferences in biological and complex matrices with tran-
sient background. Therefore, TRFNPs may be suitable for integration with LFA [46].
Surface-enhanced Raman scattering (SERS) nanotags are plasmonic metal nanos-
tructures, such as gold and silver, that enable the detection of targets adsorbed on their
surface via Raman signal enhancement resulting from electromagnetic field amplifi-
cation via localized surface plasmon resonance (LSPR) by hot spot effect [89]. This
occurrence can be attributed to the increase of the electromagnetic field caused by
plasmonic phenomena (Stock, Rayleigh, Anti-Stocks) thatlead to SERS in nanoscale
gaps between nanostructures [52]. Increased Raman intensity at a constant Raman
shift is used for detection (cm™!). In this method, He—Ne laser (365 nm) or Raman
(diode) laser (785 nm) is often utilized as the excitation source, and a holographic
notch filter is employed to remove the Rayleigh line from the Raman data [47, 50].
Several nanoparticles, including hollow gold nanospheres [47], Au nanoflower @
Ag core/shell [48], Au@Ag nanoparticles [49], Au nanorod (AuNR)@ Au core/
shell, have been combined with LFA in this manner [50]. Raman molecules such as
malachite green isothiocyanate (MGITC) [47], 4-mercaptobenzoic acid (MBA) [48],
1,4-nitrobenzenthiole (NBT) [50] and 5,5’-dithiobis-(2-nitrobenzoic acid) (DTNB)
[49] have been embedded or adsorbed in nanoparticles in order to produce Raman
intensity. The fabrication of Au@ Ag nanoparticles with dual-layer DTNB is depicted
in Fig. 10.
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Fig. 10 Preparation and application of Au@DTNB@Ag@DTNB in LFA. Adapted from [49], in
accordance with the Creative Commons Attribution 3.0 Unported Licence (CC BY)



76 A. Mohammadinejad et al.
2.6.1 Critical Note

The aforementioned nanoparticles serve an indisputable effect in reducing interfer-
ences from the background. The UCPs and SERS-nanotags with anti-Stokes or Stokes
shifts induced by NIR excitation and UV-Vis or NIR emission significantly reduce
the autofluorescence of UV-Vis region-absorbent biomolecules. Also, TRFNPs with
extended lifetime fluorescence relative to interferences’ short-lived fluorescence may
be combined with LFA. Despite these advantages, their applicability may be limited
by some downsides. The creation of UCNPs necessitated the use of inert gas (N,, Ar)
or vacuum, which are costly conditions that are available in all laboratories. Due to
the poor solubility of UCNPs, migration along strips may also be challenging. There-
fore, alteration and surface functionalization are essential. For capturing the signal
of TRENPs over their lifetime, time-resolving techniques, which are not standard on
all spectrometers and are costly, are required. Despite the fact that SERS-nanotags
improve the limited sensitivity caused by weak signals in the NIR window [90], this
technology requires the use of costly commercial Raman molecules in nanoparticles.
In contrast, even though the SERS approach attempts to minimize interferences by
the use of NIR lasers and stock spectra, some background signal interferences from
nanotags may still be present. In order to further limit interferences, the synthesis of
very homogeneous nanoparticles may thereby complicate the synthesis technique.

3 Conclusion

The primary objective of point-of-care (POC) devices is to provide rapid, cost-
effective, and accurate diagnosis of targets in a variety of domains, including medical,
criminal, clinical, and industrial, in order to avoid and forecast potential issues and aid
in prompt treatment. One of the most intriguing elements of POC devices is the devel-
opment of in-home, patient-centered screening and healthcare diagnostics. As an
accessible and simple-to-prepare POC gadget, LFA has become a popular diagnostic
tool. Nanomaterials, which are an integral part of the LFA methodology, have played
acrucial role in the effective design and execution of this method to increase its sensi-
tivity. Nanomaterials have unique benefits, such as adjustable physical and chemical
properties based on size, shape, and composition and simple functionalization using
bioreceptors combined with LFA. According to the findings given in Table 1, produc-
tion, modification, and bioconjugation of nanoparticles well-incorporated with LFA
strips for the detection of diverse targets include biomarkers, viruses, microorgan-
isms, DNA, mycotoxins, etc. As demonstrated in Table 1, the detection of targets
has occurred in less than 30 min, suggesting an adequate rate of diagnosis due to
the absence of aggregation, the rapid migration through membrane pores, and the
successful interpretation of the signal created by nanoparticles. AuNPs have been the
most prevalent and popular nanoparticles that enable naked-eye detection of T-line or
C-line. Unfortunately, the typical LFA based on naked-eye qualifying detection has a
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limited detection. In addition, certain image analysis software is essential for quanti-
fying data, which makes the measurement challenging. So, to increase sensitivity, the
integration of alternative transduction systems with LFA using other nanoparticles
has been encouraged. In this context, CNTs with vibrant colors and a strong black-on-
white contrast may be suitable for inclusion with LFA. Due to the poor dispersity and
hydrophilicity of the migration buffer, however, CNTs are not commonly included
with commercially available LFA. In addition, the use of carbon-based nanoparticles
for electrochemically-based LFA is in great demand for SPE, making this technology
extremely costly. On the other hand, despite the fact that the use of other nanopar-
ticles benefits from the high sensitivity of QDs, the miniaturized magnetometer for
MNPs, and the significant reduction of interference by UCNPs and SERS-nanotags,
the readout of signals requires the integration of costly equipment with LFA. This
issue prohibits personalized detection and in-home use of LFA, which contradicts the
objectives of the POC approach. The catalytic impact of nanoenzymes on substrates,
accompanied by an increase in sensitivity and a reduction in LOD (10° times) [41],
can be a valuable alternative to the usual LFA approach for detection with the naked
eye. In addition, the design of delayed canals for the automation of LFA may be
suitable for commercialization [15].
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