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Nanotechnology is a rapidly growing scientific field and has attracted a great interest 
over the last few years because of its abundant applications in different fields like 
biology, physics and chemistry. This science deals with the production of minute 
particles called nanomaterials having dimensions between 1 and 100 nm which may 
serve as building blocks for various physical and biological systems. On the other 
hand, there is the class of smart materials where the material that can stimuli by 
external factors and results a new kind of functional properties. The combination of 
these two classes forms a new class of smart nanomaterials, which produces unique 
functional material properties and a great opportunity to larger span of applica-
tion. Smart nanomaterials have been employed by researchers to use it effectively in 
agricultural production, soil improvement, disease management, energy and environ-
ment, medical science, pharmaceuticals, engineering, food, animal husbandry and 
forestry sectors. 

This book series in Smart Nanomaterials Technology aims to comprehensively 
cover topics in the fabrication, synthesis and application of these materials for 
applications in the following fields:

• Energy Systems—Renewable energy, energy storage (supercapacitors and elec-
trochemical cells), hydrogen storage, photocatalytic water splitting for hydrogen 
production

• Biomedical—controlled release of drugs, treatment of various diseases, biosen-
sors,

• Agricultural—agricultural production, soil improvement, disease management, 
animal feed, egg, milk and meat production/processing,

• Forestry—wood preservation, protection, disease management
• Environment—wastewater treatment, separation of hazardous contaminants from 

wastewater, indoor air filters
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Preface 

In recent era, nanomaterials are one of the most astonishing makings of human 
advancement due to their exceptional potential. The nanomaterials are well-known to 
possess superb thermal, optical, electrical, robust mechanical strength, and catalytic 
properties. Tools or smart point-of-care devices prepared using such nanoparticles 
are rummage-sale to identify detrimental substances or contaminants of the environ-
ment including their applications on human biomedical health. This book intends to 
provide the classifications and applications of smart nanomaterials and their modi-
fications as biosensors provide an overview of the newest research on nanosized 
materials responding to various stimuli, including their up-to-date application in the 
biomedical field. Various chapters in this book focused on the overview of the current 
nanomaterials, their synthesis via both green and chemical routes, their properties, 
and their characterization. In other chapters, researchers made an attempt to compre-
hend nanoinformatics in the context of nanomedicine and the development of smart 
nanomaterials, its application in drug delivery, lateral flow assay, CRISPR point-of-
care testing devices, in developing diagnostic microdevices, magnetic-nanosensors, 
nanodevices for pathogens detection, detection of environmental contamination, ther-
apeutics for neurological disorders and its detection, its application in cell and tissue 
fabrication, and so on. Accordingly, the book in hand is an effort made to meet knowl-
edge necessities on such aspects. It comprises 13 chapters, and the wide coverage of 
diverse aspects of the subject reflects quite well in the table of contents. This book 
is primarily intended for undergraduates, postgrdauates, and researchers working in 
the field of nanosciences and smart materials. We express our sincere thanks to the 
contributors who have shared their ideas and contributed chapters to this book. We 
shall be happy to receive comments and criticism, if any, from subject experts and 
readers of this published book. 
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Overview of the Current Nano-Materials, 
Synthesis, Properties 
and Characterization 

Zeynep Cimen, Esma Mutlutürk, Busra Cetin-Ersen, 
Tugba Gencoglu-Katmerlikaya, Sena Kardelen Dinc, Nalan Oya San Keskin, 
Esma Sari, Aydan Dag, and Gokcen Birlik Demirel 

Abstract Point of care testing (PoCT) systems, which enable diagnosis and treat-
ment at or close to the care site, play a crucial role in the control of epidemics and 
other types of infectious diseases that are spread throughout the world due to their 
advantages such as short turnaround times, portability, reusability, efficiency, ease of 
use, and low cost. In particular, nanomaterial-based PoCT systems are widely used 
due to their excellent chemical and physical properties that allow high analytical 
performance and simplify the detection process. Therefore, recently, many different 
types of nanomaterials have been used to develop nanomaterial-based PoCT devices 
in various platforms. Various kinds of nanomaterials such as metal-based nanopar-
ticles, quantum dots, nanoshells, nanotubes, metal–organic frameworks (MOFs) 
nanogels, nanofibers, and flexible hybrid composites are used to provide detection, 
signal generation, transduction, and amplification in PoCT devices. In this context,
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the synthesis methods and controlled physical/chemical properties of these nanoma-
terials are crucial points to improve the performance of the PoCT devices. In this 
chapter, we will highlight the synthesis and development strategies of nanomaterials 
currently used in different PoCT devices, along with existing challenges and future 
prospects. 

Keywords Metal NPs · Quantum dots · Nanofibers · Nanogels · Nanoshells ·
Nanotubes · Metal–organic frameworks (MOFs) · Flexible hybrid composites 

1 Introduction 

Point-of-care (PoC) devices provide fast, on-site, and cost-effective alternatives to 
traditional laboratory applications that require long analysis times and expensive 
equipment [113]. Over the last decade, PoC products have been developed as real-
time diagnostic products for use outside the laboratory and in laboratories with 
limited resources. Therefore, PoC technologies are gaining increasing importance in 
preventing and controlling the spread of diseases [113]. In this context, the design and 
the detection type of the sensor platforms are very important. Various types of sensor 
platforms, which have different readout modalities are being developed, including 
piezoelectric, magnetic, thermal, electrochemical, optical, and colorimetric detec-
tion [80]. A sensor platform can be defined as an analytical device and be selectively 
produced against a particular disease. Practically, a sensor platform operates on the 
principle that a target analyte can be specifically detected by chemical reactions or 
biological recognition, resulting in a specific signal that can be measured by different 
methods. Recently, the use of various nanomaterials has come to the fore to obtain 
sensitive, reproducible, and precise signals from sensors [84]. This is because nano-
materials have excellent physical and chemical properties compared to their bulk 
form, such as biocompatibility, large surface area, and specific catalytic activity. 
These unique properties of nanomaterials make them excellent candidates for the 
development of detection probes [24, 84]. For this purpose, various nanomaterials 
such as gold, silver, and polymer nanoparticles, quantum dots, hybrid nanocompos-
ites, and carbon-based nanomaterials with different sizes, shapes, and compositions 
have been used to develop a PoC testing platform. 

In this chapter, the synthesis of different types of nanomaterials in PoC systems 
and their application in diagnostics will be reviewed. 

2 Metal-Based Nanoparticles 

Metal-based nanomaterials are an important milestone in the advancement of 
nanoscience, which is currently an advanced research area [99, 109]. The devel-
opment of metal nanoparticles, which first started with the controlled synthesis of
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gold nanoparticles, continued with the synthesis and efforts to elucidate the prop-
erties of other metal-based nanomaterials [44]. The unique physical, optical, and 
chemical properties and functionalities of metal nanostructures, which are largely 
dependent on sizes, shapes/facets, compositions, and architectures, have attracted the 
massive attention of researchers in science [32, 35, 90, 99]. Although research with 
metal-based nanowires and nanoclusters has recently been included in the literature, 
nanoparticles are still the most commonly used metal-based nanomaterials in point-
of-care (PoC) systems [3, 84]. An impressive work involving AgNPs was reported 
by Yuan et al. [129]. They designed a Tyndall effect-inspired assay (TEA) to detect 
creatine in human urine by taking advantage of colloidal Cit-AgNPs. The citrate-
capped AgNPs with a weak Tyndall effect (TE) signal aggregated after being added 
to creatine and formed a hydrogen bonding network with creatine tautomers under 
alkaline conditions, resulting in a significant increase in TE signal that was gener-
ated and quantified using a smartphone and a portable laser pointer, respectively. The 
increase in TE signal that can be seen with the unaided eye is directly proportional 
to the creatinine concentration in the sample. Additionally, this portable quantita-
tive detection platform may be employed by incorporating it into a smartphone. This 
metal nanomaterials-based point-of-care test system, which is performed without the 
use of any sophisticated equipment, has a detection limit of ~50 nM for creatinine 
that is at least 90 times lower than even the most sensitive conventional colorimetric 
methods. 

Fu et al. designed a PoC test system that will perform simultaneous and visual 
detection of three different analytes with gold nanoparticles (AuNPs) integrated with 
three different aptamers, should be cited as an example of the application of these 
[35]. Aptamers prevent the aggregation of AuNPs in a high-salt environment. This 
is because aptamers interact with gold nanoparticles, and interfere with the inter-
action of high salt and AuNPs, thereby preventing their aggregation. Aptamers are 
stripped from the AuNPs when analytes are present because of the greater interaction 
between aptamers and the analytes. The color of the solution changed dramatically 
after AuNP aggregation in the high salt condition, allowing for analyte detection 
with the naked eye. Three analytes were determined simultaneously and visually 
at the detection limit of 53 nM, 130 nM, and 11 nM, respectively, with a single 
sensor using a multi-aptamer. This study resulted in the development of a simulta-
neous and visible multi-component detection platform, which was also successful 
with blood and urine samples. In another example proposed by Al-Kassawneh et al., 
the glucose level in human saliva was colorimetrically determined using a gold 
nanoparticles tablet (AuNPs-pTab) prepared by encapsulating AuNPs with pulluan, 
a natural, biodegradable ligand used as both a reducing agent and a capture agent, 
as a simple point-of-care (POC) test kit [6]. To detect glucose, a detection limit of 
(LoD) 28.7 μM was performed in buffer solution; however, in artificial and real 
human saliva samples, LoD values 38.2 and 163.04 μM, respectively, were reached. 
These tablet sensors, developed by this study, which pioneered the use of the reac-
tive encapsulation technique for glucose detection, will significantly contribute to the 
design of PoC devices that are ready to use and have the potential for OnSpot colori-
metric testing for various diseases. In another study that should be mentioned in this
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context, homometallic and heterometallic nanohybrids were synthesized by in situ 
fabrication of AuNPs, AgNPs, and their plasmonic hybrids using sericin protein as 
a reducing and capturing agent [15]. A surface plasmon-coupled emission (SPCE) 
application for mobile phones was used to accomplish attomolar level detection of 
mefenamic acid using the versatile, polarized, and enhanced fluorescent emission of 
these nanohybrids. 

One of the most crucial points of this study is that it will shed light on the 
design of point-of-care diagnostic tools that can be developed with green nanotech-
nology without the need for the use of hazardous chemicals and solvents for different 
applications in the future. 

3 Quantum Dots 

In recent years, quantum dots (QDs) have received a lot of attention due to their 
unique optoelectronic properties such as strong absorption, size-dependent photolu-
minescent emission, high quantum yield (QY), and high optical stability [57, 91]. 
Different types of QDs have functional properties in a variety of fields, including 
sensing, optoelectronic devices, biomedicine, and point-of-care (PoC) systems [4, 
17]. Although it is stated in many sources in the literature that it should have a size 
distribution below 10 nm, in fact, the sizes of QDs can reach up to about 30 nm [29, 
104]. For a nanometer-sized crystal to be considered a QD, the quantum confine-
ment effect rather than size must be observed. For this, the physical dimensions 
of nanometer-scale colloidal semiconductor crystals must be smaller than the Bohr 
radius exciton [104]. Dimensions of QDs generally vary depending on the material 
from which they are synthesized [4, 111]. The materials used for its preparation are 
also used to identify the types of QDs [115]. Conventional quantum dots were first 
prepared as core nanocrystals by combining the III–V, II–VI, and IV–VI groups of the 
periodic table [4, 111, 115]. Then, with the synthesis of QDs carried out in the form 
of core–shell nanocrystals, which prevents the leaching of metal ions in the core, 
the quantum efficiency was increased up to almost 75% [57]. In addition to the high 
quantum efficiency obtained in this way, it has become the best fluorophore candi-
date for many applications with its advantages such as extremely broad and intense 
absorption spectra allowing single wavelength excitation, narrow, symmetric, and 
size dependent fluorescence spectra, superior photostability and enabling flexibility 
in excitation [29, 104]. The features that overshadow all these excellent optoelec-
tronic properties are harsh synthesis reaction conditions, complex surface passiva-
tion procedure, and especially cytotoxicity created by toxic precursors [17, 111]. 
Although traditional QDs can be prepared with many different combinations of III– 
V, II–VI, and IV–VI groups, cadmium-based QDs are the most preferred [115]. 
However, because of their capacity to attach to thiol groups on essential components 
in mitochondria and inflict sufficient stress and damage to result in appreciable cell 
death, cadmium ions were discovered to be the main cause of cytotoxicity of QDs 
[29]. Their sustained practical application is hampered by this toxicity [115]. For this
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reason, researchers have searched for environmentally friendly, biocompatible QDs 
and have launched them as cadmium-free QDs [58]. Carbon QDs (CQDs), which 
are obtained from the element carbon, which has been frequently used since the 19th 
century, were obtained in 2004 by preparative electrophoresis during the purifica-
tion of single-walled carbon nanotubes [4]. Graphene quantum dots (GQDs) were 
discovered shortly after the discovery of CQDs, especially due to the combined use 
of carbon and graphene in electrochemistry applications. The low toxicities of both 
CQDs and GQDs, as well as the carboxylic acid moieties of GQDs, have allowed 
these structures to increase in water solubility and allow for biological modification, 
allowing them to show superiority among other QDs [58]. Another is the next gener-
ation Ag2Se and Ag2S QDs, which are designated as near infrared QDs class and 
have been used in biological imaging applications [57]. In addition, although it has 
only recently been discovered in zero-dimensional black phosphorus QDs synthe-
sized by chemical methods, it has been used in bioimaging, fluorescence sensing, 
optoelectronic, and flexible devices [4, 111]. The most important features of these 
structures are small size, high brightness, quick radiation transition rate, good light 
stability, low biological toxicity and customizable emission spectrum, high quantum 
yield easily functionalized, and strong biocompatibility, respectively [111]. Finally, 
in this context, MXene dots should also be mentioned. These quantum dots, which are 
promising candidates in many fields such as bioimaging, biomedical, and biosensor, 
are striking with the advantage of a large number of functional groups on their surfaces 
[4]. The synthesis of QDs is shaped according to their classification [57]. Synthesis 
of traditional Cd-based QDs was first performed by pyrolysis of organometallic 
and chalcogen precursors, but since the hydrophobicity of QDs synthesized by 
this method significantly reduces both their water solubility and biocompatibility, 
further modification is needed after synthesis. Therefore, researchers focused on the 
synthesis of hydrophilic QDs. For this, applied to the use of stabilizers such as 3-
mercaptopropionic acid (MPA), 2-mercapto ethylamine acid (MA), thioglycolic acid 
(TGA), and L-cysteine in the aqueous synthetic procedure [57]. Also, microwave-
assisted green synthesis, which relies on environmentally sensitive microwave irri-
tation, is one of the popular methods of choice for the preparation of such QDs 
[48]. 

Two synthesis approaches have generally been proposed for Carbon QDs and 
GQDs, which are called natural-based QDs (NQDs). In these methods, which are 
launched as top-down and bottom-up, top-down is based on the decomposition or 
exfoliation of large carbon structures or large graphene sheets, while bottom-up 
is based on the creation of GQDs and carbon QDs from small precursors with 
solution chemistry methods. Top-down techniques include hydrothermal cutting, 
solvothermal cutting, electrochemical cutting, nanolithography, microwave-assisted 
cutting, nanotomy-assisted exfoliation, and ultrasonic shearing; bottom-up tech-
niques like stepwise organic synthesis and cage opening of fullerenes fall under 
this category as well [48, 91]. There are only a few synthesis techniques recom-
mended for other semiconducting quantum dots. This sort of QDs are often synthe-
sized using several different techniques, including solution-phase-based methods,
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microemulsion synthesis, thermally induced disproportionation of solid hydrogen 
silsesquioxane in a reducing atmosphere, and others [57]. 

In the characterization of QDs, parameters such as optical properties, size, and 
morphology are examined with advanced devices. While UV-VIS and photolumines-
cence spectroscopy are preferred for optical characterization, devices such as scan-
ning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic 
light scattering (DLS), and X-ray diffraction (XRD) are used for size distribution. 
It has been reported that the tools used for morphological and structural character-
ization are X-ray photoemission spectroscopy (XPS), nuclear magnetic resonance 
spectroscopy (NMR), Rutherford backscattering spectrometry (RBS), atomic force 
microscopy (AFM), field emission scanning electron microscopy (FESEM), and 
Fourier transform infrared spectroscopy (FT-IR) [4, 29]. 

In recent years, the use of fluorescent probes in PoC testing systems has offered 
great advantages in terms of the accuracy of the detection system and the simplicity 
of the readout system. In addition, the use of fluorescent materials such as quantum 
dots in PoC systems is cheaper and easier to convert into disposable chips than other 
methods, so it is more suitable for real-time use in the field [21]. Therefore, as exem-
plified below, the use of QDs in PoC systems has become quite common in recent 
years. A study emphasizing the use of quantum dots in point-of-care applications 
has been reported by Zhang and Shi(Jingfei) [134]. The antibiotic tetracycline (TC), 
which is now a severe hazard to both public health and the environment, was used 
in this study to create a coordination complex with the ion Eu3+, from which a faint 
luminescence was produced. Then, by transferring energy from MoS2 QDs with a 
strong fluorescence property to the Eu-TC coordination molecule, the initial fluo-
rescence intensity was significantly increased. In the study, TC between 10 nM and 
60 μM was determined with a detection limit of 2 nM with MoS2 QDs used as both 
the indicator and enhancer of the ratiometric probe. Additionally, color recognition 
software was used to adapt this sensor to the smartphone-based portable platform, 
and visual quantitative detection was carried out sensitively, quickly, and in real time 
with a detection limit of 0.05 μM. 

Another study, which has been reported to design even more efficient PoC testing 
systems with quantum dots, has been brought to the literature by Sun et al. [98]. 
Four metal ions were monitored within the scope of this study, on-site, user-friendly, 
real time, selective manner utilizing a paper-based analytical instrument constructed 
using S quantum dots. The research is based on the idea that S quantum dots provide 
a different visual signal with each ion, particularly green for Fe3+, brown  for Co2+, 
bright yellow for Cd2+, and precipitate for Pb2+. This consists of three layers such as 
isolation, reaction, and base, and it has several spots where the assay will take place. 
The images obtained after interacting with metal ions were used for on-site and visual 
determination with the help of a smartphone-based platform and color recognition 
software. In this ion-responsive platform, a smart strategy was created by integrating 
multiresponsive blocks into S dots, allowing multiple logic operations (i.e., yes, 
not, and, inhibit, and nor) for determination. Finally, with this quadruple analyte 
responsive platform, Fe3+, Co2+, Cd2+, and Pb2+ ions were not only determined at
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the detection limit of 0.59, 0.47, 0.82, and 0.53 μM, respectively, but also a point-of-
care testing (PoCT) system that could be created for various analytes was successfully 
introduced to the literature. 

4 Metal–Organic Frameworks (MOFs) 

MOFs are hybrid materials consisting of a large surface area, low density, and highly 
porous inorganic and organic units. In the last decade, different types of hybrid 
MOFs with a wide range of uses have been reported based on polymer, metal oxide, 
carbon, metal nanoparticle, and biomolecule [86]. In addition, MOF-PoC test plat-
forms used in different sensor-based diagnostic and detection applications have been 
reported recently. The organic units that makeup MOFs are anions such as carboxy-
late, cyano compounds, imidazole derivative polyamines, phosphonate, sulfonate, 
and heterocyclic compounds. Metal ions or clusters called secondary structural units 
(SBUs) form the inorganic units of MOFs [86]. The solvo(hydro)thermal method 
is generally used for the synthesis of MOFs (Fig. 1). The synthesis is carried out 
using an autoclave at high temperatures and pressure above the boiling point of the 
solvent. Under solvothermal conditions, starting reagents can undergo unexpected 
chemical transformations that can lead to the formation of new ligands. Therefore, 
optimum reaction conditions must be provided [16]. In addition to these methods, 
other alternative synthetic methods such as diffusion, mechanochemical, electro-
chemical, microwave, and ultrasonication methods have been developed in recent 
years [10, 86]. 

In the diffusion method, solvent/solvent mixtures with a low boiling point are 
mostly preferred and the reacting species are transported slowly in the presence of 
the solvent. Thus, crystal growth and nucleation occur over time at the interface point 
[89]. Electrochemical synthesis of MOFs can occur in a maximum of 2 h at ambient 
temperature and pressure. The metal ion is added to the reaction mixture containing 
organic ligands and electrolytes by anodic dissolution. The method has advantages 
such as high efficiency, low energy consumption, and the absence of counter ions. In 
this way, it allows the controlled synthesis of MOFs. Many MOFs prepared by elec-
trochemical methods such as ZIF-8, MOF-5, HKUST-1, MIL-100(Al), MIL-53(Al),

Fig. 1 Schematic presentation of the hydrothermal synthesis route of MOFs 
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and NH2-MIL-53(Al) have been developed in the literature [7, 37]. Mechanochem-
ical synthesis of MOFs occurs by solid-state organic reaction with less or no solvents. 
Furthermore, this method allows for large-scale production of MOFs in shorter reac-
tion times and lower temperature conditions compared to diffusion and solvothermal 
methods [34]. MOF synthesis by ultrasonication is based on the chemical trans-
formation of molecules under high-energy ultrasonic radiation (20 kHz–10 MHz). 
Compared with other techniques, it provides simple operating conditions, high 
efficiency, easy controllability, and short reaction time [10]. MOFs are character-
ized by several methods such as X-ray diffraction, single crystal X-ray diffraction, 
scanning electron microscopy (SEM), inductively coupled plasma optical emission 
spectroscopy (ICP-OES), thermal gravimetric analysis (TGA), nuclear magnetic 
resonance (NMR) spectroscopy, and Brunauer–Emmett–Teller (BET) analysis [43]. 
Recent studies show that MOFs have been the focus of researchers for POC tests in 
many different usage areas with their superior properties [12]. Zhang et al. reported a 
fluorescent lanthanide-based MOF (L-MOF-enzyme) composition to detect glucose 
in serum and urine [135]. The composite was prepared by an immobilization between 
Eu3+@UMOF and glucose oxidase (GOx). Herein, glucose is oxidized by GOx 
and the H2O2 produced can quench the fluorescence of Eu3+@UMOF. The fluores-
cent intensity of Eu3+@UMOF corresponds to the glucose concentration (CGlu). 
In the system integrated with the detector, CGlu has three different concentration 
ranges (0.1–10 μM, 10–10 mM, and >10 mM). Three different outputs; (L(low), 
M(medium), and H(high)) corresponding to these three concentrations can be deter-
mined with the naked eye. The prepared detector provides the detection of glucose 
levels in the urine with high selectivity and sensitivity. It allows on-site diagnosis 
without going to the hospital for complex examinations, especially for diabetics. 
Chen et al. reported a high-sensitivity PoC test fluorescent nanosensor for tetracy-
cline [22]. Tetracycline is an antibiotic frequently used in medicine against bacterial 
infections. However, its misuse leads to tetracycline residues in animal foods and 
affects human health. The probe (FL:LZIF-8-Cit-Eu) was prepared by encapsulating 
fluorescein (FL) in 1-histidine modified ZIF-8 (LZIF-8) and chelating it with the 
citrate complex. When FL:LZIF-8-Cit-Eu is exposed to tetracycline, a character-
istic Eu3+ sensitive fluorescence is formed as a result of the coordination between 
Eu3+ and tetracycline. The results demonstrate fast (<20 s), high selectivity, and high 
sensitivity (LOD = 5.99 nM) PoC detection of tetracycline. Yan et al., on the other 
hand, prepared a lanthanide-based MOF platform Eu(TATB) for the detection of 
Sulphamethazine (SMZ), which are another frequently used antibiotic in medicine 
[123]. Nanoscale Eu(TATB) is prepared by the microemulsion method and has a 
stable red luminescence in an aqueous solution. In addition, it was embedded in 
the prepared lanthanide-based MOF filter paper and integrated into the smartphone 
imaging system. Thus, a paper-based MOF-PoC test system was designed to monitor 
SMZ.
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5 Carbon Nanotubes 

Since they have excellent electrochemical properties, physical–chemical stability, 
mechanical strength, and a large surface area, carbon-based nanomaterials like carbon 
nanotubes (CNT) are highly in request when creating point-of-care diagnostic tools 
that can diagnose and treat illnesses quickly, sensitivity, and affordably. CNT are 
obtained by sp2 hybridization of graphite in the form of hollow cylindrical tubes 
with a high surface-to-volume ratio. Based on the number of walls, CNT are clas-
sified into three groups such as single-walled nanotubes (SWNT), double-walled 
nanotubes (DWNT), and multiwalled nanotubes (MWNT). CNT are generally used 
for bioimaging endowing superior optical properties and assisting easy incorpo-
ration of contrast agents such as fluorescent probes, radionuclides, and organic/ 
inorganic nanomaterials with a high ratio for MRI (magnetic resonance imaging), CT 
(computed tomography), PET (positron emission tomography), and SPECT (single-
photon emission computed tomography), etc. CNT serve as an important option for 
health care platforms, but their hydrophobic nature is one of the major obstacles to 
the use of CNT in sensing applications, drug delivery, photothermal therapy, and 
other applications. 

The structure and individual properties of CNT have been demonstrated to be 
precisely dependent on the synthesis methods [87]. Many different methods have 
been introduced with the studies on high purity production demand, synthesis at low 
temperatures, and increasing production capacity, and classification has been made 
as synthesis from solid carbon and gaseous carbon, inspired by the states of materials 
applied in production. In this part, most typical synthesis strategies are discussed in 
detail; all of which have been extensively studied. One of the first techniques for 
creating carbon nanotubes was the arc discharge method. The procedure involves 
creating a space between two graphite rods, one of which serves as the anode and 
the other as the cathode, causing an arc to form, and using a direct current to make 
nanotubes. In the arc discharge process, the nanotubes produced by bombarding 
a target made of pure graphite are multiwalled, but the nanotubes produced by 
bombarding a target made of catalysts like Co, Ni, Fe, or Y are single-walled. The 
anode particle’s core contains the catalysts. MWCNT are produced by this method 
with high crystallinity. Transition metal catalysts must be used in this method for the 
formation and growth of SWCNT. In theory, the arc discharge approach and the laser 
evaporation method are comparable. This method uses a laser source rather than 
an electric discharge to generate a high temperature on a carbon target. Although 
the laser evaporation method is suitable for producing higher quality SWCNT with 
higher mechanical strength than the arc discharge method, it is not preferred because 
of its high cost and low production capacity. For the last two decades, carbon fibers 
and their filaments have been produced using the chemical vapor deposition method 
of hydrocarbons in combination with a metal catalyst. The chemical vapor depo-
sition method has several advantages compared to previous synthesis methods. It 
is a simpler and more economical technique as production takes place at lower 
temperatures and pressures. The most common techniques for analyzing the general
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morphology of CNT samples include electron microscopy, atomic force microscopy 
(AFM), nuclear magnetic resonance (NMR), electromagnetic spectroscopy, XRD 
diffraction, and light scattering techniques. In fact, IR, NMR, and Raman spec-
troscopy are used to confirm the presence of functional groups on CNTs. CNT offer 
attractive PoC biosensing applications due to having remarkable electro-chemical 
properties. The recognition process of CNTs principally relies on various enzymatic 
processes that produce electroactive species for the detection of metabolites, protein 
biomarkers, and ions [49, 138]. Additionally, recognition elements may be aptamers, 
antibodies, oligonucleotides (DNA or RNA), ligands, and whole cells. Many research 
articles have assessed the development of CNT-based biosensors for RNA detection 
identifying overexpressed microRNA (miRNA)-specific patterns in cancer diagnosis. 
For example, an electrochemical microRNA (miRNA) nanosensor, which uses CNT 
and electroactive polymer films, has a low detection limit of ca. 8 fM and has been 
used for the detection of human prostate metastatic cancer cells [101]. Similarly, 
Topkaya et al. reported early, label-free electrochemical detection of prostate cancer 
[77]. As seen in Fig. 2, another work SWCNT-based antibody conjugated optical 
nanobiosensor has been used for prostate cancer biomarker urokinase plasminogen 
activator (uPA) detection via surface-enhanced Raman spectroscopy (SERS) in whole 
serum, plasma, and blood [116].

For the sensitive detection of carcinoma antigen-125, zinc oxide-fabricated 
MWCNT nanowire immunosensors have been prepared by simple and low-cost elec-
trospinning techniques [81]. Increased sensing performance has been found for BSA 
functionalized MWCNT-ZnO nanowire immunosensor with an excellent limit of 
detection (0.00113 U/mL) (Fig. 3).

In another study, a sensor was designed to detect hybridization processes of small 
DNA and RNA oligonucleotides in vivo with a label-free approach that converts 
carbon nanotube photoluminescence into spectral changes. The mechanism of action 
was determined by dielectric, electrostatic factors, and molecular dynamics simula-
tions. They showed that the sensor facilitates multiple sensing using various nanotube 
chirality and monitoring concurrently of toehold-mediated DNA-strand displace-
ment, which results in signal response reversal. It has also been demonstrated by 
in vivo optical experiments by implanting that the designed sensor is extremely 
resistant to non-specific interactions with biological molecules and allows direct 
detection from serum and urine [41]. 

SWCNT field-effect transistor biosensors are known for offering the highest level 
of sensitivity [8]. However, it also provides high selectivity and distinguishes the real 
signal from other signals in an uncontrolled environment. In a study, they demon-
strated the successful integration of a new peptide aptamer with SWCNT field-effect 
transistors for the specific and sensitive recognition of Cathepsin E, one of the cancer 
biomarkers. SWCNT were prepared via the CVD method. It is then integrated into a 
SWCNT field-effect transistor device. The constructed sensors were found to exhibit 
high selectivity at low concentrations in not only phosphate-buffered saline (2.3 pM), 
but also human serum (0.23 nM). In conclusion, it has been shown that SWCNT FET 
sensors modified with peptide aptamer can be used as a remarkable platform for PoCT 
applications [102].
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Fig. 2 Schematic representation of the synthesis and characterization of Anti-uPA-DNA-SWCNT 
nanobiosensor. Adopted from Williams et al. [116]

6 Nanoshells 

Nanoshells are defined as a class of nanoparticles with a dielectric core of 10–300 nm 
in size, covered with an ultrathin metal shell [47]. Nanoshells have great tunable 
optical properties and these optical properties can be tunable depending on their size 
and making them good candidates for PoCT. There are different methodologies to 
obtain nanoshells, which use dielectric cores as templates to grow metal shells on 
their surfaces. Also, several synthetic approaches can be used to fabricate hollow 
nanoshells. 

Zhou et al. first synthesized metal nanoshells with an inner dielectric Au2S core 
surrounded by a gold shell in 1994 [11]. A gold nanoshell refers to a filled or 
hollow core surrounded by a spherical layer of gold. According to the gold shell 
thickness and nanoparticle size, the optical characteristics of gold nanoshells can 
be tuned for biomedical applications. Different core types can be used to fabri-
cate gold nanoshells. Silica is often used as a core material, because of its superior 
properties for the fabrication of gold nanoshells by several approaches including
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Fig. 3 Schematic representation of the one-step biofunctionalization electrospun MWCNT 
nanowire immunosensor for the detection of carcinoma antigen-125. Adopted from Paul et al. 
[81]

surfactant-assisted method, deposition–precipitation method, sonochemical gold 
seeding method, sandwiched gold seeded shell synthesis, and one-pot synthesis 
method. Surfactant-assisted seeding method involves using surfactants such as 3-
aminopropyltriethoxysilane (APTES), which is a linker to provide NH2 groups on 
silica nanoparticles. The amine-functionalized silica nanoparticles could link to gold 
when a gold colloidal mixture was added [114]. 

Deposition–precipitation (DP) is a method generally used to form directly gold 
seeds on a silica core (Fig. 4) [50]. Subsequently, the surface of the silica nanoparticles 
is decorated with APTES. These amine-functionalized silica nanoparticles are seeded 
with gold hydroxide nanoparticles. To synthesize gold nanoshells by the DP method, 
HAuCl4 is hydrolyzed by adding NaOH to give a yellowish gold hydroxide solution. 
Silica nanoparticles were then added, and the orange-brown colored solution included 
Au(OH)3 nanoparticles loaded onto silica nanoparticles. A basic gold hydroxide 
solution (K-gold) and sodium borohydride were added to Au(OH)3 seeded silica 
nanoparticles to grow nanoshells by reduction of gold. The color of the solution can 
be red, purple, or green depending on the shell thickness [82].

Another most used core material of nanoshell systems is polymeric nanoparti-
cles. There are several approaches to fabricating gold nanoshells on a polymer core 
including solvent-assisted method, combined swelling heteroaggregation method, 
gold colloid seeding method, and gold ion seeding method. In the solvent-assisted
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Fig. 4 Synthesis of gold nanoshells on silica core by DP method. Created with BioRender

method, the polymer as a core material is immersed in a solvent that contains gold 
salt. When the polymer swells, gold ions can permeate into the polymer core to form 
a gold shell on the polymer core [133]. 

The gold colloid seeding method involves the formation of gold nanoshells that 
cover the polymer core by electrostatic interactions or covalent bonds when adding 
gold colloid solution which forms gold seeds on the surface [63]. By using low metal 
concentration and controlling reaction conditions, the reduction of gold ions led to 
the formation of nanoshells on an unfunctionalized polymer surface in the gold ion 
seeding method. Different reaction conditions such as pH, reducing agent concen-
tration, and temperature affect the morphological characteristics of nanoparticles 
[13]. 

Hollow gold nanoshells can be fabricated by using a silica core to synthesize 
gold nanoshells as described and then using hydrogen fluoride (HF) to remove the 
silica core. Other methods including sacrificial template method, template galvanic 
replacement method, electrochemical synthesis method can be also used to prepare 
hollow gold nanoshells. The sacrificial template method requires two steps for the 
fabrication of hollow gold nanoshells. First, cobalt nanoparticles which act as a 
template for the gold nanosphere formed in the presence of sodium borohydride. 
Then sodium borohydride is removed before adding HAuCl4 solution. After gold 
nanoshells are formed, air exposure causes oxidation of the residual cobalt, leading 
to the formation of a hollow gold nanoshell [2]. Also, silver nanoparticles act as a 
template for the fabrication of hollow gold nanoshells by using the template galvanic 
replacement method. Redox reaction between Au3+ and Ag(0) induced gold shell 
formation and after the pitting process, hollow nanoshells are formed [62]. 

Nanoshells can be characterized by advanced devices in terms of parameters such 
as optical properties, size, morphology, and composition. UV-visible spectroscopy 
is commonly used to characterize superior optical properties of nanoshells [5]. The 
ratio of shell thickness and overall diameter of nanoparticles affects the optical char-
acteristics of nanoshells. It is possible to determine the size of the nanoparticles with 
different characterization tools such as transmission electron microscopy (TEM), 
scanning electron microscopy (SEM) [69], dynamic light spectroscopy (DLS) [79], 
and X-ray diffraction (XRD) [9]. Moreover, SEM and TEM provide information 
about the morphology of nanoparticles such as crystallinity and lattice structure.
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Also, the stability and aggregation of nanoparticles can be determined by DLS. 
XRD is used to determine not only the size and morphological characteristics but 
also the composition of the nanoparticle. X-ray photoemission spectroscopy (XPS) 
and energy-dispersive X-ray spectroscopy (EDX) are other methods to evaluate the 
composition of nanoshells [117]. Nanoshells with unique properties are import for 
PoCT in terms of having the capability to conjugate antibodies and other biological 
molecules in immunoassays. PoCT has several advantages such as simplicity, user-
friendliness, time-saving, or low cost, and recent studies reveal that nanoshells have 
been the focus of researchers for PoCT in many areas with their unique properties. 
Several practical portable analytical platforms have been used for the detection and/or 
diagnosis via PoCT such as lateral flow assay (LFA). When samples flow through the 
strip, the analytes interact with recognition molecules and then signals are captured 
by another recognition molecule (Fig. 5). Commercial LFA platforms can be used 
for the PoCT of antigens, disease biomarkers, hormones, or microorganisms. For 
example, Huang et al. developed colloidal gold test strips with Pt nanoshells as a 
quantitative PoCT method. In their work, myoglobin which is an early biomarker of 
acute myocardial infarction was used as a model analyte and a pressure-based method 
was developed to measure potentially the number of various analytes. Colloidal gold 
combines with the Ag precursor and hydroquinone to generate an Ag shell on the 
surface. After that, a Pt precursor and ascorbic acid can coat the Ag shell with Pt. 
After Pt coated nanoshells produce catalytic gas from the decomposing H2O2. The  
amount of Pt nanoshells on the test line correlates with increased pressure due to gas 
output [45]. 

Fig. 5 The schematic representation of LFA strip decorated with antibody-conjugated gold 
nanoshells. Created with BioRender
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In another work, Srinivasan et al. showed how to use gold nanoshells as a tag 
for LFA with a remarkable increase in the signal without the need for any addi-
tional signal amplification steps for the detection of prostate-specific antigen (PSA). 
They fabricated the gold nanoshells conjugated with anti-PSA antibodies to target 
PSA obtained from blood serum samples. This work declares that the portable quan-
titative PSA screening test has the potential to guide patient care, minimize ther-
apeutic turnaround times, and improve clinical care in areas without diagnostic 
labs or automated immunoassay systems [96]. Similarly, nanoshell-based PoCT 
has a great potential to recognize microorganisms with high sensitivity. A different 
example of gold nanoshells-based LFA was developed for the detection of Chagas 
disease. Chagas multiantigen conjugated to gold nanoshells recognize circulating 
human anti-Chagas antibodies with high sensitivity and specificity and it is compa-
rable to commercial methods [70]. For the diagnosis of the tuberculosis, dot blot 
immunoassay was developed to identify tuberculosis-specific CFP-16 antigen from 
the clinical urine samples by using the formation of copper nanoshells on the gold 
nanoparticles’ surfaces, which can be quickly observed with naked eye [85]. In a 
recent study, polyhedral nanoshells were developed as paper strips to detect bovine 
viral diarrhea virus observably with the naked eye by increasing the signal trans-
mission. By using a new bovine viral diarrhea virus (BVDV) recognizing peptides 
and designing a copper polyhedral nanoshell on the surface of gold nanoparticles, a 
dot-blot technique for the rapid diagnosis of BVDV was developed. The copper poly-
hedral nanoshell served as the quantitative diagnostic of the virus and contributed 
to the distinctive performance of the peptide-based optical biosensor in detecting 
the target by enhancing the appearance of the pink dot [52]. The colorimetric assay 
platforms can be used as a reliable detection kit for point-of-care testing. Although 
the colorimetric test platforms for dissolved hydrogen sulfide were commonly used, 
they still have mostly low sensitivity. The creation of effective signal amplification 
techniques is one potential solution to this problem. Last, of all, nanoshells can bene-
fits such as detection, signal generation, and amplification of signals to produce novel 
PoCT systems, which make possible diagnosis and treatment at the care-site. 

7 Nanogels 

Hydrogels have been investigated in many applications due to their flexibility, 
biocompatibility, softness, and high tensile strength [46]. Nanogels (NGs) are nano-
sized and three-dimensional hydrogels with a particle size between 20 and 200 nm. 
Physical or chemical cross-interaction between polymer networks leads to permanent 
nanogels. 3D-dimensional nanogels have features such as adjustable size, swelling 
ability, flexibility, and large surface area [67]. These properties of the nanogels are 
adjustable, thus allowing biomedical applications [36, 78]. Traditional laboratory 
methods used to diagnose pathologies have good selectivity and sensitivity, but 
they require more time, cost, and staff. The point-of-care testing provides faster 
and earlier detection of pathologies. Solution-based colorimetric nanosystems and
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surface plasmon resonance biosensing are the most commonly used for PoCT [71]. 
Nano or microgels are of great use in therapeutic and diagnostic applications due 
to their ability to swell in aqueous solution, ensuring non-specific cell or protein 
absorption [27, 83]. Nanogels can be defined as chemically or physically cross-
linked nanosized polymer networks. Cross-linking of polymer chains ensures a three-
dimensional network and high water absorption capacity without dissolution [95]. 
Generally, nanogels can be prepared in three different ways. 

(i) Physical method 

In this method, physical interactions are reached between polymer chains. These 
interactions occur between supramolecular contructs without covalent bonding. 
Compared to other methods, Van der Waals, ionic, hydrophobic–hydrophilic, 
hydrogen bonds are the driving force for the synthesis of cross-linked networks 
without additional cross-linking agents. Physical cross-linked nanogels are less stable 
than chemically cross-linked nanogels [68]. 

(ii) Polymerization of monomers 

Polymerization of monomers is an appropriate way for the synthesis of nanogels. The 
polymerization method works through polymerization of monomer in the presence 
of initiator, catalyst, and cross-linking agent. Emulsion polymerization, controlled 
living radical polymerization, and click chemistry are widely used for polymer-
ization of monomers [103]. The emulsion polymerization leads to polymerization 
of reactive monomer polymers in an aqueous suspension or water-nano emulsion 
phase [54]. Controlled living radical polymerization method affords the synthesize 
of well-defined nanogels with high polymer molecular weight, different composi-
tions, and dimensions [68]. Nitroxide-mediated polymerization (NMP), atom transfer 
radical polymerization (ATRP), and reversible addition-fragmentation chain-transfer 
(RAFT) polymerization methods are known as SI-CRP methods [76]. Click chem-
istry is a simple and efficient method and includes copper-catalyzed reactions, 
copper-free click reactions, and pseudo-click reactions. 

(iii) Cross-linking of polymers 

Covalent cross-linking is widely used for coupling polymer chains to form a gel 
network [42, 53]. Click chemistry, disulphide-based cross-linking, and amino group-
containing cross-linking are methods of cross-linking of polymers. It is possible to 
produce very different types of functional nanogels using this technique [75]. 

7.1 Classification of Nanogels 

Nanogels can be classified on their behavior as non-responsive and stimuli-responsive 
nanogels. Stimuli-responsive nanogels change their structural properties in response 
to internal or exogenous stimuli, including light, pH, temperature, ultrasound, and
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magnetic field [33, 72]. These sensitive nanogels are often called “smart” mate-
rials. Stimuli-responsive nanogels mostly synthesize from cross-linking of desired 
monomers. For example, temperature-triggered nanogels tend to swell and deswell at 
a particular temperature [40, 106]. In this system, external heat ensures remote control 
and the thermoresponsive nanogels promise controlled and targeted drug delivery. 
The thermoresponsive polymers such as Poly(N-isopropylacrylamide), poly(amino 
carbonate), urethane, and polvinylcaprolactam utilized for preparation of stimuli 
responsive nanogels. pH-responsive nanogels are sensitive to acidic or basic condi-
tions. Hyaluronic acid, alginate, chitosan are natural polymers used for the synthesis 
of pH-responsive nanogels [20]. Dinh et al. designed pH-responsive coiled-coil 
peptide-cross-linked hyaluronic acid nanogels (HA-cNGs) for cytochrome C (CC) 
protein delivery. The HA-cNGs loaded with CC showed a rapid release under mild 
acidic conditions [28]. In light-responsive systems, photoresponsive molecules are 
encapsulated in a nanogel. Azobenzenes and spiropbenzopyrans are commonly used 
in these nanogels’ fabrication [1, 14]. 

The morphology of nanogels is the main point that gives information about the 
particle size, structure, and shape. Electron microscopes and optical microscopes are 
mainly used for morphological analysis. Electron microscopes ensure better reso-
lution for imagining smaller nano and microgels. Scanning electron microscope 
(SEM) and transmission electron microscope (TEM) are widely used to observe the 
nanogel structure. Dynamic light scattering (DLS) is also the preferred method for 
measuring size distributions and average sizes in liquids. Charge on nanogels and 
the effect of cross-linker quantity can be determined by DLS analysis [94, 108]. Wu 
et al. reported the synthesis of carboxymethyl chitosan-nisin nanogels. TEM analysis 
was carried out for morphological properties determination. TEM images show that 
nanogels are spherical in shape and the average size is 45 ± 5.62 nm. Compared 
to the sizes observed by DLS, the TEM results are smaller because the nanogels 
are swollen in solution. The presence of functional group carboxymethyl chitosan 
was confirmed with FT-IR spectroscopy [118]. Determination of swelling properties 
is crucial for the characterization of nanogels. The swelling degree depends on the 
structure of the nanogel and the environmental parameters (pH, temperature, etc.) 
[75]. DLS measurement can be used to calculate the swelling ratio. For this aim, parti-
cles that swelled at different times, salinities, and temperatures are measured. The 
average diameter obtained from DLS substituted in different equations and swelling 
capacity can be calculated [108]. In addition, the swelling ratio can be determined 
based on the change in mass between dry particles and swollen particles by substi-
tuting the corresponding equation [56]. The monitoring of glucose concentration 
is very important for diabetes patients. The point-of-care tests promising painless, 
low-cost, and fast detection of glucose concentration [64, 105]. Li et al. reported 
glucose-sensitive poly (N-isopropylacrylamide)/poly (acrylic acid) (PNIPAM/PAA) 
(IPN-BAC) interpenetrating nanogels on colloidal photonic crystals (CPs). IPN-
BAC nanogels cross-linked with N,N'-Bis(acryloyl)cystamine (BAC) and encapsu-
lated by glucose-sensitive NIPAM/4-Vinylphenylboronic Acid (VPBA) copolymer 
shell [59]. The PNIPAM nanogels were synthesized by emulsion polymerization.
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PNIPAM/PAA IPN nanogels were then synthesized in situ polymerization of acry-
lamide within the PNIPAM network. The particle sizes and chemical compositions of 
the nanogels were determined using DLS and X-ray photoelectron spectroscopy anal-
ysis, respectively. The glucose-sensitive core-shell nanogel showed a color change 
from blue to green depending on glucose concentration [59]. Sharmila and Shankaran 
fabricated a hydrogel-based nanoplasmonic colorimetric food sensor probe for the 
detection of melamine (MA) with a detection limit of ×10–7 M. They showed colori-
metric sensing of MA in plasmonic nanomaterials (AuNPs) in solution and hydrogel 
phases. The AuNPs incorporated plasmonic hydrogels were prepared by the chem-
ical and physical cross-linking of cellulose acetate on citrate and β-cyclodextrin 
(βCD) stabilized on gold nanomaterials. Both AuNPs in solution and hydrogel phases 
show similar selectivity and sensitivity [93]. Another research group developed 
localized surface plasmon resonance (LSPR) based poly(N-isopropylacrylamide-
co-methacrylic acid) (PNM) on silica gold nanoshells (AuNS@PNM) biosensor 
[25]. The nanoshells have concentration-dependent red shifts in the LSPR wave-
length of AuNS@PNM. PNM nanogels were synthesized on core-gold nanoshells 
(AuNSs) using the precipitation polymerization method. Nanogel-modified AuNSs 
were dialyzed at room temperature and centrifuged to remove unbond PNM nanogels. 
The TEM images of AuNS@PNM showed that a flower-like architecture had been 
achieved. In this design, PNM hydrogels can change their refractive index as a result 
of protein binding. The AuNS@PNM composite exhibits the detection of changes 
in the concentration of lysozyme and lactoferrin. Figure 6 shows that the shift is 
small at low protein concentrations. The concentration-dependent shift of the LSPR 
wavelength can be easily measured with a portable spectrometer [25].

8 Nanofibers 

Nanofibers are ultra-fine webs of solid fibers with a small pore size, a small diameter, 
and a high surface area [61]. Lowering fiber diameters to the nanoscale can cause 
a significant increment of specific surface area to 1000 m2/g. Nanofiber that has 
a comparatively small volume can comprise plenty of dense nanofibers. The high 
surface area provides a remarkable ability to attach or release functional groups, 
adsorbed molecules, ions, and various types of nanometer-scale particles [61]. 

Electrospinning has attracted a lot of attention from scientists working in the 
area of creating ultrathin fibers among other technologies such as phase separation 
[38], template synthesis [74], chemical vapor deposition [97], and sol–gel method 
[66]. Electrospinning is a reproducible technique that provides flexible operation 
and, as a result of its simplicity mainly used. Nano-sized fibrous materials can easily 
made using electrospinning technology with high efficiency and flexibility in a short 
time [18]. It offers various chances for shape, chemical composition, structural, and 
function-based fiber customization. These controllability characteristics endow the 
nanofiber material with several outstanding attributes that can meet the demands of 
different industries [110]. A high-voltage power supply, a syringe-driven spinneret
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Fig. 6 Schematic diagram of LSPR-based biosensor. Adapted from [25]

connected to a pump and a grounded collector are the main components of elec-
trospinning systems (Fig. 7). The electrospinning process, which is based on the 
theory of electrostatics, is the use of electrostatic repulsion forces in a strong electric 
field to produce nanofibers. While the solution to be electrospun is in the syringe, a 
strong electric field is created between the syringe nozzle and the collector. Due to 
the potential difference between the nozzle and the collector, the solution droplet at 
the nozzle acquires a cone-shaped distortion as the solution is ejected. The polymer 
mixture is pulled into fibers under high pressure during the electrospinning process 
and then deposited on the collector to create a web of randomly or aligned fibers 
[19].

The potential use of nanofibers to develop biosensors has been investigated. Minia-
turization of designed platforms can also be facilitated by nanofibers. Different 
physical surface modification methods (layer by layer, atomic deposition), chem-
ical methods (oxidation, cross-linking, hydrolysis, grafting), and thermal methods 
(heat press, calcination) are utilized to improve nanofiber-based biosensors char-
acteristics [92]. As a result of their interconnectivity properties and large surface 
area-to-volume ratio, electrospun nanofibers are excellent materials for immobi-
lization. Strong electrophilic functional groups on the nanofiber are employed by 
indirect immobilization techniques which are generally straightforward. Between 
the nanofiber and the biomolecule, cross-linkers act as an intermediary. While some
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Fig. 7 Electrospinning process for the production of nanofibers

cross-linkers can be found in the final product, others expedite the reactions. For this 
purpose, the electrospun nanofibers with excellent properties and diverse functions 
can be modified by physical/chemical methods. Thus, they are potential materials 
to be employed by point-of-care (POC) biosensors and microfluidic-based analyt-
ical systems. Nanofibers have been investigated as ultrasensitive biosensors for POC 
cancer diagnosis, circulating tumor cell detection in cancer patients, malaria diag-
nosis, urea, glucose, cholesterol, bacteria detection, etc. Because high surface area 
property gives nanofibers the ability of ultrasensitive detection by providing them 
with binding sites in large quantities. More bioreceptors could be located on the 
surface or the inside of nanofibrous, thus increasing sensitivity [61]. In colorimetric 
POC detection applications, enzymes should be immobilized on the nanofibrous mat 
frequently with an adsorption technique [112]. Then, the nanofiber mats were dried 
usually at 25 °C and used in colorimetric detection with the color gradient scale. In 
another example, an anti-CAP monoclonal antibody immobilized onto the surface 
of poly(vinyl-co-ethylene) nanofibers to establish chloramphenicol (CAP) and use 
for the colorimetric biosensor for CAP [136]. 

Dhawane et al. [26] fabricated a POC, visual detection kit using chitosan 
nanofibers via electrospinning for the detection of cholesterol. In this study, uniform 
chitosan nanofibers (60–90 nm diameter) free of beads, were obtained. Interaction 
between the enzymes and the chitosan nanofibrous mat was important for the enzyme 
loading. For this reason, the electrospinning was performed to produce three nanofi-
brous mats with different thicknesses (6, 12, and 18 h electrospinning time) to find 
maximum enzyme loading. After 6 h immobilization time, a higher enzyme-loaded 
(3.8 U/mL) nanofiber was obtained. The nanofibrous mat was, therefore, used for 
the detection of cholesterol. It was based on a colorimetric method. Results showed 
that a color scale was developed when nanofiber mats loaded with reacting enzyme 
contact different concentrations of cholesterol (50–300 mg/dL). As a result, a simple 
method can be incorporated into a POC strip for cholesterol detection. Li et al., [60] 
produced electrospun polyethylenimine/poly(vinyl alcohol) (PEI/PVA) nanofibrous 
films decorated with Au nanorods (NRs) are signal output elements for the multi-
color visual POCT of PSA proteins. The proposed aptasensing strategy provided 
PSA quantifying and semiquantifying in Au-NRs colloidal solution. Au-NRs/PEI/
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PVA electrospun nanofibrous films displayed good accuracy, low detection limit, 
broad linearity, POCT characteristic, and satisfactory reproducibility. Considerably, 
this method can demonstrate a clear semiquantitative visual effect near the 4.0 and 
10.0 ng/mL PSA concentration cutoffs. This has been used as a measure of the 
incidence of prostate cancer. In one study, electrospun nanofibrous membranes with 
magnetic nanoparticles have been developed and optimized for rapid and sensitive 
electrochemical detection of the pathogen bacterium: E. coli O157:H7. The biosensor 
showed linear detection of five different cell concentrations from 101 to 104 CFU/ 
mL in 8 min. Results of the study show that the application of the low-cost and 
rapid biosensor can be extended to other organisms in field tests [65]. Overall, the 
trend and prospects are indications of possibilities to promote the implementation 
of nanofiber and nanofiber-miniaturized system hybrid for the next generation of 
diagnostic platforms point-of-care testing. 

9 Flexible Hybrid Composites 

Flexible nanomaterials have received increased research interest with the develop-
ment of science and technology [131]. Recently, scientists have demonstrated to 
flexibility and stretchability of various nanomaterials at both macro and micro scales 
and focused on novel techniques for the design and synthesis of flexible nanomate-
rials. Flexible nanomaterials are smart materials that can be deformable, bendable 
structures, and have the ability to return to their original shape. Especially, combi-
nation of flexible nanomaterials with polymers provides great flexibility [23]. The 
unique properties of flexible nanomaterials allow fabrication of new generations of 
flexible and wearable electronics. Flexible and wearable electronics can be attached 
to human skin and biological tissue to enable the monitoring of biological signals. 
Tracking biological signals generated by the human body provides health assessment 
and points of diagnosis diseases [120]. In order to collect accurate information from 
the human body, sensors as the main component of flexible and wearable electronics 
are required to be flexible and have ideal stretchability [132]. Currently, electronic 
sensors are generally constructed with rigid materials such as metal or semiconductor. 
The mechanical properties of these materials are not suitable for the human body as 
well their lack of flexibility and sensitivity are not appropriate for healthcare moni-
toring [130]. Recently, considerable efforts have been dedicated to the development 
of flexible and wearable electronics with good mechanical deformability, stretcha-
bility, sensitivity, and comfortable wear for healthcare monitoring [39]. In the field 
of flexible wearable electronics, sensors are composed of a substrate, a conductive 
filler, sensing elements, and encapsulation materials [31]. The selection of material 
and design strategy are important factors in the fabrication of flexible and stretchable 
sensors [88]. In a flexible and stretchable sensor, component materials need to be 
designed with good mechanical strength and electronic properties. The flexibility, 
stretchability, and conductivity properties of materials used in the flexible wearable 
sensor are the main important criteria to obtain high-performance sensing systems.
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Moreover, flexible sensing systems are required to maintain their performance and 
mechanical stability under mechanical stress. The flexible wearable sensors gener-
ally fabricated by using flexible substrate and nanomaterials. Among the flexible 
substrates polymeric materials including polydimethylsiloxane (PDMS), ecoflex, 
polyimide (PI), polyethylene terephthalate (PET), polyurethane (PU), and rubber 
are generally used for the fabrication of flexible sensors due to their intrinsic flex-
ible properties [51]. Flexible and wearable electronics can also be integrated papers, 
membranes, patches, and so on for point-of-care testing [100]. Flexible carbon-based 
nanomaterials (graphene, carbon nanotubes (CNTs), nanosheets, nanowires, and 
nanoparticles) are widely used in flexible sensor fabrication as conducting nanofillers 
[55]. 

There are two strategies to obtain flexible and stretchable sensors. The first one is to 
exploit intrinsically flexible/stretchable materials, and the other is to use a structural 
design strategy. To fabricate flexible and wearable sensors, a variety of nanomaterials 
have been utilized such as carbon-based nanomaterials and metallic nanomaterials. 
Intrinsic stretchability/flexibility in the sensor platform is achieved by integrating 
these conductive fillers into the flexible materials [126]. This stretchable and flexible 
sensor system can be developed by using different synthesis methods such as mixing 
elastomeric substrate with conductive fillers, surface coating, deposition, and printing 
processes [119]. These methods are conducted to the distribution of conductive fillers 
homogenously in the elastomeric materials. The ultimate goal is to obtain flexible 
and stretchable composite sensors in whole processes. Moreover, materials designed 
with appropriate geometries such as serpentine, percolating network, kirigami, and 
wave/wrinkle enable the transforming nonstretchable materials into the fabrication of 
stretchable structure materials [30, 137]. For example, the stretchable wavy structure 
can be obtained by depositing or transferring metallic materials [119, 127]. 

Evaluating the performance of the fabricated flexible sensor system is also 
important to obtaining reliable healthcare monitoring systems. In order to fabri-
cate a flexible and wearable sensor system with high performance, some parame-
ters such as sensitivity, linearity, hysteresis, response time, and stability should be 
taken into consideration. Electromechanical characterization is generally carried out 
to determine the suitability of these parameters for flexible and wearable sensors 
[51]. Different characterization methods such as transmission electron microscopy 
(TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, 
Fourier transform infrared (FTIR) spectrometer, and atomic force microscopy (AFM) 
are also exploited to display photographs of materials’ nanostructure, structure 
sensing activity, and sensing mechanism [128]. In addition to the characterization 
and synthesis methods of the flexible and wearable sensors mentioned above, the 
fabrication of them depending on the application area is an important consideration. 

Point-of-care testing which provides patient-centered diagnosis and real-time 
health monitoring has become a boasting desire recently [73]. At this point, flex-
ible and wearable sensors stand out as a cornerstone for point-of-care testing. These 
flexible and wearable sensors that can be integrated into the human body enable real-
time monitoring and recording of human physiological and biological vital signals 
for disease diagnosis and health status. These signals produced by the human body
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such as mechanical, electrical, and biological signals can be related to health indi-
cators [107, 120]. Flexible and wearable sensors can be designed to measure at a 
variety of health indicators such as body motions, body temperature, pulse rate, 
electrocardiograms (ECGs), blood pressure, breathing rate, and so on [121]. 

Yang et al. [125] prepared a novel flexible Ag/CNTs-PDMS composite film for 
the early diagnosis of Parkinson’s disease. This flexible sensor was prepared in three 
stages. Firstly, CNT film was transferred to the PDMS substrate and transformed 
the CNT into a wrinkled structure. Secondly, Ag film was deposited upon the wrin-
kled CNT film by ion sputtering method. Lastly, they assembled the flexible and 
wearable sensor. Yamamoto et al. [122] developed integrated simple flexible sensor 
systems sensitive to both electrocardiogram (ECG) signal and skin temperature to 
monitor health condition change based on ECG signal and dehydration and heat 
stroke applications. This flexible sensor was developed by using printing technology 
on a flexible PET film and CNT was used as a conductive filler. Breath sensors 
that can be attached to human skin are useful flexible materials for the diagnosis 
of diseases including breathlessness, bronchial asthma, and sleep apnea. Yan et al. 
[124] developed a flexible AgVO3-nanowires breath sensor by merging the AgVO3 

NWs with Au-interdigitated electrode on a PI substrate. This sensor system highly 
sensitive to humidity air shows the resistance change when the human subject exhales 
and inhales. This flexible sensor system possesses consistency and repeatability to 
monitor human breath with different respiratory rates, flexible sensor system could 
offer opportunities early for diagnosing and treating breath related diseases. These 
potential development of flexible and wearable sensor systems in the fields of point 
care testing system may provide achieving personalized early diagnosis diseases in 
the near future. 

10 Conclusion and Future Aspects 

In this chapter, we have discussed the synthesis and characterization of current nano-
materials and their application in nanomaterial-based biosensors for point-of-care 
diagnostics. Nanomaterial-based POC test platforms have excellent and promising 
potential in current clinical diagnostics. However, there are still some obstacles that 
need to be overcomed, such as high cost, limitations in large-scale applications, rela-
tively low reproducibility, and so forth. The direction of current studies is to develop 
nanomaterial-based POC testing platforms that overcome these obstacles and provide 
more effective, reproducible, accurate, and efficient results. We believe that in the 
very near future, various nanomaterial-based POCT devices will be developed and 
used in clinical trials.
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Nanoinformatics Applied to Smart 
Nanomaterials 
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Abstract Nanotechnology advances have enabled the development of many nano-
materials. Nevertheless, these nano-sized particles may present some limitations 
related to their therapeutic properties. To overcome these obstacles, the study and 
development of smart nanomaterials have grown exponentially. Smart nanomaterials 
can respond to environmental stimuli and, therefore, could be applied as biosensors, 
antimicrobials, bioimaging, and drug delivery. Above all, drug delivery systems have 
shown promising results when it comes to transporting one or more therapeutic agents 
to their target sites. Considering nanomaterials’ importance in the biomedical field, a 
new research area, called nanoinformatics, has emerged. Nanoinformatics is defined 
as an artificial intelligence applied to nanomedicine, representing a very promising 
biotechnological strategy to fine-tune smart nanomaterials. Additionally, nanoinfor-
matics uses the available computational tools to build new approaches for the design 
of safer and more efficient smart nanomaterials for the successful delivery of diverse 
classes of therapeutics. In this chapter, we will discuss how nanoinformatics has been 
applied to smart nanomaterials development. 
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1 Introduction 

Nanotechnology is defined as atomically precise technology, applied at nanometric 
scales, which range from 1 to 100 nm. It can utilize functional single atoms to 
submicrometer molecules to form chemical, physical, and biological systems that 
provide a specific performance. Thus, through controlled and careful manipulation, 
it is possible to produce functional nanoscale materials with unique properties [66]. 
These nanoproperties occur due to the quantum effect of the atoms and molecules that 
constitute a nanoscale system, generating physical and electrical reactions that are 
controlled by phenomena that also occur in nanometric dimensions. In this context, 
scientists and engineers have worked together to understand and design nanometric 
structures to obtain and control desired properties [93]. 

Due to its many interesting features, nanotechnology has a wide application in 
different areas, including industry, environmental safety, health, and agriculture by 
using nanoparticles, nanocapsules, nanotubes, nanospheres, nanochips, and other 
devices [36–41, 74]. However, nanotechnology operations stand out in the medical 
field, being used in genetic material sequencing, biosensors, bioimaging, diagnosis, 
and drug delivery for point-of-care treatments [83]. Thus, nanomedicine has emerged 
as the specific concept of nanotechnology application for biomedical purposes, 
aiming to treat or prevent human diseases. Moreover, the nanomedicine research 
area has led to the development of nanotherapeutics and nanomaterials that exhibit 
great advantages in clinical results when compared to conventional small drugs, 
due to their low toxicity, higher bioavailability, and improved pharmacokinetics and 
therapeutic effect [105]. 

The nanomaterial’s properties mainly depend on its size, shape, and composi-
tion. Therefore, it is possible to control its properties by manipulating these features 
during nanomaterial synthesis, which can be performed with biological, physical, or 
chemical approaches [49]. To be considered a nanomaterial, at least one of the dimen-
sions must be smaller than 100 nm, which leads to a dimensional classification [9]. 
Zero-dimensional nanomaterials have all their dimensions at the nanoscale, such as 
quantum dots and spherical or cubic nanomaterials. One-dimensional nanomaterials 
have only one non-nanoscale dimension, including metallic filaments, nanotubes, 
and nanofibers. Two-dimensional nanomaterials have two non-nanoscale dimen-
sions, including nanoplates, thin films, and nanocoating. Finally, three-dimensional 
materials have various dimensions higher than 100 nm, such as fibers, polycrys-
tals, and nanotubes [79]. Additionally, nanomaterials can also be categorized based 
on their chemical composition, being classified mainly as carbonaceous, metallic, 
dendrimers, and composites [44]. 

Among the applications of nanomaterials in nanomedicine, their use for drug 
delivery stands out, aiming to release a drug at the target site for a specific treat-
ment. To improve this method, it is possible that the nanoparticles only release the 
drug at the target site when they receive some stimulus from the environment, which 
can be physicochemical, biological, thermal, or electrical stimuli [49]. This respon-
siveness seems to be very important, since both conventional drugs and common



Nanoinformatics Applied to Smart Nanomaterials 33

nanotherapeutics, when administered to the human body, can fail in the balance 
between protecting healthy cells and eliminating pathological cells. Thus, the ability 
to respond to endogenous or exogenous stimuli classifies these therapeutics as smart 
nanomaterials, which can perform more accurate and effective treatments with less 
nonspecific toxicity [105]. 

Smart nanomaterials are nanoparticulate systems that exhibit shape, color, texture, 
density, stiffness, and toughness variations in response to specific stimuli, such as 
changes in temperature, pressure, electric and magnetic fields, chemical concentra-
tion, moisture, ionic strength, pH, and stress [82]. Their selective action on specific 
tissues enables greater therapeutic potential and higher immunological tolerance, 
reducing side effects in treatments for infectious diseases or cancer [88]. There-
fore, smart nanomaterials have been properly used for numerous nanomedical appli-
cations, including drug delivery, imaging, tissue engineering, and disease diag-
nostics [3, 84], as shown in Table 1. Their high performance in nanomedicine 
research, diagnosis, and therapy has driven large investments in this nanotech-
nology field. Accordingly, different types of smart nanomaterials (Fig. 1) have been 
synthesized, presenting wide variations in their material compositions, formats, and 
physicochemical properties that make each one suitable for specific applications [67]. 

It is worth noting that, when administered to biological systems, even small vari-
ations in smart nanomaterials’ properties can induce drastic modifications in their 
primary biomedical function, in addition to creating toxicity profiles for the organism. 
Therefore, before the clinical use of smart nanomaterials, it is crucial to ensure they 
are safe enough and maintain their expected functions and properties throughout 
their life cycle in the human body [100]. With this purpose, the nanoinformatics 
research field has emerged, for understanding the interaction mechanisms between 
smart nanomaterials and the biological system more profoundly, integrating the use 
of computational tools for the management of data intrinsic to the nanomaterial, 
including its structure and properties, along with system data [90]. Nanoinformatics 
is applied not only for simulating interactions but is also widely used for structural, 
chemical, and behavioral prediction of nanomaterials, managing raw data collected

Table 1 An overview of smart nanomaterials and their nanomedicine applications 

Smart nanomaterial type Properties/functionalities Application References 

Metallic nanomaterial Magnetic hyperthermia, 
kinetic magnetic 
activation 

Antimicrobial, drug 
delivery, bioimaging 

[22] 
[4] 

Liposomes Encapsulate the drug Drug delivery [3] 

Dendrimers Well-defined structure, 
high surface area 

Drug delivery [46] 

Quantum dots Optical and electronic 
properties, high loading 
capacity 

Bioimaging, 
diagnostics, drug 
delivery 

[91] 
[45] 

Carbon nanotubes Strong structure, high 
surface area 

Tissue engineering, 
drug delivery 

[107] 
[84]
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Fig. 1 Illustrative representation of the smart nanomaterials mentioned in the main text and some 
of the stimuli they can be responsive to

about them, and analyzing their biomedical application data. Thus, the use of nanoin-
formatics accelerates the research and design of new smart nanomaterials, enabling 
their faster inclusion in clinical practice [21]. 

In this context, this chapter presents the computational tools used in nanoinfor-
matics and examines how they can be applied in the context of developing smart nano-
materials, aiming at the design of increasingly technological and safe nanomedical 
approaches. 

2 An Overview of Nanoinformatics in the Context 
of Nanomedicine and the Development of Smart 
Nanomaterials 

The advent of smart nanomaterials was achieved due to advances in nanotechnology, 
a growing field of study that is receiving increasing attention and investment. It 
is mainly based on the research and application of extremely small structures, 
in nanometric dimensions. Although nanotechnologies can be applied in several 
areas of knowledge, their use in human health, called nanomedicine, stands out 
for its promising results [14]. The nanomedicine field operates by implementing 
products capable of overcoming the barriers of conventional medicine, enabling 
higher treatment specificity, and avoiding adverse effects. Among the advantages of 
nanomedicine, there is the production of drugs based on a generic platform, from
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which their functional requirements can be modeled, improved, or replaced. This 
means that it is not necessary to completely reconsider the medical structure every 
time one of its functions needs to be changed to achieve a better performance [32]. 

Associated with this medical improvement, the development of computational 
methods, among other technological advances, has led to the generation of extremely 
important data for application in the field of science and health. Thus, several infor-
matics methods can be adapted to bioinformatics and used, for example, to discover 
new drugs and understand the behavior of cell receptors and protein interactions, 
besides other nanomedicine approaches [14]. The dynamic nature of smart nanoma-
terials, due to their responsiveness to external stimuli, emphasizes the need to predict 
a behavior accurately. Therefore, to ensure their safe administration, it is imperative 
to obtain a detailed description of the possible biological system’s stimuli and the 
response mechanism performed by the nanomaterials [33]. 

Aiming for that, with nanoinformatics computational analysis, it is possible to 
obtain and model physical, chemical, and mathematical parameters that guide the 
formulation of these nanomaterials [96]. Furthermore, this growing field of compu-
tational research uses and adapts the available in silico tools and methods, based on 
artificial intelligence, to predict the behavior and trajectory in vivo of smart nanoma-
terials, after being administered for therapeutic purposes [2]. Based on these analyzes, 
new strategies can be proposed to improve the current nanomaterial performance, 
increasing application properties such as biocompatibility and therapeutic efficacy 
[65]. 

More specifically, to design smart nanomaterials for drug delivery, nanoinfor-
matics is applied to evaluate the complex chemical interactions formed between 
the nanomaterial and the medicine that will be carried through the human body. 
Subsequently, the release interactions between the drug and the nanomaterial must 
also be evaluated, as well as the morphology modifications that may occur in the 
nanomaterial structure. Additionally, the adsorption between the nanomaterial with 
membranes and surfaces must be modulated to ensure that the nanomaterial trajec-
tory will not be interrupted by biological barriers and that the drug will be delivered 
to the target [28]. 

Among the computational tools applied to accurate smart nanomaterials design, 
there is machine learning. This approach consists of a broad set of algorithms and 
mathematical models capable of making specific predictions. It is based on empir-
ical data previously supplied to the computer, which begins to identify patterns in 
the analyzed information [95]. Machine learning is widely used in nanoinformatics 
for the description, characterization, and risk assessment of smart nanomaterials. 
Among machine learning techniques, supervised learning is used to correlate the 
characteristics of nanomaterials with their respective biological responses. Unsuper-
vised learning, by contrast, identifies data patterns that have not yet been classified, 
based on its acquired knowledge [81]. 

In general, to design a specific new smart nanomaterial, with the required proper-
ties, another nanomaterial already characterized and available in databases is used as
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a parameter. Thus, the initial model must be a raw nanomaterial, with fixed parame-
ters, such as structural, mechanical, chemical, electric, magnetic, and thermal prop-
erties [95]. These features are used as input into the system to train the computer’s 
knowledge. Aiming at some specific application, the function of nanoinformatics 
is to predict the new properties of a nanomaterial related to possible changes in its 
structure or composition [98]. 

Machine learning operates in the prediction of new nanomaterials for drug delivery 
mainly through algorithms for the evaluation of different models to identify the one 
that presents the best performance. First, it is necessary to train the system with a set 
of raw experimental data already obtained and available in databases. After being 
trained, it can be used to predict the nanomaterial candidates’ properties of interest, 
performing statistical correlations to define the most appropriate one for a specific 
application. Furthermore, by knowing the atoms or structures most relevant for the 
nanomaterial properties, it is possible to modulate specific parameters to improve 
the model [12]. 

Additionally, with increasing computational advances, deep learning has emerged 
as a more advanced prediction method (Fig. 2). It uses a mathematical model called 
an artificial neural network, which consists of a set of complex nonlinear functions 
that have structural and functional similarities with the brain neuron network [12]. 
This algorithm is composed of many interconnected nodes, like artificial neurons, 
which are organized in many layers. The nodes of the first layer contain the input data 
about a given problem, such as already obtained properties of a nanomaterial. This 
information passes through the entire system of nodes, through the hidden layers, 
until the last layer of nodes has the desired output data [16]. Therefore, using deep 
learning, a system of artificial neural networks can, for instance, also be used to 
predict the bioactivity and the release pattern of a smart nanomaterial into a specific 
environment [96].

3 The Application of Smart Nanomaterials for Drug 
Delivery 

Currently, one of the major focuses of research in the pharmaceutical area is the 
improvement of drug delivery [50]. This is due to multiple factors, including toxicity 
problems, instability, and low bioavailability of the currently available drugs [6, 
35, 47, 61, 86]. Some examples are the drugs used for chemotherapy or antibiotics. 
Chemotherapeutics are some of the most cytotoxic drugs, which present multiple side 
effects once administered. However, these drugs are highly effective in counteracting 
the growth of cancer cells, making their use very important in the treatment of cancer. 
Because of this, it is vital to develop vehicles that encapsulate these drugs, so that they 
can be transported specifically to the desired tissues, avoiding their early degradation 
and their side effects on other healthy tissues in the body [104].
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Fig. 2 Prediction of smart nanomaterials’ properties using deep and machine learning. By using 
the machine learning prediction method, the raw data input goes first through the feature extraction 
and then through the classification algorithm, to generate the final output. In contrast, using the deep 
learning prediction method, the feature extraction and the classification algorithm are condensed 
into just one step, performed by the artificial neural network

Besides, antibiotics present another major challenge, due to two aspects. First, 
there is great concern about the development of antibiotic resistance due to its misuse, 
leading to a constant and urgent search for new molecules with antimicrobial prop-
erties. Second, as in the case of chemotherapeutics, antimicrobials are highly cyto-
toxic molecules too, but they are also often highly sensitive to degradation, which 
rapidly decreases their bioavailability [101]. Therefore, the development of nanocar-
riers is a critical aspect to improve the smart delivery of antimicrobials, avoiding 
their degradation, and improving their specificity, thus preventing damage to healthy 
tissues. 

However, although it seems like a simple idea, the development of nano-vehicles 
for drug delivery enhancement presents major challenges. Among them is the design 
of such vehicles, which must be thought of as molecules with high area/volume ratios, 
to increase the reactivity and free energy of their surfaces, as well as their ability to 
adsorb drugs [56]. To achieve this, the vehicles must be very small in size, to increase 
the Van der Waals forces of attraction, as well as being made of porous materials (in 
the case of synthetic particles), which also increases their contact surface [57, 59]. 
However, these vehicles must also be designed in such a way as to avoid attraction 
between them, thus preventing their agglomeration and improving their circulation 
and absorption. 

Another feature of utmost importance in the design of such nanocarriers is their 
chemical stability. This is because a critical point must be found at which the vehicle 
is stable enough to reach the tissues of interest before degrading, but also capable of
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controlled release of the drugs it carries to improve drug dosing. This last character-
istic is very important for the delivery of chemotherapeutics, for example, since due 
to their high cytotoxicity, the dosage must be done in a controlled manner. Another 
major challenge posed by the development of these nano-formulations is the design 
of particles that, contrary to the drugs they carry, should have low cytotoxicity. This 
is because the aim is to mitigate the adverse effects of the drugs once they are admin-
istered. Therefore, the material from which the particles are made plays a key role 
in this aspect, as normally non-natural structures that are used as raw material tend 
to exhibit high cytotoxicity [62]. 

In summary, the vehicles to improve drug delivery should be (i) small particles that 
are easily absorbed by the cells, with (ii) high surface/volume ratio, (iii) low reactivity 
among themselves, but with (iv) high drug absorption capacity, with (v) good stability 
that allows the tissue of interest to be reached and with (vi) high specificity and that 
also have (vii) high capacity to release the drugs in a controlled manner and that 
once the effect is finished, and (viii) present high biodegradability. Finally, the use 
of nanoinformatics strategies can enhance all these features, as discussed in detail in 
the next topic. 

4 Design of Smart Nanomaterials for Drug Delivery Using 
Nanoinformatics 

Artificial intelligence fields can be applied to nanoinformatics specifically for the safe 
development of smart nanomaterials for drug delivery. These approaches include 
molecular dynamics, molecular docking, quantitative structure–activity relation-
ship (QSAR), quantitative structure–property relationship (QSPR), and quantitative 
structure–toxicity relationship (QSTR) [89]. 

Molecular dynamics is a computational method used in nanoinformatics to 
analyze, in a given time interval, the behavior and structural changes of smart nano-
materials when exposed to different conditions and environments [63]. To prepare 
and run a molecular dynamics simulation, the GROMACS software package is used, 
which also has analysis tools implemented to evaluate the molecular interactions 
at the end of the dynamics and to examine the biological relevance of the obtained 
results [43]. The simulation can predict the behavior and trajectory of each atom 
in the molecular system during a defined period of time, based on the interatomic 
interactions that occur between them [70]. Therefore, molecular dynamics simula-
tions can characterize relevant aspects for drug delivery, such as the nanomaterial’s 
behavior and stability in contact with biological tissues, the interactions that occur 
between the nanomaterial and the drug during its loading, and the binding affinity to 
the target cells in the release moment [18]. 

Molecular docking is another nanoinformatics approach used for developing 
smart nanomaterials [29]. Among the types of software used for docking simula-
tions, AutoDock Vina stands out for applying a knowledge-based scoring function
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with Monte Carlo computational algorithms, obtaining higher prediction accuracy. 
Also, this type of software adopts the Broyden–Fletcher–Goldfarb–Shanno (BFGS) 
method, an algorithm used for model nonlinear optimization [69]. In the drug delivery 
context, this approach is applied to simulate the interactions between the nanomate-
rial, the carried drug, and the target cell. To evaluate these binding affinities, several 
energy values are obtained during the docking simulation, including electrostatic 
energy, free binding energy, intramolecular energy, desolvation energy, inhibition 
constant, and interactive surface [29]. Knowing these predicted energy values, it is 
possible, for instance, to make specific adjustments to obtain lower free energy at 
the binding site between the nanomaterial and the drug, aiming at greater stability 
and efficiency during loading [92]. 

Also applied in nanoinformatics, QSAR aims to predict the biological and toxico-
logical effects of nanomaterials before their synthesis [90]. Considering the relation-
ship between the structural conformation of a nanomaterial and its functional perfor-
mance, QSAR uses the available structural information of nanomaterials already 
synthesized to predict the new nanomaterial bioactivity. Thus, it is possible to design 
nanomaterials ensuring their expected behavior for a successful application for drug 
delivery [77]. In the same context, QSPR performs the prediction of the physical, 
chemical, and biological properties of smart nanomaterials. For instance, QSPR can 
be used to predict drug solubility, an important parameter for drug release, based on 
some nanomaterial structural features such as molar refractivity, topological surface 
area, and McGowan volume [23]. Finally, QSTR is capable of computationally 
predicting the ecotoxicity and cytotoxicity of nanomaterials under different experi-
mental biological conditions [26]. This toxicity evaluation is one of the most impor-
tant steps to ensure the nanomaterial can be safely administered for drug delivery in 
a nanomedical treatment, without causing any adverse effects to the organism [48]. 

5 The Existing Smart Nanomaterials for Drug Delivery 

Due to the nanoinformatics approaches mentioned above, a wide and varied number 
of smart nanomaterials could be safely developed to act in drug delivery, bringing 
great progress to the nanomedicine field. To date, drug carriers can be classified into 
several types according to different characteristics. Some characteristics used for 
classification are size, shape, and physicochemical properties, among others. The 
type of material from which the particles are made is one of the most important 
aspects of particle classification. Thus, roughly speaking, we can say that there are 
two large groups, “organic” and “inorganic” nanoparticles [17]. This characterization 
is important when classifying vehicles, since the material they are made of is key to 
understanding the type of drugs they can carry, as well as the type of treatment for 
which they might be most effective (Table 2).

Within the large group of organic nanoparticles are those made of lipids such as 
liposomes, or extracellular vesicles. As mentioned above, liposomes are spherical 
vesicles composed of a lipid bilayer with water-soluble and lipid-soluble regions, with
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Table 2 An overview of the most representative examples of organic and inorganic nanoparticles 
containing various types of drugs for different biological applications 

Drug type Nanoparticle Application References 

Vancomycin—glycopeptide Poly (lactic-co-glycolic) 
acid 

Bone 
transplantation 

[103] 

Polycaprolactone Antifungal 
therapeutic 
Bone implantation 

[25] 
[53] 

Apoptotic bodies (Evs) Intracellular 
macrophages 
infection 

[15] 

Liposomes Biodistribution [102] 

L9—AMP Silver Antibiotic and 
synergism 

[24] 

Polymyxin—cyclic 
nonribosomal polypeptide 

Silver [51] 

Liposomes Permeation [5] 

P13—AMP Silver Antibiotic [31] 

Synthetic peptides Poly (lactic-co-glycolic) 
acid 

[58] 

Liposomes [52] 

LL-37—AMP Carbon nanotubes Antibiotic [73] 

Doxorubicin Poly (lactic-co-glycolic) 
acid 

Cancer [20] 

Liposomes 

Polymeric Alzheimer’s 
inducer 

Simvastatin Poly (lactic-co-glycolic) 
acid 

Atherosclerosis 
treatment 

[42] 

Docetaxel Chitosan Cancer [94] 

Epirubicin Poly (lactic-co-glycolic) 
acid 

Cancer [27] 

Daptomycin— lipopeptide Gold Antibiotic [108] 

HHC36—AMP Carbon nanotubes Cellular 
differentiation 

[99] 

PEP—AMP Gold Tissue 
regeneration, 
signaling 

[72] 

Indolicidin—AMP Silver Toxicity reduction [30] 

Esc(1–21)—AMP Gold Antibiofilm [19]
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an aqueous solution core. Further, extracellular vesicles (EVs) could be considered 
liposomes, but unlike these, which can be synthetic, EVs are released naturally by 
cells. Therefore, EVs tend to be more complex structures because they contain a 
greater diversity of membrane lipids and proteins, as well as molecules from the cell 
of origin. These types of vehicles have the advantage of greater biocompatibility with 
tissues, which is very attractive when very small molecules or molecules sensitive 
to degradation and with high cytotoxicity are to be transported [56]. One of the most 
famous treatments developed so far for the treatment of cancer is doxorubicin (Doxil), 
a chemotherapeutic nano-encapsulated in liposomes, created by Johnson & Johnson’s 
Ben Venue laboratories [13]. This drug is an antibiotic that, when encapsulated in 
liposomes, drastically decreases its cardiotoxicity and increases its specificity. This 
is also very successful in treating ovarian cancer, myeloma, and HIV-related tumors 
such as Kaposi’s sarcoma. 

Other types of organic vesicles are those made of synthetic and natural polymers, 
such as poly (lactic-co-glycolic) acid (PLGA) and elastin-like polypeptides, respec-
tively [60, 64]. These are highly biocompatible materials, but also very stable and 
compatible with different types of drugs. Some diseases such as Alzheimer’s disease 
are an important focus for the application of improved drug delivery systems because 
the blood–brain barrier (BBB) is an additional obstacle that prevents the passage of 
molecules into the brain. The use of both polymeric and lipidic nanoparticles has 
been shown to have the capability to overtake BBB endothelial cells to deliver drugs 
directly into the central nervous system [34]. The number and variety of drugs that 
have been encapsulated in vehicles to test their ability to overcome the BBB are very 
large, such as Doxil, Dalagrin, Amitriptyline, Kyotorphin, and Tubocurarine, among 
others [78]. Many of the drugs used today as chemotherapeutics are hydrophobic, 
which makes vehicles made from hydrophobic polymers such as PLGA a good choice 
for use as encapsulating particles. 

Regarding the encapsulation of water-soluble drugs, some studies have found 
low-loading effectiveness in vehicles with hydrophilic lipid cores, such as liposomes 
or EVs [76]. By contrast, other studies have found high percentages of encapsula-
tion (40–60%) of this same type of water-soluble drug in EVs [15]. Examples of 
water-soluble drugs are antimicrobial drugs such as vancomycin for the treatment of 
infections by gram-positive bacteria, and antimicrobial peptides (AMPs), which are 
generally amphipathic molecules. Both types of antimicrobials have been success-
fully loaded onto different types of organic nanoparticles, from liposomes and EVs 
to PLGA-based vehicles [1, 8, 11, 54, 75, 80, 85, 87, 97]. 

Another important aspect when designing smart nanomaterials is the shape they 
adopt in solution. It has been seen that the shape of the nanocarriers is a determinant of 
the correct circulation once they are administered. For example, rod-shaped particles 
tend to have a better orientation [62]. Therefore, depending on the target tissue or 
cells for treatment, it may be more or less advantageous to design particles with 
different shapes. One of the biggest hurdles in designing smart particles is how to 
avoid elimination by phagocytes, especially macrophages of the immune system. 
It has been seen that most nanoparticles end up in the spleen and liver after they
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are administered, due to recognition and elimination by macrophages found in these 
organs [10, 55]. 

Typically, the aim is to prevent the particles from being recognized by the immune 
system so that the charged particles can successfully reach the target site and thus 
release the drug. For this, it is important to modify the size and shape of these vehicles, 
because their nanoscale sizes and more elongated shapes prevent recognition by 
macrophages. Other options are the design of more complex particles, which are 
recognized by the immune system as its own, by integrating CD47 molecules on 
their surface or by encapsulating both drugs and complete vehicles in red blood 
cells [7, 68, 106]. However, in the case of the treatment of intracellular macrophage 
infections, the objective is the opposite of most treatments. In these cases, the aim 
is to increase the rate of recognition and phagocytosis of the immune system cells, 
which is why the design of spherical particles is more advantageous. 

The other group is inorganic nanoparticles, which can be magnetic particles of 
nickel, cobalt, iron, magnetite, and FePt alloys or those made of metals such as silver 
and gold [71]. One of the major advantages of this type of particle over organic 
particles is their greater stability and high cellular uptake rate, which makes them very 
attractive as drug delivery systems. Some of the most common inorganic vehicles 
used for drug encapsulation are carbon nanotubes and nanospheres, which have 
hydrophilic properties. However, the use of inorganic nanoparticles for drug delivery 
enhancement is not as advanced compared to organic vehicles. Even so, given all the 
smart nanomaterials for drug delivery mentioned above, it is notable that this area 
of study has received research investments, which should continue, considering the 
potential application in several diseases that still affect people in modern times. 

6 Conclusion 

Advances in the nanomedical field have been very important in obtaining nanothera-
peutics with increasingly better clinical results, achieving higher therapeutic potential 
and fewer side effects to the body. This technological progress in nanomedical treat-
ments has mainly been made possible with nanoinformatics, which implemented 
computational tools in the nanomedicine field. Thus, based on artificial intelligence, 
the various nanoinformatic approaches have enabled the development of stimulus-
responsive nanotherapeutics, called smart nanomaterials, which can be applied in 
increasingly specialized treatments. Among them, we can highlight smart nanoma-
terials designed for targeted drug delivery, which carry medicines to specific body 
tissues more accurately. With in silico approaches, it is possible to make an accu-
rate prediction of the nanomaterial’s properties and to understand the mechanism of 
action it will have in the organism, ensuring a safer and more effective treatment. 
Thus, research in the nanoinformatics area should be greatly encouraged, due to its 
high potential for developing and improving nanomedical procedures.
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Nanomaterials in Lateral Flow Assay 

Arash Mohammadinejad, Ghazaleh Aleyaghoob, and Yavuz Nuri Ertas 

Abstract Point-of-care devices have garnered the interest of scientists in recent 
years due to their capacity for on-site, bedside, and in-home surveillance in many 
fields of the medical, biological, pharmaceutical, and food sciences and industries. 
These devices can be categorized primarily as either portable or stationary. Due to 
their simple downsizing, mobility, low cost, and low power consumption, portable 
devices have attracted a great deal of interest. Recently, lateral flow assays have 
gained popularity as a portable platform due to the simplicity of strip design and 
the ability to detect with the naked eye. As inseparable components of lateral flow 
assay, nanomaterials have played a prominent role in enhancing sensitivity due to 
their large surface area, ease of functionalization, and tunable physical and chemical 
characteristics based on size, shape, and composition. The conventional lateral flow 
approach is an immunoassay in which gold nanoparticles with a unique plasmonic 
surface property show a red color on the test and control lines to enable qualified 
detection. This approach, with its quantitative limitations and limited sensitivity, 
is essential for the introduction of novel nanoparticles. Numerous nanoparticles, 
including quantum dots, carbon nanotubes, magnetic nanoparticles, nanoenzymes, 
surface-enhanced Raman scattering nanotags, upconversion nanoparticles, and time-
resolved fluorescence nanoparticles, have been utilized in the design of lateral flow 
assays to date. This chapter focuses mostly on the characteristics of various nanoparti-
cles combined with lateral flow assay and associated transduction method for readout 
of signals produced by nanoparticles, as well as a critical analysis of the resulting 
approaches.
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1 Introduction 

Point-of-care (POC) devices have attracted unprecedented attention in recent years 
due to their exceptional significance in the self-testing of biological, food, and phar-
maceutical samples, among others, with the benefits of high speed, low cost, sensi-
tivity, on-site, and user-friendly detection. The majority of the success of point-of-
care (POC) devices may be attributed to the limitations of established procedures 
such as liquid chromatography coupled with tandem mass spectrometry (LC-MS/ 
MS), real-time polymerase chain reaction (qPCR), and enzyme-linked immunosor-
bent assay (ELISA) [1]. These approaches mostly suffer from the disadvantages 
of a lengthy procedure, a necessity for a high level of skill, and costly equipment, 
which might limit their use [2]. Therefore, scientists have a significant interest in 
the development and introduction of rapid reactions, simple procedures, inexpensive 
and individual-centered detection technologies. 

Lateral flow assay (LFA), a paper-based approach, may significantly assist the 
objectives of POC technology for the advancement of home testing. This method 
enables the qualitative and quantitative detection of a wide range of targets, including 
proteins, antibodies, nucleic acids, whole cells, toxicants, drugs, etc., on a simple, 
low-cost platform with a negligible sample volume [3]. The standard structure of 
the LFA strip (4–6 mm × 6–7 cm) includes a sample pad, conjugate pad, detec-
tion pad (nitrocellulose membrane), adsorbent pad, and backing pad. These compo-
nents are composed of cellulose, glass fiber, nitrocellulose membrane, cellulose, and 
polystyrene, respectively [4]. Following the assembly of the sample pad, conju-
gate pad, detection pad, and adsorbent pad on the backing pad, an appropriate 
amount of reporter particle-conjugated bioreceptor (antibody, aptamer, or DNA) 
can be deposited on the conjugated pad for the subsequent operation. The loading 
of sample onto the sample pad results in the formation of a complex between the 
target and reporter particle-conjugated bioreceptor, followed by the target’s move-
ment toward the adsorbent pad. During the passage of nitrocellulose membrane, the 
target complex interacts with the detection zone on the membrane including the test 
line (T-line) and control line (C-line) formed by dispensing bioreceptor of the target 
(antibody, aptamer, and DNA) and anti-immunoglubin (or complementary nucleic 
acid strand) on the nitrocellulose membrane, respectively [1]. Depending on the 
nature of the reporter particle, in the presence and absence of the target, character-
istic lines can appear on the T-line or C-line that can be recognized with the naked 
eye or an instrument. 

Despite the numerous advantages of LFA, its application may be limited by several 
drawbacks. Possibility of nonspecific interactions with the sample matrix in the 
nitrocellulose pores and saturation of detection zones (T-line and C-line) at high 
concentrations of analyte, leading to false responses, are downsides of LFA. The
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solution to these issues is sample dilution, which may result in decreased sensitivity. 
Thus, there has been a need for signal amplification, which may be accomplished by 
combining nanotechnology with LFA technology [5]. 

Nanomaterials with high surface area, stability, conductivity, and simple function-
alization can enhance the detection systems’ sensitivity, specificity, reproducibility, 
repeatability, accuracy, and dependability [6]. The expanding use of nanomaterials in 
biosensor production has led to the development of portable, miniaturized transduc-
tion platforms [7]. Biosensors based on nanomaterials offer ultrasensitive, fast, and 
concurrent multiple detection of targets, early stage disease diagnosis and on-time 
therapy, and little sample consumption [8–10]. The development of nanotechnology 
can facilitate the construction of POC devices, such as LFA or microfluidic devices, 
that offer tailored molecular detection in several domains, such as food safety moni-
toring, diagnostic medicine, etc. Due to the significant dependence of LFA devel-
opment on nanotechnology, this chapter focuses on the nanomaterials used in the 
design of LFAs. In addition to describing characteristics and critical topics, detec-
tion methods and transduction systems are classified based on the nanomaterials’ 
application. 

2 Nanomaterials 

In recent years, nanomaterials, particularly metallic nanoparticles (NPs), have been 
widely used in the design of biosensors and POC devices due to their impressive prop-
erties, which include a higher surface area to volume ratio (>107:1) with small size 
(1–100 nm) compared to macro-sized particles, and inimitable chemical, physical, 
optical, magnetic, and electrical properties that enable the integration of different 
transducers with the LFA method [11, 12]. Due to the enhancement of LFA’s poten-
tial for both quantification and qualification purposes, it has become necessary to use 
nanoparticles as labels with LFA. In addition to increasing the required sensitivity 
for quantification detections, this technology can provide signals that can be read by 
a variety of transducer systems. As depicted in Fig. 1, numerous nanoparticles have 
been utilized in the implementation of LFA platforms, including gold nanoparticles 
(AuNPs), which are widely used as label nanoparticles in colorimetry, quantum dots 
(QDs), carbon nanotubes (CNTs), magnetic nanoparticles (MNPs), nanoenzymes, 
surface-enhanced Raman scattering (SERS)-nanotags, upconversion nanoparticles 
(UCNPs), etc. [4, 13]. Table 1 offers an overview of the different nanoparticles and 
related transduction processes used for LFA signal reading.

2.1 AuNPs 

AuNPs have several benefits that increase their applicability in a broad range of disci-
plines, including healthcare, engineering, the sciences, etc. Scientists are interested
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Fig. 1 Application nanoparticles in LFA and possible transduction systems

in the possibility of AuNPs being used in the design of biosensors for diagnosis and 
therapy, among other uses. These advantages include high safety, redox capability, 
catalytic behavior, substantial biocompatibility, great conductivity, a high surface-
to-volume ratio, surface plasmon resonance (SPR), simple detection of its red color 
with the naked eye, and simple bioconjugation by antibodies, oligonucleotides, and 
proteins [51]. Due to the aforementioned characteristics, AuNPs have been predomi-
nantly utilized as colorimetric markers for LFAs. In addition, additional approaches, 
such as electrochemical, SPR, etc., can be combined with LFAs due to the physical 
and chemical characteristics of AuNPs. 

Optical biosensors capable of visual detection of targets with an inexpensive 
and simple transducer that generates a signal proportional to the concentration of the 
target. This signal can represent quantifiable changes in the properties of light, such as 
its intensity, refraction index, and resonance frequency. Nanomaterials can generate 
light or its variations by transferring electrons between energy levels, resulting in 
diverse ways such as fluorescence, absorption, colorimetric, luminescence, refrac-
tometry, and SPR [52]. Due to the great sensitivity and ease of transduction of signals, 
which can be conducted with the naked eye, optical detection of LFA signals has 
been the most often used method in the literature [53]. Due to the straightforward 
appearance of color on the T-line or C-line, the colorimetric readout has garnered a 
great deal of attention for inclusion with LFAs, resulting in greater compatibility with 
the goals of POC devices. Due to the special characteristics of SPR, the application 
of AuNPs in LFAs has been extensively documented.
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In a straightforward and basic design of LFAs, antibody-conjugated AuNPs were 
utilized as the detection agent, resulting in sandwich immunocomplex formation 
and naked-eye detection by capturing antibody-immobilized sites on the nitrocel-
lulose membrane [54]. In addition, colorimetric signals may be measured by using 
a strip analyzer or intensity image analyzer software. In this simple LFA design, 
the sensitivity may be enhanced by optimizing the size distribution of the AuNPs. 
A number of studies have revealed that the diameter of AuNPs significantly affects 
the sensitivity of AuNPs-based lateral flow immunoassays (LFIA) [14, 55]. In an 
enhanced design of LFA strips, two conjugation pads containing two distinct sizes of 
antibody-conjugated AuNPs have been implanted in order to increase sensitivity. The 
larger AuNPs can be attached to bovine serum albumin (BSA)-antibody, whereas the 
smaller antibody-conjugated AuNPs are inhibited by BSA [14].  The formation of  
a complex via BSA-antibody interaction on the T-line leads to the improvement of 
color and sensitivity by AuNPs with a greater size. Nylated ssDNA can also be used 
as a connection between AuNPs-streptavidin and AuNPs-labeled antibodies on the 
T-line or C-line [56]. The in situ increase of AuNPs size (Au deposition) on the T-
line or C-line is an additional technique for sensitivity amplification. In the presence 
of hydroxylamine hydrochloride, the catalytic effect of AuNPs on the reduction of 
Au3+ ions (KAuCl4) to bulk metal resulted in an increase in the size and sensitivity 
of AuNPs (Fig. 2) [15, 57, 58]. 

Additionally, size increase can occur through the formation of aggregation. 
Bioconjugation of AuNPs with complementary oligonucleotide chains results in 
the formation of AuNP aggregates [16, 59]. In this design, one set of AuNPs is 
associated with the amplification probe, while another group is associated with 
the complementing and detecting probes. Amplification and complementary probes 
hybridize to generate AuNP aggregates that are caught on the T-line and C-line.

Fig. 2 Automatic sensitivity enhancement using KAuCl4 and NH2OH · HCl. Reprinted from [15], 
with permission from Elsevier 
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Incorporation of chemiluminescence with colorimetric method is another strategy for 
enhancement of sensitivity which is done by modification of AuNPs with horseradish 
peroxidase (HRP) and antibody which enable chemiluminescence and colorimetric 
by reaction of luminol [17] and chromogenic agents including TMB (3,3,5,5-
tetramethylbenzidine), AEC (3-amino-9-ethylcarbazole) [60, 61]. Moreover, some 
nanoparticles such as platinum (Pt) nanowires on AuNPs, can successfully replicate 
the enzymatic actions on the chromogenic agents, leading to an increase in sensitivity 
and color on the T-line and C-line [42]. In another strategy, after the formation of 
red color on the T-line and C-line, silver deposition on the gold nanoparticles lead to 
the formation of black color resulting in enhancement of sensitivity [18]. In a similar 
manner, polymeric materials such as polydopamine (PDA) can be polymerized onto 
the AuNPs, which has the benefits of high color intensity and sensitivity, rapid strip 
detection, and biocompatibility [19]. In order to improve the sensitivity, the decora-
tion of nanosheets or nanoparticles with AuNPs such as graphite-like carbon nitride 
(g-C3N4) with high surface area, was also performed [29, 62]. 

Integration of strips with a screen-printed electrode (SPE) covered with biorecep-
tors on the working electrode portion permits LFA with electrochemical readout. In 
this configuration, AuNPs may transport redox markers such as ferrocene [20]. Occa-
sionally, simple electrochemical LFA strips may be constructed without the addition 
of redox-active spices. Current may be lowered in this design by trapping AuNPs-
antibody conjugates on the detecting zone, which is the working electrode [21]. 
In another design, Srisomwat et al. synergically used the advantage of automation, 
delaying architecture, and electrochemical-based LFA [22]. In this design, following 
the migration of hepatitis B virus (HBV) DNA down to the T-line and capture by 
the DNA strand on the T-line, Au3+ ions are delivered through a baffle barrier with a 
delayed rate and captured on the hybridized DNA strands via electrostatic and coor-
dination interactions with the phosphate backbone. Subsequently, an anodic stripping 
voltammetry (ASWV) test was conducted, and the synthesis of AuNPs resulted in 
the development of a signal owing to the decrease of Au0. 

In addition to some advantages of AuNPs such as excellent electrochemical 
behavior, high surface area, and considerable biocompatibility, due to their small 
size and faster migration, single-step electrochemiluminescence (ECL) procedure 
with mixing tripropylamine as the ECL coreactant with the sample solution can be 
performed. Benefiting from this, labeling AuNPs with Ru(bpy)3 2+ enables the forma-
tion of sandwich immunocomplexes at the T-line, which generates an ECL signal in 
the presence of a Ru(bpy)3 2+/tripropylamine (TPA) system (Fig. 3) [23].

2.1.1 Critical Note 

Although LFIA strips with naked eye readout have been developed most frequently 
as the most popular POC device in the diagnosis process, their application may be 
limited by disadvantages such as qualitative detection, low sensitivity, instability of 
antibodies, and possible aggregation of AuNPs in serum matrices. Some improve-
ments have been made to improve the sensitivity in an effort to resolve the issues.
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Fig. 3 Application Ru(bpy)3 2+-AuNP-Ab for ECL-based LFA: a LFA strips structure; b assem-
bling the ECL equipment on LFA strip; c mechanism of signal producing. Reprinted from [23], 
with permission from The American Chemical Society

Several amplification strategies, such as deposition of Au, application of two different 
sizes of AuNPs, and application of AuNPs aggregates, may appear more complicated 
than the conventional simple LFA method, but they can be executed in a single stage 
with greater sensitivity than the conventional method. 

Another proposed amplification technique involves surrounding AuNPs with HRP 
in order to perform a chemiluminescence readout. Despite its high sensitivity, this 
technique may be limited by a time-consuming procedure, the need for a specific 
reaction temperature (37 °C), and the instability of enzymes. Therefore, alterna-
tives to enzymes such as Pt nanoparticles are advantageous [63]. Although other 
techniques that increase the color and visibility of T-line and C-line using silver 
deposition [18] and polymeric materials [19] can be a valuable alternative to the 
time-consuming enzymatic technique, LFA production can be made affordable by 
reducing the number of antibodies required. Distribution of AuNPs on a large surface 
area increases the signal and sensitivity, but the formation of a large nanocomposite 
reduces the flow rate along the strip and lengthens the testing time, which may limit 
the performance of this strategy and the use of membranes with small pore sizes that 
increase sensitivity. 

The incorporation of electrochemical approach with LFA has biocompatibility, 
affordability, compactness, and downsizing capabilities that are more suitable for 
POC objectives than optical techniques. This idea is implementable on a miniatur-
ized platform containing a small potentiostat, allowing for quick and on-site detec-
tion. Due to their exceptional electrochemical properties, AuNPs may be useful in 
the development of LFAs based on the electrochemical method. However, certain 
designs, such as ECL-based LFA, can separate LFA technology from POC objectives. 
Although this technology combines the benefits of AuNPs with ECL in a synergistic



Nanomaterials in Lateral Flow Assay 65

manner, the installation of certain equipment, such as a charge-coupled device (CCD) 
camera, may raise the cost of the system and restrict its applicability. In addition, 
for one-step performance and automation of the detection method on the strip, a 
wax-printing technique is used to create a baffle or zigzag delayed channel. In this 
method, merging in the non-delayed flow adjusts the transmission of an enhancement 
reagent such as Au3+ to the detecting zone via delayed and non-delayed channels 
[15, 22]. This design has a high sensitivity and a low LOD, but its complexity and 
the oxidation of the Au ions may restrict its use. 

2.2 Carbon-Based Nanomaterials 

Recently, carbon-based nanoparticles such as carbon nanotubes (CNTs), graphene 
oxide (GO), and carbon dots (CDs) have been widely used in the design of LFA strips 
due to their high contrast and dark color, low cost, high safety, simple functionaliza-
tion, portability, and excellent optical and electrochemical properties. The aforemen-
tioned benefits are in accordance with the fabrication of POC systems that aim for 
immediate, inexpensive, and on-site detection of biological targets such as viruses, 
proteins, DNA, etc., on a compact and portable platform [64]. Compared to AuNPs, 
CNTs have a greater surface area with high binding sites that are easily functional-
ized by bioreceptors, resulting in an increased sensitivity. In addition, because of the 
high contrast between black and white of CTNs, semi-quantification detection may 
be performed with the naked eye or quantification detection can be conducted during 
image processing using gray pixels [24]. In a research using CNTs-labeled antibodies 
for methamphetamine detection, the sensitivity was determined to be 10 times higher 
than AuNPs-labeled antibodies [24]. CNTs can also be adorned with AuNPs for the 
immobilization of antibodies, which combines the benefits of both materials [25]. G-
C3N4, a two-dimensional (2D) nanomaterial with chemical inertness, a large surface 
area, and an inexpensive manufacturing technique, is a strong choice for transporting 
AuNPs (Fig. 4) [29]. Amorphous carbon nanoparticles (ANPs) are unusual nanoma-
terials with a size greater than 100 nm and a variety of single- and multi-walled CNTs 
(MWCNTs). ANPs have benefits such as greater sensitivity creation in comparison to 
AuNPs, non-toxicity, exceptional stability, simple functioning and conjugation, and 
excellent contrast in comparison to bright backdrops due to their deep black color. 
The aforementioned characteristics render ANPs appropriate for use as label anti-
bodies in the manufacture of LFA strips [26]. CDs, as carbon-based nanomaterials, 
are zero-dimensional nanoparticles that possess biocompatibility, low toxicity, inert-
ness, and photostability. These functions employ CDs commonly in drug delivery 
[65], imaging [66], biosensor [67], and photocatalyst [68]. Thus, the application of 
CDs as labels of antibodies may be utilized for LFA technique [69]. In this way, 
hybridization of CDs with other nanoparticles such as SiO2 might be a useful label 
for LFA, since it results in great sensitivity for the LFA approach due to its high 
stability and considerable fluorescence intensity [69].
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Fig. 4 Application of g-C3N4 in LFA: a synthesis protocol; b detection procedure; c enhancement 
of signal. Reprinted from [29], with permission from Elsevier 

Benefiting from the FRET effect of CDs fluorescence intensity with certain 
quencher nanoparticles, such as silver nanoparticles (AgNPs), substantial absorp-
tion at the CDs fluorescence emission wavelength may occur. Li et al. constructed 
a strip in this manner by immobilizing a combination of zearalenone-ovalbumin 
and CD-ovalbumin on the T-line and zearalenone-ovalbumin on the C-line. In this 
configuration, AgNPs-anti-zearalenone served as the acceptor (quencher) while CD-
ovalbumin served as the donor [27]. In addition to enhancing the optical charac-
teristics of CNTs, their high conductivity also allows them to be employed as the 
working electrode. Zue et al. developed a concept for LFA employing CNT paper on 
the C-line and Ag/AgCl ink-painted copper paper as the reference/counter electrode, 
followed by lamination of the strip. In this approach, BSA–8-hydroxyguanosine on 
the T-line collected AuNP–anti–8-hydroxyguanosine conjugates. The AuNP–anti–8-
hydroxyguanosine/8-hydroxyguanosine complexes then moved across the T-line and 
were caught by anti-Mouse IgG on the C-line, resulting in the detection of the antigen 
[21]. CNT-modified screen-printed carbon electrode (SPE) that is mounted under the 
T-line using a magnet is a second design option [28]. This structure was designed to
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evaluate the enzymatic activity of acetylcholinesterase (AChE) for acetylthiocholine 
(ATCh) by comparing deactivated AChE to active AChE trapped by anti-AChE on 
the T-line. 

2.2.1 Critical Note 

Due to the insolubility of CNT in sample buffers and the slow migration of CNT in the 
pores of nitrocellulose, some pre-treatment such as oxidation or surfactant binding 
must be performed before CNTs may be linked to multiple bioreceptors [24]. In addi-
tion, CNT modification of the electrode is heavily dependent on organic solvents for 
effective dispersion. For LFA strips, the suggested nanoparticles with high solu-
bility, such as CDs, and the benefits of easy functionalization, simple synthesis, 
high safety, low cost, and high quantum yield in solid and aqueous phases are 
viable candidates. Some developments, such as the inclusion of CDs with other 
nanoparticles such as SiO2, result in the non-uniformity of this kind of nanoparticles 
due to the co-hydrolysis of CDs and tetraethyl orthosilicate (TEOS) [69]. Although 
designing FRET-based LFA strips enables on-site screening of targets in complex 
matrices, such as zearalenone in cereal samples and relevant products, the qualitative, 
semi-quantitative, and probable interferences of matrices may limit the scope of this 
method’s use [27]. 

2.3 Quantum Dots (QDs) 

QDs as semiconductor nanoparticles are typically a mix of elemental groups III–V 
and II–VI. Due to the quantum confinement of electrons and holes in these nanopar-
ticles, continuous molecular band energy is converted to discrete energy levels, 
resulting in the potential emission of fluorescence upon excitation and electron-
hole recombination. QDs with advantages of controllable size-depended emission, 
high specific surface area, high fluorescence intensity, long lifetime, high binding 
sites, wide absorption region, low photodegradation, and photo-bleaching, have been 
widely used for designing biosensors in comparison with other organic commercial 
dyes [70]. Due to the aforementioned characteristics, QDs have attracted consid-
erable interest for the creation of LFA strips to detect proteins [71], viruses [72], 
pharmaceutical materials [73], and nucleic acid [74]. Although QDs indicate a high 
level of sensitivity to the LFA system, it is possible to process some technologies 
to increase sensitivity. Due to the formation of hydrophilic QDs in the presence of 
thiolated acids, an abundance of carboxylic acids can coat the surface, facilitating 
the immobilization of amino-terminated aptamers and DNAs. Thus, CdTe QDs were 
combined with strand displacement amplification method for HIV-DNA detection. 
This approach conducted by hybridization of hairpin H1-strand as a trigger, with 
HIV-DNA leading to unraveling the hairpin structure of H1. Thus, the remaining 
H1 strand can hybridize with the CdTe hairpin H2 strand that has been tagged with
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Fig. 5 Strand displacement amplification-based LFA for detection of HIV-DNA. Reprinted from 
[30], with permission from Elsevier 

QDs, followed by the release of HIV-DNA. As seen in Fig. 5, this circle may be 
repeated and an amplification sample can be deposited onto the sample pad. Finally, 
H1–H2-CdTe QDs hybridization was captured on the T-line by the unhybridized H2 
strand sequence [30]. 

The employment of core/shell QDs is advised for enhancing the sensitivity of 
QDs-based LAF techniques. So, CdSe/ZnS QDs are extensively employed in the 
creation of biosensors, particularly, LFA strips [31]. In this method, core/shell QDs 
may be constructed via multishell strategy to increase the quantum yield and sensi-
tivity of LFA technology. By preventing exciton leakage, the surrounding ZnSe/CdSe 
core with a CdS/CdxZn1−xS/ZnS multishell may significantly increase the quantum 
yield to 70% [32]. CuInZnxS2+x (x = 1) as a cadmium-free core is capped by ZnS/ZnS 
as a thick shell, which is synthesized during two independent shell growth processes 
for the purpose of multishell development in LFA. This structure can provide a 77% 
quantum yield [33]. In order to generate cadmium-free and environmentally accept-
able QDs, InP/ZnS core/shell QDs were encased in a silica shell for LFA design [75]. 
QD/SiO2 nanoparticles including dendritic and porous silica particles with densely 
loaded CdSe/CdS/ZnS QDs were proposed for creating LFA strips [34]. Compared 
to typical sandwich-type nanospheres, in which a layer of fluorophores surrounding 
the silica core, this shape significantly increases the surface area for adsorption of 
QDs and makes homogenous dispersion of QDs throughout the silicon sphere prac-
tical. The accumulation of QDs in each unity led to outstanding optical properties, 
colloidal stability, and simple biofunctionalization of the suggested nanoparticle. The 
inclusion of beforementioned properties with LFA strips led to the establishment of 
a powerful platform for the detection of C-reaction protein (CRP) in complicated 
biological samples [34]. For enhancement of the sensitivity, adsorption of QDs on 
the surface of biocompatible nanobeads with large surface area is another approach.
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Shao et al. produced nanobeads (Fig. 6) using sodium dodecyl sulfonate (SDS) 
and poly (maleicanhydride-alt-1-octadecene) (PMAO) for this purpose, which were 
subsequently coated with CdSe/ZnS QDs [35]. 

The readout signals from QDs-based LFA can be performed by UV light followed 
by an assessment of intensities using ImageJ application or by fluorescence strip 
reader. Signaling from QDs-based LFA can be accomplished by directly emitted 
fluorescence intensity of QDs-labeled bioreceptors or measurement of QDs inten-
sity quenching. LFA strips can be produced by quenching emitting antigen-linked 
QDs on the T-line with antibody-linked AgNPs or AuNPs utilizing an inner filter and 
fluorescence resonance energy transfer (FRET), respectively [31]. Also, a nanocom-
posite of quantum dots (Biotin-QDs) and MnO2 nanosheets, which results in the

Fig. 6 Application quantum dot nanobeads (QBs) for multiplexed-LFA detection of aflatoxin B1 
(AFB1) and zearalenone (ZEN); a synthesis protocol; b detection process. Reprinted from Analytica 
Chimica Acta, Vol. 1025, Shao et al., Quantum dot nanobead-based multiplexed immunochromato-
graphic assay for simultaneous detection of aflatoxin B1 and zearalenone, Pages 163–171, Copyright 
2018, with permission from Elsevier [35] 
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quenching of QDs, can be used as a decoration for QDs. MnO2 nanosheets are 
degraded in the presence of glutathione (GSH), allowing Biotin-QDs to be collected 
on a streptavidin-containing T-line [76]. 

2.3.1 Critical Note 

Compared to typical AuNPs, QDs have a greater specific surface area, acceptable 
biocompatibility, increased sensitivity, quicker strip migration, and simple storage 
conditions. Furthermore, the simple binding of QDs to nucleic acid strands enables 
the performance of displacement amplification technology, which introduced a 
potent method that, in comparison to conventional methods such as loop-mediated 
isothermal amplification (LAMP), recombinase polymerase amplification (RPA), 
and polymerase chain reaction (PCR), is easier to operate, does not require expen-
sive biological material, and does not necessitate expert knowledge [30]. Due to the 
application of the synthesis technique in an organic phase, the stability and quantum 
yield of core/shell QDs might be diminished after transfer to a biological aqueous 
environment, hence affecting the sensitivity of the LFA system [33]. In addition, QDs-
based LFAs are hampered by issues such as high toxicity of heavy metal elements, 
limited stability, aggregation in biological samples, and a quenching effect in the 
presence of biomolecules. 

2.4 Magnetic Nanoparticles (MNPs) 

Typically, these nanoparticles are produced using iron oxide nanoparticles (Fe3O4, 
γ-Fe2O3) as a foundation core, which is then coated with additional nanoparticles and 
bioreceptors are immobilized. This property enables the construction of core/shell 
structures for the application of LFA, such as Fe2O3 nanoparticles containing gold 
[36], SiO2 [37], streptavidin [38], and protein G [39]. In addition, because of their 
large surface area and simple carboxyl group functionalization, Fe2O3 nanoparticles 
can be directly linked to antibodies [40] or other bioreceptors. The primary flaw of 
conventional MNPs is aggregation during migration along strips, which slows down 
the detection process and reduces sensitivity owing to weaker antigen–antibody inter-
actions. Super-paramagnetic nanoparticles (SPMNPs) with a larger surface area and 
no hysteresis have been shown to be an effective solution to this issue. SPMNPs are 
ascribed to MNPs less than 20 nm in size. Furthermore, MNPs having a size between 
30 and 100 nm are paramagnetic [1]. Wang et al. demonstrated the size of SPMNPs 
has a substantial impact on the detection time [77]. Different magnetometers, such as 
resonant coil [78], magnetoresistance [79], and planar coils [80], can read the signal 
of MNPs. Magnetometers are installed above the detecting zone of the strips for this 
purpose, as the existence of an external magnetic field is crucial for the emergence of 
the magnetization effect of MNPs [81]. Due to the obvious brown color of Fe2O3 or 
their coating by AuNPs, T-line and C-line can be read with the naked eye (Fig. 7) [36,
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Fig. 7 Application of Fe2O3–AuNPs-antibody for detection of aflatoxin B2. Reprinted from [36], 
with permission from Elsevier 

39]. Incorporation of Fe2O3 nanoparticles with LFA can be allocated to the sample 
preparation prior to its placement on the sample pad, extending their use beyond 
signal creation. Li et al. implemented magnetic enrichment of L. monocytogenes 
cells from lettuce by streptavidin-biotin interaction, DNA extraction, and detection 
by AuNP-probe on LFA strip [38]. 

2.4.1 Critical Note 

In comparison to fluorophore nanoparticles, MNPs have the benefits of reduced 
background, the need for inexpensive, compact, and compact magnetometers, and 
make on-site and downsized POC detection possible. Furthermore, movement along 
the strips is navigable utilizing an external magnetic field. Due to limited solubility
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and dispersion in water, the use of these nanoparticles may be challenging despite 
the fact that these characteristics might provide the MNPs-based LFA more credit 
than other types of LFAs that need expensive and large equipment. In addition, size-
dependent issues can be attributed to aggregation and positive errors caused by MNPs 
of greater sizes, or to poor magnetic signal and low sensitivity caused by MNPs of 
lower sizes [77]. Another difficulty is the two-step growth of the output signal with 
time, which may be regulated by the kinetics of immunoreaction [82]. 

2.5 Nanoenzymes 

As a result of the incorporation of natural enzymes with LFA, the signal strength of 
the redox reaction of chromogenic substrates-H2O2 system on the detecting zone may 
have increased, resulting in visible color. In addition to colorimetry, LFA can also 
contain chemiluminescence owing to the benefits of nanoenzymes. This technique is 
typically carried out by trapping horseradish peroxidase (HRP)-labeled antibody on 
the T-line or C-line, followed by the addition of chromogenic substrates such as TMB 
(3,30,5,50-tetramethylbenzidine) and ABTS (20-azino-bis(3-ethylbenzothiazole-6-
sulfonic acid) [52, 83]. Additionally, G-quadruplexe-hemin DNAzyme has enzy-
matic effects, but it has been utilized less frequently for LFA. This process often 
has a number of drawbacks, including particular requirements such as temperature 
(37 °C), buffer, and expense. Recently, nanoenzymes have attracted the interest of 
scientists for the creation of LFAs due to their remarkable properties, which include 
enzyme function mimicry, low cost, ease of manufacture, and increased stability 
[84]. In this manner, nanoenzymes having peroxidase activity, such as nanoparticles 
based on platinum (Pt), have been widely utilized in the construction of LFAs. The 
regular inclusion of nanoenzymes with LFAs has advanced based on the coating of 
AuNPs with Pt layer [41] or Pt nanowires [42], porous Pt layer [43], which boosts 
the plasmonic color of AuNPs by adding chromogenic substrate to the detecting 
zone (Fig. 8). In certain instances, palladium-platinum (Pd–Pt) nanoparticles were 
produced for LFA design [44].

2.5.1 Critical Note 

Application of nanoenzymes in LFA has benefits such as low cost, high stability, 
and simple preparation, but detection requires the addition of chromogenic substrate 
to the detecting zone to generate a readable signal, which makes the procedure 
tedious and time-consuming. Although certain innovations, such as automating the 
technique by coating and drying the strips with chromogenic substrate, can speed 
up the detection, constructing the strips with additional channels for the separate 
migration of chromogenic substrate in the sample solution might complicate the 
LFA procedure [85].
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Fig. 8 Catalytic effect of Au@Pt-antibody for TMB/H2O2 and enhancement of sensitivity. The 
sign of (*) shows LOD. Reprinted from [41], with permission from The American Chemical Society

2.6 Other Nanoparticles 

Nanoparticles have been widely utilized in the structuring of LFA strips. However, 
there have been other key nanoparticles that have been less integrated with LFA and 
have synergistically shared their properties with LFA to permit the high sensitivity 
and accuracy necessary for POC techniques. These nanoparticles are mentioned and 
briefly described in the next section. Upconversion nanoparticles (UCNPs) capable 
of photon upconversion are created by doping transition metals with actinides and 
lanthanides derived from rare earths. UCNPs are able to absorb a large number of 
photons from the low-energy near-infrared (NIR) region and convert them into a 
single photon from the high-energy ultraviolet-visible range (UV-Vis). Scientists 
are more interested in the application of UCNPs in nanomedicine, biosensors, and 
in vivo imaging than QDs due to their narrow and high-intensity emission, reduced 
toxicity, anti-Stokes shifts, high cellular uptake, low background, and strong optical 
penetration in tissue [86]. NaYF4 double-doped with Yb and Er has been the most 
often included UCNPs with LFA (NaYF4: Yb, Er). In this system, the matrix with 
the lowest phonon energy is NaYF4. Also,  Yb3+ is able to absorb an infrared photon 
in the host lattice, which is then transmitted to the non-radiative form of Er3+, which 
transforms it into visible emission [87]. Moreover, in order to enhance the intensity 
and sensitivity of NaYF4 UCNPs, several modifications might be made [45]. Doping
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the Ca2+ ions in the shell of NaYF4:Yb, Tm@NaYF4 core/shell UCNPs in this manner 
can enhance the NIR emission via excitation in the NIR region. This event can occur 
as a result of lattice destruction followed by the formation of an asymmetric structure 
driven by the displacement of Y3+ with Ca2+, resulting in a highly sensitive electron 
transition (Fig. 9). 

Time-resolved fluorescence nanoparticles (TRFNPs) are fluorescent lanthanide 
(mostly Europium (III)) chelates nanoparticles with a hydrophobic shell that must 
be modified with biofunctional groups [88]. With their extended lifetime, chem-
ical stability, large Stokes shift, and broad excitation spectrum, these nanoparticles

Fig. 9 NIR-to-NIR NaYF4:Yb, Tm@NaYF4@Ca2+ UCNPs: a schematic illustration of synthesis; 
b enhancement of fluorescence intensity by NaYF4 shell and Ca2+ dopant; c elemental mapping; 
d XRD spectra; e effect of different amount of Ca2+ dopant on the fluorescence intensity. Reprinted 
from [45], with permission from Elsevier 
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significantly minimize interferences in biological and complex matrices with tran-
sient background. Therefore, TRFNPs may be suitable for integration with LFA [46]. 
Surface-enhanced Raman scattering (SERS) nanotags are plasmonic metal nanos-
tructures, such as gold and silver, that enable the detection of targets adsorbed on their 
surface via Raman signal enhancement resulting from electromagnetic field amplifi-
cation via localized surface plasmon resonance (LSPR) by hot spot effect [89]. This 
occurrence can be attributed to the increase of the electromagnetic field caused by 
plasmonic phenomena (Stock, Rayleigh, Anti-Stocks) that lead to SERS in nanoscale 
gaps between nanostructures [52]. Increased Raman intensity at a constant Raman 
shift is used for detection (cm−1). In this method, He–Ne laser (365 nm) or Raman 
(diode) laser (785 nm) is often utilized as the excitation source, and a holographic 
notch filter is employed to remove the Rayleigh line from the Raman data [47, 50]. 
Several nanoparticles, including hollow gold nanospheres [47], Au nanoflower @ 
Ag core/shell [48], Au@Ag nanoparticles [49], Au nanorod (AuNR)@ Au core/ 
shell, have been combined with LFA in this manner [50]. Raman molecules such as 
malachite green isothiocyanate (MGITC) [47], 4-mercaptobenzoic acid (MBA) [48], 
1,4-nitrobenzenthiole (NBT) [50] and 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) 
[49] have been embedded or adsorbed in nanoparticles in order to produce Raman 
intensity. The fabrication of Au@Ag nanoparticles with dual-layer DTNB is depicted 
in Fig. 10. 

Fig. 10 Preparation and application of Au@DTNB@Ag@DTNB in LFA. Adapted from [49], in 
accordance with the Creative Commons Attribution 3.0 Unported Licence (CC BY)
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2.6.1 Critical Note 

The aforementioned nanoparticles serve an indisputable effect in reducing interfer-
ences from the background. The UCPs and SERS-nanotags with anti-Stokes or Stokes 
shifts induced by NIR excitation and UV-Vis or NIR emission significantly reduce 
the autofluorescence of UV-Vis region-absorbent biomolecules. Also, TRFNPs with 
extended lifetime fluorescence relative to interferences’ short-lived fluorescence may 
be combined with LFA. Despite these advantages, their applicability may be limited 
by some downsides. The creation of UCNPs necessitated the use of inert gas (N2, Ar)  
or vacuum, which are costly conditions that are available in all laboratories. Due to 
the poor solubility of UCNPs, migration along strips may also be challenging. There-
fore, alteration and surface functionalization are essential. For capturing the signal 
of TRFNPs over their lifetime, time-resolving techniques, which are not standard on 
all spectrometers and are costly, are required. Despite the fact that SERS-nanotags 
improve the limited sensitivity caused by weak signals in the NIR window [90], this 
technology requires the use of costly commercial Raman molecules in nanoparticles. 
In contrast, even though the SERS approach attempts to minimize interferences by 
the use of NIR lasers and stock spectra, some background signal interferences from 
nanotags may still be present. In order to further limit interferences, the synthesis of 
very homogeneous nanoparticles may thereby complicate the synthesis technique. 

3 Conclusion 

The primary objective of point-of-care (POC) devices is to provide rapid, cost-
effective, and accurate diagnosis of targets in a variety of domains, including medical, 
criminal, clinical, and industrial, in order to avoid and forecast potential issues and aid 
in prompt treatment. One of the most intriguing elements of POC devices is the devel-
opment of in-home, patient-centered screening and healthcare diagnostics. As an 
accessible and simple-to-prepare POC gadget, LFA has become a popular diagnostic 
tool. Nanomaterials, which are an integral part of the LFA methodology, have played 
a crucial role in the effective design and execution of this method to increase its sensi-
tivity. Nanomaterials have unique benefits, such as adjustable physical and chemical 
properties based on size, shape, and composition and simple functionalization using 
bioreceptors combined with LFA. According to the findings given in Table 1, produc-
tion, modification, and bioconjugation of nanoparticles well-incorporated with LFA 
strips for the detection of diverse targets include biomarkers, viruses, microorgan-
isms, DNA, mycotoxins, etc. As demonstrated in Table 1, the detection of targets 
has occurred in less than 30 min, suggesting an adequate rate of diagnosis due to 
the absence of aggregation, the rapid migration through membrane pores, and the 
successful interpretation of the signal created by nanoparticles. AuNPs have been the 
most prevalent and popular nanoparticles that enable naked-eye detection of T-line or 
C-line. Unfortunately, the typical LFA based on naked-eye qualifying detection has a
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limited detection. In addition, certain image analysis software is essential for quanti-
fying data, which makes the measurement challenging. So, to increase sensitivity, the 
integration of alternative transduction systems with LFA using other nanoparticles 
has been encouraged. In this context, CNTs with vibrant colors and a strong black-on-
white contrast may be suitable for inclusion with LFA. Due to the poor dispersity and 
hydrophilicity of the migration buffer, however, CNTs are not commonly included 
with commercially available LFA. In addition, the use of carbon-based nanoparticles 
for electrochemically-based LFA is in great demand for SPE, making this technology 
extremely costly. On the other hand, despite the fact that the use of other nanopar-
ticles benefits from the high sensitivity of QDs, the miniaturized magnetometer for 
MNPs, and the significant reduction of interference by UCNPs and SERS-nanotags, 
the readout of signals requires the integration of costly equipment with LFA. This 
issue prohibits personalized detection and in-home use of LFA, which contradicts the 
objectives of the POC approach. The catalytic impact of nanoenzymes on substrates, 
accompanied by an increase in sensitivity and a reduction in LOD (103 times) [41], 
can be a valuable alternative to the usual LFA approach for detection with the naked 
eye. In addition, the design of delayed canals for the automation of LFA may be 
suitable for commercialization [15]. 
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Aptamer-Based Lateral Flow Assay 
as a Smart Point-of-Care Devices 

Melis Canbay , Ahmet Turan Keskintas , and Sevde Altuntas 

Abstract Point-of-care (POC) devices have become more crucial in recent years. 
POC provides easy, quick, and low-cost on-site diagnostics and detection without 
the need of any complex tool or well-trained person. One of the common POC 
devices is lateral flow assay (LFA). LFA is a paper-based technique that contains 
different compartments that can detect the target of interest in a sample rapidly. 
Aptamer-based LFA is currently developing further due to its advantages compared 
to other types of LFA. For instance, it has the potential to replace antibody-based 
LFA because of its disadvantages. Moreover, two different major formats of Aptamer-
based LFA are sandwich and competitive. The result that they give is interpreted in a 
different way. Herein, we will discuss aptamer-based LFA as smart POC devices, its 
difference between antibody-based LFA, development of aptamers for it, its different 
compartments and formats, interpretation of its results, and lastly its applications in 
diagnostics and other application areas.
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1 Introduction 

In recent years with the increasing number of populations, the importance of 
smart point-of-care (POC) devices has increased. Developing POC devices provides 
faster, cheaper, and easy-to-use on-site detection by the important improvements in 
biosensor technologies [38]. POC devices give opportunities to do POC diagnos-
tics with no need of special laboratory equipment or a trained professional [9, 21]. 
Lateral flow assay (LFA) is one of the POC techniques, which is paper-based that 
can identify the targeted substances found in a sample and provide the results in a 
very short amount of time. 

The sensitivity and selectivity of the LFA assays are determined by recognition 
elements, which are essential parts of an LFA, and antibodies were preferred ligands 
for years as a recognition element [33]. As a result, the most used type of LFA is 
antibody-based LFA in general; however, antibodies have several drawbacks. Anti-
bodies have limitations because of their synthesis through the in vivo approach [10]. 
For instance, they have high batch-to-batch variations, cross-reactivity, limited shelf 
life, and severe immunogenicity [10]. Also, small molecules are still difficult for 
antibodies to detect. Additionally, because of their protein origin, antibodies display 
several drawbacks like irreversible denaturation, which is induced by temperature 
and the problematic introductions of modifications [33]. Therefore, scientists defined 
the aptamer in 1990 due to challenges caused by antibodies [33]. 

Aptamers are single-stranded deoxyribonucleic acid (ssDNA) or ribonucleic acid 
(RNA), which are synthetic oligonucleotide molecules that have ability to bind 
different types of molecules with ranging sizes by high affinity and specificity [9, 
13, 15, 25, 42, 44]. For example, they can bind small molecules, viruses, proteins 
to even an entire cell. Moreover, its high affinity and specificity is a result of its 
single-stranded structure, which allows it to fold into exclusive conformations like 
secondary or tertiary [13]. Similarly, higher sensitivity and specificity of aptamers 
came from their higher resistance to rough chemicals, extreme ionizing environments, 
pH, and organic solvents [11]. Aptamers are highly stable and unlike antibodies in 
case of denaturation they can recover to their original conformation which makes 
them satisfactorily flexible for adapting to various assay formats [9]. 

Differently from antibody production, aptamers are developed in vitro using 
a process known as “systematic evolution of ligands by exponential enrichment” 
(SELEX) (Fig. 1), which aims to the finding DNA or RNA aptamer sequences from 
a randomized oligonucleotide library that is capable of recognizing the target of 
interest [5, 15, 44]. Consequently, aptamers can be produced for any target with such 
a wide variety [10, 44]. Another significant fact is that production of antibodies, 
which can bind low molecular weight compounds is not favorable but the devel-
opment of aptamers that have the ability to bind low molecular weight compounds
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is possible with the aid of the SELEX process [44]. Lastly, a comparison between 
features of antibody and aptamer in the perspective of LFA can be seen in Table 1. 

The Aptamer-based LFA has two separate major formats: sandwich and compet-
itive, which will be discussed further in the text. Besides, there are some aptamer-
antibody-hybrid LFA too, which are called hybrid LFA [34]. Also, the analysis 
and interpretation of their result varies and will be explained separately. Moreover, 
aptamer-based LFAs have several different application areas from diagnostics to 
detections from chemicals to biomarkers which will be also explained later. 

There are three elements in a standard LFA which are the recognition, reaction and 
signal transduction elements which are built in a paper strip containing five compo-
nents [44]. The sample pad, conjugate pad, membrane, absorbent pad, and backing 
plate are the five standard components of the LFA [9, 44]. Basic demonstration of

Fig. 1 SELEX process. SELEX is the method that enables finding specific aptamer sequences 
(ssDNA and RNA) from random oligonucleotide library, which can bind the target of interest. 
First, the target and oligonucleotide library are put in the same place in vitro which is incubated. 
The target and aptamer binding occur in this part. Later, it is washed to eliminate the unbound 
sequences. Then, the target is eluted from the mixture. So, only selected aptamer sequences will go 
under the amplification process. Amplification process is performed by RT-PCR technique. After 
that, sequencing is done for the identification of that specific different aptamer sequences
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Table 1 A comparison between features of antibody and aptamer in the perspective of LFA. 
Adapted from [5, 9, 23, 29, 33, 51] 

Features Antibody Aptamer 

Development In vivo 
Contamination is possible 

In vitro 
Contamination is not a 
problem 

Production time Tedious (Weeks to months) Effective through chemical 
synthesis (Days to weeks) 

Cost High Low 

Target Limited No limitation 

Shelf life Short 
Needs cold storage 

Long 
Does not need any special 
storage state 

Stability Low 
Susceptible to changes in pH and 
temperature 
Aggregation is very likely 

High 
Tolerance to changes in pH 
and temperature 
No or little aggregation 

Modification Challenging 
High-cost 

Easy 
Low-cost 

Batch-to-batch variation High 
Varied 

Low (Negligible) 
Uniform 

Reusability Poor Good 

Reproducibility Low High 

Immobilization Challenging Easy

standard components of the LFA can be seen in Fig. 2. On the backing plate, all other 
compartments are assembled in place with proper overlapping. 

While performing LFA, a sample is added to the sample pad, and it is directed to 
the conjugate pad [4]. It contains a recognition agent conjugated reporter molecules

Fig. 2 Standard compartments of lateral flow assay (LFA). LFA consists of a sample pad, conjugate 
pad, membrane, absorbent pad, and backing plate which are shown in the figure. Additionally, the 
T-line (test line) and the C-line (control line) are specified 
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which are capable of hydrating quickly and discharge recognition agent [44]. If 
there is a target in the sample, a new complex is formed which includes a target, 
recognition agent, and reporter that will go toward the test and a control line found 
in the membrane [44]. For aptamer-based LFA, the control line contains a control 
aptamer. Besides, the test line contains detection aptamer or nothing which will differ 
in distinct formats of aptamer-based LFA [10]. Also, the absorbent pad makes sure 
the flow is from the sample pad to the membrane with no sample backflow [10]. 

Hence, we will cover different formats of aptamer-based LFA, the various inter-
pretation of results, and its applications in diagnostic and other applications areas in 
this chapter. 

2 Aptamers in Developing LFA 

As mentioned in the introduction, aptamers can recognize several different substances 
with different sizes. In developing LFA devices, the use of aptamers is increasing as 
a recognition agent. Furthermore, aptamers are more advantageous when compared 
to antibodies for LFA and they can be used for substances that antibodies cannot 
be developed. For example, because no antibody could be found for the fungi-
cide malachite green, its detection was dependent on expensive HPLC and liquid 
chromatography-mass spectrometry (LC–MS) assays. However, the development of 
a malachite green aptamer in 1999 enabled the introduction of an aptamer-based LFA 
for simplified malachite green residue detection [37]. 

Similarly, aptamer-based LFAs have been developed for the detection of non-
immunogenic targets such as different substances like apple stem pitting virus 
(ASPV) and other compounds like organophosphorus pesticides. The broad appli-
cation of aptamers makes them particularly valuable compared to antibodies [43]. 

3 Flexible LFA Design 

The flexible LFA design is a testing method that can detect various target molecules 
by using materials of different shapes and sizes [44]. Aptamers that specifically bind 
to the target molecule are used in LFA tests and combined with a marker to identify 
the molecule’s presence as it moves along the strip [31]. This adaptable design can 
be modified to suit various testing situations, and its portability enables rapid results. 

To illustrate, the flexible LFA design used for COVID-19 diagnosis uses an 
aptamer that specifically binds to the Spike protein on the COVID-19 virus’s surface 
[30]. During testing, a sample (like saliva or nasal discharge) is placed at one end of 
the LFA strip, and a section marked with the COVID-19 aptamer is present at the 
strip’s beginning [30]. As the aptamer moves along the strip, it binds to Spike proteins
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in the sample, and a marker substance indicates the presence of the protein-aptamer 
complex, resulting in a visible line at the strip’s end [30]. This design enables quick 
and precise COVID-19 testing. 

4 Multiplex LFA 

The simultaneous evaluation of numerous analytes must be done to ensure efficient 
and accurate recognition of targets in a short amount of time. Simultaneous and rapid 
detection of different targets can be achieved at the same time with multiplex FLA. 

There are three main types of multiplex LFAs: those that detect many targets on 
a single strip, those that detect several targets on different strips, and, more recently, 
those that combine a microarray and an LFA in a single device [29]. Moreover, in 
comparison to uniplex, multiplexing provides several advantages, such as faster eval-
uation due to the ability to identify many targets at once, identification of co-infections 
in the case of infectious diseases, higher sensitivity, and lower test costs [29]. 

5 Different Formats of Aptamer-Based LFA 

Prior to the invention of aptamers, antibody-based LFA was already in use in clinical 
practice. Given the similarity between aptamers and antibodies in recognizing targets 
based on tertiary structure, the information obtained from designing antibody-based 
biosensors could be beneficial in developing aptamer-based LFA [44]. Over the past 
few decades, several approaches to aptamer-based LFA have been introduced, such 
as sandwich formats, competitive formats, and other novel techniques that rely on 
the structural and functional properties of aptamers, as outlined in the following 
section [32]. 

5.1 Sandwich Aptamer-Based LFA 

5.1.1 Sandwich Aptamer-Based LFA Using Dual Aptamer 

The dual-aptamer sandwich aptamer-based LFA provides more precise and selective 
results than the single-aptamer methods [28, 48]. Initially, the target molecule is 
trapped by a capture aptamer, and then a second aptamer binds to another area of 
the target molecule, resulting in a sandwich-like structure [41]. The specific binding 
between the two aptamers, which bind to distinct regions of the target molecule, 
helps eliminate false positive results and generate more precise results [44]. This 
technique is advantageous for identifying low-molecular-weight analytes.
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5.1.2 Sandwich Aptamer-Based LFA Using a Combination of Aptamer 
and Antibody 

The aptamer-antibody sandwich LFA method, which utilizes both antibodies and 
aptamers, offers several advantages over traditional sandwich LFAs that use only 
one type of molecule [42]. The technique involves capturing the target molecule 
using a primary capture antibody, which is immobilized on the conjugate pad [42]. 
Then, a detection aptamer specific to a different region of the target molecule is added 
to form a sandwich structure, and a reporter molecule conjugated with the detection 
aptamer generates a signal upon binding to the target molecule [32]. The sandwich 
complex is then captured by a secondary detection antibody on the test line, resulting 
in a color change. 

Compared to conventional sandwich LFAs, the aptamer-antibody sandwich LFA 
method provides higher sensitivity and specificity due to aptamers’ higher specificity 
and affinity to target molecules and antibodies’ better stability and longer shelf life 
[44]. The method has been successfully applied to the detection of HIV-1 p24 antigen, 
where HIV-1 p24 antigens are loaded onto the sample pad, and a primary capture 
antibody with high specificity is immobilized on the conjugate pad. This method is 
widely used in clinical settings for the detection of HIV-1 p24 antigen, offering high 
sensitivity, specificity, and long shelf life [24]. 

5.1.3 Sandwich Aptamer-Based LFA Using Split Aptamers 

The sandwich aptamer-based LFA is a diagnostic test that utilizes aptamers as recog-
nition elements to detect specific molecules in a sample. In this assay, two different 
aptamers bind to different regions of the target molecule, with one serving as the 
capture aptamer and the other as the detection aptamer [15]. To enhance the sensi-
tivity and specificity of the assay, split aptamers have been developed. Split aptamers 
are short DNA or RNA sequences that bind to specific regions of the target molecule 
but only form a complete aptamer upon hybridization [15]. In sandwich aptamer-
based LFA using split aptamers, both the capture and detection aptamers are split 
into two fragments, and each fragment is attached to different locations on the lateral 
flow strip [32]. When the target molecule is present in the sample, it binds to the 
split aptamers, bringing the two halves of the capture aptamer together and forming 
a complete aptamer that can capture the detection aptamer [41]. This results in a 
sandwich complex and a signal at the test line. 

The use of split aptamers in sandwich aptamer-based LFA has several advantages. 
Split aptamers allow for better control over the orientation and spacing of the aptamers 
on the lateral flow strip, which can improve the efficiency of target molecule capture 
[44]. Split aptamers also reduce the chance of non-specific binding by requiring 
both halves to bind to the target molecule before forming a complete aptamer [41]. 
Additionally, split aptamers can be easily modified to target different regions of the 
target molecule, enabling the development of highly specific and sensitive assays.
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Sandwich aptamer-based LFA using split aptamers is a promising approach for 
the development of highly sensitive and specific diagnostic tests for various targets, 
such as small molecules, proteins, and even whole cells [8, 45]. The use of split 
aptamers provides an efficient and reliable method for target detection, making it a 
valuable tool for various diagnostic applications. 

A smart point-of-care device that employs sandwich aptamer-based LFA with 
split aptamers for detecting the influenza virus has been developed [35]. This device, 
called the smart flu chip, integrates microfluidics, microheaters, and a smartphone app 
for quick and accurate diagnosis [35]. The split aptamers-based Sandwich Aptamer-
based LFA was employed to detect two strains of influenza virus, H1N1 and H3N2, 
with high sensitivity and specificity [35]. The capture aptamers were divided into two 
fragments and were attached to separate locations on the lateral flow strip. Similarly, 
the detection aptamers were also split into two fragments and labeled with gold 
nanoparticles. When the target virus was present in the sample, it bound to the split 
aptamers, joining the two halves of the capture aptamer and creating a complete 
aptamer that could capture the gold-labeled detection aptamer [35]. This resulted in 
a sandwich complex and a signal at the test line, which was detected by a smartphone 
camera. The device also contains microheaters to regulate the reaction temperature, 
increasing the accuracy and effectiveness of the assay. The smartphone app analyzes 
the test results and provides real-time data on the existence and concentration of 
the target virus. This method provides a quick and precise technique for influenza 
virus detection, making it a valuable tool for point-of-care diagnosis and disease 
surveillance. 

5.2 Competitive Aptamer-Based LFA 

The competitive aptamer-based LFA is a diagnostic test that uses aptamers to detect 
specific molecules in a sample. In this test, a labeled aptamer competes with the 
sample analyte for binding to a limited amount of immobilized capture aptamer on a 
lateral flow strip [12]. The strip has a detection zone coated with capture molecules, 
and when the labeled aptamer binds to the capture aptamer on the strip, it generates 
a signal that can be read visually or with a portable reader [21]. The signal detected 
is inversely proportional to the concentration of the analyte in the sample, allowing 
the presence and amount of the target analyte in the sample to be determined by 
comparing the signal obtained from the sample with a known concentration of the 
analyte. Aptamer-based LFAs offer several advantages over traditional antibody-
based assays, such as stability, low cost, and ease of development, and have been 
successfully used for detecting a variety of targets in various sample types [21, 44]. 

The competition between the target molecule and the complementary sequence 
for aptamer recognition is a dynamic process that depends on multiple factors and 
can be finely tuned to achieve optimal sensitivity and selectivity in a competitive 
assay [31].



Aptamer-Based Lateral Flow Assay as a Smart Point-of-Care Devices 91

Competitive aptamer-based LFA is a type of diagnostic test that uses aptamers as 
the recognition element to detect specific molecules in a sample. In a competitive 
aptamer-based LFA, a labeled aptamer competes with the sample analyte for binding 
to a limited amount of immobilized capture aptamer on a lateral flow strip [31]. The 
strip contains a detection zone coated with capture molecules, and when the labeled 
aptamer binds to the capture aptamer on the strip, it generates a signal that can be 
read visually or with a portable reader [21]. The level of signal detected is inversely 
proportional to the concentration of analyte in the sample. Thus, by comparing the 
signal obtained from the sample with the signal obtained from a known concentration 
of analyte, the presence and amount of the target analyte in the sample can be deter-
mined [44]. Aptamer-based LFAs have several advantages over traditional antibody-
based assays, such as stability, low cost, and ease of development. They have been 
used for the detection of a wide range of targets, including small molecules, proteins, 
and even whole cells, in various sample types, such as blood, urine, and saliva [8]. 

6 Interpretation of the Results 

The interpretation of the results varies for sandwich aptamer-based LFA and competi-
tive aptamer-based LFA. If both lines (Test and Control lines) can be seen on sandwich 
aptamer-based LFA, the test result is positive confirming that the target of interest 
is present in the sample. Also, if only the C line is visible, the target of interest is 
not found in the sample in sandwich aptamer-based LFA which gives a negative test 
result. However, differently than sandwich aptamer-based LFA, the presence of both 
lines implies a negative test result in competitive aptamer-based LFA indicating that 
the target of interest is not present in the sample. In addition, if only the C line can be 
seen in competitive aptamer-based LFA, it gives a positive test result indicating that 
the target of interest is present in the sample. Besides, not having any lines or only 
having the T-line makes the test invalid. The basic demonstration of the aptamer-based 
LFA results for sandwich aptamer-based LFA, competitive aptamer-based LFA, and 
invalid test can be found in Fig. 3.

7 Applications of Aptamer-Based LFA 

As previously mentioned in the text, numerous advantages of aptamer-based LFA 
enable its usage on a very broad range of different substances. 

Aptamers can be effectively used in both diagnostic and therapeutic applications 
for microorganisms. For instance, label-free aptamer-based LFA is developed for 
detection of Listeria monocytogenes [40]. Also, another bacteria Escherichia coli 
O157:H7 can be identified in a sample [47]. Moreover, nervous necrosis virus [19] and 
avian influenza H5N2 whole virus particles can be detected by using aptamer-based 
LFA [14, 19].
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Fig. 3 Basic demonstration of aptamer-based LFA results. a Positive and negative results of sand-
wich aptamer-based LFA. b Positive and negative results of competitive aptamer-based LFA. 
c Invalid results of aptamer-based LFA

Most highlighted feature of aptamer is being able to detect small molecules that 
antibodies cannot do. For example, by using CRISPR/Cas12a-mediated aptamer 
lateral flow assay, detection of ATP can be done [17]. Also, ampicillin is another 
small molecule, and label-free ampicillin detection is possible by applying cross-
recognition with aptamer and C-reactive protein [12]. 

Aptamer-based LFA can be developed for several chemicals. There are various 
examples for the detection of toxic molecules in a sample by aptamer-based LFAs. 
For instance, acetamiprid [22], patulin [39], zearalenone [46] and paraquat residue 
[20] are some of them. Furthermore, anticoagulant drug dabigatran etexilate, which 
is a chemical can be identified in the blood sample by aptamer-based LFA [1]. In 
addition, antibiotics in different samples can also be detected through aptamer-based 
LFA. Detection of kanamycin [18] and oxytetracycline [3] antibiotics are the two 
recent examples of it. 

Some hormones also can be identified by aptamer-based LFA. For example, 
cortisol in sweat [7] and salivary [6] can be detected in the sample. Progesterone 
hormone is another example that can be identified through aptamer-based LFA [2]. 

Several protein biomarkers can be detected by aptamer-based LFA. Rapid and 
easy detection of biomarkers is very crucial. For example, in breast cancers, overex-
pression of HER2 is observed, and it can be detected by aptamer-based LFA [27]. 
With hybrid LFA, CXCL9 can be detected as a biomarker for antibody-mediated 
rejection (AMR) after kidney transplantation [34]. Additionally, antibody-free detec-
tion of biomarkers of SARS-CoV-2 with aptamer-based LFA is possible [50]. For 
multiplexed rapid detection of SARS-CoV-2 wild-type and SARS-CoV-2 omicron 
variant is done using aptamer-based LFA [49]. An acute inflammatory protein called 
C-reactive protein (CRP) is produced up to 1,000 times more often in infected or 
inflamed areas [36]. An aptamer-based LFA is developed for the detection of CRP 
[26]. For early diagnosis of periodontal disease, ODAM detection can be done by 
aptamer-based LFA [16]. 

Finally, the aptamer-based LFA can be used in many different areas from 
diagnostic to detection and can detect a variety of substances from proteins to cells.
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8 Conclusion 

As smart POC devices, LFAs are becoming increasingly more important and 
widespread due to increasing population and developing world. The need for easy, 
rapid, and low-cost diagnostic and detection methods growth. For instance, POC 
devices such as LFA, which were commercially available, are used for the detection 
of SARS-CoV-2 in the COVID-19 pandemic instead of PCR. Even though PCR is a 
gold standard, it requires well-trained people and special laboratory equipment. 

In LFA, there are different recognition elements which are mentioned previously 
in the text. Usually, antibodies are frequently used for it. However, because of the 
drawbacks of antibodies, aptamer-based LFA are developed. Although antibodies are 
preferred more in general, using aptamers in LFA is more advantageous. For example, 
aptamers can be utilized for LFA with no target limitation, long shelf life, low-
cost production, in vitro and rapid development, high stability, high reproducibility, 
and negligible batch-to-batch variations. With the benefits of aptamers in LFA, its 
detection range for different substances is very broad. 

Antibody-based LFAs are commercially available, however, aptamer-based LFAs 
are still not, besides all studies done. Thus, with all those advantages, it needs to be 
commercialized and utilized as a smart POC device. To conclude, the aptamer-based 
LFA can be further developed and combined with new breakthrough technologies 
and methods for better diagnostic and detection. 

References 

1. Alnajrani MN, Aljohani MM, Chinnappan R, Zourob M, Alsager OA (2022) Highly sensitive 
and selective lateral flow aptasensor for anti-coagulant dabigatran etexilate determination in 
blood. Talanta 236:8 

2. Alnajrani MN, Alsager OA (2019) Lateral flow aptasensor for progesterone: competitive target 
recognition and displacement of short complementary sequences. Anal Biochem 587:7 

3. Birader K, Kumar P, Tammineni Y, Barla JA, Reddy S, Suman P (2021) Colorimetric aptasensor 
for on-site detection of oxytetracycline antibiotic in milk. Food Chem 356:9 

4. Boehringer HR, O’farrell BJ (2022) Lateral flow assays in infectious disease diagnosis. Clin 
Chem 68:52–58 

5. Chen AL, Yang SM (2015) Replacing antibodies with aptamers in lateral flow immunoassay. 
Biosens Bioelectron 71:230–242 

6. Dalirirad S, Han D, Steckl AJ (2020) Aptamer-based lateral flow biosensor for rapid detection 
of salivary cortisol. ACS Omega 5:32890–32898 

7. Dalirirad S, Steckl AJ (2019) Aptamer-based lateral flow assay for point of care cortisol 
detection in sweat. Sens Actuators B-Chem 283:79–86 

8. Geiger A, Burgstaller P, Vondereltz H, Roeder A, Famulok M (1996) RNA aptamers that bind 
L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucl Acids 
Res 24:1029–1036 

9. Huang L, Tian SL, Zhao WH, Liu K, Ma X, Guo JH (2021) Aptamer-based lateral flow assay 
on-site biosensors. Biosens Bioelectron 186:13 

10. Jaisankar A, Krishnan S, Rangasamy L (2022) Recent developments of aptamer-based lateral 
flow assays for point-of-care (POC) diagnostics. Anal Biochem 655:22



94 M. Canbay et al.

11. Jeyaraj SVV, Loy MJ, Goh KW, Lean YL, Chan SY, Ming LC (2022) Aflatoxin tests in herbal 
products and its quantification: latest updates. Front Nutr 9:8 

12. Kaiser L, Weisser J, Kohl M, Deigner HP (2018) Small molecule detection with aptamer 
based lateral flow assays: applying aptamer-C-reactive protein cross-recognition for ampicillin 
detection. Sci Rep 8:10 

13. Kim SH, Choi JW, Kim AR, Lee SC, Yoon MY (2020) Development of ssDNA aptamers 
for diagnosis and inhibition of the highly pathogenic avian influenza virus subtype H5N1. 
Biomolecules 10:12 

14. Kim SH, Lee J, Lee BH, Song CS, Gu MB (2019) Specific detection of avian influenza H5N2 
whole virus particles on lateral flow strips using a pair of sandwich-type aptamers. Biosens 
Bioelectron 134:123–129 

15. Kong HY, Byun J (2013) Nucleic acid aptamers: new methods for selection, stabilization, and 
application in biomedical science. Biomol Therapeutics 21:423–434 

16. Lee BH, Kim SH, Ko Y, Park JC, Ji S, Gu MB (2019) The sensitive detection of ODAM by 
using sandwich-type biosensors with a cognate pair of aptamers for the early diagnosis of 
periodontal disease. Biosens Bioelectron 126:122–128 

17. Li XP, Chen XJ, Mao MX, Peng CF, Wang ZP (2022a) Accelerated CRISPR/Cas12a-based 
small molecule detection using bivalent aptamer. Biosens Bioelectron 217:8 

18. Li XP, Qian ZJ, Chang R, Peng CF, Xie ZJ, Wang ZP (2022b) Non-thiolated nucleic acid func-
tionalized gold nanoparticle-based aptamer lateral flow assay for rapid detection of kanamycin. 
Microchim Acta 189:8 

19. Liu JX, Qin QW, Zhang XY, Li C, Yu YP, Huang XH, Mukama O, Zeng LW, Wang SW 
(2020) Development of a novel lateral flow biosensor combined with aptamer-based isolation: 
application for rapid detection of grouper nervous necrosis virus. Front Microbiol 11:10 

20. Liu YY, Liu BY, Xia L, Yu HY, Wang QD, Wu YE (2022) Cationic polyelectrolyte as powerful 
capture molecule in aptamer-based chromatographic strip for rapid visual detection of paraquat 
residue in agricultural products. Sens Actuators B-Chem 368:9 

21. Manessis G, Gelasakis AI, Bossis I (2022) Point-of-care diagnostics for farm animal diseases: 
from biosensors to integrated lab-on-chip devices. Biosens-Basel 12:36 

22. Mao MX, Xie ZJ, Ma PF, Peng CF, Wang ZP, Wei XL, Liu GD (2022) Design and optimizing 
gold nanoparticle-cDNA nanoprobes for aptamer-based lateral flow assay: application to rapid 
detection of acetamiprid. Biosens Bioelectron 207:7 

23. Martin DR, Sibuyi NR, Dube P, Fadaka AO, Cloete R, Onani M, Madiehe AM, Meyer M 
(2021) Aptamer-based diagnostic systems for the rapid screening of TB at the point-of-care. 
Diagnostics 11:24 

24. Martiskainen I, Juntunen E, Salminen T, Vuorenpaa K, Bayoumy S, Vuorinen T, Khanna N, 
Pettersson K, Batra G, Talha SM (2021) Double-antigen lateral flow immunoassay for the 
detection of anti-HIV-1 and-2 antibodies using upconverting nanoparticle reporters. Sensors 
21:17 

25. Nimjee SM, White RR, Becker RC, Sullenger BA (2017) Aptamers as therapeutics. In: Insel 
PA (ed) Annual review of pharmacology and toxicology, vol 57. Palo Alto, Annual Reviews 

26. Phung NL, Walter JG, Jonczyk R, Seiler LK, Scheper T, Blume C (2020) Development of 
an aptamer-based lateral flow assay for the detection of C-reactive protein using microarray 
technology as a prescreening platform. ACS Comb Sci 22:617–629 

27. Ranganathan V, Srinivasan S, Singh A, Derosa MC (2020) An aptamer-based colorimetric 
lateral flow assay for the detection of human epidermal growth factor receptor 2 (HER2). Anal 
Biochem 588:10 

28. Raston NHA, Nguyen VT, Gu MB (2017) A new lateral flow strip assay (LFSA) using a pair 
of aptamers for the detection of Vaspin. Biosens Bioelectron 93:21–25 

29. Reid R, Chatterjee B, Das SJ, Ghosh S, Sharma TK (2020) Application of aptamers as molecular 
recognition elements in lateral flow assays. Anal Biochem 593:15 

30. Rhouati A, Teniou A, Badea M, Marty JL (2021) Analysis of recent bio-/nanotechnologies for 
coronavirus diagnosis and therapy. Sensors 21:16



Aptamer-Based Lateral Flow Assay as a Smart Point-of-Care Devices 95

31. Sajid M, Kawde AN, Daud M (2015) Designs, formats and applications of lateral flow assay: 
a literature review. J Saudi Chem Soc 19:689–705 

32. Sanchez-Bascones E, Parra F, Lobo-Castanon MJ (2021) Aptamers against viruses: selection 
strategies and bioanalytical applications. Trac-Trends Anal Chem 143:22 

33. Schuling T, Eilers A, Scheper T, Walter J (2018) Aptamer-based lateral flow assays. aims. 
Bioengineering 5:78–102 

34. Seiler LK, Phung NL, Nikolin C, Immenschuh S, Erck C, Kaufeld J, Haller H, Falk CS, Jonczyk 
R, Lindner P, Thoms S, Siegl J, Mayer G, Feederle R, Blume CA (2022) An antibody-aptamer-
hybrid lateral flow assay for detection of CXCL9 in antibody-mediated rejection after kidney 
transplantation. Diagnostics 12:17 

35. Son SU, Seo SB, Jane S, Choi J, Lim JW, Lee DK, Kim H, Seo S, Kang T, Jung J, Lim EK (2019) 
Naked-eye detection of pandemic influenza a (pH1N1) virus by polydiacetylene (PDA)-based 
paper sensor as a point-of-care diagnostic platform. Sens Actuators B-Chem 291:257–265 

36. Sproston NR, Ashworth JJ (2018) Role of C-reactive protein at sites of inflammation and 
infection. Front Immunol 9:11 

37. Stead SL, Ashwin H, Johnston B, Tarbin JA, Sharman M, Kay J, Keely BJ (2010) An RNA-
aptamer-based assay for the detection and analysis of malachite green and Leucomalachite 
green residues in fish tissue. Anal Chem 82:2652–2660 

38. Syedmoradi L, Norton ML, Omidfar K (2021) Point-of-care cancer diagnostic devices: from 
academic research to clinical translation. Talanta 225:24 

39. Tang XQ, Zhang Q, Pividori MI, Zhang ZW, Marty JL, Catanante G (2022) A sensitive 
aptasensor using biotin-streptavidin system for patulin detection in apple juice. Biosens-Basel 
12:12 

40. Tasbasi BB, Guner BC, Sudagidan M, Ucak S, Kavruk M, Ozalp VC (2019) Label-free lateral 
flow assay for Listeria monocytogenes by aptamer-gated release of signal molecules. Anal 
Biochem 587:5 

41. Thiviyanathan V, Gorenstein DG (2012) Aptamers and the next generation of diagnostic 
reagents. Proteomics Clin Appl 6:563–573 

42. Wang KF, Wang ML, Ma T, Li WY, Zhang HY (2023) Review on the selection of aptamers 
and application in paper-based sensors. Biosens-Basel 13:22 

43. Wang L, Liu XJ, Zhang Q, Zhang CZ, Liu Y, Tu K, Tu J (2012) Selection of DNA aptamers 
that bind to four organophosphorus pesticides. Biotech Lett 34:869–874 

44. Wang T, Chen LM, Chikkanna A, Chen SX, Brusius I, Sbuh N, Veedu RN (2021) Development 
of nucleic acid aptamer-based lateral flow assays: a robust platform for cost-effective point-of-
care diagnosis. Theranostics 11:5174–5196 

45. Wilson DS, Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev Biochem 
68:611–647 

46. Wu SJ, Liu LH, Duan N, Li Q, Zhou Y, Wang ZP (2018) Aptamer-based lateral flow test strip 
for rapid detection of Zearalenone in corn samples. J Agric Food Chem 66:1949–1954 

47. Wu W, Zhao SM, Mao YP, Fang ZY, Lu XW, Zeng LW (2015) A sensitive lateral flow biosensor 
for Escherichia coli O157:H7 detection based on aptamer mediated strand displacement 
amplification. Anal Chim Acta 861:62–68 

48. Xu H, Mao X, Zeng QX, Wang SF, Kawde AN, Liu GD (2009) Aptamer-functionalized gold 
nanoparticles as probes in a dry-reagent strip biosensor for protein analysis. Anal Chem 81:669– 
675 

49. Yang LF, Kacherovsky N, Liang JY, Salipante SJ, Pun SH (2022a) SCORe: SARS-CoV-2 
omicron variant RBD-binding DNA aptamer for multiplexed rapid detection and pseudovirus 
neutralization. Anal Chem 94:12683–12690 

50. Yang LF, Kacherovsky N, Panpradist N, Wan RX, Liang J, Zhang B, Salipante SJ, Lutz BR, Pun 
SH (2022b) Aptamer sandwich lateral flow assay (AptaFlow) for antibody-free SARS-CoV-2 
detection. Anal Chem 94:7278–7285 

51. Yu HX, Alkhamis O, Canoura J, Liu YZ, Xiao Y (2021) Advances and challenges in small-
molecule DNA aptamer isolation, characterization, and sensor development. Angew Chem-Int 
Edn 60:16800–16823



CRISPR-Based Point-of-Care Testing 
(POCT) Devices for Detection 
of Opportunistic Pathogens 

Joydeep Chakraborty and Hironmoy Sarkar 

Abstract Pathogens are microorganisms that can cause disease in humans or 
animals. There are many microorganisms that in general do not infect or act as 
commensals, but in a situation of compromised immunity of the host, these microor-
ganisms cause diseases. These types of pathogens are called opportunistic pathogens; 
they are mainly bacteria or fungi, but sometimes, protozoa and viruses can also 
behave like opportunistic ones. Many times routine detection methods even with 
PCR or isothermal techniques are time-intensive and require sophisticated instru-
ments, and highly proficient personnel, which makes this type of method not very 
useful in point-of-care treatment (POCT). A new emerging technology based on 
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated 
nuclease (Cas) sensing (CRISPR-Cas) system is a powerful tool for anything from 
genome editing to disease-causing pathogen identification. This specific and sensitive 
system has a high potential to become one of the leading detection systems for POCT. 
This chapter summarizes the various methods of detection based on CRISPR-Cas 
system on different opportunistic pathogens. 

Keywords CRISPR-Cas based detection system · Detection of opportunistic 
pathogens: bacteria · Protozoa · Fungus · Virus · Point-of-care testing (POCT) 
devices 

1 Introduction 

An opportunistic infection arises when pathogens like bacteria, fungi, protozoa, or 
viruses take advantage of unavailable previous opportunities. Numerous circum-
stances, including a compromised immune system, cancer treatment, altered micro-
biome, or violated integumentary barriers like penetrating trauma [63] might lead to
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these opportunities. In healthy hosts with a robust immune system, the majority of 
these opportunistic infections do not always cause sickness, but in certain situations, 
may function as commensals until the immune system’s homeostasis is broken [64]. 
Commensal bacteria like S. epidermidis, S. pneumoniae Corynebacterium spp. are 
among the most prevalent opportunistic pathogens [27]. Furthermore, there are a few 
opportunistic infections that cause mild to moderate disease in healthy individuals 
and can cause severe diseases in those with compromised immune systems [30]. 
Infectious illnesses account for approximately 22% of all human fatalities, causing 
widespread public anguish and significant economic loss [39]. The quick identifica-
tion and surveillance of infectious diseases now depend heavily on fast molecular 
detection. This can be useful to prevent further transmission and better manage-
ment of treatment [6]. Point-of-care testing (POCT) will help in making decisions 
more rapidly, improving service effectiveness, and cutting costs in areas with scarce 
resources [46]. A wide range of tests for identifying signature regions of nucleic acid 
from pathogens has arisen [29], including methods based on PCR/qPCR, isothermal 
amplification, and next-generation sequencing [42, 54, 79]. However, these proce-
dures are time-consuming, expensive, limited specificity, and need specialized, large, 
and expensive equipment with high-level technical competence making them incom-
patible with fast point-of-care testing thus prohibiting their widespread usage at 
POCT [67]. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-
associated nuclease (Cas) sensing (CRISPR-Cas) is potentially a new nucleic acid 
detection technology [11]. Cas as an effector protein is employed in this approach 
and has extremely specific target sequence-recognition elements that are paired with 
a variety of ways for read-out (Fig. 1) for on-site POCT [66].

Bacteria and archaea naturally possess CRISPR-Cas systems, which serve as an 
adaptive defense mechanism for them against invasive foreign nucleic acids. [2, 23]. 
Bacterial CRISPR-Cas detects and destroys foreign genomic material mostly from 
viruses, which can be harmful to them [57]. These systems are typically directed by 
guide RNA (gRNA) which can also be termed CRISPR RNA (crRNA), that iden-
tifies the target and leads the effector proteins (Cas proteins) to identify and break 
foreign DNA sequence [24]. This mechanism functions in three stages: adaptation or 
spacer acquisition, crRNA processing, and interference [8]. The spacer acquisition 
step involves excising a very short segment of the DNA or RNA, called a protospacer, 
from the foreign nucleic acid during the first invasion. The protospacer is situated just 
a short distance upstream of a sequence called protospacer adjacent motif or PAM. 
Then the protospacer gets inserted into the CRISPR array or bacterial genome as a 
new spacer (Fig. 2) of the bacterial genomic region [18, 43]. crRNA biogenesis is the 
second step, which involves transcribing pre-CRISPR RNA (pre-crRNA) from the 
CRISPR array and cleaving it into small mature crRNAs using specific endoribonu-
cleases [47]. Each crRNA has a complementary region of a spacer sequence from 
the CRISPR array. In the third phase, interference entails cleaving foreign DNA or 
RNA (in the subsequent invasion) that has a protospacer that has complementary 
base pairs with the spacer sequence in the crRNA [13]. crRNAs identify and bind 
with the protospacer region of foreign DNA or RNA to make a complex. That results 
in the cleavage of the complex by Cas nuclease [38].
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Fig. 1 Isolation and detection of opportunistic pathogens by CRISPR-Cas system. After the oppor-
tunistic pathogen was isolated from the patients, a specific target gene was isolated and amplified. 
The CRISPR-Cas system was then employed to detect different target genes by means of a variety 
of detection techniques, including fluorescence, lateral flow strips, luminescence, electrochemical 
signal, and colorimetry

Beyond the biological impact of these reprogrammable enzymatic technologies, 
CRISPR-Cas has sparked interest among scientists in several research fields where 
selectivity or specificity is essential to the operation, such as genome editing and the 
critical creation of innovative biosensing devices [77]. CRISPR-Cas systems have 
therefore been swiftly adapted for the construction of biosensors and biosensing 
systems including POCT devices for the detection of various pathogens. A POCT 
device based on CRISPR-Cas for opportunistic pathogens, which is neglected for 
many a time, will be an immense help for managing the disease and diagnostics to 
already overburdened health care system. This review will summarize the detection 
of different opportunistic pathogens like bacteria, fungi, protozoa, and viruses by 
CRISPR-based point-of-care testing (POCT) devices.
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Fig. 2 The bacterial CRISPR-Cas system is composed of short repeats separated by spacers and 
surrounded by Cas genes. After the entry of a phage genome into the bacterial cell (First exposure), 
a protospacer, adjacent to PAM, is introduced as a new spacer in the bacterial CRISPR array. Pre-
crRNAs are produced by transcription, and processed to produce mature crRNAs. Cas proteins and 
crRNAs made the effector complexes which act as guides (antisense) searching for the phage DNA, 
allowing the phage genome (Second exposure) to be degraded by the CRISPR-Cas system

2 CRISPR-Based POCT Detection on Opportunistic 
Bacteria 

Opportunistic bacterial infection involves a large spectrum of microorganisms that 
can induce an extensive range of diseases. Multiple CRISPR-Cas POC systems are 
being developed for the majority of well-known opportunistic bacterial pathogens, 
including M. tuberculosis, S. aureus, P. aeruginosa, S. enteritidis, S. typhimurium, 
and S. pyogenes [8, 55, 62] (Table 1). The majority of targets are bacterial nucleic acid 
sequences [1, 28], while others utilized non-nucleic acid targets based on aptamers 
[58] and antibodies [7]. Nucleic acid detections mainly happen through PCR or 
isothermal methods of amplification. The amplification approach is not only time 
intensive but also risks airborne interference, therefore amplification-free techniques 
are becoming more prevalent nowadays. To increase sensitivity, the CRISPR-Cas 
systems are paired with target amplification systems [26]. To maximize the detec-
tion signal, most bacterial studies relied on the trans-cleavage capabilities of Cas 
enzymes to cleave reporter probes non-specifically [10]. Cas enzymes, Cas12a, 
Cas13a, and Cas9 are used for bacterial detection. Among the different detection 
methods, fluorescence sensing is the most widely used detection method. It has
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advantages like specific background-free detection, which significantly reduces the 
background noise when contrasted to other optical technologies [37]. Electrochem-
ical biosensors, lateral flow biosensors, and others such as gel electrophoresis, and 
colorimetric assays were found to be less regularly used in our study. Turnaround 
times were observed to range from 30 min [21] to 4 h [72, 73, 80]. The amplification-
free techniques employing the dCas9 enzyme were credited with the quick turnaround 
time. CRISPR-depended DNA-FISH technology for Methicillin-resistant S. aureus 
(MRSA) can be detected with the quickest turnaround time of 30 min [21]. The 
limit of detection (LoD) of the CRISPR-Cas assays was assessed using three distinct 
concentrations: CFU per mL [1], copies per mL [53] and molarity [28]. Meanwhile, 
the vast majority of the research provided the limit of detection (LoD) in the form of 
CFU/mL, with eight studies reporting an LoD of 1 CFU/mL (Table 1).

3 Detection of Opportunistic Protozoa by CRISPR-Based 
POCT 

A prominent intestinal protozoan parasite of zoonotic origin is Cryptosporidium 
parvum [51] and it is also a well-known opportunistic pathogen [14] that may induce 
cryptosporidiosis in animals and humans globally. It has been established that, after 
Rotavirus, cryptosporidiosis is the second leading cause of child fatalities [52, 61]. 
Prolonged cryptosporidiosis is seen in immuno-compromised people, though the 
illness is often self-limiting [50]. One of the most common varieties of C. parvum is 
the IId subtype family (SF) [68]. Some systems based on CRISPR-Cas were created 
with great reprogrammability, responsiveness, and precision. Integrated recombi-
nase polymerase amplification (RPA) based Cas12a trans-cleavage system (termed 
ReCTC) was developed by researchers [76]. This technique may detect as low as 
a single copy of a cloned 60-kDa glycoprotein (GP60) gene of a C. parvum in a 
clinical fecal sample. For the detection of the output signals, it is possible to use 
a lateral flow strip (LFS) and the unaided eye to detect fluorescence under blue 
light for on-site identification. This ReCTC-based diagnostic method has demon-
strated no cross-reaction with the other subtype families of C. parvum or any other 
prevalent intestinal protozoa [76]. This work developed a new and novel technique 
for the detection of C. parvum without the use of experienced personnel or costly 
instruments. 

The researchers described an extremely sensitive CRISPR-Cas12a-powered 
immune-sensing technique for Cryptosporidium detection that combines antibody-
based identification with CRISPR-Cas12a-based fluorescence signal amplification 
via an antibody-DNA conjugate [32]. This method detects complete C. parvum 
oocysts with a detection scale of a minimum of 6.25 to a maximum of 1600 oocysts/ 
mL and the highest responsiveness of one oocyst per sample. This study demon-
strates the use of a novel CRISPR-Cas-based biosensing technology for significant 
assessment of water potability and detecting entire pathogens.
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A common opportunistic illness brought on by Toxoplasma gondii puts human 
health in peril and has a significant negative economic impact on the animal industry. 
T. gondii is an obligate intracellular parasitic protozoan that infects a variety of verte-
brate hosts, including humans. T. gondii, an Apicomplexa phylum member, causes 
toxoplasmosis, an opportunistic infection in humans with compromised immune 
systems [16], as well as congenital illness in infected babies [20]. Researchers used 
RPA and a CRISPR-Cas12a system to create a compact one-tube detection of T. 
gondii [31]. T. gondii may be effectively extracted from low-concentration samples 
using a microfiber filter device made of glass. The designed RPA-CRISPR-Cas12a 
system is highly selective for the T. gondii B1 gene. A fluorometer or lateral-flow 
strip can be used to analyze the visual signal. The detection limit was reported to be 
3.3 copies/L. This technique may be used to quickly detect T. gondii in extremely 
contaminated landfill leachate. 

In another work, a novel technique called RAA-Cas12a-Tg was designed by the 
combined employment of recombinase-aided amplification (RAA) with CRISPR-
Cas12a [40]. The 529 bp repeat element was considered as the target element for 
this system in order to identify T. gondii oocysts. A portable fluorescence reader 
may be used to detect signal output. This system’s sensitivity was reported to be as 
low as 1 fM with good specificity. This system effectively detected T. gondii in less 
than one hour while being more responsive than the conventional PCR system-based 
technologies. 

To identify the T. gondii 529 bp repeat element, researchers created a quick visual 
detection technique that combined recombinase-aided amplification (RAA) followed 
by a lateral flow dipstick (LFD) device with CRISPR-Cas13a fluorescence (RAA-
Cas13a-LFD) [78]. The RAACas13a-LFD test was carried out within 2 h in an  
incubation block at 37 °C, and the result may be observed with the naked eye using 
LFD. The limit of detection of the RAA-Cas13a-LFD was 1 × 10–6 ng/µL and there 
was no observed cross-reactivity seen with human blood DNA or other significant 
parasites. All of the aforementioned systems listed above demonstrated rapidity, 
sturdiness, and on-site capabilities for detecting nucleic acids, making them viable 
tools for potential deployments in far-off places (Table 1). 

4 Detection by CRISPR-Based POCT 
on Opportunistic Fungus 

Invasive fungus (IF) is now a major concern for human health [5]. Aspergillus fumi-
gatus represents the most prevalent Aspergillus species isolated in people, and it 
is associated with Invasive Aspergillosis (IA) [12]. In immunocompromised indi-
viduals, it is also an opportunistic human pathogen that can cause potentially fatal 
invasive infections and is linked to severe asthma and sinusitis [48]. Culture-based 
diagnostic tests of invasive fungus, which is among the most generally used medical 
screening approach, has drawbacks such as lengthy and complex operation, and the
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requirement for experienced employees, which can postpone the detection of the 
concerned infection. The sensitivity of the lower respiratory tract fungal cultures in 
diagnosing invasive pulmonary aspergillosis (IPA) is likewise relatively poor [60]. As 
a result, the adoption of CRISPR-Cas-based technology as an efficient and accurate 
diagnostic tool for infectious illnesses shows considerable potential. However, there 
isn’t a lot of pertinent information available right now on the diagnostic strategy of 
an A. fumigatus infection using CRISPR-Cas technology. 

Zhengtu Li devised an extremely sensitive and specific approach for the consistent 
and quick recognition of A. fumigatus utilizing the CRISPR-Cas13a system [35]. A 
conserved internal transcribed spacer region or ITS of A. fumigatus was employed in 
this work to develop crRNA and a specific RPA primer sequence conjugated with T7 
promoter for the CRISPR assay. The CRISPR assay included an RPA step followed 
by a Cas13a detection phase. During the detection phase, the final reaction was 
continuously kept at 37 °C in order to observe for an increased fluorescence signal. 
This technique’s sensitivity was reported to be 3 copies/L. 

In another work, Di Huang et al. described the development of a microfluidic ruler-
readout and CRISPR Cas12a-re-joined hydrogel-integrated paper-based analytical 
device (ReaCH-PAD) for visual and quantifiable point-of-care detection of invasive 
fungus (IF) [22]. As a target, conserved 18 s rRNA fragments from Candida or 
Aspergillus were integrated with PAM sites for Cas12a recognition. This device 
used a CRISPR Cas12a employed target identification system, a DNA hydrogel 
coupled to an enzymatic cascade for the amplification of the detection signal, and 
microfluidic chips (paper-based) for visual output. Aspergillus and Candida can be 
detected visually by unassisted eyes using ReaCH-PAD at concentrations as low 
as 10 CFU/mL. The calculated limit of detection for 1 mL samples was 4.90 and 
4.13 CFU/mL, respectively. When compared to qRT-PCR, quantitative detection 
values on a scale of 10–104 CFU/mL may be achieved with excellent selectivity and 
precision (Table 1). 

5 Detection of Virus by CRISPR-Based POCT 

A major global cause of morbidity and a serious threat to humanity today is viral 
infections. Although numerous viral diagnostic techniques and antiviral treatments 
have been created over time, certain viral illnesses are still difficult to treat [65]. 
CRISPR-based diagnostic techniques have attracted the most interest in the field of 
viral infection [3]. There have been several reports on field deployable CRISPR-
based diagnostic platforms for viruses, including SHERLOCK, which can detect 
Zika virus (ZIKV) and dengue virus (DENV) [45], DETECTR, which has been used 
to identify different HPV strains [9], and HOLMES, which can detect viruses (DNA 
and RNA) and also has great power of strain differentiation with tremendous sensi-
tivity [33] but there are very few reports regarding the detection of opportunistic 
viral infections. The most prevalent viral opportunistic infections in people with 
acquired immunodeficiency virus syndrome (AIDS) are caused by Cytomegalovirus
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(CMV) and BK polyomavirus (BKV). Clinical CMV illness has been identified in 
up to 40% of people with advanced HIV infection [15, 56]. These are two preva-
lent opportunistic viruses that are extremely important for kidney transplant recip-
ients and other immunologically compromised individuals. Michael M. Kaminski 
created a CRISPR-based diagnostic method for Cytomegalovirus (CMV) and BK 
polyomavirus (BKV) [25]. They obtained DNA from the infected patients to screen 
for active infections of BKV and CMV. Following that, a modified SHERLOCK 
methodology was used to identify BKV and CMV. Highly conserved sections of 
the BKV and CMV genome (conserved area in the UL54 gene) were amplified 
utilizing isothermal recombinase polymerase amplification (RPA). Then LwaCas13a 
was directed to the target sequence using a crRNA corresponding to 28 nucleotides 
of the RPA amplified product. When the target was detected, Cas13 was activated, 
resulting in the collateral cleavage of an oligonucleotide. Fluorescence signals can 
then be detected, which is directly correlated with the initial load of the concerned 
target pathogen (Table 1). 

6 Conclusion 

Nowadays, opportunistic infections are a major concern for human health. They 
are caused by a diverse spectrum of pathogens and can result in a wide variety of 
diseases. Both extensive public distress and considerable economic loss are being 
brought on by it. Fast molecular detection has become essential for locating and 
tracking these diseases, as well as providing up-to-date disease information to speed 
up treatment. In the current developing landscape of opportunistic infections, the 
CRISPR-Cas-based pathogen recognition technologies are a very potent and sophis-
ticated approach with high precision and responsiveness and could be of signifi-
cant importance in early diagnosis. In this study, we discovered several methods 
for detecting opportunistic infections caused by bacteria, fungi, parasites, or viruses 
that were established based on CRISPR-Cas-mediated systems. The devices demon-
strated a high level of specificity and sensitivity. They are portable and produce 
visible results in a very short period, making them suitable for use in potentially 
field-deployable POCT devices. 
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Microfluidic Chips as Point-of-Care 
Testing for Develop Diagnostic 
Microdevices 

Cagla Celik, Guven Akcay, Nilay Ildız, and Ismail Ocsoy 

Abstract Rapid, specific, and reliable diagnostic tests in portable, easy-to-apply 
systems are of great importance for medical diagnosis, especially in emergencies 
such as pandemic outbreaks or in environments where resources are scarce. Point-
of-care testing platforms are ideal for these purposes, providing fast and timely 
accurate results. Interest in laboratory-on-a-chip devices has grown rapidly in recent 
years. Innovative microfluidic devices that have gone through the technology devel-
opment process have demonstrated the potential to perform unimaginable analyzes 
using traditional techniques. Advances in the microfluidics chip field have sparked 
innovative upheavals in various biomedical fields, such as single-cell detection, diag-
nostic methods, and micro- and nano-size-product manufacturing. Microfluidic chips 
currently play an important role in multiple biological technologies. Microfluidics 
have been shown to offer a number of benefits over existing conventional methods, 
thanks to improved controllability and precision. In this chapter, the authors discussed 
how point-of-care tests, developed by the integration of numerous nanomaterials into 
microfluidic chips, play an active role in the diagnosis and diagnosis of many diseases 
and their potential biomedical applications. 
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1 Introduction 

Early detection of infectious diseases plays a critical role in the correct and effective 
treatment of diseases. The COVID-19 pandemic has shown that it is very important 
to detect the infectious agent early at the beginning of the infection in order to quickly 
control the spread of the disease. Early diagnosis and timely treatment are critical 
not only for infection but also for other types of cancer and serious diseases. Early 
diagnosis can increase response rates to treatment and reduce treatment costs. Among 
the tests performed for this purpose, serology, virology, and imaging techniques are 
among the most preferred medical diagnostic techniques [66]. 

Serological methods are based on the detection of changes in protein biomarkers 
related to diseases in the human body. Virological methods consist of techniques 
for detecting viruses that infect the body, while imaging methods are used to 
test for structural changes in organs, tissues, and structures in the human body. 
Expensive test devices used for analysis are available in research laboratories in 
clinics and require expert personnel due to the complexity of the analysis stages of 
these methods. Because of the highly costly, long-lasting, labor-intensive nature of 
detection methods, they may not be sufficiently applicable techniques for the early 
diagnosis of diseases [75]. 

Lack of adequate medical facilities delays disease detection, especially for people 
in underdeveloped countries. Routine medical tests are also not possible for patients 
living in this region In developing countries such as South-East Asia and Africa, 
medical facilities such as hospitals, which should be widespread, are very inadequate. 
Therefore, it is very difficult for countries with inadequate medical resources and 
health systems to combat bacterial or viral diseases [34]. If a pathogent is present 
and spread in these regions, the infectious agent may not be detected and isolated 
in time. In such cases, the infection carries the risk of spreading epidemically. The 
COVID-19 pandemic is a good example of this issue. The infection agent in a single 
region has shown a serious spread that can affect all countries of the world as a result 
of international travel [14]. 

In countries with inadequate health systems, there are no techniques that enable 
sensitive rapid detection of diseases in the clinic. Even in rural areas of developed 
countries, disease prevention services and health screening can be very inadequate 
[60]. Therefore, it is of great importance to produce inexpensive, portable diagnostic 
equipment for home self-testing or field testing. When such devices are developed, 
the workload of existing health systems in underdeveloped regions can be reduced, 
early diagnosis can be made, and overuse of medical resources can be reduced. 
Microfluidic technologies have been developed and fabricated in recent years to 
solve these problems and offer innovative perspectives. The chips developed within 
microfluidic technologies are small in size, require few reagents, and easy to carry to 
diagnose the disease. The biggest advantage of microfluidic chips is that they perform 
detection in a short time compared to conventional detection devices and kits. For 
this reason, microfluidic chips are technological innovations that can provide fast 
and effective results in situations where the health system and medical resources are
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insufficient, such as in underdeveloped regions. Microfluidic technologies are used 
in the fields of laboratory tests [57, 65], medical diagnosis [3], and cell analysis due 
to their small size, short process requirements and portability. The development of 
microfluidic chips has also contributed significantly to the advancement of point-
of-care (POC) test technologies. POC test (POCT) is an analytical test that offers 
medical diagnosis to patients even in limited and under-resourced healthcare systems 
[54]. The development and application of POCTs are promising for countries in 
developing regions in need of medical diagnostic tests [44]. 

This book chapter includes studies on the necessity and development of tech-
nologies for the rapid diagnosis of diseases at an early stage that can be offered to 
the service of underdeveloped countries. Firstly, we will describe microfluidic chip 
technologies and introduce their types and advantages. Then, we will then introduce 
microfluidic POC tests for the early detection of various diseases and describe their 
current applications. 

2 Microfluidic Tests 

2.1 Introduction 

Microfluidic device is a portable, analyte capture and identification system that can 
perform sample detection steps. In these innovative systems, reagents and samples are 
used in very low quantities. In addition, the efficiency and analysis speed of the system 
is very high. Furthermore, the analysis process can be automated to eliminate human 
error. Devices developed with microfluidic technology are frequently preferred in 
physics, biology, chemistry, biomedical sciences, and engineering. Devices manu-
factured with microfluidic technology are known as portable devices. Because the 
analytic process is carried out in small-sized devices that are completely portable 
[64]. The use of small amounts of reagents for analysis in microfluidic devices offers 
advantages for under-resourced regions in harsh conditions. The small size and small 
amount of reagent consumption significantly reduces the cost of the analysis [25]. 
POCTs are portable devices that enable analysis and detection in various regions and 
for various purposes outside of clinical laboratories [55]. 

POCT technology can be used not only for humans but also for the detection of 
animal diseases. In a study, Pascual-Garrigos and coworkers developed the loop-
mediated isothermal amplification (LAMP) assay. The purpose of the test is early 
stage diagnosis of respiratory system diseases [56]. 

Microfluidic technology has made a significant contribution to the application of 
POC tests in disease diagnostic systems. Microfluidic devices provide fast results 
and high sensitivity. Therefore, microfluidic devices integrated with POC tests are 
the cheapest and easily portable devices that can be preferred to provide rapid and 
sensitive detection [62].
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2.2 Benefits of Microfluidic Tests in Clinic Laboratory 

Identifying biomarkers plays a critical role in disease diagnosis. The most preferred 
method for diagnosis is the ELISA test. The ELISA assay produces measur-
able signals in the presence of a sufficient amount of analyte. ELISA test uses 
different enzymes such as horseradish oxidase, alkaline enzyme, and β-galactosidase. 
Substrates are used to react with the enzymes and produce colorimetric results 
[20]. ELISA is the most preferred technique for detecting protein-based molecules. 
Because it is very sensitive in detecting the presence of protein. Detect proteins as 
well as many pathogens, including viruses and bacteria [70]. ELISA has been used to 
identify and quantify many viruses such as coronavirus [1, 6], Zika virus [52], dengue 
virus [49], influenza virus [59]. Conventional ELISA needs to be improved to provide 
the high sensitivity required for protein identification and quantification [29]. 

Mass spectrometry (MS) can detect different biomarkers such as proteins [2]. 
Integration of microfluidic chips into the MS (μchip-MS) has the potential to meet 
the needs of clinicians. Thus, new methods may be revealed in monitoring stages of 
diseases other than infectious diseases including cancer, diabetes, and other chronic 
diseases [26, 50, 58]. The combination of MS and a microfluidic chip platform 
offers an innovative perspective for microfluidic chips. Compared to conventional 
immunoassay tests and techniques, μchip-MS has been shown to have a higher 
specificity and sensitivity in analysis, and also provides faster results with less labour. 
Surface plasmon resonance (SPR) is another optical detection method. SPR detection 
method is used in virus detection and detection of cancer biomarkers due to its many 
reasons for preference such as high accuracy, low production cost, and sensitivity [5, 
47]. Liu et al. used microfluidic technologies and nanoparticles together to detect the 
target protein by the SPR technique. Since the results were better than the method 
with SPR alone [40], it shows that combining microfluidic technologies with existing 
technologies will lead to advantageous results. 

Many traditional methods have started to be integrated with microfluidic POC 
devices. Especially for patients in underdeveloped countries, these integrated devices 
can detect proteins in the serum and provide excellent analysis results [38, 39]. 

2.3 Equipment Varieties for Microfluidic Tests 

The basic components of the first microfluidic system developed were chemical 
etching technology and photolithography [68]. Subsequently, microfluidic devices 
made of polydimethylsiloxane (PDMS) materials were also developed and today, 
most of the microfluidic chips are made of PDMS polymer [46]. 

In recent years, paper-based technologies and three-dimensional (3D) printing 
methods has been used to reduce production cost [9, 77]. These materials can be 
used for POC analysis, especially in undeveloped regions. One of the best exam-
ples of combining POC technologies with microfluidics is mobile sensors where 
microfluidic systems are integrated into smartphone applications [79].
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2.3.1 Microfluidic Devices Produced by 3D Printing Techniques 

The development of 3D printers has directly influenced the advancement of microflu-
idics [7]. These devices work automatically and are not dependent on a person, thus 
eliminating the need for human resources required to produce PDMS-based microflu-
idics [8]. Moreover, 3D printing techniques provide serious high potential and proto-
types can be developed with this technique. Rapid production can increase the effi-
ciency and frequency of experiments and thus, accelerate the commercialization of 
experimental methods [15, 71]. 

Microfluidic POCT chips produced with 3D printers have been used in experi-
mental studies. Song and coworkers develop a new approach for sensitive detection 
of viruses in the platform developed with microfluidic technology. The box prepared 
for detection was produced by 3D printing technology and only a saliva sample was 
used to detect the Zika virus [63]. Furthermore, Kadimisetty and coworkers designed 
a low-cost microfluidic POC test based on the nucleic acid amplification method for 
the diagnosis of infection [32]. 

Thanks to three-dimensional printing technology, the commercialization of 
microfluidic POCT techniques has gained great speed. With 3D printing technology, 
it has become very easy to rapidly manufacture and produce microfluidic equipment. 
Therefore, 3D-printed microfluidic POC tests offer a serious advantage for use in 
undeveloped countries. 

2.3.2 Analyzing Microfluidic Chips with Smartphones 

Since the early 21st century, the continuous development of microelectronics has 
resulted in the production of smartphones. Smartphones have the potential to be 
an alternative to computers for data collection and processing in underdeveloped 
countries [24, 74, 76]. As a result of these developments, a new generation of 
mobile sensing techniques has emerged by combining smartphones with microflu-
idic devices. Combinations of microfluidic devices and smartphones are very useful 
for regions with inadequate and weak healthcare systems. 

Researchers have developed a paper-based microfluidic test to detect Zika virus 
through reverse transcription cycle-mediated isothermal amplification (RT-LAMP) 
technique. In this study, ZIKV RNA triggers a color change in the microfluidic system 
and the results can be obtained within minutes and can be analysis with a smartphone 
[31]. In another study, Jalal and coworkers fabricated a microfluidic chip consisting of 
polycarbonate (PC) plastic material and reagent paper to detect chemical molecules 
in human urine. Using a smartphone, the resulting colorimetric results are recorded 
with the phone camera [30]. The systems in which microfluidic chip and smartphones 
are integrated are easy to use. It gives reliable results without requiring specialized 
personnel. These integrated systems are a promising technology.
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3 Microfluidic Tests for POC Diagnosis of Infectious 
Diseases 

3.1 Introduction 

Coronavirus diseases affects countries all over the world, causing widespread deaths 
and straining national economies [35]. Early diagnosis of COVID-19 and timely 
and correct treatment of patients is one of the most important measures to be taken. 
Accurate and rapid detection is critical in the fight against infection. In this direction, 
ELISA, RT-PCR, colloidal gold immunochromatographic assay are among serolog-
ical methods [16]. However, ELISA and RT-PCR may limit their use in less developed 
countries. Consequently, POCTs offer an innovative approach in the production of 
inexpensive and rapid tests for respiratory system diseases. 

Compared to conventional tests, microfluidic devices can measure biomarkers and 
antibodies accurately and sensitively. Microfluidic technologies can be integrated 
with other conventional methods used to provide efficient test results. Microfluidic 
chips therefore have promising potential for the detection of SARS-CoV-2. 

3.2 Applications for Diagnosis of Infectious Diseases 

Immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies are revealed 
and play an active role in the defense against viral disease agents. Therefore, the 
progression and treatment of infectious diseases are determined by the detection of 
antibodies. In a study, Lin and colleagues developed a diagnostic kit for COVID-19 
diagnosis by integrating a diagnostic microchip and a POC test that can detect IgM, 
IgG, and other biomarkers with portable fluorescent detectors [39]. 

However, microfluidic devices have shortcomings in diagnosis of COVID-19, 
such as requiring a long incubation time, and further development is needed for 
rapid detection of SARS-CoV-2 antibodies [67]. 

Although nasopharyngeal specimens are often preferred for diagnosis of COVID-
19, human saliva can also be usable as a test sample [69]. Patients have the advantage 
of being able to collect their own samples and there are studies showing that saliva 
samples are also suitable for detection. Wang and coworkers developed a POC test 
using RT-LAMP technique for diagnosis of COVID-19 in human saliva. This test 
provides colorimetric results, although the assay only requires a heat source. Due to 
this feature, it can be used in countries with limited healthcare [73].
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4 Microfluidic Tests for POC Diagnosis of CVDs 

4.1 Introduction 

As reported by the World Health Organization, CVDs cause 17.9 million deaths 
worldwide each year [28]. High CVD rates also show that health services in 
developing regions are very inadequate compared to developed regions [4]. 

CVD, also known as cardiovascular system-related diseases including hypo- and 
hypertension, coronary heart disease, and cerebrovascular disease (stroke) [19]. In 
recent studies, various biomarkers have been used for the detection of CVDs. Early 
stage diagnosis of CVD is the main factor that reduces treatment costs and mortality. 
POC tests have the potential to detect CVD biomarkers rapidly and sensitively [13]. 

4.2 Applications for Diagnosis of CVDs 

There are risks that using a single biomarker to diagnose CVD may lead to misdi-
agnosis as it may be associated with other diseases. Therefore, it is critical to detect 
multiple CVD biomarkers at the same time for accurate and sensitive diagnosis. Thus, 
more reliable, high-specificity results can be obtained. In addition, these techniques 
reduce the cost and time of analysis [27]. Various platforms have been designed 
that can detect multiple CVD biomarkers simultaneously [53]. Clinicians advocate 
the use of these techniques because simultaneous analysis of multiple biomarkers 
provides more comprehensive and accurate results [18]. Most microfluidic POC tests 
capable of detecting multiple biomarkers are currently in use [43]. 

AMI is the most of dangerous diseases. For accurate and timely detection of 
AMI, multiple biomarkers need to be detected simultaneously [23, 78]. In a study, Li 
and coworkers developed a 3D printing paper-based microfluidic test (μPAD) that 
detects numerous biomarkers with three sensing zones. The μPAD can simultane-
ously measure cTnI, H-FABP, and copeptin using chemiluminescence (CL) emis-
sions. The device has the potential to greatly facilitate early stage AMI diagnosis. 
Figure 1 shows the design of a 3D μPAD [36].

In another study, Boonkaew and coworkers developed a POC test for the detection 
of three different CVD biomarkers simultaneously, procalcitonin marker, cTnI, and 
C-reactive protein. This microfluidic device contains multiple working electrodes 
and multiple detection sites that can detect different CVD biomarkers in a single 
human sample [10].
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Fig. 1 Schematically illustration for the fabrication of the 3D μPAD for multiplexed CL 
immunoassay of H-FABP, cTnI and copeptin. Reprinted with permission from [36]. Copyright 
2020 Elsevier

5 Microfluidic Tests for POC Diagnosis of Tumors 

5.1 Introduction 

Cancer diseases are caused by cells that multiply uncontrollably. Cancer disease that 
is difficult to diagnose, treatment, and follow-up [41]. Cancer is becoming increas-
ingly common and mortality rates are increasing day by day. Cancers of the breast, 
lung, stomach, and prostate are among the most common varieties of cancer [12]. 
Symptoms of cancer in the early stage may not be recognized. However, early stage 
detection of cancer is critical for effective treatment [72]. Current conventional diag-
nostic techniques for cancer diagnosis such as magnetic resonance imaging, ultra-
sound tomography are not suitable for routine examinations due to reasons such as 
cost and radiation exposure. Among the cancer diagnostic methods used in clinics, 
haematology tests are typically used. Cancer screening with markers found in human 
serum is widely used to detect cancer at an early stage, reducing patient harm and 
medical costs [17]. In addition, protein measurements are crucial biomarkers for 
early stage cancer diagnosis and monitoring disease progression and treatment [48].
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5.2 Applications for Diagnosis of Cancer 

Research has been made on the effective use of microfluidic devices for cancer 
detection. Wang and coworkers developed a microfluidic system capable of DNA 
methylation analysis. The test time takes 3 h including all stages and this technique 
allows early diagnosis of cancer [72]. CA-125, another cancer biomarker, provides 
information about the progression of cancer at varying concentrations. Nunna and 
coworkers developed a POC testing system that combines a biochip with a microflu-
idic system aiming to measure CA-125 concentration in human serum obtained from 
a finger prick, similar to glucose measurement in diabetes [51]. 

Lung cancer (LC) is the leading deaths due to its high mortality rate and significant 
spread in all over the world [42]. Exosomes have been used as a novel biomarker 
for early detection and treatment of lung cancer. Yang and coworkers developed 
a microfluidic device with adjustable membrane pore size to identify biomarkers 
in human urine samples. This technique is a promising study for the detection of 
patients with early lung cancer [80]. Microfluidic POC assays can detect different 
biomarkers in various cancer-related diseases. Prostate cancer (PCa) is one of the 
most common cancers in men and its diagnosis is very important [21]. Prostate-
specific antigen (PSA) is the biomarker of preference in the analysis [22]. In serum 
samples taken from healthy men, PSA concentration is in the degree of 0–4 ng/ 
mL. People with PSA concentration higher than 4 ng/mL, which is critical in cancer 
detection. For this reason, if a developed test can detect PSA levels lower than 4 ng/ 
mL in a cost-effective and rapid manner, it will make a significant contribution to 
the diagnosis of prostate cancer patients [11]. Mandal and coworkers developed a 
system combination of graphene FETs, dielectrophoresis (DEP), and a microfluidic 
chip for early detection of prostate cancer [45]. 

Since cervical cancer is one of the most common cancers in women, early diag-
nosis is much more important than other cancers [61]. Because cervical cancer that 
can be detected at an early stage can be completely healed. Karakaya and coworkers 
developed a microfluidic test that enables early stage diagnosis of cervical cancer by 
testing the presence of HPV 16 and HPV 18 in less than 40 min [33]. In another study, 
Lim and coworkers designed a system that integrates exosomatic mRNA sensors 
and 3D-nanostructured hydrogels into a microfluidic chip. Thanks to this system, 
exosomal ERBB2 in breast cancer-associated blood can be further detected and the 
validity of the system in breast cancer diagnosis can be proved [37]. 

6 Conclusions and Prospects 

Medical diagnosis is very difficult in regions with weak health systems and inadequate 
health infrastructure. Microfluidic POC tests developed for medical diagnostics that 
can provide a solution to this problem give fast results, are easy to use, and are very 
low cost.
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Microfluidic devices are mostly produced by utilizing paper, PDMS, or 3D 
printing technology. Integrating smartphones into microfluidic systems is a highly 
effective solution for POC applications. Although there are microfluidic POC test 
equipment with different characteristics, low-cost ones are mostly preferred as the 
main purpose is to be applicable in harsh environments. For this reason, microfluidic 
POC test components are small in weight and volume and are suitable for fast results. 

In clinical laboratories, one of the most important steps in disease detection is 
the analysis of disease-related biomarkers. Microfluidics technologies can meet the 
requirements of medical tests in clinical laboratories because they are sensitive, 
inexpensive, and portable. Microfluidic POC tests have been used effectively in 
many fields such as CVD detection, detection of infectious diseases, tumor detection. 
Microfluidic devices can be integrated into many optical and serological techniques. 
They can detect biomarkers with high sensitivity and accuracy, which are the most 
critical parameters in disease diagnosis. Integration of existing technologies into 
microfluidic devices has provided features such as very low detection limit and high 
specificity. 

With microfluidic POC tests, specialized personnel are not required for disease 
diagnosis and results can be obtained quickly. However, several disadvantages need 
to be overcome before POCT systems can be used as standard clinical tests. Microflu-
idic technology does not comply with industrial standards and guidelines. This 
lack of industry standards can be considered as a barrier to the commercialization 
of microfluidic devices. After standardization, application to industry can become 
easier. Thus, the cost and time of the production procedure can be reduced. Finally, for 
the integration of microfluidic technologies into the industry, investments in biomed-
ical applications should be increased and microfluidic devices should be used more 
in clinical laboratories. 
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Magnetic-Nanosensor-Based Diagnostic 
Chips: An Overview 

Zozan Guleken 

Abstract Magnetic nanosensors are showing great potential in detecting and 
treating numerous illnesses. They represent an effective way to administer drugs 
and transport contrast agents, making them ideal for use within the body. Further-
more, magnetic nanosensors can also be an external method for removing particular 
compounds from the bloodstream. This article examines the most recent develop-
ments in the field of magnetic nanosensors. It covers how they are created, how they 
have been made more compatible with biological systems, their clinical uses, and 
any associated risks. This chapter highlights the current advances in biosensors in 
nanotechnology, with particular emphasis on magnetic-nanosensor-based diagnostic 
chip synthesis, factors affecting this process, interaction with biomaterials, and the 
prospects of magnetic-nanosensor-based diagnostic chips. Nanomaterials’ possible 
dangers and impacts in medical treatments involving magnetic nanosensors are also 
discussed. 

Keywords Biosensors ·Magnetic-nanosensors · Diagnostic chips · Biosynthesis 

1 Introduction 

Biosensors are increasingly used for disease diagnosis because they convert biochem-
ical information into detectable signals [28]. Biosensors usually consist of biolog-
ical recognition and physicochemical transduction parts, as described in the same 
article. The biological recognition part of a biosensor can be antibodies, aptamers, 
or other biomolecules that recognize and interact with target analytes. In contrast, 
the transduction part converts the recognition event into a measurable signal. The 
use of diverse biosensors for pathogen detection is gaining popularity due to their 
ease of use, rapid response time, and cost-effectiveness. As noted in a review by Cui
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et al., integrating nanomaterials into biosensors has shown promise in improving 
their analytical performance, including sensitivity, selectivity, and analysis speed, 
thus expanding their potential applications [6]. 

Additionally, biosensors are becoming increasingly popular as powerful diag-
nostic tools for various diseases [26]. Analytical devices can convert biochem-
ical information into detectable signals such as optical, electrical, electrochemical, 
magnetic, or thermal signals. A biosensor typically consists of two parts: the biolog-
ical recognition part and the physicochemical transduction part. The biological recog-
nition part, such as antibodies and aptamers, recognizes and interacts with the target 
analytes, while the transduction part converts the recognition event into a measurable 
physicochemical signal [13]. 

The use of diverse biosensors for the detection of pathogens is gaining popularity 
due to their simple operation, fast response, and cost-effectiveness. The utilization 
of nanomaterials has also shown potential in improving the analytical performance 
of biosensors in terms of sensitivity, selectivity, and analysis speed, thus expanding 
the applications of biosensors. 

Recent advancements in nanotechnology have paved the way for developing 
biosensors at the nanoscale level using various nanomaterials. These biosensors 
have direct interaction and contact with the biomolecules or analytes for which 
they are intended to be used. As a result, they possess stand-alone properties such as 
customized magnetic, electrical, and optical properties, enhanced electrical conduc-
tivity, high sensitivity, and a low response time compared to traditional biosen-
sors. Therefore, biosensors have gained importance in different bioengineering 
applications, including drug delivery [22, 40]. 

For instance [22], developed a three-dimensional porous nickel framework 
anchored with cross-linked Ni(OH)2 nanosheets, which showed high sensitivity as 
a nonenzymatic glucose sensor. Similarly [40], developed a nonenzymatic wearable 
sensor for electrochemical analysis of perspiration glucose using nanomaterials. 

Biosensors are emerging as powerful diagnostic tools for various diseases. These 
analytical devices can convert biochemical information into detectable signals, 
including optical, electrical, electrochemical, magnetic, or thermal signals [4, 12]. A 
typical biosensor consists of two parts: the biological recognition part and the physic-
ochemical transduction part. The biological recognition part, such as antibodies and 
aptamers, interacts with the target analytes, while the transduction part converts the 
recognition event into a measurable physicochemical signal [2, 23, 25]. 

Diverse biosensors are being adopted to detect pathogens due to their simple oper-
ation, fast response, and cost-effectiveness [19, 33]. The utilization of nanomaterials 
has also shown the potential to improve the analytical performance of biosensors in 
terms of sensitivity, selectivity, and analysis speed, thus expanding the applications 
of biosensors [23, 34]. 

Magnetic nanoparticles have become an increasingly important class of materials 
in recent years due to their unique magnetic properties and potential applications in 
various fields. These nanoparticles typically have dimensions of 1–100 nm and can 
be synthesized using different physical, chemical, and biological methods.
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Physical synthesis methods involve using physical forces such as heat, pressure, 
or magnetic fields to create the nanoparticles. For example, thermal decomposition, 
solvothermal synthesis, and high-energy ball milling are all physical methods that 
can be used to develop magnetic nanoparticles. 

Chemical synthesis methods involve the use of chemical reactions to produce 
nanoparticles. These methods often involve the reduction of metal salts or 
oxides in the presence of surfactants or other stabilizing agents. Examples of 
chemical synthesis methods include co-precipitation, thermal decomposition, and 
hydrothermal synthesis. 

Biological synthesis methods involve using living organisms or their products 
to produce nanoparticles. These methods can be more environmentally friendly 
and sustainable than traditional chemical methods. Biological synthesis methods 
can include using bacteria, fungi, plants, or even human cells to produce magnetic 
nanoparticles, as seen in Fig. 1a. Magnetic nanosensors are an emerging sensing 
device class that utilizes magnetic nanoparticles to detect and quantify specific 
analytes with high sensitivity and selectivity. The principles of magnetic nanosen-
sors rely on the unique magnetic properties of nanoparticles and their ability to be 
functionalized with specific ligands or functional groups. 

The synthesis of magnetic nanoparticles involves carefully selecting precursor 
materials, followed by a series of physical, chemical, or biological steps to create 
nanoparticles with desired properties such as size, shape, and magnetic behavior. The 
surface of these nanoparticles can then be coated with a layer of organic or inorganic 
material to improve their stability and biocompatibility. 

In addition to coating, magnetic nanoparticles can be functionalized with linking 
groups or spacer molecules that facilitate the attachment of specific agents such as

Fig. 1 a Types of synthesis of magnetic nanoparticles. b The main principles of magnetic 
nanosensors 
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ligands or biomolecules. These agents can then bind to specific target analytes in the 
sample, leading to changes in the magnetic properties of the nanoparticles that can 
be detected and quantified. 

The attachment of these agents to the surface of magnetic nanoparticles forms the 
basis of magnetic nanosensors. The specificity and sensitivity of these sensors can 
be improved by carefully selecting the linking group and agent used and optimizing 
the conditions for the binding reaction. 

In all cases, synthesizing magnetic nanoparticles requires careful control of 
the reaction conditions to achieve the desired particle size, shape, and magnetic 
properties. Once synthesized, these nanoparticles have many potential applications, 
including drug delivery, magnetic resonance imaging (MRI), environmental remedia-
tion, and data storage. Therefore, the synthesis of magnetic nanoparticles using phys-
ical, chemical, and biological methods is an active area of research with significant 
potential for future development. 

Overall, magnetic nanosensors offer a promising avenue for detecting and quan-
tifying a wide range of analytes, with potential applications in fields such as medical 
diagnostics, environmental monitoring, and food safety. The combination of the 
unique magnetic properties of nanoparticles and the ability to functionalize them 
with specific agents provides a powerful tool for developing susceptible and selective 
sensing devices. 

2 Type of Magnetic-Nanosensor-Based Diagnostic Chips 

Magnetic-nanosensor-based diagnostic chips have gained significant attention in 
recent years as a promising technology for the early and accurate detection of various 
diseases [21, 36]. Integrating magnetic sensors with microfluidic systems has enabled 
the development of compassionate and specific diagnostic tools to detect biomarkers 
at low concentrations in biological fluids [24]. 

Magnetic nanoparticles are used in magnetic nanosensors to specifically bind 
to biomolecules of interest, which magnetic sensors can then detect [35]. This 
approach offers several advantages over traditional diagnostic methods, including 
faster analysis time, reduced sample volume, and increased sensitivity [27]. 

An antibody or an aptamer can be added to magnetic nanosensors to detect 
disease markers or biomarkers in bodily fluids. When these nanoparticles bind to 
the targeted molecules, they generate a detectable signal that can be measured by 
magnetic sensors [15, 39]. 

This technology has been applied in diagnosing various diseases, such as cancer, 
infectious diseases, and cardiovascular diseases. 

Magnetic nanosensors eliminate the need for large volumes of bodily fluids 
and provide faster and more accurate results compared to traditional diagnostic 
techniques.
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As the technology develops, magnetic nanosensors are expected to become even 
more versatile and widely used in clinical applications, providing clinicians with a 
powerful tool for early disease detection and personalized medicine. 

Magnetic-nanosensor-based diagnostic chips have gained significant attention in 
recent years for their potential to revolutionize the field of medical diagnostics. 
These chips integrate magnetic sensors with microfluidic systems to develop highly 
sensitive and specific diagnostic tools that detect biomarkers at low concentrations in 
biological fluids [32, 39]. The detection of disease markers or biomarkers in bodily 
fluids is possible by using magnetic nanoparticles that are functionalized with specific 
biomolecules, such as antibodies or aptamers [8, 9, 21]. 

Compared to traditional diagnostic methods, magnetic-nanosensor-based diag-
nostic chips offer several advantages, including faster analysis time, reduced sample 
volume, and increased sensitivity [15, 37]. They have been used to diagnose 
various diseases such as cancer, infectious diseases, and cardiovascular diseases. For 
instance, in a recent study, magnetic nanosensors were used for the early detection 
of colorectal cancer, achieving a high sensitivity and specificity [3, 10, 16]. 

As the technology develops, magnetic nanosensors are expected to become even 
more versatile and widely used in clinical applications. Magnetic-nanosensor-based 
diagnostic chips have the potential to provide clinicians with a powerful tool for 
early disease detection and personalized medicine. Further research and develop-
ment could enable earlier diagnosis, better disease monitoring, and improved patient 
outcomes. 

Using magnetic nanosensors as diagnostic chips, it is possible to detect 
biomolecules in complex biological samples faster and more accurately than ever 
before. 

Magnetic nanoparticles are often chosen as the primary magnetic nanosensors 
for diagnostic chips due to their biocompatibility and ability to selectively bind to 
target biomolecules. MNPs can also be used for in vivo imaging due to their small 
size and ability to pass through cell membranes [1, 16]. 

Magnetic nanowires have shown promise as highly sensitive and specific nanosen-
sors due to their high aspect ratio, which results in a high magnetic moment and 
sensitivity [6, 31]. MNWs can be integrated into microfluidic channels for rapid and 
sensitive detection of target biomolecules in biological samples. 

Magnetic quantum dots have unique magnetic and optical properties that make 
them useful for biosensing applications [16, 17]. For sensitive and selective detec-
tion of target biomolecules in biological samples, they can be functionalized with 
biomolecules and integrated into microfluidic channels. 

Magnetic microbeads have been widely used in diagnostic chips due to their ease 
of functionalization and ability to be manipulated by magnetic fields [11]. MMBs 
can be separated from biological samples using a magnet, making them suitable for 
point-of-care testing. 

In conclusion, magnetic-nanosensor-based diagnostic chips are promising for 
early and accurate disease detection. They offer several advantages over tradi-
tional diagnostic methods and have been utilized to diagnose various diseases with 
high sensitivity and specificity. As the technology continues to develop, magnetic
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nanosensors are expected to become even more versatile and widely used in clinical 
applications, revolutionizing the field of medical diagnostics. 

3 Characterisation Techniques 

Characterization techniques are essential for evaluating the performance and sensi-
tivity of magnetic-nanosensor-based diagnostic chips. Various methods have been 
used to characterize the magnetic nanoparticles and the sensors, including scanning 
electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffrac-
tion (XRD), vibrating sample magnetometry (VSM), and magnetic force microscopy 
(MFM) [5]. 

SEM and TEM techniques have been used to investigate the size and shape 
of the magnetic nanoparticles and their distribution within the microfluidic chan-
nels. XRD is used to determine the crystal structure and phase of the magnetic 
nanoparticles. VSM is used to measure the magnetic properties of the nanoparticles, 
including magnetic moment, coercivity, and remanence [16]. MFM is used to image 
the magnetic fields of the nanoparticles and their distribution within the microfluidic 
channels. 

Moreover, the electrical and magnetic properties of the magnetic sensors can 
be evaluated using impedance spectroscopy, AC susceptometry, and Hall effect 
measurements [29]. These techniques are used to investigate the sensitivity and 
signal-to-noise ratio of the magnetic sensors. 

In summary, characterization techniques are essential for evaluating and 
optimizing magnetic-nanosensor-based diagnostic chips. These techniques allow 
researchers to investigate the physical, electrical, and magnetic properties of the 
magnetic nanoparticles and sensors, leading to the development of more sensitive 
and specific diagnostic tools. 

4 Physical and Chemical Characteristics 
of Magnetic-Nanosensor-Based Diagnostic Chips 

Magnetic nanosensors possess unique physical and chemical properties, making them 
a promising diagnostic chip platform. Some of the key characteristics of magnetic 
nanosensors used as diagnostic chips are discussed below: 

Magnetic Properties: The strong magnetic properties of magnetic nanosensors 
make them detectable in low concentrations using magnetic sensors. Nanosen-
sors’ magnetic properties depend on their size, shape, and composition. Iron oxide 
(Fe3O4) and nickel (Ni) are the most commonly used magnetic materials in magnetic 
nanosensors due to their high magnetic moments and good biocompatibility [35].
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Surface Functionalization: The surface of magnetic nanosensors can be functional-
ized with various molecules to enable their specific binding to biomolecules such as 
proteins, antibodies, or nucleic acids. The functionalization can be achieved through 
various chemical reactions such as covalent bonding, electrostatic interaction, or 
physical adsorption. The surface functionalization is critical for the specificity and 
sensitivity of the nanosensors in detecting target molecules [4, 7]. 

Biocompatibility: Magnetic nanosensors used in diagnostic chips must be biocompat-
ible to prevent harmful effects on cells or tissues. Iron oxide-based nanosensors have 
been shown to exhibit good biocompatibility, low toxicity, and minimal inflammatory 
response in vivo [35]. 

Detection Sensitivity: Magnetic nanosensors can detect target molecules in low 
concentrations, typically in the picomolar range. This high sensitivity is due to the 
amplification effect of the magnetic signal generated by the nanosensors [11]. 

In conclusion, magnetic nanosensors have unique physical and chemical prop-
erties, making them a promising diagnostic chip platform. Their strong magnetic 
properties, surface functionalization, biocompatibility, and high detection sensitivity 
make them a powerful tools for early disease detection and personalized medicine. 

5 Application and Impact of Magnetic-Nanosensor-Based 
Diagnostic Chips 

Magnetic nanosensors used as diagnostic chips significantly impact various fields, 
including medical diagnostics, drug discovery, environmental monitoring, and point-
of-care testing. 

Disease diagnosis: Magnetic nanosensors have been utilized to diagnose various 
diseases, including cancer, cardiovascular diseases, and infectious diseases, as 
mentioned earlier [37, 38]. A study demonstrated the use of magnetic nanosensors 
for the early detection of pancreatic cancer by detecting a specific biomarker in the 
blood [19]. 

Drug discovery: Magnetic nanosensors have been used for drug discovery by 
screening compounds for their ability to bind to a target molecule. A study demon-
strated the use of magnetic nanosensors to identify novel inhibitors of the protein 
tyrosine phosphatase 1B, a target for treating diabetes and obesity [5, 6]. 

Environmental monitoring: Magnetic nanosensors have potential applications in 
environmental monitoring by detecting pollutants and contaminants in water and 
soil. A study demonstrated the use of magnetic nanosensors for detecting arsenic in 
water samples with high sensitivity and specificity [18]. 

Point-of-care testing: Magnetic nanosensors have shown great promise in point-of-
care testing by enabling rapid and sensitive detection of biomarkers at the point of
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care. A study demonstrated magnetic nanosensors in a handheld device for detecting 
HIV RNA in plasma samples with high sensitivity and specificity [26, 40]. 

6 Conclusion 

Magnetic nanosensors are highly sensitive and precise tools for disease diagnosis. 
Using magnetic nanoparticles and surface functionalization agents can specifically 
target biomolecules for detection. The detection of changes in the magnetic field 
generated by magnetic nanoparticles can be carried out using a magnetometer or 
MRI. With further advancements in technology, magnetic nanosensors have great 
potential for widespread use in diagnosing and treating diseases. 
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Functionalized Smart Nanomaterials 
for Point-of-Care Testing 

Arunima Lala, Hiranmoy Kotal, and Saikat Kumar Jana 

Abstract Microorganisms especially viruses are one of the major causes of gener-
ating serious threats to human health which claims millions of lives annually. Infec-
tious viruses are emerging periodically with their numerous harmful variants such 
as influenza A virus, Ebola, MERS-CoV-2, most recently SARS-CoV-2(COVID-
19), etc. Traditional biochemical and immunological diagnostic methods are limited 
by sample transportation, processing, high-cost, time-consuming, and expert techni-
cians to operate. Meanwhile, Point-of-Care (POC) devices can be a potential solu-
tion to overcome all these drawbacks. These devices provide many benefits in terms 
of portability, rapidity, low-cost, automation, etc. Nanomaterials of various shapes, 
size, composition, and physical and chemical properties such as gold nanoparti-
cles, quantum dots, carbon nanomaterials, and hybrid nanocomposites, have been 
widely used in POC devices to enhance analytical activity and simplify the detec-
tion process. In this chapter, we are focusing on various nanomaterials-based POC 
diagnostic devices for the analysis of viral disease biomarkers. Many more novel, 
innovative platforms need to come to address the unmet clinical demands. The devel-
opment of bench-to-bedside and point-of-care devices in recent years has made the 
term “biosensor” more well known in the scientific community. 

Keywords Viral-infections · Biomarkers · Nanomaterials · Biosensors ·
Nanosensors · Point of care (POC) diagnosis 

1 Introduction 

Infectious diseases are caused by severe deadly pathogenic microorganisms like 
bacteria, virus, parasites, and fungi with unknown origin. Infectious diseases can 
spread rapidly across the global population and pose a life-threatening risk to public
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health in comparison to other diseases [24]. Since 2009, numerous severe life-
threatening infectious viruses are emerging periodically with their harmful variants 
such as Influenza A virus, West African Ebola virus (EBOLA), Middle East respi-
ratory syndrome coronavirus (MERS-CoV), and the recent severe acute respiratory 
syndrome coronavirus 2 [SARS-CoV-2, named as coronavirus disease (COVID-19)] 
[26]. Particularly, the outbreak of COVID-19 [61] has caused 350 million of infec-
tions and about 5 million of deaths over the past 2 years worldwide. SARS-CoV2 
has a higher rate of transmission than SARS-CoV and MERS-CoV [26, 108]. All 
these infectious diseases are continuously destroying global health, socio-economic 
conditions, and civilization process of human society. Early-stage detection of 
infectious viral outbreak is an urgent need to prevent transmission, and contribute 
effective therapies to save public health. Conventional methods like culturing and 
microscopy [52] are there for disease detection but they have many limitations like 
time consuming, microscopy for small size pathogen detection. Biomarkers, the 
pathogen-specific protein, can be used for diagnosis. Polymerase Chain Reaction 
(PCR), Western Blotting, Enzyme Linked Immunosorbent Assay (ELISA) [78], 
Fluorescent Antibody Tests (FAT), and antibody detection, antigen or antibody 
detection and hemagglutination assay and gene sequencing [70], isothermal ampli-
fication techniques [17] and immunochromatography [83] these classical detecting 
techniques (Fig. 1) have used for accurate diagnosis but these are laboratory-bound, 
laborious time-consuming process (involving multi-step protocols) and require 
sophisticated equipment, personnel technicians to handle [62].

Fluorescent [103], chemiluminescent [8], colorimetric [26, 71] and electrochem-
ical [105] based detection techniques are utilized to measure the quantity of viral load. 
To prevent the transmission of infectious diseases fastest, simple, low-cost detection 
methods are still in demand. Nowadays, biosensors are more and more useful diag-
nostic tools for identifying highly contagious infectious diseases [15, 87]. Biosensors 
are such kinds of devices that can convert biological data to detectable, quantifiable 
signals like electrochemical, optical, and magnetic signals. Biosensor has two parts— 
biological signal element and physiochemical transduction part [87]. Signal element 
includes antibody [60], aptamer [1], and antigen that can bind with target molecule 
and in transduction part converts the sample into measurable, processable, detectable 
signal. Depending on transducers, it can be electrochemical, optical, potentiometric, 
piezoelectric, or thermal [74], as shown in Fig. 2. Biosensors are used in tracking 
waste, agricultural experiments, forensic testing, and diagnosis of severe diseases. 
Various biosensor-based detection devices are adopted because of their portability, 
rapidity, automation, etc. [36, 42, 73]. They have attracted attention because of high 
sensitivity, rapidity, and low detection limit in real time [42] analysis.

The application of nanomaterials has seen significant increases during the past 
few decades. Particularly, nanomaterials can enhance the sensitivity, selectivity, 
analytical performance of biosensor and thus increase the applications of biosensors 
[19, 20]. The utilization of nanotechnology-based biosensor devices is growing as 
a promising candidate for detection of infectious diseases [20].
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Fig. 1 Available diagnostic tests of viral diseases

Fig. 2 Schematic diagram of a typical biosensor with all its main components

The tremendous rapid improvement in nanotechnology has imposed a great impact 
on biosensing. Nanomaterials can be used in specific biosensing system by modu-
lating their physical and chemical properties like morphology, size, surface charge, 
etc. [45]. Nanomaterials are the synthetic element that ranges within 1–100 nm [29]. 
It is feasible to improve the sensitivity [7], selectivity, and analytical performance 
of nanosensors due to the large surface to volume ratio and presence of surface 
groups of nanomaterials [29, 53]. For example, quantum dots can be used for high
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quantum yield in fluorometric detection [2]; gold nanoparticles have considerably 
higher extinction coefficient than normal dyes in colorimetric detection. 

In this book chapter, a variety of nano biosensors are described for detection of 
viral diseases. Biosensor is compared to traditional diagnostic devices, resource-
limited POC devices can be a potential solution for earlier disease detection. 
Biosensor plays a vital role in constructing POC devices in order to detect the pres-
ence or concentration of biomarkers in bodily fluids. POC-based platforms are highly 
effective, low-cost, user-friendly, rapid, and act in small sample volume. The term 
“Point of Care” refers to medical diagnostic kit tests carried out close to the location 
and moment of patient care. Here we will discuss current nanomaterial-based POC 
testing biosensing devices and how they can improve their effectiveness. 

2 Nanomaterials in Disease Diagnosis 

Diagnostic tests are a crucial element of any successful approach intended to control 
new and re-emerging viral diseases and are crucial at every step, from early diagnosis 
to successful treatment. The development, validation, and implementation of diag-
nostic tests are challenging, time-consuming processes. The accuracy of nucleic acid 
amplification test is heavily reliant on taking sample, types, storage, and transporta-
tion. False negative results can be obtained if the sample is not taken appropriately or 
the subject is tested early or lately after viral exposure. To enable rapid screening, new 
diagnostic platforms that are precise, focused, quick, and simple to use are required. 
Nowadays research has been shifted to another dynamic diagnosis based on nano-
materials. The efficacy of detection may be improved by NPs’ wide surface area, 
which enables for effective interaction with target analytes. Several nanomaterials 
have been employed to increase the analytical sensitivity and minimize the detection 
limits of diagnostic tests. Nanomaterials’ unique properties make them appropriate 
for use in cutting-edge viral detection systems. 

2.1 Graphene 

The International Union for Pure and Applied Chemistry (IUPAC) defines graphene 
as a “single carbon layer of graphite structure characterizing its nature by analogy 
to a polycyclic aromatic hydrocarbon of quasi-infinite dimension” [37]. Graphene is 
composed of sp2-hybridized carbon atoms and is organized as a thick, single atom, 
two-dimensional planar nanosheet that mimics a hexagonal or honeycomb structure. 
It demonstrates a number of exceptional qualities, including a catalytic nature, high 
surface area, mechanical strength, and conductivity. Due to this, graphene is a very 
desirable nanomaterial for platforms with sensitive biosensors and fast transistors 
[76].
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In the area of biosensors, graphene and its oxygenated derivatives, such as 
graphene oxide (GO) and reduced graphene oxide (rGO), are emerging as a 
significant class of nanomaterials. GO nanosheets are highly hydrophilic due to the 
oxygenated functional groups they contain, which facilitates chemical functionaliza-
tion. Inorganic nanoparticles such as metals, metal oxides, semiconducting nanopar-
ticles, quantum dots, organic polymers, and biomolecules can be easily combined 
with graphene, GO, and rGO nanosheets to produce a variety of graphene-based 
nanocomposites with improved sensitivity for biosensor applications [55]. 

Chekin et al. [21] designed porous reduced graphene oxide (prGO)—molyb-
denum sulphide (MoS2) modified glassy carbon (GC) electrodes for the sensitive 
and precise detection of the L1-major capsid protein of the human papillomavirus 
(HPV) [21]. Teymourian et al. [91] described a straightforward electrochemical DNA 
hybridization biosensor based on Fe3O4/r-GO nanocomposite with great sensitivity 
and specificity to detect HIV [95]. Based on an undecorated graphene oxide (GO) 
platform, Hu et al. [44] reported a straightforward, label-free approach for DNA 
hybridization associated with the gene fragment of the HIV-1 pol gene [44]. 

Using graphene as a sensing platform, Gong et al. [41] developed a straight-
forward, precise impedimetric DNA biosensor for the sensing of the HIV-1 gene. 
Torrente-Rodrguez et al. [96] showed the SARS-CoV-2 RapidPlex, which is a 
portable, wireless, graphene-based electrochemical platform for detecting COVID-
19 very quickly [96]. For label-free detection of the H1N1 influenza virus, Singh 
et al. [87] reported the development of a unique microfluidic chip combined with an 
RGO-based electrochemical immunosensor. Afsahi et al. [3] created a reasonably 
priced and transportable graphene-enabled biosensor to identify the Zika virus using 
an immobilized monoclonal antibody with a high level of specificity [3]. Real-time, 
quantitative detection of native Zika virus (ZIKV) antigens can be accomplished 
using Field Effect Biosensing (FEB) and monoclonal antibodies covalently bonded 
to graphene. For the detection of dengue E protein in blood serum, a label-free 
immunosensor has been constructed [84]. In another study, Yakoh et al. created 
an immunosensor based on graphene oxide (GO) that is sensitive and specific for 
the detection of immunoglobulins produced against SARS-CoV-2 [104]. Beduk and 
group recently unveiled a miniature electrochemical biosensor based on laser scribed 
graphene (LSG) with three-dimensional gold nanostructures for the diagnosis of 
COVID-19 [14]. 

2.2 Carbon Nanotubes (CNTs) 

Biosensor manufacturing heavily relies on carbon-based materials, of which CNT, 
like graphene, is one allotrope of carbon. Dr. Iijima’s discovery of CNTs in 1991 
has been going on for 32 years [46], and the pertinent research has been continually 
broadened and developed over time. A crimping graphene layer forms the cylindrical 
CNTs. CNTs can be split into single-walled CNTs (SWCNTs) and multi-walled 
CNTs depending on the number of layers (MWCNTs).
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CNTs work efficiently in mechanics. CNTs have an elastic modulus that is equal 
to that of diamond. Moreover, CNTs have excellent conductivity because they share 
a sheet structure with graphene. CNTs are also very promising in terms of optical 
modulation and heat conduction. CNTs also have a variety of benefits, such as their 
light weight, high specific surface area, chemical stability, superior electrochem-
ical performance, etc., which have the potential to further research in the field of 
biomolecular detection in medicine [98, 25]. The enormous specific surface area 
of CNTs offers a variety of reactive sites, facilitating interactions with a variety of 
biomolecules. For this reason, CNT-based detection systems have gained a lot of 
attention in recent years [13, 51] with researchers using them all over the world to 
identify pathogens [43] and viral pathogens [47, 5] Cabral et al. [18] developed a 
hybrid hyaluronic acid-CNT film-based label-free immunosensor to detect anti-HBc 
antibodies. The immunosensor responded linearly to anti-HBc up to 6 ng ml−1 with 
a LOD of 0.03 ng ml−1 [18]. Pinals and coworkers [80] developed a single-walled 
carbon nanotube (SWCNT)-based optical sensing method that can find SARS-CoV-
2 by S protein recognition [80]. A SWCNT-based semiconductor FET was used by 
Shao et al. [85] to identify SARS-CoV-2 antigens [85]. 

2.3 Metal Nanoparticles 

Metal NP-based diagnostics are utilized to facilitate in the early diagnosis of infec-
tions in humans, especially at the level of a single cell. The rapid detection time, speci-
ficity, and sensitivity of metal NPs are important for point-of-care mobile nanode-
vice development. In order to increase biomolecule detection, several metal NPs, 
including gold, silver, copper, and cadmium sulfide, have recently been utilized in a 
wide range of sensors [49]. 

2.3.1 Gold Nanoparticles (AuNPs) 

Because of their excellent sensitivity and selectivity, Au NPs are increasingly being 
used in biosensors that rely on optical and electrochemical processes. Au NPs-based 
devices may be used in POC devices in this context to improve trace concentration 
detection techniques and diagnostics [49]. In order to quickly diagnose SARS-CoV-2, 
a rapid IgM-IgG mixed antibody kit was developed using a mixture of gold nanopar-
ticles [4]. In a different study, Ma et al. [63] presented an immunological assay 
based on a label-free electrochemical technique for identifying the hepatitis C virus’ 
core antigen [63]. In this study, an electrochemical immunosensor was constructed 
combining the synergistic effects of gold nanoparticles, zirconia nanoparticles, and 
chitosan.
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Mashhadizadeh and Talemi [66] successfully created a very accurate and 
precise hepatitis B DNA biosensor utilizing AuNPs [66]. In this study, mercapto-
benzaldehyde was employed for the improved detection of an HBV viral short DNA 
sequence. 

2.3.2 Silver Nanoparticles (AgNPs) 

Silver is a special nanoparticle with significant plasmonic characteristics. Due to 
their distinctive optical properties and band gaps, Ag NPs have been investigated 
as a potential nanoparticles for the early detection and diagnosis methods in optical 
biosensors . 

In order to facilitate the early diagnosis of HIV, a fluorescent Ag NPs test was 
designed to detect HIV-1 p24 antigen. It has been demonstrated that the linear detec-
tion range is between 10 and 1000 pg mL−1 [56]. Cao et al. [20] developed a biosensor 
that uses the fluorescence activity of silver nanoclusters to detect the target DNA 
sequence of the (HIV), (HBV), and (HTLV-I) genes. 

2.3.3 Copper Nanoparticles (CuNPs) 

CuNPs have received a lot of attention because of their enormous potential to replace 
more costly nanoparticles. Due to small size and high surface-to-volume ratio, CuNPs 
can interact intimately with viruses and are able to quickly identify them [69]. 

Using copper nanoparticles, Chen et al. (2010) developed an ultrasensitive elec-
trochemical biosensor for identifying the influenza A virus [22]. With a detection 
limit as low as fM levels, this biosensor is capable of detecting the single-stranded 
DNA (ss-DNA) of the influenza A virus. Copper nanoclusters were used by to create 
a colorimetric biosensing technique. With this particular biosensor, it is likely to 
recognize the Hepatitis B virus DNA with the naked eye [64]. 

2.3.4 Cadmium Sulfide (CdS) Nanoparticles 

CdS NPs are a strong candidate for photocatalysis because of their favorable bioac-
tivity and good light-driven behavior [49]. For the purpose of diagnosing Hepatitis 
B surface antigen (HBsAg) via monitoring fluorescence intensity, a strong luminous 
Polyamidoamine (PAMAM) dendrimers modified CdTe@CdS-based ultrasensitive 
fluorescence immunosensor was developed [10]. Based on highly stable and photo-
electrically active CdS nanorods modified with beta-cyclodextrin (-CD@CdS NRs), 
a new photoelectrochemical biosensor was developed to identify HIV DNA [35].
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3 Nanomaterial-Based Sensors for Diagnosis of Infectious 
Diseases 

Biosensors that merged with nanomaterials have been studied extensively to meet 
the demand in clinical diagnostic fields [11]. Nanomaterials are well suited for 
attaching targeted molecules to increase sensitivity because of their high surface-
to-volume ratio [93]. The rapid and real time detection of small volume of sample 
from patients makes it most potential for robust detection of diseases and biomarkers 
of cancer. These POC-based devices offer sensitivity, selectivity, portability, rapid, 
and accurate results by using simple blood, serum, sputum, and urine samples from 
patients. These are advantageous for medical diagnosis, particularly in home, health-
care center without using any complex instrument. According to different types of 
signals, colorimetric, fluorescent, SERS-based, and electrochemical biosensors are 
described here. 

3.1 Colorimetric Biosensors 

There is diversified signal readout like electrochemical, colorimetric, and fluorescent. 
Among them, colorimetric biosensors offer low cost, rapid diagnostic tool that can 
be monitored by simple color change that is visible in naked eyes. There are many 
shortcomings of traditional colorimetric sensors but nanomaterials have prominent 
optical properties that help to process the nanosensors potential for diagnosis of viral 
diseases. Colorimetric detection strategies play an important role in establishing 
paper-based POC devices. Nanomaterials can convert the signal from pathogen 
through unique mechanisms to amplified measurable visual signal. The usage of 
AuNPs in colorimetric nanosensors has become widespread. Because of the surface 
plasmon resonance (SPR), visible light is significantly absorbed by AuNPs [29]. For 
instance, in solution, AuNPs have a red absorption peak at 520 nm [48]. The SPR 
property of AuNPs depends on a variety of variables, including size [77], shape [28], 
and interparticle distance. Several AuNP-based colorimetric biosensors have been 
reported till date. A combined paper-based biosensor and loop-mediated isothermal 
amplification (LAMP) for nucleic acid detection are proposed [27, 29]. A plasmonic 
ELISA has been developed to detect disease specific biomarker [77]. Alcohol dehy-
drogenase enzyme is currently used to measure the colorimetric readout. In this reac-
tion, ethanol and NAD+ are used and then HAucl4 and Au seeds are added (Fig. 3). 
Acetaldehyde and NADH are produced from ethanol and NAD+ by alcohol dehydro-
genase. NADH can reduce the HAucl4 to Au and makes large purple AuNPs from 
yellow AuNPS seeds. The specific antigen (HBs Ag) and α-fetoprotein (AFP) can be 
detected by this plasmonic ELISA [29]. 1 × 10–12 g/ml is the visible lower concen-
tration of detection limit. Catalase is used in this method [28]. Human immunodefi-
ciency virus type I (HIV-1) capsid antigen p24 can be thus detected with an ultralow 
limit of detection (LOD) of 1 × 10−18 g/mL [29]. Recently, a colorimetric test based
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Fig. 3 Colorimetric diagnostic kit, Alcohol dehydrogenase mediated ELISA for the diagnosis of 
Hepatitis B surface antigen [29, 77]. If the target is present, alcohol dehydrogenase enzyme enlarges 
the AuNPs and from the color yellow to purple 

on AuNPs has been used to detect SARS-CoV-2 nucleic acids with the naked eye [68, 
91]. In this study, AuNP had been conjugated with thiol-modified antisense oligonu-
cleotide of SAR-CoV-2. In the presence of RNA target, the AuNP agglomerate turns 
blue and RNA is cleaved by RNaseH from hybrid and forms precipitate due to AuNP 
agglomerate [29]. This assay time takes less than 10 min. Silver nanoparticle is also 
used for colorimetric detection. Multicolor AgNPs are also used for detection of 
dengue, yellow fever, and Ebola viruses (EBOV) [29, 106]. Nanozymes are nano-
materials with enzymatic activity that have equivalent catalytic activity but most 
resilient under various circumstances [39]. A unique type of Lateral Flow Assay has 
been developed by using magnetic nanoparticles for detection of EBOV [29, 33]. 

3.2 Electrochemical Sensors 

Electrochemical sensors monitor changes in charge uniformity on the surface of 
transducers using impedimetric, potentiometric, or amperometric principles [9, 31, 
57]. This kind of sensor has three different kinds of electrodes: a working electrode, 
a counter electrode, and a reference electrode. In order to increase the analytical 
performance of sensors, nanomaterials are used in their manufacturing. Nanomate-
rials have the capacity to increase surface area, electrocatalytic activity, and electron 
transfer rate. Due to their high conductivity, carbon nanotubes and graphene are 
frequently used in electrochemical biosensors. Single-type nanomaterials, such as 
CNTs, AuNPs, or hybrid nanocomposites made of various nanomaterials, such as a 
mix of CNTs and AuNPs, are also acceptable [92] (Fig. 4). For example, Omidi’s 
group constructed an electrochemical biosensor for detecting PSA utilizing graphene 
oxide-gold nanostructures, with detection limits of 0.2 and 0.07 ng/mL for total 
and free prostate specific antigen (PSA), respectively [79]. Layqah and coworkers 
developed a nanoimmunosensor to detect the spike protein S1 of MERS-CoV2.
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A. 

B. 

Fig. 4 Schematic diagram of nanomaterial-based Electrochemical Biosensor, a single type of 
nanomaterials (CNTs); b Hybrid type of nanocomposite (mixture of CNTs and AuNP) are used 

AuNP provides a wider range of biomarker detection in this sensor [58, 32]. This 
immunosensor exhibits an enhanced sensitivity of 0.4 pg/pg for the detection of the 
MERS virus at concentrations between 0.001 and 100 ng/mL. 

Several types of electrochemical sensors have been developed for detection 
of dengue NS1 protein [30]. Electrochemical sensors show greater sensitivity in 
detection of virus than conventional ELISA. 

When target nucleic acids bind to DNA or RNA on the surface of electrochemical 
sensors, the surface of the electrode changes, and a signal is recorded by the speed 
at which electrons are transferred between the probe and electrode. 

Nowadays aptamers are getting more focused on showing more sensitivity with 
target molecule. Hence, electrochemical sensors are very stable, highly sensitive, and 
very specific. Using advancements in microelectronics and microelectrode produc-
tion, electrochemical approaches make it simple to miniaturize immunoassays. In 
order to sensitive measure of C-reactive protein (CRP) in human serum, Kakabakos 
et al. developed a disposable screen-printed immunosensor [54]. CRP is a liver-
produced acute-phase protein that serves as a helpful biomarker for inflammation and 
can help predict myocardial infection, peripheral artery disease, stroke, and sudden 
cardiac death. In this study, a sandwich-type immunoassay employing CRP-capturing 
antibodies coupled on bismuth citrate-modified screen-printed electrode. 

3.3 Optical Sensors 

Optical sensors are excellent for detecting multiple target molecules simultaneously. 
These sensors quantify the optical characteristics of transducers during the interac-
tion between the target molecule and the recognition element [40, 89]. Scientists 
have developed a unique type of optical sensor to recognize MERS particle. This can 
be seen in naked eyes, and do not need any experimental equipment. This reaction 
happens when pyrrolidinyl peptide nucleic acid is present [94]. It shows the aggre-
gation and di-aggregation of silver nanoparticle with target DNA. Another type of 
optically silicon-coated optical sensor has been created to detect human rhinovirus
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by Ostroff and colleagues [75]. Surface Enhanced Raman Scattering (SERS) can 
also be used for detection of virus based on optical technique of Surface Plasmon 
Resonance (SPR). This sensor can provide good sensitive results within 30 min. 

4 Current POC Devices 

One of the essential ways to prevent the outbreak of infectious diseases is through 
early diagnosis. POC devices, which do not require highly trained employees or 
expensive machinery, are more effective at fending off infectious diseases in low-
resource area [65]. The World Health Organization (WHO) stated certain criteria of 
POC devices [68, 88] like a. specific, b. sensitive, c. affordable, d. rapid, e. strong, f. 
big infrastructure-free [29] (Fig. 5) [34]. 

Pregnancy test strips, and blood glucose meters are the commonly used POCT 
test kits. By merging the detection technique with nanotechnology, various new POC 
devices have been reported for early disease diagnosis. 

At the beginning, it is known that lateral flow assay is used for detecting only 
HCG to confirm the woman is pregnant or not. Nowadays this LFA is reported for 
confirming many target analytes, and biomarkers of infectious diseases. Samples can 
be different types like blood, urine, sweat, swab, etc. [81]. LFAs are widely used POC 
devices because of its affordability, quick-response, and robustness. Yet, the broader 
field is still hampered by its low sensitivity and lack of measurement capability. 
Numerous attempts have been made to enhance the analytical performance of LFA 
[50, 97]. The four basic components of traditional LFA are the sample pad, conjugate

Fig. 5 Assured criteria POC 
test devices according to 
World Health Organization 
(WHO) [34] 
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pad, nitrocellulose membrane, and absorbent pad. The sample pad ensures contact 
between the liquid sample and the strip. Nanogold-labeled antibodies are already pre-
loaded on the conjugate pad for signal production [38]. The nitrocellulose membrane 
has two lines drawn on it: the control line and the test line. The control line is used 
to ensure that the testing is running smoothly while the test line is utilized to detect 
the target analyte. The liquid sample flows across the strip due to the capillary force, 
and if the target is available, both lines can be seen on the control and test lines. Only 
one control line appears when the target molecule is absent. AuNP was used for 
first-generation lateral flow assay. The label has a color, so that it is visible in naked 
eyes. The sensitivity of first-generation lateral flow assay was very low. Analyt-
ical performance of LFA is enhanced by labeling with various nanoparticles like 
quantum dots, upconversion nanoparticles [41, 99]. The optical signal is measured 
by strip readers equipped with specialized optics. Lateral flow tests, commonly used 
in medical diagnostics, are straightforward, affordable, and typically yield results in 
5–20 min. Several POCT devices have been created in recent years by combining 
LFA with other technologies like loop-mediated isothermal amplification (LAMP), 
polymerase chain reaction (PCR), and CRISPR [67]. CRISPR-based Cas12 based 
LFA can detect SARS CoV-2 from paitent’s RNA sample within 40 min [100] (Fig. 6). 

Microfluidic technology has the capacity to process small amounts of fluid that 
meet to advantages in different fields [107, 101]. In recent years, the rapid uptake 
of cellphones with embedded sensors has opened up new opportunities for the 
POC detection of infectious illnesses [23]. Detection of antibodies against EBOV, a 
serological POC test using an LFA has been proposed [16].

Fig. 6 Schematic diagram of typical lateral flow assay (LFA) [100] 
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The best method to stop an outbreak is to easily, quickly, and affordably identify 
infectious pathogen in a sensitive and selective manner. POC is essential to improve 
clinical outcomes in healthcare administration. POC devices enable untrained staff 
to diagnose patients quickly and accurately at their homes, critical care units, or 
medical facilities. 

4.1 Fluid Control 

One of the most crucial steps to increase the accuracy of this assay is to control 
the fluid. It is possible to accomplish this by incorporating a number of pumps and 
valves into the testing equipment. Size and complexity are taken into considera-
tion to handle this instrument. Many kinds of pumps and valves can be incorpo-
rated into microfluidic chips under the control of chip readers [86]. McDevitt’s team 
created a portable microfluidic system for measuring protein biomarker utilizing 
plastic disposable cartridges [27]. There are a number of paper-based microfluidic 
devices with no pump for fluid control [6]. In these microfluidic devices, a number 
of nanomaterials including magnetic nanoparticles, quantum dots, UCNPs, CNTs, 
and graphene oxides, have been used [72]. By using AuNP-based silver attach-
ment, a group of scientists created a smartphone-based point-of-care platform for 
detecting avian influenza virus [109]. Using quantum dot-barcoded microbeads, Gao 
et al. created a microfluidic point-of-care system for detection of biomarkers [102]. 
Microfluidic assays feature exceptional selectivity and sensitivity compared to lateral 
flow. Microfluidic devices have been used to find many analytes, such as proteins, 
enzymes, nucleic acids, cancer cells, bacteria, and viruses [82]. 

5 Challenges and Future Perspectives 

There are still certain restrictions even though nanomaterials are often utilized in 
biosensors successfully to enhance the analytical performance [50]. Identification 
of the concentration of potential biomarkers of cancers and cardiovascular diseases 
is far below the detection limit of traditional methods. Therefore, development of 
sensitive and specific methods is required. Moreover, cerebrospinal fluid (CSF) has 
comparatively high amounts of numerous brain-derived biomarkers for neurode-
generative disorders, compared to blood, such as neurofilament light and amyloid 
beta peptide 42. It could be quite invasive to take this sample. Improved sensitivity 
can detect biomarkers of dangerous diseases directly from blood. Another potential 
area is the identification of biomarkers in urine or saliva. Saliva and urine may be 
easily collected and analyzed, helpful for monitoring diseases. Due to the special 
properties, nanomaterials can be utilized to increase detection sensitivity. Because 
nanomaterials have a huge surface area, they may be utilized to load several reporter 
molecules, such as enzymes and fluorophores, to amplify signals. Moreover, the
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sensitivity can be increased by combining various ultrasensitive detection methods 
with nanotechnology, such as digital PCR and single molecule analysis [90]. 

Nowadays, most assays are only able to detect one analyte at a time. The compo-
nents of a biological sample are many and include proteins, nucleic acids, and other 
tiny molecules. All these biological samples work in a simultaneous manner [59]. 
Multiplex assays can obtain all the data and increase detection technique. When 
the sample volume is constrained, the assay is extremely helpful in that time. For 
instance, the collection of CSFS is mainly invasive. Thus, it is highly desirable to 
simultaneously detect numerous biomarkers in CSF. For multiplex assays, fluorescent 
nanomaterials of various sizes and shapes and with various emission wavelengths 
can be used. 

Very few nanomaterial-based sensors are available for clinical trials till date. The 
reproducibility and robustness of nanomaterial-based sensors are the main issues. 
Low reproducibility depends on the size of nanomaterials which varies from batch 
to batch. A common problem in most assays is non-specific interaction as well. So, 
more study is required to grasp the nano manufacturing process and optimize particle 
aggregation and surface interactions. To ensure that the measurements are accurate 
and consistent, quality control is necessary for clinical applications. 

6 Summary 

The chapter emphasized on the effectiveness of nanostructured materials for 
enhancing the sensitivity of disposable sensors by amplifying the responses to analyte 
concentration. The size, shape-dependent physical catalytic characteristics of nano-
materials play main role in the development of biosensor. The nanoparticles consider-
ably increase the surface area of electrochemically active sensors. Biosensor compo-
nents are required to be integrated into a device that allows simultaneously sample 
and reagent load, and signal detection in an automated form, called lab-on-chip 
(LOC) [12]. LOC is a device for analysis that can scale down laboratory operations 
to a chip format up to a few square centimetres. There has been a sharp rise in 
the development of lab-on-a-chip instruments for clinical diagnostics over the past 
decades. Modern POC systems provide quick, easily accessible, trustworthy, real 
time analyzed information from bodily fluids, and wireless data transfer from smart 
devices to smartphones or other cloud devices. Among several methods, nanosensor-
based POC devices provide sensitive, selective, and rapid results for detecting infec-
tious pathogens. These devices require several detection steps, and signal readout 
equipment. Microfluidic technologies and smartphone devices offer solution to these 
problems. Microfluidic techniques can simplify the detection steps and smartphones 
with built-in sensors can function as portable instruments for signal readouts. Many 
more novel, innovative platforms need to come to address the unmet clinical demands. 
The development of bench-to-bedside and point-of-care devices in recent years has 
made the term “biosensor” more well known in the scientific community.
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Nanodevices for Food-Borne Pathogens 
and Toxin Detection 

Merve Bacanli 

Abstract Foodborne pathogens and toxins not only reduce the quality of food, but 
also generate a serious threat to human health. Therefore, it is very significant to 
identify these pathogens and toxins before consumption of foods. The traditional 
methods used for this purpose are time waster and expensive, and the reliability of 
the results becomes controversial. Nanotechnology is widely used in food science 
and food technology today. Among the most notable of these applications are nanode-
vices such as nanosensors. Studies with nanodevices used in the determination of 
foodborne pathogens and toxins are interesting. Nanodevices used for this purpose 
have started to be used today in terms of ease of use, allowing selective analysis, 
giving results in a short time and obtaining reliable results. Within the scope of this 
book chapter, it is aimed to provide information about foodborne pathogens, toxins, 
and nanodevices used in the determination of these compounds. 

Keywords Toxin · Nanosensor · Aptamer · Food · Pathogen 

1 Introduction 

Nanotechnology is identified by the NSF’s National Nanotechnology Initiative as 
“the understanding and control of matter, roughly 1–100 nm in size, where unique 
phenomena enable new applications” [27]. 

Multidisciplinary nanotechnology presents significant prospects for various appli-
cations [2, 3, 6, 7, 29, 30, 32, 48, 89], including the food industry, encompassing 
areas such as food safety and quality control, as well as the development of novel 
food additives, and fortifiers [11, 34, 71]. Nanotechnology holds great potential in the 
production of healthier foods [23, 31, 34]. The prospects for the usage of nanotech-
nology in food industry can be listed as the improving of sensitive biosensors to detect
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pathogens and toxins in foods and food processing, and food preservation through 
the immobilization of antimicrobials on nanomaterials for enhanced stability and 
action [12, 34, 71]. 

Insufficient adherence to proper food hygiene practices has been identified 
as a causative factor in the escalation of foodborne disease outbreaks, thereby 
exerting direct repercussions on public health. World Health Organization (WHO) 
has reported that a staggering estimated figure of 600 million individuals experi-
ence health deterioration as a consequence of consuming food contaminated with 
pathogens, while the annual death toll from foodborne diseases stands at 42,000 indi-
viduals. The mounting concerns surrounding food safety have engendered a sense 
of urgency, fueling the rapid advancement and implementation of robust food stan-
dards. These standards serve as comprehensive frameworks that regulate and govern 
various facets of the food production and handling processes, aiming to mitigate the 
risks associated with foodborne illnesses [28]. 

Food biotoxins encompass a wide range of toxic substances originating from 
various organisms such as plants, animals, fungi, and others. Their presence in 
food can result from contamination during processing, storage, and transportation, 
and the types of biotoxins produced can vary across different countries. Among 
these biotoxins, mycotoxins, primarily generated by fungi, constitute a significant 
class of contaminants. Notably, mycotoxins of agricultural and economic impor-
tance include aflatoxins, fumonisins, ochratoxins, deoxynivalenol, zearalenone, and 
other trichothecenes, which pose substantial risks to food safety. The health costs 
associated with these toxins depend on determinants such as toxin type, level of expo-
sure, and route of entry. Therefore, the identification and detection of food toxins 
exhibit a significant role in monitoring the risk of food poisoning, enabling timely 
interventions to ensure public health and safety [28]. 

In the microbiological sampling process, large numbers of targeted foods must 
be collected and analyzed in a relatively short time. Because food acts as a transmis-
sion mediocre for various foodborne pathogens, there is a need to detect different 
pathogens in the assessment of the safety of food [16, 80]. Multi-detection has become 
a new research area because of convenient and high requests, as food can only be 
offered for sale after all indicators have been adjusted. Multiple detection methods 
have been established to enable multiple samples to be tested on the same instru-
ment at the same time, resulting in avoiding sample waste, reducing equipment costs, 
simplifying the operating procedure as well as shortening the testing time [25]. 

The burgeoning interest in nanotechnology within the food industry is witnessing 
an upward trajectory. Nanotechnology is being widely utilized across diverse appli-
cations in the food industry, including nanoencapsulation for controlled delivery of 
nutrients and bioactive molecules, the implementation of biosensors for sensitive 
pathogen detection, and the use of nanocoatings for food composition modification 
and preservation of fruits and vegetables. These advancements in nanotechnology 
hold significant promise in enhancing food quality, safety, and functionality. Nanoen-
capsulation facilitates the protection and targeted release of sensitive compounds, 
such as vitamins and antioxidants, improving their stability and bioavailability. 
Biosensors equipped with nanomaterials enable quick, susceptible, and selective
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Fig. 1 Nanotechnology in food industry 

detection of foodborne pathogens, thereby facilitating early warning systems and 
prompt interventions. Furthermore, the utilization of nanoscale coatings on food 
surfaces imparts enhanced protection against microbial contamination and oxida-
tive degradation, thereby stretching shelf life and providing the integrity of fresh 
produce. The incorporation of nanotechnology-based strategies in the food industry 
represents a dynamic field of research with potential implications for improving food 
production, preservation, and overall consumer experience [15] (Fig. 1). 

The advancement of biosensors utilizing nanomaterials holds great promise in 
obviating the reliance on costly or intricate instruments and enabling quick deter-
mination of foodborne pathogens through movable or hand-operated devices. The 
integration of immunonanoparticles into conventional pathogenic biosensors offers 
an avenue for enhancing pathogen detection capabilities. Moreover, the synergistic 
combination of immunoanoparticles with enzymatic catalysis in electrochemical 
immune sensors can lead to swift, efficient, and precise pathogen detection. This 
amalgamation of nanomaterials, immunonanoparticles, and enzymatic catalysis in 
biosensors not only enhances sensitivity and selectivity but also contributes to the 
miniaturization and portability of detection devices. These advancements hold signif-
icant potential for revolutionizing pathogen detection in the food industry, providing 
a practical and accessible solution for rapid and accurate monitoring of food safety 
in various settings [94].
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2 Nanodevices in Food Analysis 

Conventional techniques employed for pathogen detection in food samples are asso-
ciated with various limitations, such as prolonged analysis times, high costs, labor-
intensive procedures of sample preparation, and the requirement for skilled persons. 
The primary traditional assays utilized in food analysis include colony counting 
methods, immunoassays, and polymerase chain reaction (PCR)-based approaches. 
Colony counting methods, which involve the enumeration of bacterial colonies on 
microbiological culture plates, are naturally complicated, time waster, and suscep-
tible to errors. The determination process typically extends from 3 to 9 days, and 
the confirmation of positive results may require up to 2 weeks. Immunoassays, 
while providing improved sensitivity and specificity, still necessitate sample prepa-
ration steps and exhibit certain limitations in terms of turnaround time and resource 
requirements. Similarly, PCR-based methods offer enhanced sensitivity and selec-
tivity but are encumbered by the need for specialized equipment, complex protocols, 
and skilled personnel. Hence, the aforementioned constraints inherent in traditional 
pathogen detection methods underscore the pressing need for alternative approaches 
that can overcome these limitations and enable faster, more cost-effective, and basic 
detection of foodborne pathogens [5]. 

Immunoassays, including ELISA, lateral flow, and spot blot, have emerged as 
alternative approaches for pathogen detection by targeting specific pathogen antigens. 
These assays utilize monoclonal or polyclonal antibodies that selectively bind to the 
desired pathogen, enabling the testing of large sample volumes and on-site pathogen 
detection. However, immunoassays often exhibit limited sensitivity, necessitating 
further confirmation through supplementary testing. In contrast, PCR-based methods 
provide quick and highly selective pathogen detection. Nevertheless, PCR-based 
methods encounter certain limitations, such as the potential for incorrect results due 
to DNA polymerase inhibition by components in the food matrix, hindering the 
amplification of target DNA, as well as the possibility of false positive results arising 
from the amplification of non-target DNA fragments. These factors underscore the 
ongoing need for continuous research and development of innovative techniques 
to overcome the drawbacks associated with traditional methods and increase the 
sensitivity, specificity, and reliability of pathogen detection in food samples [5]. 

Innovative and portable biosensors have witnessed significant advancements in 
recent years, addressing the limitations associated with conventional and molecular 
detection technologies, as well as other biosensors, particularly in the realm of quanti-
tative detection and screening of pathogens in various areas [33, 83]. Electrochemical 
platforms have emerged as the most popular biosensors due to their high specificity 
toward analytes and adaptability for multi-analysis, offering superior analytical accu-
racy even in complex food matrices with varying compositions, densities, and pH 
levels. Electrochemical observation of pathogens relies on the utilization of a working 
electrode modified with specific recognition elements, such as antibodies, aptamers, 
or DNA probes, ensuring selectivity, sensitivity, and specificity in measurements. 
Studies emphasize the incorporation of various nanomaterials as enhancers, labeling
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agents, or immobilizer supports in electrochemical biosensors, ensuring the overall 
feasibility of the platform for diagnostics and detection practices. The integration of 
nanomaterials shows a pivotal role in enhancing the performance and sensitivity of 
electrochemical biosensors, further advancing their potential in diverse diagnostic 
and detection scenarios [5]. 

The determination of foodborne pathogens in products primarily relies on the iden-
tification of genetic material of bacteria or the entire bacterial cell using traditional 
microbiological techniques. These techniques have long been regarded as reliable 
for pathogen control, but they also exhibit inherent complexity [35]. The utilization 
of nanotechnology facilitates the implementation of cost-effective nanosensors in 
food packaging for the determination of diverse pathogens commonly encountered 
in various products [63]. 

Nanodevices, characterized as nanoparticles specifically designed to interact with 
cells and tissues, are engineered to perform precise functions and carry out targeted 
tasks within biological systems. These nanoscale devices are tailored with specific 
properties and functionalities that enable them to navigate complex biological envi-
ronments, interact with cellular components, and execute designated functions with 
high precision [45]. 

Nanosensors are sophisticated bioanalytical devices constructed through the inte-
gration of diverse nanostructured materials and biological receptors, resulting in 
an integrated system design. Their significance in the food industry has garnered 
considerable attention, primarily attributed to their ability to rapidly detect analytes, 
maintain integrity, exhibit high sensitivity and specificity, and offer cost-effective 
solutions. Nanosensors have the potential to revolutionize food safety and quality 
control measures by enabling real-time monitoring and detection of contaminants, 
pathogens, and various quality indicators in food products. Their nanoscale size 
and functional properties allow for enhanced surface interactions and signal trans-
duction, facilitating sensitive and selective detection. The utilization of nanosen-
sors in the food industry holds great promise for improving food safety, reducing 
the risk of foodborne illnesses, and enhancing overall consumer confidence [21]. 
Nanosensors exhibit exceptional optical and electrical properties, attributed to their 
conjugation with diverse types of nanomaterials. This incorporation of nanoma-
terials enables nanosensors to achieve a high surface-to-volume ratio, facilitating 
enhanced sensing capabilities. The original properties of these nanomaterials, such 
as their tunable surface chemistry, conductivity, optical properties, and biocompati-
bility, contribute to the overall performance and functionality of the nanosensors. By 
exploiting these advantageous properties, nanosensors offer exceptional sensitivity, 
selectivity, and response toward target analytes in various areas, such as food safety, 
environmental monitoring, and biomedical diagnostics. The integration of different 
nanomaterials with nanosensors presents a versatile and promising approach for 
developing advanced sensing devices with enhanced performance characteristics 
[14]. Currently, nanosensors are widely employed for the detection of foodborne 
pathogens, additives, toxins, chemicals, and pesticides in diverse food products [61].
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The utilization of various nanomaterials offers the potential to increase the analysis 
performance of electrochemical sensors through signal amplification and improve-
ment. By incorporating nanomaterials into the electrode, the surface area is increased, 
leading to enhanced loading capacity and improved bulk transport of reactants. 
This augmentation in surface area allows for greater sensitivity in detecting target 
analytes. Also, nanomaterials can serve as carriers for redox probes, facilitating 
selective detection or enhancing the dynamics of redox changes, thus significantly 
improving the sensor’s readout. The integration of nanomaterials into electrochem-
ical sensors presents a valuable strategy to increase their sensitivity, selectivity, and 
overall performance, enabling more accurate and reliable detection of analytes of 
interest [33, 59]. 

Nanomaterials encompass a diverse range of structures, including quantum dots, 
carbon dots, nanoparticles (0D), nanotubes, nanowires, nanorods (1D), nanoplates, 
nanosheets, nanodiscs (2D), and nanoflowers, nanocones, nanoballs (3D) [56]. These 
nanomaterials have found widespread application in the construction of electrodes 
for electrochemical biosensors utilized in the determination of foodborne pathogens 
[66]. Electrochemical sensors and biosensors incorporating novel nanomaterials, 
such as carbon nanotubes, metallic nanoparticles, and superparamagnetic nanopar-
ticles, are currently employed for the detection of various toxins present in food 
products [90]. The integration of these nanomaterials into electrochemical biosen-
sors has enabled enhanced sensitivity, selectivity, and performance in detecting and 
analyzing foodborne contaminants, facilitating improved food safety and quality 
control measures. 

Metal nanoparticles, particularly gold nanoparticles, are commonly favored for 
integration into electrochemical biosensors designed for the detection of foodborne 
pathogens. This preference stems from their exceptional conductivity, biocompat-
ibility, and ability to preserve biomolecular activity over extended periods [53]. 
Quantum dots (QDs), on the other hand, demonstrate significant potential for imple-
mentation in compact-sized electrochemical biosensing devices due to their compact 
size and consistent performance characteristics [13]. In terms of material classi-
fication, quantum dots can be categorized as metal QDs, carbon dots (CDs), and 
graphene quantum dots (GQDs) [5]. The utilization of these nanomaterials, including 
gold nanoparticles and quantum dots, enables the development of highly sensitive 
and reliable electrochemical biosensors for the detection of foodborne pathogens, 
offering improved capabilities in ensuring food safety and quality control. 

Examples of nanomaterials used in food analysis are presented in Table 1.

2.1 Metalic and Other Related Nanodevices 

Gold nanoparticles (AuNPs) are commonly preferred for integration into electro-
chemical biosensors targeting foodborne pathogens due to their excellent improved 
electrical properties, biocompatibility, and long-term preservation of biomolecular 
activity [84].
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Table 1 Examples of nanomaterials used in food analysis 

Analysis 
purpose 

Nanomaterial 

Pathogen Single-walled carbon nanotubes (SWCT) 
Silica nanoparticles 
Gold nanoparticles 
Graphen nanoparticles 

Toxin Magnetic nanoparticles 
Gold nanoparticles 
Zinc nanoparticles 
Single-walled carbon nanotubes (SWCT) and multi-walled carbon nanotubes 
(MWCT)

Metal oxide nanomaterials, which can be fabricated in numerous forms ranging 
from 0 to 3D, offer a valuable platform for the development of electrochemical 
biosensors [51]. These nanomaterials possess advantageous properties such as low 
cost, high biocompatibility, antimicrobial activity, and a broad catalytic domain 
with notable electrocatalytic activity [97]. Recent investigations have focused on 
nanocomposite heterostructures, combining different components to exploit their 
distinct properties and enhance the performance of electrochemical biosensors for 
the detection of foodborne pathogens. For instance, a comparative study on porous 
nanocomposites, namely ZrO2–Ag–G–SiO2 and In2O3–G SiO2, was conducted for 
the rapid and high-throughput detection of Escherichia coli using cyclic voltam-
metry, resulting in the creation of a bacteria-identifying nanodevice with enhanced 
sensitivity [20]. These advancements highlight the potential of metal oxide nanoma-
terials and nanocomposite heterostructures in the design of efficient electrochemical 
biosensors for food pathogen detection. 

Transition metal oxides, which are readily available in soil, exhibit promising 
prospects in electrochemical applications, particularly in the development of elec-
trochemical biosensors targeting foodborne pathogens [43]. For example, selec-
tive determination of Salmonella typhimurium in food has been achieved using a 
SiO2@MnO2 nanocomposite impedance biosensor developed on interdigitated array 
microelectrodes coupled with immunomagnetic separation [88]. 

Numerous studies have demonstrated significant enhancements in detection capa-
bilities through the utilization of metal oxide nanoparticles in electrochemical 
biosensors. For instance, Muniandy et al. engineered a reduced graphene oxide-
nano TiO2 composite aptasensor for the specific detection of Salmonella enterica, 
yielding notable improvements in detection performance [49]. Similarly, Nadzirah 
et al. employed pure TiO2 nanoparticles and developed interdigitated electrodes 
for the high-specificity and reproducible detection of E. coli [50]. Additionally, 
Teng et al. demonstrated that ZnO nanorods exhibited enhanced signal amplification 
for targeting E. coli [77]. Furthermore, Purwidyantri et al. utilized ZnO decorated 
with Au to fabricate a detection platform for Staphylococcus epidermidis based on 
DNA hybridization, further highlighting the potential of metal oxide nanoparticles 
in enhancing detection capabilities in electrochemical biosensors [57].
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An electrochemical gene sensor based on SnO2 nanocrystalline quantum dots for 
the determination of Vibrio cholerae using the principle of DNA hybridization was 
developed by Patel et al. The study demonstrated that SnO2 nanoparticles provide an 
appropriate surface for the immobilization of the DNA probe and increased electron 
transport and enhanced signal readout, providing high long-term stability [54]. 

The utilization of magnetic iron oxide nanoparticles proved successful in the 
isolation of Listeria monocytogenes DNA, a pathogen commonly associated with 
dairy products [93]. Surface-enhanced Raman spectroscopy in combination with 
silver nanosensors has emerged as a highly effective technique for the detection of 
pathogenic bacteria [19]. Additionally, nanosensors incorporating various nanoma-
terials have become standard tools for the detection of foodborne pathogens [4]. 

The utilization of gold nanoparticles (AuNPs) in the improving of electrochem-
ical biosensors has gained increasing attention due to their advantageous properties 
[44]. Deposition of AuNPs onto gold electrodes leads to a substantial enhancement 
in the electrode’s surface area, enabling enhanced target recognition and improved 
analytical performance [39]. When immobilized on electrodes, AuNPs enhance 
surface biocompatibility, facilitate electron transfer between the electrode and immo-
bilized molecules, increase the effective surface area, and enable facile bioconjuga-
tion of recognition elements. Raj et al. showed the integration of Au@MoS2-PANI 
nanocomposite onto a glassy carbon electrode for the detection of E. coli, utilizing 
the enhanced electrode properties [62]. Additionally, Hassan et al. improved a label-
free electrochemical biosensor employing the electrocatalytic properties of AuNPs 
for the very sensitive and quick detection of E. coli O157:H7 in minced meat and 
water [28]. 

Despite the widespread use of AuNPs-based electrochemical biosensors, their 
complex nature presents challenges that restrict their broad application, particularly 
in complex food matrices. Typically, these biosensors involve multiple steps that 
require manual intervention by the user during testing, including repetitive washing, 
sample and reagent loading, which prolongs the analysis time and may lead to incon-
clusive results. Consequently, there have been endeavors to address these limitations 
by integrating microfluidic technology with the electrochemical cell, aiming to auto-
mate manual interventions. This integration offers the potential for improved effi-
ciency, reduced user involvement, and enhanced reliability in the analysis of food 
samples [5]. 

AuNP-based electrochemical biosensors have demonstrated their utility in the 
detection of viruses, benefiting from the original properties of gold nanoparticles for 
selective capture and recognition of viral particles [38]. For example, the MERSCoV 
has been found to contaminate dairy products through electrochemical biosensors 
containing these nanoparticles [79]. 

Metal-organic frameworks (MOFs) have emerged as an important advancing class 
of microporous materials with extensive potential in various applications [87]. While 
0D and 1D nanostructures are being developed, they primarily represent 2D or 3D 
porous architectures assembled through coordination linkages between metal cation 
salts and polydentate organic ligands [47]. MOFs exhibit remarkable characteristics 
such as high surface area, pore volume, porosity, surface functionality, and adjustable
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structures. Small-scale MOFs combine the unique properties of both MOFs and 
nanostructures, enabling the design of complex nanocomposites such as NP@MOFs. 
Notably, 2D MOFs have gained attention for biosensing applications, leveraging their 
controllable properties and exceptionally high surface area, which are anticipated to 
surpass the performance of conventional electrochemical sensors. 

Varsha and Nageswaran [81]. The controllable tunability of properties and the 
exceptional surface area of MOFs are anticipated to surpass the capabilities of 
traditional electrochemical sensors [5]. 

Carbon materials have prolonged use in electrochemical sensor electrodes [55]. 
The discovery of new carbon allotropes such as fullerene, carbon nanotubes (CNTs) 
[55] and graphene [52] has triggered active exploration of their applications in 
various types of biosensors due to their high electrical properties. Several studies 
have discussed perspectives of the application of graphene and carbon nanomaterials 
as electrode materials to improve electrochemical sensors [18], including foodborne 
pathogen detection [82]. 

Graphene and carbon nanotube technology has proven to be valuable for the 
development of movable electrochemical sensors [1, 72]. In the context of food-
borne pathogen detection, graphene-based electrochemical sensors offer significant 
advancements as they can operate directly in biological and food matrices [82]. Cheap 
carbon materials, such as graphene and carbon nanofibers, possess large surface areas, 
high electron transfer rates, and excellent catalytic properties, making them vital for 
the development of miniaturized sensing platforms for point-of-need testing [5]. 

Graphene derivatives, specifically graphene oxide (GO) and reduced graphene 
oxide (rGO), have emerged as the preferred materials for electrochemical electrode 
modification owing to their low-cost scalability and compatibility with integrated 
device fabrication and processing technologies [24]. In the field of pathogen detec-
tion, a rapid and highly sensitive electrochemical invAgene biosensor for the detec-
tion of Salmonella was developed by employing a polypyrrole-rGO nanocomposite 
on a glassy carbon electrode [96]. The incorporation of rGO in the electrode mate-
rial enhances the electrochemical performance, enabling improved sensing capabil-
ities for the targeted pathogen. These findings highlight the potential of graphene 
derivatives in the development of important electrochemical biosensors for pathogen 
detection. 

Recently, novel methods involving the direct writing of graphene-based elec-
trodes have been implemented for the development of portable sensors [36]. Laser-
induced graphene (LIG) is a simple and scalable technology that involves the local 
heat treatment of polymers such as polyimide, resulting in the formation of porous 
graphene material [41]. The resulting material possesses the desirable properties of 
graphene, such as high surface area and electrical conductivity, while also offering a 
large number of active sites for surface modifications with various receptors [37]. In 
one study, LIG electrodes modified with polyclonal antibodies demonstrated highly 
selective detection of Salmonella enterica serovar typhimurium [73]. This highlights 
the potential of LIG-based electrodes as promising platforms for the development of 
sensitive and specific biosensors for pathogen detection applications.
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Carbon nanotubes are classified into single-walled carbon nanotubes (SWCNTs) 
and multi-walled carbon nanotubes (MWCNTs) based on the number of graphene 
sheets they contain [70]. SWCNT composites have been utilized for the highly sensi-
tive detection of bacterial and viral model strains, such as E. coli O157:H7 and 
bacteriophage T7, respectively [22]. In terms of material modification, MWCNTs 
have demonstrated advantages over SWCNTs as they are more robust, easier to 
produce on a larger scale, and more cost-effective, leading to improved sensitivity 
as reported in several studies. Specifically, MWCNTs deposited on indium tin oxide 
(ITO) electrodes and modified with aptamers have been employed for the detec-
tion of Salmonella enteritidis and S. thyhimuri [26]. The results underscore the 
considerable potential of both single-walled carbon nanotubes (SWCNTs) and multi-
walled carbon nanotubes (MWCNTs) as versatile platforms with high sensitivity for 
biosensor development aimed at pathogen detection. 

A prominent trend in contemporary electrochemical biosensors for the detection 
of pathogens and toxins is the utilization of nanocomposites, which combine multiple 
nanomaterials in electrode design, resulting in notable synergistic effects that enhance 
detection performance. Furthermore, certain nanomaterials like graphene and metal 
oxide nanoparticles possess inherent antibacterial properties. The integration of these 
nanomaterials into biosensors yields multifunctional platforms capable not only of 
pathogen identification and quantification but also of pathogen elimination, offering 
a comprehensive approach to pathogen detection and control [5]. 

2.2 Aptamers 

Aptamers found in the 1990s are defined as short, single-stranded nucleic acids 
with high affinity and selectivity [17]. Aptamers, which can be synthesized with 
high purity and cheap, increase the repeatability of analysis due to these features. 
Aptamers can identify and connect to a variety of food contaminants due to functional 
interactions [65]. Moreover, aptamers also have the potential to be ingenious and 
adaptive biosensors with three-dimensional conformational changes [28]. 

Given these features, many aptasensors based on different transduction strategies 
have been designed to identify food contaminants in the last decade. On the other 
hand, relatively few aptasensors have been applied to food safety testing. Therefore, 
it is useful to develop the recognition stability of the aptamer by using the complex 
food matrix [28]. 

Aptamers have been developed to detect different types of mycotoxins found in 
foods [42]. To develop a new electrochemical aptasensor, Yang et al. studied aptamer/ 
NH2 prepared Janus particles with one side belonging to the glassy carbon with 
peptide bond and one side functionalized with anti-ochratoxin A aptamer for specific 
detection [95]. In addition, Xu et al. also designed the aptasensor that performs 
ultra-sensitive detection of Staphylococcal enterotoxin B [91]. 

The ricin and abrin toxins found in castor beans and rosary peas, respectively, 
act as type 2 ribosome-inactivating proteins, both of which lead to cell death and
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go undiagnosed. Detection of these toxins in adulterated food and beverages is very 
important. In order to identify these toxins, an aptasensor was prepared by combining 
the C3N4–MnO2 nanolayer with liposome amplification [46]; a specific aptamer has 
also been isolated for abrin analysis [76]. 

However, the discovery of aptasensors that detect animal toxins such as 
tetrodotoxin and saxitoxin has been infrequently reported. Recently, a temperature-
assisted fluorescent biosensor has been developed to detect saxitoxin by Cheng 
et al. The aptamer-saxitoxin complex can trigger a temperature-assisted fluorescence 
resonance energy transfer method by lowering the melting temperature [9]. 

2.3 Microfluidic Devices 

Microfluidic sensors are a type of nanosensor based on microfluidics together with 
liposomes and offer advantages in detecting toxic substances in samples even in 
the microliter [78]. Microfluidic biosensors are frequently used for the detection of 
bacteria due to their quick analysis, simple use, low cost, easy integration, and field 
detection advantages [86]. Micropump and microvalve are important components in 
the improving of microfluidic chips. Recently, new power-independent micropumps 
[92] and finger-operated micropumps [75] have attracted much attention. 

It has been noticed that the chip in the microfluidic devices has micronscale and 
sometimes nanoscale. Therefore, it has higher surface area and diffusion coefficient 
and easily transfers heat [99]. For this reason, microfluidics has important advantages 
like time-consuming effects, preventing contamination, and reducing costs. Integra-
tion with microfluidics can provide various advantages to existing sensing techniques 
[60]. Some studies have been conducted on bacteria detection with microfluidic 
devices [99]. 

Due to the complex background of food samples and the low concentration of 
pathogenic bacteria, signal amplification is regularly required to detect target bacteria 
using enzymes, fluorescent probes, and other nanomaterials [58]. 

Due to their various advantages, nanozymes are widely used for bacteria detection 
[8]. For example, gold@platinum nanocatalysts (Au@PtNCs) have larger specific 
surface area and more catalytic active sites for the catalytic reaction. In this different 
study, a power-free microfluidic biosensor with an on-chip micropump and an on-chip 
microstirrer was developed and Au@PtNC amplification combined with smartphone 
imaging to achieve rapid, sensitive, and successful on-site detection of Salmonella. 
This obtained biosensor was able to detect Salmonella typhimurium bacteria at a 
concentration as low as 350 CFU/mL in chicken meat and milk samples quickly and 
significantly reduced the cost of each test.



172 M. Bacanli

3 Advantages of Nanodevices on Food Safety 

The most important disadvantages of the current methods used in food analysis are 
the lack of fast and reliable procedures for detecting low amounts of pathogens and 
toxins [94]. 

DNA and protein-based detection methods are faster but require at least a few 
hours to perform these methods. A culture enrichment period ranging from several 
hours to a day is required for the determination of bacteria contained in a food sample. 
In the food industry, waiting this long for results can be expensive and inconvenient. In 
contrast, the complex of bionanomaterial bacterial cells can be detected or confirmed 
within 3 h without bacterial culture and enrichment [85]. 

The development of biosensors utilizing nanomaterials holds great promise 
for overcoming the limitations associated with expensive or complex instruments, 
enabling the rapid detection of foodborne pathogens in portable or hand-held 
devices [94]. 

The small size of nanomaterials allows for their binding to target bacterial cells, 
leading to significant modifications in their optical, physical, and chemical properties. 
This property enables nanomaterials to serve as signal transducers or amplifiers, 
facilitating real-time detection of pathogenic bacteria. Functionalized nanomaterials 
have been extensively investigated for their integration into biosensors, serving as 
absorbers and carriers of pathogens. These nanomaterial-based biosensors offer the 
advantage of rapid detection, enabling the completion of the detection process within 
a short timeframe [94]. 

Fluorescent dye-doped nanoparticles have been developed as markers for sensitive 
bacteria detection due to their positive properties such as high fluorescence quantum 
yields, photostability, and tunable fluorescent bands [40]. For example, Zhao et al. 
developed a bioassay method based on fluorescent nanoparticles conjugated with 
anti-E for the detection of E. Coli O57 in minced meat samples [98]. 

Magnetic nanomaterials are most commonly used to eliminate interference from 
complex food matrices and to concentrate target cells, which can eliminate the need 
for time-consuming enrichment through a culture process. While studying for signal 
amplification with fluorescent nanomaterials, metal and semiconductor nanomate-
rials have been chosen because of their electronic or optical transduction on biorecog-
nition in the development of biosensors. Bioconjugated nanomaterials have demon-
strated advantages over traditional (non-nanomaterial-based) methods for specific 
pathogen detection in nutrient broth, food products, and biofilms [94]. 

4 Safety Concerns About Nanodevices 

The utilization of diverse nanomaterials in the food industry offers numerous benefits; 
however, it also presents significant concerns regarding human health, environmental 
impact, and other ecosystems due to their cytotoxic effects. Recently, heightened
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attention has been directed toward the potential risks associated with nanomaterials, 
including those that lack toxic constituents in their composition but possess inherent 
hazards associated with their small size and subcellular interactions with organisms 
[69]. For instance, certain nanoparticles carry the risk of penetrating the skin and 
inducing toxic effects in humans, animals, and plants alike [67]. 

To gain insight into the toxicity mechanisms of different nanomaterials on human 
health and the environment, it is crucial to establish a clear understanding of 
the various routes through which nanomaterials from the food industry can be 
exposed and enter the human body. Nanomaterials are intentionally or unintention-
ally consumed through processed food products via oral, dermal, and pulmonary 
routes. Oral ingestion serves as the primary pathway for the intake of chemicals, 
water, and nutrients. Presently, a wide array of nanomaterials are found in various 
food products, and it is presumed that the gastrointestinal system is directly exposed 
to these nanomaterials on a daily basis. Nanoparticles ingested orally traverse from 
the oral cavity to the stomach and subsequently reach the intestines, giving rise to 
significant health concerns for humans [64]. 

Different in silico, in vitro and in vivo methods are used to evaluate the toxicity 
of nanomaterials. Especially in the uptake and biodistribution evaluations of nanos-
tructures, it has been revealed that these structures are located in certain locations in 
the human body [10]. 

More research is needed on the cytotoxic effects of nanoparticles used in nanode-
vices and their potential impact on consumer health and safety and the environment. 
Potential risks, toxicological issues, and environmental issues must be addressed 
when acquiring these tools. Relevant rules and regulations will only be put in place 
to tackle the various applicable safety issues and then govern the entire food industry 
field [68]. 

5 Conclusion 

In recent years, the field of nanobiotechnology has witnessed significant advance-
ments, leading to the development of highly sensitive and miniaturized nanomaterial-
based devices for ensuring food safety and quality. These devices employ various 
nanomaterials and nanosensors. However, along with these advancements, there is 
a growing recognition of the potential environmental and health risks associated 
with the use of nanomaterials and nanodevices in the food industry. Therefore, it 
is crucial to prioritize research efforts aimed at understanding and mitigating the 
potential toxic effects linked to the utilization of nanomaterials and nanodevices. 
Additionally, it is essential to thoroughly investigate and enhance parameters such 
as accuracy, reproducibility, precision, and specificity to ensure the reliability and 
validity of nanodevices. Furthermore, optimization of the synthesis procedures for 
integrated nanomaterials is necessary to establish robust protocols for large-scale 
production and strict quality control, ensuring the absence of chemical impurities 
that could compromise the sensing properties or lead to environmental pollution [74].
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It is important to choose fast, sensitive, specific, and easily applicable processes 
that do not cause analyte loss during the detection of pathogens and toxins in foods. 
For this reason, these features should be considered during the design of the biosensor 
to be used. It will result in the discovery of effective nanotools to be used in food 
analysis that will ensure safe food presentation through collaborations and advanced 
studies between those working in the field of nanotechnology and food technology. 

References 

1. Arduini F, Micheli L, Scognamiglio V, Mazzaracchio V, Moscone D (2020) Sustainable mate-
rials for the design of forefront printed (bio) sensors applied in agrifood sector. TrAC Trends 
Anal Chem 128:115909 

2. Arya A, Husen A (2023) Smart nanomaterials in biosensing applications. In: Husen A, Siddiqi 
KS (eds) Advances in smart nanomaterials and their applications. Elsevier Inc., Cambridge, 
USA 

3. Arya A, Tyagi PK, Kumar S, Husen A (2023) Nanomaterials and their application in micro-
biology disciplines. In: Husen A, Siddiqi KS (eds) Advances in smart nanomaterials and their 
applications. Elsevier Inc., Cambridge, USA 

4. Baranwal A, Mahato K, Srivastava A, Maurya PK, Chandra P (2016) Phytofabricated metallic 
nanoparticles and their clinical applications. RSC Adv 6(107):105996–106010 

5. Bobrinetskiy I, Radovic M, Rizzotto F, Vizzini P, Jaric S, Pavlovic Z, Radonic V, Nikolic MV, 
Vidic J (2021) Advances in nanomaterials-based electrochemical biosensors for foodborne 
pathogen detection. Nanomaterials 11(10):2700 

6. Chawla S, Gupta A, Bhardwaj M, Singh S, Husen A (2023) Smart nanotechnology in patho-
logical hypoxia: an innovative avenue for a clinical hurdle. In: Chawla S, Singh S, Husen A 
(eds) Smart nanomaterials targeting pathological hypoxia. Smart nanomaterials technology. 
Springer, Singapore. https://doi.org/10.1007/978-981-99-1718-1_1 

7. Chauhan AK, Singh SP, Yadav B, Khatri S, Husen A (2023) Smart nanomaterials and control of 
biofilms. In: Husen A, Siddiqi KS (ed) Advances in smart nanomaterials and their applications. 
Elsevier Inc., Cambridge, USA 

8. Cheng N, Zhu C, Wang Y, Du D, Zhu M-J, Luo Y, Xu W, Lin Y (2019) Nanozyme enhanced 
colorimetric immunoassay for naked-eye detection of salmonella enteritidis. J Anal Test 
3(1):99–106 

9. Cheng S, Zheng B, Yao D, Kuai S, Tian J, Liang H, Ding Y (2018) Study of the binding 
way between saxitoxin and its aptamer and a fluorescent aptasensor for detection of saxitoxin. 
Spectrochim Acta Part A Mol Biomol Spectrosc 204:180–187 

10. d’Amora M, Cassano D, Pocoví-Martínez S, Giordani S, Voliani V (2018) Biodistribution 
and biocompatibility of passion fruit-like nano-architectures in zebrafish. Nanotoxicology 
12(8):914–922 

11. Dimitrijevic M, Karabasil N, Boskovic M, Teodorovic V, Vasilev D, Djordjevic V, Kilibarda 
N, Cobanovic N (2015) Safety aspects of nanotechnology applications in food packaging. 
Procedia Food Sci 5:57–60 

12. Doyle ME (2006) Nanotechnology: a brief literature review. Food Research Institute, UW-
Madison 

13. Du H, Wang X, Yang Q, Wu W (2021) Quantum dot: lightning invisible foodborne pathogens. 
Trends Food Sci Technol 110:1–12 

14. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier 
materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24 

15. Durán N, Marcato PD (2013) Nanobiotechnology perspectives. Role of nanotechnology in the 
food industry: a review. Int J Food Sci Technol 48(6):1127–1134

https://doi.org/10.1007/978-981-99-1718-1_1


Nanodevices for Food-Borne Pathogens and Toxin Detection 175

16. El-Sharoud WM, Darwish MS, Batt CA (2013) A real-time PCR-based microfluidics platform 
for the detection of Cronobacter sakazakii in reconstituted milks. Int Dairy J 33(1):67–74 

17. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. 
Nature 346(6287):818–822 

18. Evtugyn G, Porfireva A, Shamagsumova R, Hianik T (2020) Advances in electrochemical 
aptasensors based on carbon nanomaterials. Chemosensors 8(4):96 

19. Fang Z, Zhao Y, Warner RD, Johnson SK (2017) Active and intelligent packaging in meat 
industry. Trends Food Sci Technol 61:60–71 

20. Fatema KN, Liu Y, Cho KY, Oh W-C (2020) Comparative study of electrochemical biosen-
sors based on highly efficient mesoporous ZrO2–Ag–G–SiO2 and In2O3–G–SiO2 for rapid 
recognition of E. coli O157: H7. ACS Omega 5(36):22719–22730 

21. Gálvez A, Abriouel H, López RL, Omar NB (2007) Bacteriocin-based strategies for food 
biopreservation. Int J Food Microbiol 120(1–2):51–70 

22. García-Aljaro C, Cella LN, Shirale DJ, Park M, Muñoz FJ, Yates MV, Mulchandani A (2010) 
Carbon nanotubes-based chemiresistive biosensors for detection of microorganisms. Biosens 
Bioelectron 26(4):1437–1441 

23. Gokularaman S, Cruz SA, Pragalyaashree M, Nishadh A (2017) Nanotechnology approach in 
food packaging-review. J Pharm Sci Res 9(10):1743–1749 

24. Gupta R, Raza N, Bhardwaj SK, Vikrant K, Kim K-H, Bhardwaj N (2021) Advances 
in nanomaterial-based electrochemical biosensors for the detection of microbial toxins, 
pathogenic bacteria in food matrices. J Hazard Mater 401:123379 

25. Han X, Liu Y, Yin J, Yue M, Mu Y (2021) Microfluidic devices for multiplexed detection of 
foodborne pathogens. Food Res Int 143:110246 

26. Hasan MR, Pulingam T, Appaturi JN, Zifruddin AN, Teh SJ, Lim TW, Ibrahim F, Leo BF, 
Thong KL (2018) Carbon nanotube-based aptasensor for sensitive electrochemical detection 
of whole-cell Salmonella. Anal Biochem 554:34–43 
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Nanomaterials for the Rapid 
Identification of Agriculturally 
Important Plant Pathogens 

Zehra Karaagac and Ismail Ocsoy 

Abstract Nanomaterials (NMs) have shown great potential for the rapid identifi-
cation of agriculturally important plant pathogens. The small size and unique prop-
erties of NMs make them well-suited for use in biosensors and diagnostic assays. 
The NMs have not been only used for detection or identification of plant pathogens, 
they have the potential to protect crops from different pathogens in order to mini-
mize the reduction in crops production and the monetary losses. The NMs have been 
utilized in various techniques including microneedle applications, nano-barcoding 
systems, nano-biosensors, miRNA-based nano diagnosis/array-based nano-sensors, 
and nano-diagnostic apparatus, for the rapid identification of agricultural-related 
plant pathogens. NMs, such as gold (Au) NMs and carbon nanotubes (CNTs), have 
been used in the development of biosensors for the detection of plant viruses and 
bacteria. These biosensors exploit the unique optical and electrical properties of 
these NMs to provide highly sensitive and specific responses toward target plant 
pathogens. Similarly, CNTs have been used for the detection of bacteria that cause 
plant diseases, such as Xanthomonas campestris, which is responsible for black rot 
disease in cruciferous crops. CNTs have a large surface area and high electrical 
conductivity, making them ideal for use in electrochemical sensors that can detect 
the presence of bacterial pathogens in plant samples. In addition to biosensors, NMs 
have also been used to develop rapid diagnostic assays based on metallic NMs. For 
example, magnetic NMs have been used to develop rapid diagnostic tests for plant 
diseases such as late blight, which is caused by the oomycete pathogen Phytophthora 
infestans. 
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1 Introduction to Nanomaterials 

Nanomaterials (NMs) are a type of material obtained by arranging matter at atomic 
and molecular scales. Nano-sized materials have superior properties and functions 
compared to bulk materials [122]. Nano-sized structures, It is divided into different 
classes such as nanotubes, nanoparticles, nanowires, nanorods, and nanofilms [70]. 
NMs can be synthesized in different chemical structures and morphologies (Fig. 1). 

Today, NMs can be synthesized as metal, metal alloy, metal oxides, ceramic 
and polymer-based or composite structures [130]. Metallic NMs exhibit different 
physical and chemical properties based upon their surface/volume ratio, low melting 
point, surface roughness, mechanical properties, magnetic properties, etc., compared 
to bulk metals. In addition to these features, gold (Au) NMs attract attention with 
their optical properties [72]. For instance, the 25 nm and 50 nm Au NMs have a 
specific wine red color and purple color in solution, respectively [74]. This indicates 
that color of Au NMs solution can be varied by tuning their size. In addition to that 
wine red color the 25 nm Au NM is observed in their colloidal form, but aggregation 
of 25 nm Au NM changes it from wine red to purple color. Thus, Au NMs can 
be integrated in colorimetric sensor design by benefiting from these size-dependent 
color change properties. This is also true for other metallic NPs [7]. For example, 
silver NPs are yellow, platinum, iron and palladium NPs are black.

Fig. 1 Nanoscale integration of biomolecules and nanomaterials 
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In general, the synthesis conditions are known to directly affect the application 
areas of NMs. Synthesis of NMs with uniform morphology and stable structure is 
possible in high temperature and organic solvent environment. But this synthesis 
medium changes the solvent type of NMs. NMs that are insoluble in the aqueous 
phase quickly coagulate and aggregate in the biological application medium. In addi-
tion, organic NMs are toxic to living organisms [6, 42, 83]. Therefore, the production 
of NMs in an aqueous and non-toxic phase is very important [49]. 

2 Synthesis Types of Nanomaterials and Characterization 

A general synthesis system for colloidal NMs consists of three components. These 
are: precursors (metal, polymer, nonmetal, organic–inorganic compounds, etc.), 
reducing agents (such as oleamine, oleic acid, sodium borohydride, sodium citrate), 
and solvents (organic or inorganic solvents. By heating the reaction medium to a 
sufficiently high temperature, the precursor molecules are converted into chemically 
active atomic or molecular species (monomers). The resulting monomers grow with 
active reducing agents to form NP structures [45]. Then the growth of core struc-
tures takes place. In nucleation, the precursor monomer must be at a relatively high 
temperature for the molecules to reach the upper saturation level. Thus, the reaction 
begins, followed by a nucleation explosion. These nuclei can grow further using 
additional monomers with the aid of temperature or other triggering conditions. It is 
possible to obtain NPs with wide size distribution by adding monomer and varying 
the amount of reducing agent [60]. 

There are two basic approaches in the synthesis of NMs. The first of these is 
the “top-down” approach. It is based on nanoscale material fabrication from bulk 
material. In general, the size of the material is reduced by physical–mechanical 
approaches. The other is the “bottom-up” approach. It relies on combining atoms to 
create nano-sized materials. In the top-down approach, although NMs are produced 
for industrial applications, problems in size control of NMs have serious disadvan-
tages due to structure and morphology errors [19, 68]. The morphology, chemical 
structure, and size distribution control of NMs were successfully obtained with a 
bottom-up approach. However, despite all its advantages, the production efficiency 
is quite low compared to the top-down approach [11, 16]. Chemical methods such as 
micro-emulsion/colloidal, solvothermal, thermal separation, and laser methods are 
commonly used in the bottom-up approach [19, 58, 68]. Widely used methods for 
NMs synthesis in “bottom-up” approach are chemical and biological methods. 

2.1 Chemical Synthesis Nanomaterials 

The chemical synthesis method is generally based on the reduction of the precursor 
material with surfactants at the appropriate environment and temperature with
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different reducing agents [103]. In this method, rapid, uniform morphology and 
narrow size distribution NM synthesis is possible depending on the use of organic 
solvent, long chain reducing agent and high temperature [88]. Synthesized NMs 
retain their properties for a long time without degradation or aggregation. With this 
method, NMs can be synthesized with various functional properties or can be func-
tionalized after synthesis [86]. This flexible synthesis method paves the way for the 
emergence of many NM designs. Chemical synthesis methods are frequently and 
effectively used in the literature [108]. Commonly used methods: Microemulsion, 
co-precipitation, and thermal decomposition are synthesis strategies. The disadvan-
tage of this method is that the synthesized NMs are hydrophobic due to their surface 
[106]. This condition is toxic to living organisms. Therefore, the use of synthesized 
NMs in biological applications is limited. There are various applications to prevent 
this situation [53, 119]. These disadvantages can be overcome by converting the 
surface ligand structure to the aqueous phase. Ligand exchange methods are obtained 
by optimizing critical parameters such as the surface structure, adhesion strength, 
and bond structure of the NP [51]. One of the most basic methods of increasing the 
solubility of hydrophobic NPs in aqueous solution is based on the placement of new 
ligands and the removal of the hydrophobic layer from the surface [52, 63]. In the 
literature, there are main methods known as ligand exchange or phase transfer on NP 
surfaces [50, 110]. The main ones are as shown in Fig. 2, Ligand modification with 
amphiphilic micelles, Bifunctional ligand modification, Polymer coating method, 
and Silica coating method [116].

In a study, the transfer of Au NPs synthesized with oleamine surfactant in the 
organic phase to the aqueous phase was successfully carried out. The organic ligands 
on the Au NP surface were cleaned simply and quickly with a special synthesis 
method, and amino phenyl boronic acid ligands dissolved in the aqueous phase were 
attached to their place simultaneously. The effectiveness on bacteria was tested with 
the subsequent application [49] (Fig. 3).

2.2 Green Synthesis Nanomaterials 

Synthesis of NMs by biological methods, different biomolecules; Enzymes, peptides, 
protein groups, nucleic acids (DNA and RNA), plant extracts, standard molecules 
as well as some microorganisms such as algae, fungi, actinomycetes, bacteria, and 
viruses can be used as reducing agents [65, 79, 81]. There are many advantages in 
the application of biological methods. At the beginning of these; less chemical use, 
cheap, practical, and fast application, and being suitable for high-volume production. 
In addition, biological synthesis applications do not require the use of high pressure, 
high energy, temperature, and toxic chemicals [4, 64, 78, 80, 113, 117, 121, 128]. It 
is possible to examine biological NM synthesis in two parts. 

First, in the bio reduction method: it is the use of microorganisms and microor-
ganism enzymes in the reduction of metal ions. With this method, stable and inert 
materials can be synthesized cheaply and quickly [23, 83, 91, 105]. The other method
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Fig. 2 Phase transfer methods for nanomaterials

Fig. 3 Ligand exchange of Au NP in organic phase to aqua phase [49]
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Fig. 4 Synthesis mechanism for Au NP formation containing three following steps: (1) Nucleation 
for formation of seeds; (2) Growth of seeds; and (3) Formation of Au NPs [23] 

is the biosorption method. In this method, it is a NM synthesis method in which stable 
NPs are obtained by the interaction of metal cations in the solution medium, cell wall, 
or peptide [24, 56, 114]. 

As shown in Fig. 4; In a study, red raspberry (Rubus idaeus), strawberry (Fragaria 
ananassa), and blackberry (Rubus fruticosus) extracts were used for the synthesis 
of Au NPs. Synthesis of monodisperse, stable, and colloidal Au NPs (Au NPs) with 
HAuCl4 · 3H2O and strawberry extract concentration has been reported. Anthocyanin 
molecules give preferential coordination reaction with Au ions (Au3+) to form NP  
seeds (anthocyanin-Au3+), and then catecholamine oxidation results in electron flow 
from anthocyanins to Au. Thus, NP seeds begin to form for anisotropic growth. 
Finally, the surface of Au NPs is saturated with anthocyanins and monodisperse, and 
stable Au NPs are obtained [23]. 

3 Plant Pathogens 

Plant pathogens are one of the most serious threats to agricultural productivity and 
food security worldwide. The main deformations caused by pathogens in the plant 
are: leaf spot, crusting, blight, overgrowth, rot, and galls [12, 31]. Plant pathogens can 
be found in various parts of the plant, especially in xylem and phloem. In particular, 
bacteria usually settle in intracellular and intercellular spaces and invade parts of the 
plant such as leaves and roots [5]. Diseases that develop in plants due to bacteria
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follow a different course compared to other pathogens. Bacteria can secrete specific 
enzymes that break down the plant’s cell wall. In addition to enzymes, various plant 
hormones, polysaccharides, and proteinases may also contribute to the formation and 
development of bacteria [15, 29, 130]. Thus, the environment for the development 
of diseases in the plant is prepared. 

Another type of plant pathogen is fungi. About 8000 species of fungi and 
oomycetes are known that can reduce yields in agricultural applications [28]. 
Diseases commonly caused by pathogenic fungi; leaf spot, anthracnose, blight, 
thrush, gall, powdery mildew, and root rot [46]. Traditional methods for the detection 
of fungal species, polymerase chain reaction (PCR) [18] and isothermal amplification 
methods (LAMP) are used. Phytoviruses constitute approximately 50% of known 
plant pathogens [10]. Viruses can reproduce easily and quickly in natural events 
(rain, wind, etc.) and insects [30, 34]. Because of all these effects, phytoviruses pose a 
serious threat all over the world. Phytoviruses contain simple ribonucleic acid (RNA). 
However, deoxyribonucleic acid (DNA)-based genomes, factors that help isolation 
(human, environment, animal, etc.), and rapid adaptation processes in the face of 
changing conditions make it difficult to control phytoviruses [43]. Phytoviruses 
frequently encountered in food agriculture; Tobacco mosaic virus (TMV) [2], Pepper 
mild mottle virus (PMMoV) [73], cucumber mosaic virus (CMV) [37], tomato yellow 
leafroll virus (TYLCV), Papaya Ring Spot Virus [27], Barley yellow mosaic virus 
(BaYMV), Turnip mosaic virus [38] (Table 1)

4 Nanomaterials as Nano-Weapon for Combating 
with Plant Pathogens 

Plant pathogens are one of the biggest threats to crop productivity and agricultural 
sustainability. The most widely used method in the fight against pathogens is pesticide 
application. Today, very effective drugs are used to protect plants [109]. However, 
pathogens develop resistance to these plants over time. Thus, drug applications lose 
their effectiveness [48]. As another spraying method, it has been applied to reduce 
the use of pesticides [57]. However, in this case, only 1–5% of the applied pesticide 
amount was able to inhibit the target pathogen [47, 87]. In addition, the applications 
cause contamination of the soil and water, causing the pollution of the environment 
and the infertility of the soil. Therefore, early, and rapid detection of plant pathogens 
is critical to protect farmland and increase food productivity. There are many methods 
in the literature for this purpose [89, 90]. 

One of these methods is to increase the yield of pesticides and chemical fertilizers 
applied to plants. It is aimed to increase the activity of chemical fertilizers and 
pesticides applied for this purpose by reducing them to nano size. Carbon nanotubes, 
magnetic NPs, Au NPs, silver NPs, and polymeric NPs are the leading nano-sized 
designs.
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Table 1 Plant and plant pathogens examples [14] 

Culture Virus Fungi Bacteria Symptoms 

Almond X. arboricola 
pv.Pruni [67] 

Leaf. stem, and 
trunk injuries. 
Defoliation and 
fruit drop 

Apple 
plants 

Erwinia 
amylovora/ 
pseudomonas 
syringae pv. 
syringae [17] 

Storage disease 
in apple with 
evident 
moisture 
formation on 
the frnit Wilt 
and blackening 
twigs, flowers, 
and leaves Leaf 
necrosis and 
systemic 
vascular wilt 

Citrus 
plants 

Citrus Tristeza [40] Candidatus 
Liberibacter [111] 

Decline of 
plants and 
yellowing of 
leaves 
yellowing of 
shoots, leaf spot 
decrease in size, 
and deformity 
of the fruit 

Cucumber 
plant 

Oidium 
neolycopersici [32] 

Pseudomonas 
syringae pv. 
Lachrymans 

Chlorosis and 
white powdery 
lesions on the 
leaves. Rapid 
aging and 
reduction in the 
size and quality 
of the fruit 
leaves with 
water-soaked 
lesions. 
Necrosis and 
reduction of 
photosynthetic 
capacity 

Brassica X. campestris [92] Leaf necrosis 
with V-shaped 
lesions and 
blackened 
vascular 
bundles

(continued)
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Table 1 (continued)

Culture Virus Fungi Bacteria Symptoms

Ginseng Alternaria panax 
Whetz [118] 

Reddish to dark 
brown 
elongated 
lesions 

Maize 
plants 

Arbuscular 
mycorrhizal [21] 

Change in root 
mass, length, or 
architecture. 

Orchids Cymbidium mosaic/ 
odontoglossumringspot 
[3] 

Leaves and 
flowers with 
necrotic 
chlorotic stains, 
growth 
inhibition color 
break in flow as 
and spots 
yellowing on 
leaves 

Pear plants Erwinia 
amylovora [107] 

Wilt and 
blackening 
twigs, flowers, 
and leaves 

Pepper 
plant 

Oidivm neolycopersici 
[32] 

Chlorosis and 
white powdery 
lesions on the 
leaves 
Rapid aging and 
reduction in the 
size and quality 
of the fruit 

Plantsap 
samples 

Xanthomonas 
axonopodis [36] 

Fruit stains, leaf 
falls and fruit 
tree decline 

Potato Leafroll virus [107] Phytophthora 
infestans [104, 126] 

Tuber is stunted 
and erect. Rigid, 
curled leaves. 
Leaves like 
brownish-purple 
oily patches. 
Leaves with 
grayish white 
mycelium rings 
and spores 

Scots pine Mycorrhizal 
colonization [99] 

Change in root 
mass, length, or 
architecture 

Stone fruit 
trees 

Plum Pox Leaves with 
stains or 
chlorotic rings, 
unblocking of 
veins. 
Deformed fruits

(continued)
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Table 1 (continued)

Culture Virus Fungi Bacteria Symptoms

Strawberry Rhizopus sp. and 
Aspergillus sp. section 
Nigri/P. cactorum 

Grayish color 
for Rhizopus 
and black 
appearance at 
Aspergillus 
infected fruit & 
Leaf size 
reduction and 
decreased 
productivity 

Tabaco Tobacco mosaic virus 
[25] 

Yellow leaf curl virus 
[104] 

Leaf with 
chlorine or 
mosaic with 
white to light 
green color 

Tomato 
crops 

Yellow leaf curl virus 
[98] 

Oidium lycopersicum/ 
Phytophthora 
infestans [66] 

Infected leaves 
are small, 
yellow in color 
and curve 
upwards. 
Leaves, 
petioles, and 
stems have lions 
superficial with 
white powdery. 
Desiccation, 
necrosis, and

Carbon nanotubes help it bind nitrogen from ammonia and release hydrogen ions. 
Thus, the nitrogen (N), phosphorus (P), and potassium (K) uptake of the plant can be 
improved [123, 124]. In addition, the fast electron transfer of the carbon element is 
preferred in bio-nanosensor applications due to the larger length/diameter ratio of the 
nanotube structure. CNTs are particularly sensitive in the identification of phenolic 
compounds [9, 125]. 

Au NPs are frequently used in the diagnosis and treatment of pathogens [44]. 
Thanks to its optical properties, it is widely used as a targeting agent. Au NPs func-
tionalized with DNA, enzymes, proteins, or other biomolecules play an important 
role in inhibiting and destroying phytopathogens [47]. DNA-based biosensors are 
analytical tools used for the detection of sequence-specific DNA in plant pathogens. 
These tools are widely used due to their rapid production, cost-effectiveness, and 
sensitive and fast results. The use of AuNPs in DNA biosensor design provides rapid 
DNA hybridization by immobilization of DNA on the probe electrode and aids in 
the labeling of pathogens [96]. In one study, Colloidal AuNPs were used to label 
single-stranded DNA (ssDNA) specific to the bacterium Acidovorax citrulli, which 
causes fruit spots. For this purpose, a Strip-based DNA sensor was designed for the 
detection of pathogenic bacteria. With the designed biosensor, an analysis system
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sensitive enough to detect 4 nm target DNA was obtained [129] In the diagnosis 
of Pseudomonas syringae bacteria, which causes serious damage especially in crop 
plants, colorimetric detection of pathogenic DNA molecules was achieved by using 
AuNP-based DNA probes. In this way, when AuNPs specifically targeted to the 
bacteria of interest were hybridized with the target DNA, the color of the sensor 
changed from red to purple. 

Silver NPs can inhibit plant pathogens quickly and effectively. When the studies 
were examined, it was seen that effective results were obtained on plant pathogens due 
to the high antibacterial/antifungal activity of Ag NPs [20]. In the studies carried out 
for the inhibition of Cochliobolus sativus and Magnaporthe grisea fungi on Lolium 
perenne, both the ionic form and the nano form of silver were investigated. It has 
been proven that nano-sized silver has a higher antifungal effect than its ionic form. 
In another study, the effect of silver NP concentration on pathogens was investigated. 
It has been determined that the application of 100 ppm Ag NP before and after the 
disease appears plays an important role in controlling plant diseases [55]. 

ZnO NPs are metal oxide NPs that are often preferred because of their biocom-
patibility, high stability, low toxicity, and less cost compared to plasmonic NPs [85]. 
ZnO NPs were used to combat Xanthomonas oryzae pv.oryzae, a highly contagious 
pathogen. Paenibacillus polymyxa bacterial strain was used as reducing agent in NP 
synthesis [75]. In the study, positive results were obtained in the leaf blight disease 
seen on the leaves of the rice plant. Aqueous extraction of leaves of Mentha spicata 
plant was used as reducing agent in green synthesis of ZnO NPs. Spherical NPs in 
the range of 10–90 nm were synthesized and its anti-viral activity against Tobacco 
mosaic virus (TMV) were investigated and successful results were obtained [1]. 

With the nanoencapsulation method of all chemicals used on plants, structures 
that allow the slow release of active ingredients are being developed [94]. In this 
context, by changing the solubility ratio of nanocapsule structures in aqueous media, 
the mixing ratio of active components in water and soil can be controlled. In a study, 
nano capsule surface design was made using poly(ethylene)glycol polymer. With 
this structure, a controlled release (CR) is made, allowing the active ingredients to 
be effective on plant pathogens for a long time. In another study, carbon nanotube-
citric acid (MWCNT-g-PCA) combined multilayer capsule design was created. This 
capsule design was studied on the fungus Alternaria alternata. With this design, 
inhibition of Alternaria alternata was achieved much faster and more effectively 
than in bulk pesticide applications [101]. 

5 Use of Nanomaterials for Detection 
and Identification of Plant Pathogens 

For rapid plant pathogen detection, many molecular analysis methods have been 
developed. However, these methods are generally high cost, slow, equipment and 
operator-requiring applications [61]. In the detection of plant pathogens, on-site and
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rapid analysis methods are generally advantageous in terms of application. For this 
reason, the existence of fast and efficient analysis methods at nano scale is important 
[22]. There are many studies in the literature for this purpose. Microneedle appli-
cations, nano-barcoding systems, nano-biosensors, miRNA-based nano diagnosis/ 
array-based nano-sensors, nano-diagnostic apparatus are recommended for plant 
pathogen diagnosis [102]. 

In a study, easy and effective detection of Phytoptera infestans, which is common 
in potatoes and tomatoes, was reported using a polymer-based microneedle patch 
approach [90]. In another study, a sensor system was reported in which plant 
pathogens were detected quickly by using microneedle patch application. In the 
application, the plant leaf was compressed in the sensor and quickly extracted. 
The obtained DNA and RNA samples were compared with the reference samples 
to provide the diagnosis. In this sensor application, the diagnosis process can be 
completed in 30 min in a phone application in coordination with the microneedle 
patch system [89] (Fig. 5). 

Another application developed for the rapid and effective detection of plant 
pathogens is the nano-barcoding system. This method is extremely efficient for the 
identification of specific enzyme-free proteins and nucleic acids. Compared to tradi-
tional ELISA based applications, it can give extremely sensitive results at low inten-
sity [77]. In a study, it has been shown that the target protein can be quickly taken 
from the plant and analyzed with oligonucleotide-modified magnetic Au NPs (Au-
MNPs). This study shows promise in terms of enabling rapid detection of sample 
DNA by optimizing other protein targets to the system [35]. 

Another method used in rapid diagnosis and diagnosis of pathogens is nanosen-
sors. Rapid and early detection of plant pathogens is possible with nano-bio sensors

Fig. 5 An integrated MN-smartphone microneedle amplification platform [89] 
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designed using especially metallic NPs, carbon nanotubes, and quantum dots [69]. 
In plant infections, the defects caused by bacterial and fungal microorganisms can be 
detected early and precautions can be taken with nanosensors containing microflu-
idics [8]. In a study conducted for this purpose, Aspergillus Ochraceus could be 
detected early with an immunoelectrode system designed with chitosan-doped SiO2 

NP. A sensor that detects zearalenone produced by the fungus Fusarium Oxysporum 
in a fast and sensitive way has been reported. In addition to these, a nanosensor was 
designed with layered nanocarbon structures to quickly detect zearalenone myco-
toxin in corn silages. In another study, an electrochemical immune sensor design that 
detects Aflatoxin M1 (AFM1) produced by the mold fungus Aspergillus flavus at very 
low concentrations (up to 0.01 ppb) has been reported [41]. In another study, a PCR 
technique applied together with AuNP-based lateral flow assay (LFA) was proposed 
for the detection of P. infestans fungus in potato plant. In the study, asymmetric PCR 
technique was applied to obtain a large amount of ssDNA, then the prepared sample 
was compacted by sandwich hybridization in LFA. In the presence of pathogen DNA, 
the AuNP probe on the test line of LFA turned red with the accumulation of target 
DNA on the kit. Afterward, the sensitivity of the kit was investigated by changing 
the ssDNA density. As a result of the study, it was shown that the hybrid sandwich 
kit prepared could detect the pathogen at the level of 0.1 pg/L [126]. 

A fast and portable colorimetric sensor was designed for the detection of 
Aspergillus niger fungus using Au NPs modified with a specific binding peptide 
ligand (Fig. 6). In this colorimetric sensor, rapid binding of A. Niger spores to Au 
NPs was achieved with peptide ligand. Upon binding of the peptide with spores, Au 
NPs coagulate, and a color change is observed in the separated supernatant. This 
design is simultaneously linked to a phone application. At the same time, it gives 
results up to 50 spores precision in less than 10 min.

The use of microfluidic techniques for the detection of plant pathogens is quite 
common in the literature [62]. 

The use of microfluidic devices with other plant pathogen detection systems is 
possible in device design. In a study, a microfluidic device design used in the diagnosis 
of viruses is presented. A microfluidic device was designed using an embedded 
optical fiber system and polydimethylsiloxane polymer. It was then tested using the 
leaves and flowers of the Phalaenopsis amabilis plant. With its RNA isolation and 
purification feature, this device can detect viruses quickly and instantly [54]. 

6 Conclusion and Future Remarks 

In conclusion, NMs have shown great potential for rapid identification of agricul-
turally important plant pathogens. Biosensors, microneedle analysis kits, and many 
more metal oxide NP-based systems have been used to provide fast, simple, and 
highly sensitive tools to diagnose plant diseases. However, while these techniques 
show great promise, much work remains to be done to fully realize the potential 
of NMs for the rapid identification of plant disease pathogens. For example, many
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Fig. 6 Detection system and colorimetric sensor of ASBP modified Au NPs (ASBP-AuNPs) via 
UV/Vis spectroscopy or smartphone-based image analysis [62]

of these techniques are still in the early stages of development and require further 
refinement and optimization. In addition, there are some challenges that need to be 
addressed, such as the potential toxicity of NPs and the cost of commercialization. 

In the future, we are likely to see continued progress in the development and appli-
cation of NMs for rapid identification of agriculturally important plant pathogens. 
As these techniques become more widely adopted, they have the potential to signifi-
cantly impact the way we detect and control plant diseases, helping to protect crops, 
reduce crop losses, and improve food security. In addition, the destruction of used 
diagnostic kits poses a great environmental threat. There is no comprehensive study 
for the destruction of NPs and quantum dots contained in sensors. On the other hand, 
considering the one-time use of the kits and the environmental pollution caused by 
the content, as well as the costs during production, it is thought that it will cause 
serious economic losses. 
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Emerging Role of Nanotechnology-Based 
Devices for Detection of Environmental 
Contaminants 

Deepyaman Das, Dipraj Chakraborty, and Suman Barman 

Abstract Nanotechnology has opened up new possibilities for detecting and moni-
toring environmental pollutants. Nanodevices, which are devices at the nanoscale 
level, have emerged as a promising tool for pollution detection due to their unique 
physical and chemical properties. Nanodevices can be designed to detect a wide 
range of pollutants such as heavy metals, organic compounds, and gases. They offer 
several advantages over conventional detection methods such as high sensitivity, 
selectivity, and specificity. Additionally, they are small, portable, and cost-effective, 
making them ideal for field-based monitoring of pollution. One of the most promising 
applications of nanodevices for pollution detection is in water quality monitoring. 
For example, researchers have developed nanodevices that can detect heavy metals 
in water at very low concentrations. These nanodevices work by binding to the heavy 
metal ions, producing a measurable electrical signal that indicates the presence and 
concentration of the pollutant. Nanodevices are also being used to monitor air quality 
by detecting harmful gases such as nitrogen oxides, carbon monoxide, and sulfur 
dioxide. These nanodevices are designed to be small and lightweight, making them 
ideal for integration into portable air monitoring devices. In conclusion, nanode-
vices are emerging as a powerful tool for pollution detection and monitoring. They 
offer high sensitivity, selectivity, and specificity, and can be designed to detect a wide 
range of pollutants. As the technology continues to advance, nanodevices are likely to 
play an increasingly important role in protecting the environment and human health. 
In this chapter, we discuss the emerging roles of gold, silver, copper, and titanium 
nanoparticles-based nanodevices that are being used for pollutant detection.
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1 Introduction 

Nanoparticles are tiny particles with sizes ranging from 1 to 100 nm. They can be 
made from a variety of materials, including metals, semiconductors, and polymers, 
and can have unique properties that differ from their bulk counterparts [12]. Due 
to their small size, nanoparticles have a high surface area-to-volume ratio, which 
makes them highly reactive and useful in a range of applications, from medicine to 
electronics. Nanoparticles can be synthesized using a variety of methods, including 
physical, chemical, and biological approaches. Physical methods include milling, 
laser ablation, and lithography, while chemical methods include sol-gel synthesis, 
precipitation, and hydrothermal synthesis [24]. Biological methods involve the use 
of living organisms, such as bacteria or fungi, to produce nanoparticles. 

Nanodevices are small devices that can detect and analyze environmental pollu-
tants at a very small scale. These devices can be used to monitor and analyze air, 
water, and soil pollution, among other things [1]. Nanodevices use nanotechnology to 
detect and analyze pollutants, and they can provide more accurate and precise results 
than traditional detection methods. One example of a nanodevice for environmental 
pollutant detection is a carbon nanotube-based sensor. These sensors can detect pollu-
tants such as carbon monoxide, nitrogen oxides, and volatile organic compounds in 
the air [32]. Carbon nanotubes are extremely small and have a large surface area, 
which allows them to interact with pollutants and detect them at very low concentra-
tions. Another example is a nanodevice based on gold nanoparticles. These sensors 
can detect heavy metals such as lead, mercury, and cadmium in water [28]. The gold 
nanoparticles are functionalized with specific molecules that can bind to the heavy 
metals, allowing them to be detected at very low concentrations [35]. Nanodevices 
have the potential to revolutionize environmental monitoring and pollution control. 
They can provide more accurate and precise data, and can be used to detect pollutants 
in real-time. They are also more cost-effective than traditional methods of pollutant 
detection. However, there are still some challenges to be overcome, such as ensuring 
the reliability and durability of the devices, and addressing potential environmental 
and health risks associated with their use. 

Also, nanodevices have shown great potential for detecting allergens in food 
and other environments. One example of a nanodevice for allergen detection is 
the immunosensor, which uses nanoscale materials to detect specific allergens. 
Immunosensors work by using antibodies that are attached to a nanomaterial surface 
[19]. When the allergen comes into contact with the antibody, it binds to the surface 
and produces a measurable signal, such as a change in electrical conductivity. This 
signal can be detected and used to identify the presence and concentration of the 
allergen [19]. Other nanodevices for allergen detection include nanomaterial-based 
optical sensors, which use changes in light absorption or reflection to detect aller-
gens, and nanomaterial-based electrochemical sensors, which measure changes in 
electrical current to detect allergens.
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Fig. 1 Pollutant remediation capabilities of Gold, Silver, Copper, and Titanium based 
nanoparticles. The green nodes represent the nanoparticle-based nanodevices and the pink nodes 
represent pollutants that they are capable of remediating. Note that three nanoparticle-based nanode-
vices are capable of remediating lead (Pb2+), two nanoparticle-based nanodevices are capable of 
remediating cadmium (Cd2+) and two nanoparticle-based nanodevices are capable of reducing CO 
emissions 

Overall, nanoparticles have unique physical and chemical properties that make 
them attractive for the development of nanodevices for environmental pollutant detec-
tion and remediation. Nanoparticles can be designed to selectively bind to specific 
pollutants and generate a detectable signal in response to their presence. Again, 
nanodevices have the potential to provide rapid and accurate detection of aller-
gens, which is important for individuals with allergies and for ensuring the safety 
of food and other products. This chapter discusses various nanodevices based on 
gold, silver, copper, and titanium that are being used for environmental pollutant 
detection (Fig. 1). 

2 Gold Nanoparticle-Based Nanodevices in Environmental 
Pollution 

The nanoparticles based on gold also called Gold Nanoparticles or GNPs have been 
heavily used to prepare nanodevices and engrossed in different fields of biology 
including medical sciences [7]. It has been shown, that these gold-based nanodevices 
are very useful in detecting environmental pollutants such as heavy metals as they
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show the typical surface plasmon resonance and absorption property depending on the 
shape, dimensions, and intermolecular distance [45]. One such device was shown by 
Wei Ha et al. who developed an eco-friendly heavy metal detection process that uses 
GNPs orchestrated with Xanthocerus sorbifolia tannin as a color imparting probe. 
Here the Cr3+ detection both in river water and tap water was done by colorimetric 
method after Xanthocerus stabilized GNPs were successfully able to chelate with 
Cr3+. Subsequently the aggregation of GNPs induced the change in color from red 
to purple quickly [10]. Similar device was developed to detect Hg2+ ions in aquatic 
environment where citrus fruits such as Citrus limon and Citrus limmeta were used to 
prepare gold-based nanoparticles and colorimetric detection technique was employed 
to search Hg2+ in micromolar concentration in water [29]. It has been found that 
the Hg2+ ions can also be detected by colorimetric method using gold nanoparticles 
functionalized by poly gamma glutamic acid (PGA) [9]. Negatively charged PGA was 
assembled using an electrostatic self-assembly process on top of positively charged 
cetyltrimethylammonium bromide (CTAB)-capped GNPs. The color of the solution 
would evolve from light red to purple blue as the quantity of Hg2+ increased. With 
correlation values of 0.998 and 0.991, respectively, the results demonstrated that the 
absorbance ratio (A750/A580) was linear with the Hg2+ concentration in the range 
of 0.01–10 µM and from 50 to 300 µM. The determination of Hg2+ in tap water 
and mineral water using this method was effective, with recoveries ranging from 90 
to 103% and from 103.53% to 113%, respectively. The suggested approach allows 
for the quick, inexpensive, and equipment-free analysis of Hg2+ in a variety of water 
samples. The polluting agent Pb2+ can also be detected by GNPs. In aqueous solution, 
Au3+ is stabilized and transformed into gold nanoparticles by glutathione (GSH) 
[23]. These GNPs aggregate in the presence of Pb2+ ions in NaCl containing aqueous 
solution and can be monitored by both colorimetrically and UV-vis spectroscopy [23]. 
Another device for detecting Pb2+ was developed by Karuvath et al., where gallic acid 
was used to produce GNPs at room temperature [42]. To detect the presence of Pt2+, 
Pd2+, and Co2+ at micromolar concentration peptide-functionalized GNPs have been 
demonstrated as useful nanodevices [33]. An important biomarker for tracking plant 
damage caused by heavy metal stress is vitronectin-like proteins (VN), which are 
found on the surface of plant cells. To track hidden damage to plant cells brought on by 
cadmium (Cd) or lead (Pb), a live plant cell-based biosensor has been developed [39]. 
L-cysteine was first changed on a glassy carbon electrode, then anti-IgG-Au antibody, 
in order to create this sensor. The live plant cells were then modified onto the electrode 
and treated with the anti-VN. By detecting changes in electrochemical impedance, 
the sensor operated. In the linear dynamic ranges of 45–210 and 120–360 µmol L−1, 
respectively, Cd and Pb were identified. Additionally, this biosensor’s Cd and Pb 
detection limits were 18.5 nmol L−1 and 25.6 nmol L−1, respectively [39]. Pb2+ can 
also be detected rapidly in soil by producing GNPs strip biosensor functionalized 
by GR-5 DNAzyme. Here the graphene oxide provides assistance to detect Pb2+ 

ions specifically [37]. In the presence of additional divalent metal ions, the strip 
biosensor displayed high selectivity toward Pb2+. The obtained recoveries for actual 
soil samples ranged from 91.5 to 113.1%. Thus, gold nanoparticle-based devices are 
emerging as technological breakthrough in environmental pollution detection.
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3 Silver Nanoparticle-Based Nanodevices in Environmental 
Pollution 

Silver-based nanodevices can be an effective tool for detecting environmental pollu-
tion. Nanoparticles of silver have unique optical and electronic properties because 
they are capable of absorbing and scattering light efficiently [6]. This property can be 
utilized in a variety of sensing applications. Heavy metal ions are a major source of 
environmental pollution [5]. Silver nanoparticles can be functionalized with ligands 
that selectively bind to specific metal ions, allowing for their detection in environ-
mental samples. Based on a linear change in the strength of the surface plasmon reso-
nance absorption, it is shown that polyvinylpyrolidone-modified silver nanoparticles 
(AgNPs) can detect the concentration of the heavy metal contamination Fe3+ ions in 
water [27]. Another study reported that Hg2+ and Cu2+ detection in water is possible 
using various concentrations of AgNPs [22]. In order to identify Hg2+ present in 
water using a colorimetric approach, AgNP was functionalized using 3-mercapto-1, 
2-propanediol (MPD). When Hg2+ solution was added to MPD-functionalized AgNP 
(MPD-AgNP), new peak at about 606 nm appeared. The aggregations brought on by 
MPD-AgNP’s detection of the heavy metal ion Hg2+ through the dipropionate ion 
may be the cause of the new peak. Also, neem extract-based AgNPs offer good solu-
tion for eradicating heavy metal toxicity. It was reported that at micromolar concentra-
tions, sun-dried neem leaf extract-based AgNPs (ND-AgNPs) selectively sense Hg2+ 

and Pb2+ [15]. AgNPs made from neem bark extract demonstrated selective colori-
metric sensing of Zn2+ and Hg2+. AgNPs made from green tea extract (GT-AgNPs) 
and mango leaf extract (MF-AgNPs) also demonstrated selective colorimetric detec-
tion of Hg2+ and Pb2+ ions [15]. Hg2+, Pb2+, and Zn2+ selective colorimetric sensor 
characteristics were present in AgNPs made from pepper seed extracts. Importantly, 
these environmentally friendly synthetic AgNPs were capable of detecting the pres-
ence of dangerous metal ions in aqueous solutions throughout a wide pH range 
(2.0–11), which is a highly desirable property from the standpoint of various water 
pollution sources. 

Silver nanoparticles can be functionalized with biomolecules or polymers that 
selectively bind to organic pollutants, such as pesticides or hydrocarbons. This can 
allow for the detection of these pollutants in environmental samples. A sizable portion 
of water contaminants are organic pollutants. They damage aquatic life and terres-
trial life through drinking water when present in water. Pesticides, organic dyes, 
pharmaceuticals, nitro-aromatics, and mycotoxins are just a few of the several forms 
of organic pollutants that can be found in the environment. In agricultural produc-
tion, pesticides are used to lessen crop damage from weeds and pests [44]. Organic 
dyes, which are utilized in textiles, leather, paints, papers, and plastics, are made 
up of a generous number of intricate aromatic compounds [43]. Due to their severe 
toxicity, nonbiodegradability, and potential to change into agents that are carcino-
genic, teratogenic, and even mutagenic, pesticides and organic dyes have garnered a 
lot of attention as environmental pollutants from a worldwide perspective [13]. For 
the detection of pharmaceuticals, nitro-aromatics [30], pesticides [11], organic dyes
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[8], and mycotoxins [17], AgNP-based optical sensors have been described. When 
compared to optical sensors, electrochemical sensors, such as those based on AgNP, 
are thought to be more capable of detecting organic contaminants with enough sensi-
tivity and selectivity [40]. They also take less time to set up and take less effort. While 
different targeted analytes need to be transformed into detectable species for optical 
sensors, targeted analytes can be detected immediately by electrochemical sensors. 
Electrochemical sensors can be used for in situ studies since they can directly detect 
the desired analytes. Electrochemical sensors can also track the evolution of analyte 
concentration over time. 

Silver nanoparticles have been shown to have antimicrobial properties, which can 
be utilized in the detection of bacteria and viruses in environmental samples. It has 
been proposed that the lipid-enveloped virus’s exterior membrane can be bound by 
silver nanoparticles (AgNPs) to stop infection [18]. Nevertheless, little is known 
about how AgNPs interact with viruses. AgNPs have been examined specifically in 
relation to HIV, where it was shown how the nanoparticles work against viruses as 
well as how they prevent the spread of HIV-1 infection in human cervix organ culture 
[18]. Silver nanoparticles can be incorporated into gas sensors to detect air pollutants, 
such as carbon monoxide [16]. Overall, silver-based nanodevices have the potential 
to be an effective tool for detecting environmental pollution. However, more research 
is needed to optimize their performance and develop practical applications for their 
use. 

4 Copper Nanoparticle-Based Nanodevices 
in Environmental Pollution Detection 

Copper-based nanodevices can potentially be used for environmental pollutant reme-
diation. Copper nanoparticles have been shown to have antibacterial properties. The 
chitosan-copper nanoparticles’ exceptional high surface-to-volume ratio allows them 
to make contact with the P. aeruginosa cell membrane through its surface, ultimately 
killing P. aeruginosa [36]. Thus, it can be used to remove pollutants from contam-
inated water. They can also be used to detect pesticides and dyes. Like, Thiram is 
essential in preventing many crop diseases from harming fruits and vegetables, but 
its leftovers have a negative impact on the environment and pose a substantial risk to 
human health. According to a study, Tween 80-capped copper nanoparticles (Tween 
80-CuNPs) are a practical and affordable colorimetric probe for the targeted detec-
tion of the pesticides thiram. The CuNPs-based colorimetric probe with a Tween 80 
cap demonstrated good selectivity and high sensitivity (LOD around 0.17 M). The 
maximum residue limit (MRL) set by the governments of the Europe and Vietnam 
was found to be higher than the thiram limit of detection (LOD) of the proposed 
sensor [3]. Copper nanoparticles can also be used to remove heavy metals from 
water by adsorbing them onto their surfaces. The adsorption application of CuO NPs
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on the removal of Pb2+, Ni2+, and Cd2+ is shown to be dependent on the nanosor-
bent dosage, the metal ions concentration, pH, and the contact duration, as demon-
strated by the green CuO NPs synthesized using mint leaf and orange peel extracts 
as reducing agents. These metal ions had an affinity for CuO NPs in the order Pb2+ > 
Ni2+ > Cd2+. For demonstrating wastewater remediation under typical environmental 
circumstances, the removal efficiency of Pb2+, Ni2+, and Cd2+ was determined to be 
84.000, 52.50%, and 18,000%, respectively, and attained at pH 6. With CuO NPs-
1, the highest adsorption uptakes for Pb2+, Ni2+, and Cd2+ were 88.80, 54.90, and 
15.60 mg g−1 [20]. According to these results, CuO NPs can effectively remove 
heavy metals from polluted water, and more research into their regeneration and 
reuse is necessary. 

Copper oxide nanowires can be used for the photocatalytic degradation of pollu-
tants. When exposed to light, copper oxide nanowires can break down pollutants, 
such as organic dyes, into harmless substances. For example, The Allura Red AC 
(AR) dye, an organic pollutant/food dye, was degraded effectively by porous CuO 
nanosheets, as demonstrated by a color change from red to colorless and moni-
tored by UV-vis spectrophotometric analysis [25]. Copper-based sensors can also be 
used to detect pollutants in the environment. For example, copper oxide nanowires 
can be used to detect nitrogen dioxide, a common air pollutant [38]. Copper-based 
electrochemical sensors can also be used to detect heavy metals like lead (Pb) in 
surface water [14]. Lastly, copper-based catalytic converters can be used to reduce 
the emissions of pollutants from cars and other vehicles. Copper-based catalysts can 
convert harmful pollutants, such as carbon monoxide and nitrogen oxides, into harm-
less substances. It has been reported that a copper-based catalytic converter reduces 
the hydrocarbon and CO emissions from a four-stroke single-cylinder Compression 
Ignition (CI) engine by 38% and 33%, respectively, at full load [2]. Overall, copper-
based nanodevices hold great potential for environmental pollutant remediation, and 
research in this field is ongoing. 

5 Titanium Nanoparticle-Based Nanodevices 
in Environmental Pollution Detection 

Titanium nanodevices have the potential to be used in a variety of environmental 
applications, including pollution control and remediation. The formation of titanium 
metal and titanium oxide nanoparticles is just a couple of the many useful features 
and uses of titanium oxide (TiO2). Rutile titanium dioxide and anatase titanium 
dioxide are its two main forms. Their outward appearances are what distinguishes 
them the most. Rutile titanium dioxide often has a dark red hue while anatase tita-
nium dioxide is colorless. Anatase titanium dioxide has an optically negative spec-
trum, whereas rutile titanium dioxide has a positive spectrum [41]. Titanium dioxide 
(TiO2) is a common material used in water purification due to its ability to break 
down organic pollutants and harmful microorganisms. When exposed to ultraviolet
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light, TiO2 nanoparticles can produce reactive oxygen species that can oxidize and 
destroy pollutants. This process is known as photocatalysis and has been shown to be 
effective in removing a wide range of contaminants from water, including pesticides, 
dyes, and pharmaceuticals. According to [26], Degussa P-25, a commercially avail-
able TiO2 photocatalyst, contains roughly 25% rutile and 75% anatase form [26]. 
Numerous researches have applied it as a benchmark for photocatalytic degradation 
[34]. Furthermore, TiO2 anatase form, which is more effective than rutile form due 
to its increased surface area and open structure, was the most extensively employed 
photocatalyst [4]. 

Titanium nanodevices can also be used to purify the air. TiO2 nanoparticles can be 
coated onto air filters or used as a thin film on surfaces to break down pollutants when 
exposed to light. This technology can be particularly useful in indoor environments 
where air quality is a concern, such as hospitals or schools. Accordingly, it was found 
that Saudi myrtle plants treated with TiO2, reduced the concentrations of formalde-
hyde, TVOCs, NO2, SO2, and carbon monoxide (CO) from 0.251, 401, 0.032, 0.009, 
and 0.99 to 0.014, 54,0.0003, 0.003, and 0.01 in air in the fourth day after intervention 
[31]. Titanium nanodevices can also be used to remediate contaminated soil. Cu and 
Cd were observed to be eliminated by 88.01% and 70.67%, respectively from soil, 
upon application of NTiO2-NCh [21]. Overall, the use of titanium nanodevices in 
environmental pollution control and remediation shows promise and warrants further 
investigation and development. 

6 Conclusion 

While nanodevices have shown great potential for detecting pollutants, there are 
several limitations and shortcomings that need to be addressed before they can be 
widely used for environmental monitoring. For example, nanodevices can detect very 
low levels of pollutants, but their sensitivity can be affected by various environmental 
factors, such as temperature, humidity, and interference from other chemicals. Also, 
nanodevices can also be prone to false positives or false negatives, as they may not 
be able to distinguish between similar chemicals or may react to other substances in 
the environment. Some nanomaterials used in nanodevices might also be sensitive 
to oxidation, moisture, or temperature, which can affect their stability and accu-
racy over time. Lastly, developing and producing nanodevices can be expensive, 
which can limit their accessibility and affordability for widespread use. Overall, 
while nanodevices hold great promise for detecting pollutants, their limitations and 
challenges need to be carefully considered and addressed to ensure their successful 
implementation for environmental monitoring.
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Nanotechnology-Based Point-of-Care 
Diagnostics and Therapeutics 
for Neurological Disorders 

Debayan Banik and Rama Ranjan Bhattacharjee 

Abstract In today’s world, there is a growing population of people suffering from 
neurological disorders. Many inherit such diseases due to hereditary reasons and 
many due to the very complex environment and societal reasons. One way of fighting 
this kind of problem is to detect it in very early stages and then start treatment so that 
the disease cannot mature. There are many techniques in which these neurological 
disorders can be tracked easily but are not easy to use and available due to constraints 
in the technology. Nanotechnology has played a key role in providing solutions to 
such problems, especially point of care devices and non-invasive techniques have 
recently evolved where nanomaterials and nanotechnology can play a vital role in 
making sure that accurate detection and analysis can be done without compromising 
the safety and security of the patients. 

Keywords Parkinson’s disease · Cerebrovascular disease · Alzheimer’s disease ·
Traumatic brain injury · Nanomaterials · Applications · Uses 

1 Introduction 

Promising candidates for fluid sensing with better responsivity, selectivity, quick 
response, high stability, and accuracy but at low cost and easy to tailor made are 
chemiresistive sensors. These sensors are more reliable and are versatile for diverse 
uses. In this chapter we are focused on detecting VOCs that are present in the exhale 
breadth of patients and non-invasive techniques for the detection of diseases like 
COVID-19, Parkinson’s, disease and Alzheimer’s disease. Neurological diseases are 
some of the most common and complex diseases affecting the central nervous system
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(CNS). The blood-cerebrospinal fluid barrier also called blood brain barrier (BBB) 
regulates the stability of the nervous system and also helps maintain a fragile microen-
vironment that inhibits the release of therapeutic moieties to the central nervous 
system and controls diseases in the nervous system. Parkinson’s Disease (PD), Cere-
brovascular Disease (CVD), Alzheimer’s Disease (AD), and Traumatic Brain Injury 
(TBI) are difficult to cure. Nanoparticle (NP) induced technology provides a platform 
for the development of specific drug delivery network due to its sustainability. Effec-
tive NPs have increased interest in the field of nanomedicine that can successfully 
cross the BBB and sustain high drug bioavailability in the neural parenchyma. NPs 
also exist in various forms such as solid lipid nanoparticles (SLNs), quantum dots, 
polymeric NPs, and liposomes, making it easy to combine with different molecules 
such as surfactants to deliver the body’s needs or medicine. 

This nano-delivery process represents a new possibility for the medicament and 
diagnosis of neurological diseases with less invasiveness. Most plan of actions like 
efflux mechanisms, including adsorption-mediated transcytosis (AMT) and receptor-
mediated transcytosis (RMT), target-specific biological indicators, or lesions, are 
used as common tactics to change the ability of NPs to cross the BBB. Thereby 
increasing tissue-specific targets and minimizing adverse side effects. This article 
provides an understanding of the neurological and CNS drug delivery problems due 
to the presence of the BBB, presenting an in-depth review of nanoparticle-based 
theranostic and medicament strategies [1]. Other than diseases like cancer, bacte-
rial infections, heart disease, COPD, and renal failure, neurological disorders (NDs) 
cause significant numbers of deaths and have high mortality rates across the globe. In 
clinical settings, NDs are lately detectable and have limited treatment options. NDs 
are chronic diseases and have poor prognosis. Neurological disorders can cause large 
number of abnormalities ranging from paralysis, Alzheimer’s Disease (AD), epilepsy, 
brain tumors neuromuscular disorders, etc. Under such a limited scope of clinical 
treatment available, nano-technology brings a lot of advantages to combat ND. Nano-
technology increases the scope of treatments and helps to overcome the hindrances. In 
recent biomedical science research, point-of-care diagnostics and therapeutics has 
evolved massively. Affordable and quick diagnostic approach has been the major 
concern in point-of-care clinical settings. In today’s clinical settings, personalized 
medicines are playing a crucial role. The 2019 coronavirus (COVID-19) was a global 
crisis because it is spreading rapidly and is causing many deaths and damages. The 
number of people infected with the virus severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), which seeds the disease COVID-19, thereby increasing 
rapidly globally. Patients affected with COVID-19 may build pneumonia, severe 
acute thoracic and respiratory distress syndrome (ARDS) symptoms, and multi-organ 
failure. There is an increasing clinical report that immune patterns are linked with 
infection in infected individual. Decreased peripheral white blood cells like T cell 
subsets are a specific feature of individual with acute respiratory disease (SARS). In 
the recovered patients, there was a rapid recovery of peripheral T cell subsets; there-
fore, peripheral blood T cell count may be a precise diagnostic tool for SARS. Study 
showed alike phenomenon, in which the immune system was found to be affected 
during SARS. Another study found that Ebola patients had fewer natural killer (NK)
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cells compared to healthy donors. After the onset of Ebola symptoms, proinflam-
matory cytokines were elevated, while recovered patients had low cytokines. With 
increasing awareness of the relationship between the immune system’s response to 
COVID-19, the immune system is now recognized as a potential infection marker 
and is a clinical target for COVID-19 [2–5]. 

2 Molecular Mechanism of Neurological Disorders 

Neurodegenerative diseases are characterized by brain protein aggregates, increased 
number of neurons, synaptic abnormalities that result in decreased memory, cogni-
tion, and motor symptoms. The main factors that cause neurodegenerative diseases 
are still under research and unknown, but many risk factors have been identified, like 
genetic mutations of many types of diseases, environmental pollution, and family 
history. The genetics of neurodegenerative diseases have been determined. Recent 
advances have been made in research on the use of genes related to neurodegenerative 
diseases. Several case studies and research have shown that the BBB undergoes patho-
physiological changes, leading to less endothelial tight junction working molecules. 
These are defined as neuroinflammation-induced “collapse” which increases BBB 
permeability. The phenomenon results in the response to treatment in the brain of 
patients with neurodegenerative diseases is different from that of the normal brain. 
The behavior of pathological changes in the blood-cerebrospinal fluid barrier in influ-
encing drug distribution to the brain is still not crystal clear. It should be noted that 
the neurodegenerative brain enlarges leaving more brain pharmacokinetics than the 
normal brain [1, 6–8]. 

3 Molecular Mechanism of Alzheimer’s Disease (AD) 

The most recurrent cause of dementia is AD. Nearly 70% of dementia diagnoses are 
due to AD. The biggest factor for having AD is aging. Most patients of the age greater 
than 60 suffer from AD. The fundamental feature of the neurodegenerative disease 
Alzheimer’s is cognitive loss. Memory impairment is one of the first and most promi-
nent symptoms. Cognitive loss leads to deficits in language as the illness progresses. 
Further visuospatial orientation and motor function is observed. Multiplex proteins, 
which are extracellular aggregates of amyloid (Aβ) tend to gather at the cerebral 
cortex of AD individuals like senile plaques. The amyloid cascade hypothesis was 
the best-known hypothesis to explain AD pathology that ultimately leads to neuroin-
flammation, neuronal damage, neurofibrillary tangles, and death. Other effects can 
be impaired neuronal communication and other pathological manifestations of AD. 
Conflicting results suggest that accumulation of Aβ plaques may not be the cause 
of AD development. According to some research, a plaque doesn’t form until after 
neurofibrillary tangles do. Due to contradictory evidence, the main contribution of
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Fig. 1 Mechanisms of 
neurodegeneration in AD. 
Aβ dimers, trimers, and 
oligomers build up as a result 
of abnormal cellular 
processes, which hinder 
neurogenesis and damage 
synapses [15]. Adopted from 
https://www.ncbi.nlm.nih. 
gov/pmc/articles/PMC287 
5049/pdf/ddq160.pdf/?too 
l=EBI 

Aβ in the pathogenesis of AD remains controversial. Further research is needed in 
the future to determine the mechanisms leading to AD pathogenesis [9–14]. 

The methods through which APP metabolites such as Aβ monomers and oligomers 
can result in synaptic degeneration and other types of neurodegenerations are unclear. 
Possibilities like creation of pore-like structures with channel functions; Circuit 
hyperexcitability; mitochondrial dysfunction; Connection with lysosomal failure and 
synaptic plasticity; changes in glutamate receptors and excitotoxicity; neurogenesis 
and alteration of signaling pathways associated with neuronal cell death. Previous 
research studies have shown that various expression of molecules is involved in the 
neurological disorder processes, including glycogen synthase kinase 3β, fyn kinase, 
and cyclin-dependent kinase. Other signaling pathways include the MAPK family 
such as JNK and ERK and others such as p21-activated kinase (Fig. 1). Sudden 
activation of signaling pathways can lead to synapse dysfunction and neurogenesis 
by promoting cytoskeletal abnormalities, activation of caspase-mediated apoptotic 
pathways, tau phosphorylation and aggregation, and increasing calcium and calpain 
changes [15]. 

4 Present Therapeutic Treatment Strategies for AD 

Recently, AD treatment has focused on improving memory by enhancing antioxi-
dants, calcium channel blockers, and cholinergic neurotransmission. More recently, 
the target has been on minimizing the accumulation of Tau or Aβ. Alternatively to 
preserve the selected neuronal population and promote synapse creation and neuro-
genesis. Various methods are presently being pursued to reduce Aβ aggregation 
by

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875049/pdf/ddq160.pdf/?tool=EBI
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875049/pdf/ddq160.pdf/?tool=EBI
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875049/pdf/ddq160.pdf/?tool=EBI
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875049/pdf/ddq160.pdf/?tool=EBI
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(i) block the β- or  γ-secretase pathway or increase α-secretion Enzyme activity 
to regulate APP proteolysis. 

(ii) anti-aggregation drugs that block oligomers and fibrils, 
(iii) reduce APP production (e.g. siRNA), 
(iv) increased clearance by lysosomal and proteasomal pathways, 
(v) control APP activity by altering cholesterol and lipid metabolism, 
(vi) increased clearance of Aβ by activation degradation (e.g. NEP and IDE 

delivery), 
(vii) neurotoxic Aβ oligomers (e.g. G. Fyn kinase, GSK3β and CDK5 inhibitors, 

and glutamate receptor blockers) and 
(viii) increased clearance of Aβ by immunoglobins, ApoE, and other chaperones 

(such as HSP70). 

Neuroprotective tactics include the use of neurotrophic agents (e.g., brain-derived 
neurotrophic factor, nerve growth factor), calcium channel blockers (e.g., meman-
tine), antioxidants (e.g., curcumin, vitamin E), neuroprotective peptides (e.g., cere-
brolysin), and Tau. Tau is also an important target. Recent studies have shown that 
APP transgenic mice are protected from Aβ toxicity in a Tau-deficient background. 
Tau has been targeted by minimizing Tau formation or by reducing the phosphory-
lation of Tau with compounds such as lithium. In addition to conventional admin-
istration routes and minor oral techniques, new methods are currently being tested, 
including vaccines, lifestyle changes to improve neurogenesis, gene therapy, the use 
of lipid-conjugated compounds, and intrathecal administration [15–19]. 

5 The Blood Brain Barrier (BBB) as Blood-Cerebrospinal 
Fluid Barrier 

Three cellular components of the brain microvasculature are pericytes (PCs), BBB-
endothelial cells, and astrocyte endopods. Close junctions exist between the brain’s 
endothelial cells to form a selective barrier to prevent blood from entering the brain. 
Astrocyte terminals tightly assemble around the vessel wall and appear to be impor-
tant for initiation and maintenance of the close junction barrier. Poor functioning of 
the BBB, such as a bad junction seal can lead to many diseases in the brain, including 
stroke and neuroinflammatory diseases. The consequences of increased BBB results 
in permeability in hypoxic-ischemia and inflammatory processes, including HIV-
induced dementia, BBB in septic encephalopathy, Alzheimer’s disease, and multiple 
sclerosis [20].
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6 Nanotechnology Approaches Break 
the Blood-Cerebrospinal Fluid Barrier and Deliver 
Targeted Drugs to the Specific Central Nervous System 
Site 

Nanotechnology deals with materials and equipment that have worked on the scale 
from a few nanometers to 100 nm. Nanoengineered materials and tools applied in 
chemistry and medicine, particularly neuroscience, are designed to interact with 
tissues and cells at the atomic level. The creation of procedures and methods 
for pharmaceuticals and other tiny molecules to interact with the central nervous 
system (CNS) is a particularly significant use of nanotechnology. These species 
involve genes, oligonucleotides, and agents to work differentially to cross the blood-
cerebrospinal fluid barrier. BBB isolates and protects CNS structures from the rest 
of the body and creates a special biochemical and protective surrounding. The CNS 
structures include brain and spinal cord. Clinically, in many cases, drugs or other 
small molecules must enter the CNS after systemic administration. The species must 
travel the BBB. Nanotechnology can be designed to perform many specific func-
tions simultaneously or in a predetermined manner that are important for successful 
therapy and use of drugs and other molecules in the CNS. Hence nanotechnology 
has a unique advantage over other complementary technologies and methods. Most 
studies to cross the BBB with nanotechnology have focused on the delivery of anti-
neoplastic drugs to CNS solid tumors. For example, radiolabeled polyethylene glycol 
coated cetylcyanoalkanoate nanospheres were tested for their targeting and aggrega-
tion abilities in mouse gliosarcoma models. Others achieved good result by encap-
sulating the antineoplastic drug paclitaxel in poly(lactic-co-glycolic acid) NPs. In 
vitro experiments with 29 different malignant cells showed 13 times higher target 
cytotoxicity than the drug alone. Researchers demonstrated that drugs are transported 
by nanoparticles with high encapsulation efficiency. They used a variety of physical 
and chemical methods, including multiple spectroscopy and atomic force microscopy 
techniques. Studies focusing on the delivery of many antineoplastic drugs are impor-
tant. Many of these drugs are poorly soluble in physiological conditions. Hence these 
drugs face insufficient intake issues, which can have serious side effects. In another 
case, several compounds were functionalized on the surface of poly(butyl cyanoacry-
late) nanoparticles coated with polysorbate. These included neuropeptides such as 
enkephalin, the N-methyl-D-aspartate receptor antagonist MRZ 2/576, and the drug 
doxorubicin. Polysorbate on the surface of nanoparticles adsorbs apolipoproteins 
B and E and is absorbed by the brain capillary endothelium by receptor-mediated 
endocytosis cellular uptake. Nanoparticle-functionalized doxorubicin delivery was 
investigated in mouse glioblastoma models. More importantly, recent studies in a 
mouse model of glioblastoma showed significant release with minimum toxicity, 
laying the groundwork for clinical trials. Non-pharmacological molecules, including 
genes, oligonucleotides other agents should cross the cerebrospinal fluid barrier for 
therapeutic or diagnostic purposes for any other applications. Lipid NPs function-
alized with iron oxide along with microemulsions of coagulated oil nanodroplets
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injected into mice, have been shown to cross the BBB and get stored in the brain 
with long-term kinetics. Iron oxide is a typical superparamagnetic magnetic reso-
nance imaging (MRI) contrast agent. Since iron oxides are insoluble in water, they 
must be used in the form of modified colloids for medical applications. Usually, 
coating iron oxide NPs with hydrophilic molecules such as dextran solves problems. 
Iron oxide could provide a new way to image CNS using MRI by exploiting the 
efficiency of lipid NPs to cross the BBB [21]. 

A reliable chemi-resistor containing an immediate sensing layer clubbing the 
combination of electrodes which became a promising applicant. Furthermore, the 
advantages are not limited to easy fabrication, can be used in very minimum quantity 
(in milligram unit), and highly distributed adoption of sensitized materials. Therefore, 
chemi-resistors gain popularity in certain commercialization. 

Chemi-resistors for gas sensing have the following three main processes: 

• charge carrier transport unit 
• surface reaction unit (including charge transfer), and 
• diffusion/molecule capture unit, 

Until now, most of these sensors and/or sensor arrays utilize sensing elements that 
are based on transduction mechanism or single material. Usually, intrinsic sensing 
activity or additional thermal/photonic energy is employed as the driving force to 
activate sensing effects of target gases. 

Few demerits are: 

(i) Due to the high affinity of conductive polymers like polyaniline, polypyrrole, 
and polythiophene toward volatile organic chemicals and humidity present in 
the atmosphere, there was a lack of long-term stability and sensitivity of organic 
chemi-resistors. 

(ii) baseline drift, high functioning temperatures (>200 °C), oxidation/ 
decomposition, and fixed selectivity of VOCs in the case of inorganic mate-
rials (mainly metal oxide materials, e.g., TiO2, SnO2, ZnO, etc.-based chemi-
resistors. 

An effective solution to such downside is the design and utilization of new gas 
sensing materials based on hybrid organic–organic, inorganic–organic, and inor-
ganic–inorganic hybrid materials as sensitive transducer possess several advantages 
compared with the single constituent. Such as: 

• To create unique sensing behaviors, it is feasible to combine an essentially limit-
less continuum of changeable components (interface-dependent factor, surface-
dependent factor, and structure-dependent factor). This is due to the inexhaustible 
supply of hybrid materials (both in the innovative nanostructures and in the 
intricate constituents). 

• Second, hybrid materials could be used to add an increasing number of chem-
ical/physical processes with various improved mechanisms. Through a catalytic 
interaction with charge transfer, analyte, molecular binding/sieving, charge carrier 
transport manipulation/construction of heterojunctions, and their combinations,
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hybrid materials make it simple to accurately regulate, create, and enhance sensing 
performance. 

7 Hybrid Chemi–Resistive Gas Sensors 

Improved sensing properties can be achieved by hybrid materials using one or a 
combination of the five fundamental hybridizing types. These forms are divided into 
five sensing-governed factors: 

• The first factor is based on a quick charge transfer procedure. Such process is 
often referred to as electron acceptor or acceptance between guest and additive, 
carrier withdrawal or donation between the host material (for example CNTs) and 
reduced graphene oxide (rGO) (classified as an interface dependent factor). 

• The second combination relies on catalytic processes. It takes place between 
analyte gas and decorated catalysts on the surface of the host semi-conductive 
material using noble metal catalysts, such as Pt, Pd, Au, and Ag. 

• The third relies on regulating the charge carrier transport in a conductive/ 
semi-conductive materials like gold nanoparticles (GNPs)-thiols, like CNT-
metallo-supramolecular polymer (MSP), and less with N,N'-diphenyl perylene 
tetracarboxylic diimide (PTCDI-Ph)/para-sexiphenyl upon reaction with gas 
analytes. 

• The fourth focuses on the building of heterojunctions made of heterogeneous 
semi-conductive materials such as n–n, p–n, p–p, and p–n–p (classified as an 
interface-dependent factor). 

• The final method depends on semiconductors functionalized with ligands or 
complexes that selectively bind to sieve gas molecules. 

8 Role of Nanomaterial in Detection of VOCs 

The nanostructure of electrodes working with nanocarbon modifiers has new 
attractive properties such as: 

• simple physical adsorption through Van der Waals interactions onto electrodes. 
• because of their incredibly high conductivity in some directions, they have quick 

electron transfer kinetics. 
• high surface area, which enhances volatile organic molecules adsorption. 
• due to their special electrical or plasmonic structure, catalysts are highly selective 

and adjustable. 
• and adjustable surface chemistry for a specific capture probe or analyte species 

in the direction of the assembly.
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9 Role of Carbon Nanomaterials 

VOC gas sensors using carbon-based nanomaterials have attracted increasing atten-
tion due to their advantages such as low power consumption, miniaturization, and 
incorporation into portable devices for medical diagnostics. However, it is difficult 
for weather sensors to select the response to certain VOC biomarkers and ensure 
that they are unaffected by other factors. Il-Doo Kim et al. reported a sensitive and 
selective acetone sensor using SnO2 nanofibers functionalized with rGO nanolayers. 
Furthermore, the LOD on this acetone sensor is low (100 ppb). The authors believe 
the sensor could be very fine and select the response to acetone residues in the breath, 
so that diabetes can be successfully diagnosed. As we all know, the exhaled air is 
mostly with water molecules, which causes the water vapor effect of the air sensors 
and affects the detection accuracy of the target VOC analytes. Therefore, the use of 
carbon-based nanomaterials has been developed to create humidity-sensitive VOC 
gas sensors to provide accurate detection of target VOC gases in inspired air (Table1). 
However, it is not easy to obtain good sensors with good moisture resistance, low 
LOD, and high detection selectivity at the same time. The PVDF-HFP sensor, for 
instance, was made to be insensitive to humidity, but its detection limit for VOC 
gases is higher than the amounts of VOC gases in exhaled human breath. The rGO/ 
CuO sensor’s resistance value may be resistant to water vapor, but this introduces 
the issue of high operating temperatures. The effective detection of biomarkers and 
non-invasive diagnosis of various diseases hence requires additional advancements 
in the sensing performance of VOC sensors utilizing carbon-based nanomaterials. 

Table 1 Examples of chemi-resistive response of original and modified CNTs toward different 
gases 

Material Gas detection Detection range Working temperature 

CuxO/multilayer graphene NOX 97 ppb–97 ppm RT 

rGO/NiO NO2 0.25–60 ppm RT 

ZnO QDs/graphene HCHO 25–100 ppm RT 

SnO2/Rgo H2S 10–100 ppm RT 

Graphite/polyaniline NH3 50–1600 ppm RT 

SnO2/graphene CH4 3.3–100 ppm 150 °C 

SnO2 CQD/MWCNT H2S 100–1000 ppm 70 °C 

rGO/TiO2–Nb CO 50 ppb–50 ppm 380 °C 

Fe3O4@rGO NO2 50 ppb–50 ppm RT
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10 Role of Carbon Quantum Dots 

10.1 Gas Sensing with Conducting Carbon Dots 

CQDs can be utilized to detect gases and VOCs since they have powerful elec-
tronic capabilities in addition to their optical characteristics. A small number of gas 
molecules is all that is needed to alter the electrical characteristics of the electronic 
material because nanotubes, nanowires, and nanoparticles are so small. This makes 
it possible to identify tiny chemical vapors. Small, low-cost sensors that can detect 
chemicals in the same manner that dogs can detect vapors from explosives or drugs 
at airports are the goal. 

It is now possible to create tiny, low-cost sensors that can quickly recognize 
chemical vapors, giving rise to a nano-hound that is useful in a variety of ways 
and doesn’t require rest or exercise. Installing sensors throughout the airport or any 
place where there are any safety concerns would be a logical application to find 
explosive vapors. These sensors can be used in workplaces where chemicals are 
used in the production process to capture the release of chemical vapors. Sensors 
that detect hydrogen gas leaks will be useful in warning of leaks when hydrogen fuel 
is activated in vehicles or other applications. The technology should also connect air 
quality monitoring stations to improve air pollution monitoring. 

CQDs have not been extensively investigated. Our group reported the electrical 
conductivity of polymer-passivated CQDs, which was the first to report the elec-
trical conductivity of individual CQDs. They evaluated an individual’s processing 
of objects with a scanning probe (SPM) using the SRI imaging method. The lower 
energy state responsible for the excitation-induced fluorescence features was demon-
strated by the fluorescent excitation spectra of the CQDs. When harmonics surpass 
zero voltage, as shown by the current-to-voltage (I–V) characteristics of single 
polystyrene sulfonate stabilized CQDs (PSS-CQDs), the current behaves erratically 
and rapidly jumps. The band gap of CQDs was calculated using cyclic voltammetry 
(CV). The I–V data and AFM images of each CQD. 

There is still a dearth of information on the conducting qualities of CQDs. These 
investigations are crucial for gaining a fundamental knowledge of the conducting 
phenomenon that CQDs have shown, and they also hold the potential to enhance the 
tunability of conducting nanocomposites. 

10.2 Designing of Gas Sensors Using Carbonaceous 
Nanomaterials 

CQDs are usually obtained in powder form, making sensors difficult to manufacture. 
It should be used as a composite material with polymer materials. Insulating polymers 
inhibit the electronic properties of CQDs. Therefore, it is often desired to make
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Fig. 2 Reaction between 
C60 BuLi with CNTs for the 
active sensor. Adopted from 
https://www.mdpi.com/ 
2227-9040/9/4/66 

polymer composites with CQDs. Conductive polymers such as PPy have been utilized 
to build gas and VOC sensors for a long time. 

These components can be employed in sensing applications and have good 
current–voltage characteristics. These polymers’ LUMO levels take in free elec-
trons from many carbon atoms and VOCS, and the HOMO electrons can share the 
remaining electrons. This molecular interaction causes a change in I–V properties, 
resulting in hearing loss. The incorporation of nanomaterials into polymer matrices 
has been shown many times to increase the sensitivity of sensors. Nanomaterials 
induce active sites in polymers for rapid gas adsorption as they improve surface 
activity, thus completing the experience of mainstream conducting polymers. The 
use of carbon nanomaterials in conductive polymers such as C60, CNT, and CQD 
has shown great improvement in sensor applications (Figs. 2 and 3). The main idea 
behind these compounds is that carbon nanomaterials are generally hydrophobic, so 
they have a good affinity for making polymers that are often hydrophobic in nature. In 
addition, the specific conditions of C60 are discussed, which will help us understand 
the impact of CQDs on the performance of polymers (Table 2).

10.3 Effect of CQDs on the Electronic Properties 
of Conducting Polymers 

The integration of C60 into PPy was said to improve the I–V characteristics in the 
literature. Carbon in C60 has a strained sp2 structure. The material’s structure resem-
bles that of CQDs, which do not contain extended sp2 domains like those seen in C60, 
although corresponding parallels may still exist. It was discovered that C60, although 
being n-type doped, functions as a conducting polymer matrix for p-dopant. In other 
words, the C60 LUMO receives an electron from a polymeric chain, charging it in 
the process. An additional positively charged polaron in the PPy chain was produced 
by the ionic state. The doping action was confirmed by the substantially altered 
absorption spectra and the noticeably subdued fluorescence in the doped PPy.

https://www.mdpi.com/2227-9040/9/4/66
https://www.mdpi.com/2227-9040/9/4/66
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Fig. 3 Detection of VOC in presence of humidity using CNT and C60. Adopted from https://www. 
mdpi.com/2227-9040/9/4/66 

Table 2 Basic resistance values of various CNT nanocomposites 

Nature Process R0 (kΩ) 

CNT 2 layers of CNT suspension in CHCl3 sprayed 5 ± 2 
CNT-g-C60 2 layers of C60-g-CNT suspension in CHCl3 sprayed 8 ± 3 
CNT-I-C60 1 layer of CNT suspension in CHCl3 sprayed followed by spray of 1 

layer of C60 suspension in toluene 
4 ± 2 

rGO 5 layers of rGO suspension in acetone sprayed 10 ± 4 
rGO-g-C60 5 layers of rGO-g-C60 suspension in acetone sprayed 10 ± 5

11 VOC Sensor Based on Carbonaceous Nanomaterials 

The first carbon quantum dots, known as GQDs, were created from graphite nanopar-
ticles using chemical and physical processes. A flawless graphene sheet won’t 
glow because of the extended-conjugation’s lack of electrons. Therefore, much 
work has gone into changing the graphene network end to end to produce elec-
tron gaps and therefore fluorescence emission in graphene. In other words, the big 
aromatic molecules found in graphene sheets and the isolated conjugated domains 
are structurally related.

https://www.mdpi.com/2227-9040/9/4/66
https://www.mdpi.com/2227-9040/9/4/66
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The advantages of composite materials are cost-effectiveness and easy production. 
In their work (PANI-GQDs), nanocomposites were prepared by in situ electrochem-
ical polymerization of aniline monomers in the presence of GQDs, which showed 
promising catalytic activity in promoting triiodide reduction. During polymerization, 
fluorine-doped tin oxide (FTO) coated glass is immersed in a solution of aniline and 
GQD. DSSCs formed from PANI-GQD nanocomposite electrodes exhibited a power 
conversion of 1.6%. 

The PANI-GQD nanocomposite’s electrochemical catalytic activity was greater 
than that of pure PANI because of the synergistic interaction between PANI and 
GQD. As a result, DSSC structures based on PANI-GQD electrodes exhibit superior 
photovoltaic performance than those based on PANI electrodes. 

The findings motivated us to look into the electronic characteristics of CQDs in 
more detail. By integrating polypyrrole (PPy) on the surface of CQDs, or colloidal 
particles based on stable PPy coated CQDs (CQD-PPy) water-based stable writing 
pen, this study aims to improve the electrical properties of PSS-CQDs. For the 
purpose of growing PPy on the CQD surface, a site-specific autocatalytic method 
was created. 

CQD-PPy functions as a semiconductor ink and is highly dispersible in aqueous 
suspension. Data indicate that electronic polymers are employed as chemicals to stop 
snack items from going rancid. Variations in the quantity of VOCs released from 
food can reveal crucial details regarding food contamination. In order to identify and 
track the organic volatiles produced by rice grains during storage, a polypyrrole (PPy) 
based oil sensor has been created. The difference in sensitivity with different analytes 
is evaluated in response to PPy’s stable resistance, which is utilized extensively as 
a chemical resistance sensor. Certain analytes can be detected by polymer-based 
sensors, however they cannot tell apart analytes that are identical. As a result, PPy 
changes its resistance when VOC is present, but this change is seen at any stable 
voltage. Therefore, it is vital to alter PPy’s characteristics so that it can recognize 
and differentiate between various items, which will aid in the identification of VOCs. 
This can be used to differentiate the flavors of various snacks. 

Oxidative rancidity is the term used to describe the foul taste and odor that develops 
when oils like lard, shortening, vegetable oils, and cooking oils are exposed to oxygen 
in the air. Fish, chicken, pork, frozen veggies, and powdered milk are just a few 
examples of products that contain these fats that can cloud the product’s oil. These 
foods’ polyunsaturated fatty acid content reacts with oxygen to produce peroxides. 
Aldehydes, ketones, and other dangerous chemicals can be found in combinations 
created by the decomposition of peroxide. This product may have a “sour” odor and 
taste. That’s why it occurred to us to examine inks for three important aldehydes 
that are often found in foods. Hexanal, heptanal, and octanal are three aldehydes that 
differ in the number of carbon atoms in the main chain.
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12 CNT-Based Sensors 

Types of design: 

1. random networks (RN) 
2. field effect transistor (FET) 
3. conductive polymer nanocomposites (CPC). 

13 Graphene-Based Sensors 

Graphene and CNTs have been accepted for the creation of smart electrodes. This is 
due to the special features observed in graphene-like materials. Hence, graphene may 
overcome limitations of traditional carbon materials like poor electrical conductivity 
and mechanical strength. However, due to the limited fabrication methods and high 
cost of commercial manufacture, graphenes may experience issues [5]. 

Carbonaceous nanomaterials provide tremendous options due to their simplicity 
of synthesis, enhanced biocompatibility, and flexibility in organic functionalization 
of their surface. The development of electrochemical sensors has attracted a lot 
of attention in carbon-based nanomaterials, particularly carbon dots (CQDs) and 
graphene quantum dots (GQDs) [3]. 

The primary graphene-based materials utilized in the construction of electrochem-
ical biosensors are depicted in Fig. 4. 

GQDs are a type of zero-dimensional (0D) nanostructure that belong to the carbon 
family. It has similarities with both graphene and CQDs. These nanomaterials exhibit 
novel features as a result of quantum confinement and edge effects similar to CDs. 
The situation is similar to 2D graphene sheets when transformed into 0D GQDs. 
No matter how small the dots are, GQDs have a graphene structure that provides 
typical characteristics of graphene. Unlike CQDs, less than 10 nm thick and 100 nm 
in lateral size layers are present in GQDs [6]. Moreover, GQDs are known to be 
effective electron transporters that can interact with some electroactive species. This

Fig. 4 Structures of graphene-based nanomaterials, including pristine graphene (pure-arranged 
carbon atoms) with sp2-hybridized carbon atoms (a) and the chemically modified graphene: 
graphene oxide (GO) (b), reduced graphene oxide (rGO) (c), and graphene quantum dot (GQD) 
(d). Adopted from https://www.mdpi.com/1422-0067/23/1/22 

https://www.mdpi.com/1422-0067/23/1/22
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increases the analyte contact area and the electrochemically active surface area. 
Since the geometric surface area is a very important parameter in electrochemistry, 
modification of various substrates with GQDs can increase the rate of electrochem-
ical reaction. GQDs usually contain functional groups, such as hydroxyl, carbonyl, 
carboxyl or epoxide, at their edges and basal plane that can act as active reaction 
sites. 

14 Techniques for Fabrication of Graphene-Based VOC 
Sensors 

The intrinsic characteristics and nanostructure of the sensing material affect how 
well VOC sensors operate. The focus has been on the construction and integration of 
nanostructured materials into VOC sensors to build high-performance VOC sensors. 
Nanostructured materials have been incorporated into sensors using a variety of 
methods. 

This section covers processes like: drop casting, spin coating, layer-by-layer (LbL) 
assembly, and spray layer-by-layer (sLbL) assembly. 

15 Drop Casting 

Nanomaterials are frequently bonded to surfaces through drop casting using solu-
tion evaporation. The quality of the graphene film depends on several elements, 
including the concentration, weight, and heating of the graphene solution. A 
graphene-polyaniline-based sensor for the detection of ammonia by dripping a solu-
tion onto an interdigital transducer (IDT) was developed, according to Wu et al. 
Cui and co. Graphene sensors coated with Ag are demonstrated by drop casting 
on gold electrodes. In this experiment, rG-O dispersions were dropped onto hot 
electrodes and heated to 200 °C before being annealed for an hour. In a micro 
arc plasma reactor, Ag NPs were physically vapor-deposited onto the surface of 
rG-O. Hasan and co. Use of ultra-large graphene oxide (UL-G-O) nanocompos-
ites and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) for 
VOC detection. 

16 Spin Coating 

Accurate control over the homogeneity and thickness of the active layer is essential 
for producing reliable and reproducible detection devices. Spin coating is a method 
in which the active layer can be widely spread over the entire substrate surface
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by centrifugal and viscous forces and is commonly used to produce thin films (2– 
10 μm) on thick as well as flat substrates. Spin coating technology is widely used in 
semiconductor devices, lithography, magnetic disks, microelectronics industry, and 
other related fields. The thickness of the film can be controlled by varying the time, 
fluid viscosity, speed, and solvent evaporation rate. The spin layer can be used to build 
graphene-based sensors. Fowler et al. reported that the designing and production of 
sensors for the detection of NH3, NO2, and 2,4-dinitrotoluene by spin coating to form 
a graphene film layer on interlocking electrodes. Dong et al. reported the production 
of poly(3,4-ethylenedioxythiophene) and r-GO hybrid thin film sensors for VOC 
detection at the ppm level by spin coating on an interdigitated microelectrode array. 
The spin coater of PIL-modified r-GO can control the film thickness by varying the 
spin coater speed. Thin and smooth graphene layers enable PEDOT to grow through 
gas-phase polymerization, providing high-performance hybrid thin-film sensors. 

The spin coating process is characterized by controllable thickness, low power 
consumption, uniform deposition, and easy installation. However, the spinning 
process can only be used on flat and small substrates. In addition, centrifugal force 
during rotation often causes negative angle lines or variations in sensor thickness. 

17 Layer-by-Layer Self-assembly 

One of the best methods for creating nanomaterial thin films with the correct thick-
ness is layer-by-layer (LbL) assembly. The bonding of nanomaterials in various levels 
through electrostatic interactions is known as layer-by-layer (LbL) assembly. The 
process of releasing the movie follows a cycle created to create the movie, in which 
the steps are set up in a preset order. Its ease of use for spin-plating LbL compo-
nents, Langmuir-Blodgett deposition, and other processes makes it an appealing 
option to traditional deposition techniques like numerous materials, including poly-
electrolytes, dendrimers, biomaterials, metal nanoparticles, and nanocarbons, can be 
employed with it. By adjusting the charge type and number of adsorption cycles, it is 
possible to change the electrochemical behavior and nature of the reaction process. 
By adjusting the pH, temperature, and concentration of the solution, it is also possible 
to alter the layer’s roughness, thickness, and porosity. 

For the manufacture of high-performance chemically resistant vapor sensors, 
control of the conductive structure, including the junction points in the percolation 
network, is crucial. Control of nanomaterial structure can be realized by electro-
static layer-by-layer assembly. LbL technology should be used to create multilayer 
graphene films with different thicknesses and layers. However, a better understanding 
of the interaction between electrostatic forces and solvency is required to control 
the final nature of the reaction process. In addition, further studies are required for 
polyelectrolytes used in LbL processing, since they may affect the stability of the 
sensors.
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18 Spray Coating Layer-by-Layer 

Spray-by-Layer (sLbL) was developed by Schlenoff et al. It is considered one of the 
best methods due to its low cost, ease of coating, and modification. sLbL involves 
the direct injection of chemicals into the substrate by spraying. sLbL enables high-
thickness and repeatability sensor arrays to be mass-produced in a short time, and 
allows nanomaterials to be used on non-planar and complex 3D substrates that are 
difficult to obtain with conventional methods such as layers. Control of junctions and 
nanostructures is important for the development of chemical resistance sensors. 

sLbL can also be used to make better connections and nanostructures for ultra-
sensitive sensors. Recent research suggests the development of sLbL technology for 
the development of sensor devices (Dong et al.). Production of graphene quantum 
well-sensing skin and VOC detection using sLbL technology. The initial resistance 
of the converter is controlled by adjusting the number of layers. 

Their theory holds that changing QRS nanostructures results in biased tunnel 
conduction, which generates extremely high sensitivity and selectivity. The 
researchers also discussed the sLbL-based production of composite materials with 
magnetic Fe3O4 nanoparticles formed of rG-O, PEDOT, and poly(ionic liquid). The 
sensor can distinguish between polar and non-polar VOC molecules with accept-
able reversibility at room temperature. To detect both polar and non-polar VOCs, 
the ssLbL method deposits graphene hybrid composites on interdigitated Pt elec-
trodes. An efficient chemical resistance sensor with core–shell hybrid nanostruc-
tures for the detection of lung cancer biomarkers was created with sLbL assembly to 
intermeshing electrodes (25% Ag/75% Pd orbitals). Nag et al. reported the creation 
of an ultra-sensitive VOC sensor using sLbL technology for the detection of lung 
cancer biomarkers (Table 3). The sLbL technology has advantages over spin-coating 
and LbL mounting techniques, including cheaper sensor manufacturing costs. sLbL 
provides a lot of benefits and can quickly produce nanostructures.

19 Current Advances in Graphene and Graphene 
Composites for Chemiresistive VOC Sensors 

Nanomaterials have been used to design sensors for VOC detection due to their 
high contrast and good physical properties for selective detection. Various nanoscale 
materials have been used for local VOC sensitivity, including metal nanoparticles, 
nanocarbons, and semiconductor metal oxides [21]. VOC detection is based on 
the interaction between the analyte molecules and nanomaterials. The coupling of 
charged VOCs to the sensor surface makes detection possible by changing the carrier 
density/Fermi energy without interference from the background solvent. 

The use of solutions with higher ionic strength is limited due to ion resistance and 
electrical double-layer formation, so sensors often run dry or solve problems with



228 D. Banik and R. R. Bhattacharjee

Table 3 Various VOCs as cancer biomarkers 

VOC type Representative vapor biomarker Concentration range in breadth 

Alcohols Methanol 
Ethanol 
1-Propanol 

157–344 
96–2848 
4–13 

Aldehydes Pentanal 
Heptanal 
Nonanal 

2–7 
2–7 
2–107 

Alkanes Pentane 
4-Methyloctane 
Cyclohexane 

2–18 
16–19 
0.1–15 

Halo hydrocarbons Chloroform 10 

Ketones Acetone 
2-Butanone 
3-hydroxy-2-butanone 

35–1000 
0.002–3 
0.002–0.05 

Alkenes Isoprene 41–109 

Aromatics Ethyl benzene 
Benzene 
Toluene 

1–18 
1.1–3.5 
1–37

low ionic strength. For these reasons, it is important to build sensors that operate at 
high ionic strength (100 mM) for real-time monitoring. 

The chemical resistant VOC detection technology relies on changes in electrical 
properties through the interaction of VOC molecules with the detection platform. 
Various types of nanomaterials have been investigated for chemiresistance method 
of VOC detection and non-invasive disease detection with SMOs, carbon-based nano-
materials, and hybrid composites have become very important in recent times. Among 
carbon-based nanomaterials, chemically modified graphene or reduced graphene 
oxide (r-GO) has been reported for anti-VOC sensors. Most rG-O based sensors 
have r-GO flakes of different sizes, shapes, and thicknesses resulting in randomly 
overlapping flakes. Therefore, the electrical properties of rG-O thin film are different 
and devices made of thin film have different properties from device to device. These 
sensors have a greater selectivity to distinguish between different alcohols such as 
ethanol, methanol, and isopropanol. 

20 CQD-Based VOC Sensors 

CQDs are quasi-spherical nanoparticles less than 10 nm in diameter that exhibit 
better dispersibility in various solvents, improved biocompatibility, and less cyto-
toxic. GQDs have been used much more than CQDs in electrochemical biosensing, 
though both types of carbon quantum dots possess interesting features. GQDs possess 
advantage over CQDs in the design of nanomaterial-based biosensors because of their
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low intrinsic toxicity, their high surface area with larger length-to-diameter ratio 
(the ratio of length to thickness), chemical inertness, mechanical stiffness, excellent 
solubility, photoluminescence, thermal conductivities, easier grafting of their surface 
with receptors, and greater electrical and high stability compared with conventional 
semiconductor quantum dots. These superior properties are due to the π–π bonds 
below and above the atomic plane. On the other hand, fluorescent CQD possesses 
great potential in designing electrical and electronic devices. Recently, there have 
been several reports on the electronic properties of CQDs and their applications as 
materials in chemical resistance sensors. 

Bhattacharjee et al. developed and tested a new method for the preparation of a 
stable hydrocolloidal CQD-PPy solution. Stabilizing PPy on CQDs as colloidal parti-
cles is a challenge here that can be solved without the use of additional stabilizers or 
other oxidizing agents. PSS-passivated CQDs act as both stabilizers and additives to 
stabilize conductive colloidal CQD-PPy formation. The method is simple and scal-
able. The CQD-PPy suspension can be coagulated to form a stable ink with no other 
additives. The ink creates a permanent film/print on most substrates with a simple 
dip coating process. Ink spots on paper and fabric exhibit long-range semiconductor 
I–V properties. I–V curves were shown to select responses to different flavors of 
three different snacks. Because the ink material is environmentally friendly, it can 
be seen as a durable material for flexible electronic devices and sensor applications. 

A conjugate material of CQD and NiO is used as an efficient nanomaterial for the 
detection of methane (CH4) gas. The conjugate for the detection of CH4 is effective 
at 150 °C. The detection mechanism is: 

CH4 + 4O− = 4H2O + CO2 + 4e− 

Initially, on the surface of CQD-NiO, the adsorption of oxygen takes place by 
reducing to O−. This is followed by the generation of a hole accumulation layer 
(HAL). NiO is highly efficient in capturing O2 since the edges have a polygonal 
structure. A hetero-junction potential barrier is formed between the two layers that 
act as a potential CH4 gas adsorption site due to the deposition of CQD on NiO. 
The thickness of the HAL decreases with time along with the increase in the rate of 
adsorption of gas molecules. Finally, at the completion of the reaction, the electron 
is transferred from the CQD to NiO followed by a lowering in the hole concentration 
of NiO. The reactive species such as O− and CH4 undergo simultaneous oxidation 
and reduction reactions that result in an attenuation of the HAL and as enhancement 
in resistance as well. This is how the methane is detected. 

Till date not many reports have been found except the two above mentioned works 
on CQD as VOC sensor material. From the literature of graphene-based sensors, 
CQDs can also be designed as potential sensor material for detection of VOCs in 
exhaled breath related to diseases like PD, AD, or SARS-COVID-19.
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21 VOCs Related to Alzheimer’s Disease (AD) 
and Parkinson’s Disease (PD) and SARS-COVID-19 

The analysis of VOCs provides illness early identification. In reality, breath analysis 
has been utilized as a diagnostic technique for illnesses like typhoid fever and weak 
kidneys in Asian nations since ancient times by monitoring frequency. The identi-
fication of biomarkers in exhaled breath has drawn attention since Linus Pauling’s 
original study in 1971 and is now a fast expanding field of study. Testing VOC 
biomarkers frequently involves selective detection of (pre)identified VOCs or cross 
validation with standard validation. The measurement of changes in the electrical, 
optical, chemical, and biological aspects of sensory data linked with VOC molecules 
is the fundamental basis for the detection of VOC biomarkers. The two most prevalent 
neurodegenerative disorders are Alzheimer’s disease (AD) and Parkinson’s disease 
(PD). Today, PD affects more than 1.6% of the world’s population, and AD affects 
more than 26 million individuals globally. Patients, carers, medical professionals, 
and society are under increasing strain as a result of the rise in neurodegenerative 
disorders caused by the aging population. Since PD and AD are progressive, neurode-
generative illnesses with notable motor symptoms, there is no chemical diagnostic 
test for their detection. Identification of volatile organic compound (VOC) patterns 
in exhaled breath is a novel diagnostic strategy. Breath patterns that are distinctive 
to a disease could be beneficial as reliable and accessible biomarkers. This strategy 
is justified by the possibility that, even at the very beginning of the disease, lung-
mediated changes in blood chemistry may be partially conveyed to the alveolar 
exhaled breath. 

On the other hand, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2), which is highly contagious, emerged in 2019 and caused serious respiratory 
infections known as “Covid-19” virus disease, threatening human health and public 
safety. The testing method for COVID-19 is based on polymerase chain reaction 
(PCR) technology. PCR provides accuracy and specificity, and the effectiveness of 
this method is affected by slow delivery, usually within 1 or 2 days after testing. 
Therefore, rapid tests based on external analysis or ELISA methods are often used 
as preliminary tests. On the other hand, direct detection of the COVID-19 virus 
by inhalation can be done routinely using specialized equipment that can collect 
exhaled breath and concentrate it for a few minutes and use this condensation to 
remove and track the virus pattern PCR. No amplification was detected. In addition, 
it has been widely documented for the cellular production of metabolites that lead to 
the respiration of volatile organic compounds (VOCs) by bacteria. These VOCs can 
be targeted for respiratory testing and used to measure health without harming the 
patient (Table 4).

VOCs detected for disease diagnosis in recent years have received a lot of atten-
tion due to their lack of diagnosis and movement. Fast and inexpensive diagnostic 
tools and real-time detection are an added benefit of VOC detection. Compared to 
other treatment modalities, the lack of VOC analysis studies for the detection of PD 
biomarkers and the absence of a matrix for the detection of potential biomarkers
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Table 4 VOCs as biomarkers and their source. The biomarkers have been detected using GC-MS 

Disease Disease-related VOCs Sample source 

Alzheimer’s disease Styrene Breath 

1-methyl-2-(1-methylethyl)-benzene 

4-methyl-octane 

2,6,10-trimethyl-dodecane 

3,7-dimethyl-decane 

Butylated hydroxytoluene 

2,4-dimethyl-1-heptene 

2,3-dimethyl-heptane 

Propyl-benzene 

2,2,4,6,6-pentamethyl-heptane 

2,5,6-trimethyl-octane 

5-ethyl-2-methyl-octane 

2,6,10,14-tetramethyl-hexadecane 

3,7-dimethyl-propanoate (E) 

2,6-octadien-1-ol 

2,3,5-trimethyl-hexane 

1-methylethyl-benzene 

1-methylpropyl-cyclooctane 

2,2-dimethylpropanoic acid (pivalic acid) 

2-ethylhexyl tetradecyl ester 

Oxalic acid 

2-butyl-1-octanol 

Dodecane 

1-chloro-nonadecane 

3-ethyl-2,2-dimethyl-pentane 

1,1'-oxybis-octane 
Parkinson’s disease Styrene Breath 

2,3,6,7-tetramethyl-octane 

Butylated hydroxytoluene 

5-ethyl-2-methyl-octane 

Decamethyl-cyclopentasiloxane 

Ethylbenzene 

1-methyl-3-(1-methylethyl)-benzene 

3,7-dimethyl-decane 

2,3-dimethyl-heptane 

5-ethyl-2-methyl-octane 

2,3,5-trimethyl-hexane

(continued)
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Table 4 (continued)

Disease Disease-related VOCs Sample source

Hexadecane 

COVID-19 Methylpent-2-enal Breath 

2,4-octadiene 

1-chloroheptane 

Nonanal

are limitations of its practical application. One limitation is the uncertainty of VOC 
biomarkers because their structure is dependent on genetics and other factors such 
as changes in environment, age, sex, and metabolism. There are several reports of 
the use of graphene sensors to detect NO in exhaled breath for PD diagnosis. 
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Functional Biosensors in Cell and Tissue
Fabrication for Smart Life-Sciences
Applications

Guven Akcay, Cagla Celik, Nilay Ildız, and Ismail Ocsoy

Abstract Biosensors are sensitive, selective, and rapid bioanalytical applications for
diagnosis in cell and tissue engineering technologies.Compared to the enzyme-linked
immunosorbent assay performed by standard methods, biosensors provide many
advantages. In particular, biosensors designed through a combination of chemical,
biological, and physical methods provide a good strategy for monitoring microbio-
physiological signals in real time and in situ. This chapter summarizes the latest devel-
opments in innovative biosensor applications for different technologies of biological
interest, essentially cell and tissue engineering. The latest studies and innovative
approaches to biosensors for the diagnosis and bioimaging of tissue disease modes
due to central nervous system, cardiovascular system, and endocrine system disor-
ders are discussed. In addition, various biochip approaches such as cell/tissue-based
biosensors, flexible biosensors, and paper-based biochips are mentioned. Finally, we
discuss the diagnostic challenges current biosensors face and highlight the future
prospects of biosensors for cell/tissue engineering applications.

Keywords Biosensors · Tissue engineering · Diagnosis · Biochips

G. Akcay
Department of Biophysics, Faculty of Medicine, Hitit University, 19000 Corum, Turkey

C. Celik
Pharmacy Services Program, Vocational School of Health Services, Hitit University, 19000
Corum, Turkey

N. Ildız
Medical Imaging Department, Vocational School of Health Services, Bandırma Onyedi Eylul
University, 10200 Bandirma, Turkey

I. Ocsoy (B)
Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri,
Turkey
e-mail: ismailocsoy66@gmail.com

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
A. K. Mandal et al. (eds.), Functionalized Smart Nanomaterials
for Point-of-Care Testing, Smart Nanomaterials Technology,
https://doi.org/10.1007/978-981-99-5787-3_13

235

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-5787-3_13&domain=pdf
mailto:ismailocsoy66@gmail.com
https://doi.org/10.1007/978-981-99-5787-3_13


236 G. Akcay et al.

1 Introduction

Biosensors are known as the next generation sensing technology that encompasses
a variety of technologies and knowledge from many disciplines, including biology,
chemistry, and physics. Combining interdisciplinary technologies, biosensors offer
a functional analytical platform to analyze the need in environmental, food, public
health, microbiology, and biomedical sciences. Biosensors first detect results through
optical, chemical, or electrical components and then use receivers, transducers, and
imaging systems to convert this detection into a measurable signal [6]. Thanks to
components, biosensors can measure signals at very low levels. Thus, they provide
fast results with high stability and high sensitivity from a small number or quantity
of human samples, without the need for specialized personnel. The first biosensor to
be developed for measured glucose with a method based on electrochemical tech-
niques using an electrode containing immobilized glucose oxidase [11] enzyme.With
the advances in manufacturing techniques [50] and innovative approaches including
nanotechnology, electrochemistry, and photolithography [51], biosensor applications
have made incredible progress. Nowadays, the parts of biosensors that act as recep-
tors have been given various functions to detect toxic substances, proteins, cell, and
tissue behavior [59, 60]. Especially in clinical studies, biosensors developed to detect
molecules are widely used to detect genes, proteins, or cytokines in patient samples.
Molecule-labeled biosensors utilize a variety of specific biochemical reactions medi-
ated by DNA and ion channels to detect enzymes, receptors, antigens, and antibodies
[7]. In particular, the detection of substances released as a result of cellular reaction
in microfluidic biochips is possible by immobilizing antibodies or aptamers specific
to the cells used as biomarkers to the biosensor [39, 61]. The main advantage of
molecular-based biosensors is that the conjugation of biomarkers with highly selec-
tive biomolecules allows the identification of a range of analytes with high sensitivity
and selectivity [15]. In order to analyze the targeted molecules, genomic probes with
specificity such as antibodies, nucleic acids, enzymes, etc., are integrated onto the
surface of the sensor by physical adsorption and chemical grafting methods. Subse-
quently, the change of piezoelectric, calorimetric, optical, or electrochemical signals
from the transducer components is converted into output in the form of electrical
signals [12]. In order to detect interleukin-2 (IL-2), Arya and co-workers used 4-
fluoro-3-nitrophenyl (FNP) as a coupling agent to bind the IL-2 antibody to a gold
electrode surface. Thus, in the developed biosensor, IL-2 was detected by measuring
the anti-IL-2-fixed cyclic voltammetry (CV) results resulting from the interactions
between antigen and antibody on the gold electrode surface [2]. Furthermore, Chen
et al. developed a biosensor consisting of aptamer-based porous silica nanoparti-
cles (MSN) that can provide controlled release [8]. In this sensor, they conjugated
the FITC fluorescent dye encapsulated in MSN to DNA by click-chemistry method.
After detection of thrombin with DNA aptamers on theMSN, the encapsulated FITC
fluorescent dye is revealed from the pores of theMSN, indicating that biosensors can
also be controlled depending on a stimulus. Another technique exploits the physical
properties of material surfaces to recognize different molecules.
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Cell- or tissue-based biosensors, like molecule-based biosensors, offer signifi-
cant innovations for the detection of cell-associated analytes in situ over the last
decade [22, 36, 45]. Such biosensors provide information about the responses of
cells and tissues by measuring phenotypic outcomes in cells [18]. Essentially, cell-
based biosensors consist of three components: viable cells, bioactive components,
and transducers. Thanks to the bioactivity of the components present as substrates,
biomarkers released from cells grown on the biosensors can be measured, or cellular
polarity resulting from the charge exchange of the cells.

After cells are treated with pharmaceutical or biochemical agents, the changes
induced by the agents in the cells can be recorded through physiological parameters
such as change in cellular polarity, change in cell membrane permeability, or ligand
expression [36]. Molecule-based detection biosensor technologies perform a high
selectivity for the analyte molecule to be detected compared to cell-based detection
biosensors. However, the short lifetime and the cost of the isolation process of the
molecules that will identify the biomarker of interest, such as antibodies, limit the
applications of such biosensors. Therefore, cell-based biosensors offer an innovative
approach to the diagnosis of diseases with rapid analysis. Biosensor systems are
advanced from the cell level to the tissue level to provide more precise results for
disease diagnosis. Multicellular cultures and organoids are often used in tissue-based
biosensors as they are considered biomimetic structures due to their resemblance to
natural tissues. Instead of multicellular cultures or organoids, complex 3D tissue-like
structures that provide the functions and properties of natural tissues are being devel-
oped by tissue engineering. In recent developments, the production of 3D structures
with biological effects in vitro has contributed significantly to tissue-based biosen-
sors, offering potential biosensor strategies to predict, monitor, and diagnose the
effects of pharmaceutical agents. The innovative tissue-based biosensors, the so-
called organ-on-a-chip platform, is attracting intense interest as the 3D structures
developed to mimic the properties of biological tissues. Integrated with a mobile
control system, the structures can behave as physiological mechanisms such as blood
flow. Another study by Bavli et al., an innovative biosensor, was developed using
particle-type oxygen sensors and liver organoid [5]. With this sensor, it is possible
to monitor the change in mitochondrial function after the administration of drugs,
providing a liver-like response and exciting those working in this field.

In this book chapter, we review the current biosensor progress in the biomedical
field, including biosensor fabrication technologies in different biological materials,
biosensor types, and their applications in various fields, in order to highlight how
and for what purpose biosensors are used in the field of tissue engineering. Thus, we
hope to contribute to the knowledge of scientists working in this field to understand
the shortcomings and working mechanisms of current biosensors to enable them to
realize advanced biomedical applications.
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2 Current Technological Approaches for Development
of Biosensors

Various sensors such as biochips, paper-based biosensors, nanoparticles, and labeled
or label-free biosensors including flexible biosensors are being developed. In recent
years, differentmethods such as computerizednumerical control (CNC), photolithog-
raphy, and casting have been used to develop various biosensors. Biosensors are often
produced not only by one of the mentioned methods, but by combining two or more
methods. This shows that existing techniques perform a multifunctional activity to
design complex or simple sensor mechanisms.

Photolithography is a favored technique for modeling proteins and cell structures
in biosensor applications and tissue engineering studies. Photolithography is the
method of transferring different patterns on a mask to a glass or silicon surface
using UV light [23]. In biosensor design, photolithography allows microelectrodes
of different shapes and sizes to be patterned on the surface of biochips using UV
light. This enables the fabrication of transducer structures in very small sizes [40].

The developed biochips require model cells to create biomimetic structures.
Factors affecting cell binding and cell behavior include pattern shape, size, surface
modification, and surface topology. In developed enzyme sensors, DNA sensors,
immune sensors, and several biomarkers are modeled on biochips with interlocking
electrode arrays [13, 43].

3 Biosensor Development in Tissue Engineering

Tissue engineering, which works in line with engineering sciences and biological
principles, carries out studies to develop various tissue structures to restore, repair,
or maintain the impaired functions of damaged cells and tissues [31]. In tissue engi-
neering techniques, cell-to-cell and cell-to-material interactions must coexist for
optimal physical and cellular signaling to occur. Accordingly, it is required to identify
and monitor cellular responses, cellular signals, cell functionality, and behavior. As
seen in recent developments, biosensors are widely used in tissue engineering appli-
cations. In particular, it has become common to develop tissue engineering systems in
microfluidic platforms where biosensors developed to monitor cellular behavior and
specific biomolecules in tissues are integrated. These miniaturized systems provide
critical information for rapid and real-time prediction of physiological response
through electrical, optical, and electrochemical systems [24].
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3.1 Biosensors for Cell-Based Applications

3.1.1 Biosensors for Monitoring Cell Polarity Change

Biosensors based on measuring polarity change are used to monitor biochemical
reactions occurring at the cellular level. In a study, a polarity-sensitive biosensor that
can fluoresce was developed based on the detection of cell apoptosis with images
of viable cells [28]. This biosensor was applied to investigate changes in neuronal
degeneration process in vivo and in vitro.

3.1.2 Biosensors Developed for Monitoring Cell Behaviors Such
as Metabolization, Proliferation of Stem Cells

Biosensors developed formonitoring cellular changes are used in the fields of cellular
signal detection, cell behavior, drug toxicity, and disease modeling. Various biosen-
sors have been developed for the transmission of cellular signals such asmeasurement
of cellular metabolic activities, and monitoring the change of charge potential in the
cell membrane. Tissue engineering is critical for the evaluation of electrophysiolog-
ical properties of cardiomyocytes and neuronal cells. Microelectrode arrays (MEAs)
have been developed to detect the electrophysiological properties of living cells as a
result of their reactions. Chowdhury et al. developed a method that combines MEA
with optical mapping to record action potential and contact electrograms simultane-
ously. Because they thought that the cellular action potential and contact electrogram
are linked and should change during arrhythmogenesis [10]. In addition, biomechan-
icalmeasurements associatedwith cardiomyocytes to investigate the pathophysiolog-
ical electro-mechanical coupling were previously performed using different devices
[29]. In another study, microbead-based sensors based on fluorescence irradiation
were developed to detect hepatocyte growth factor and transforming growth factor-
β1 [48]. Various sensors have also been developed to measure signaling molecules
released from cells such as nitric oxide (NO) and hydrogen peroxide (H2O2) [47,
55]. NO is an important messenger molecule in biological systems and H2O2 plays
an active role in cellular communication, cell migration, and immunity formation. In
Fig. 1, Au nanoclusters and a poly(toluidine blue) modified electrode were combined
to detectH2O2 andnitric oxide, respectively usingmicrofluidic technology. Similarly,
Visser and co-workers preferred inkjet methods to print carbon MEAs on materials
that can mimic the extracellular matrix consisting of gelatin, PDMS, and various
types of hydrogels to produce soft MEAs [52].
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Fig. 1 Detection of H2O2 by Au nanoparticles combined microfluidic droplet sensor. Reprinted
with permission from [47]. Copyright (2018) ACS publishing

3.2 Strategies of Biosensors to Detect Cell-Released Analytes

3.2.1 Label-Free Biosensors

The determination of the number of proliferating cells, protein quantification, or
cellularmigration is often preferable tomonitoring cellular behavior in a given culture
medium. Traditionally, the detection of cell viability and cell number can usually
be performed by counting cells under a microscope, measuring DNA content, or
detecting viability, such as the MTT assay. However, these techniques are labor-
intensive and lengthy procedures. Noninvasive and label-free detection methods, on
the other hand, offer advantages in tissue engineering applications and stem cell
technology, such as the ability to stain, fix, and fluoresce as desired.

3.2.2 Surface Plasmon Resonance (SPR)-Based Biosensors

Biosensors based on SPR have recently been revealed as a multipurpose biosensor
providing the advantages of small sample volumes, live cell analysis, and high
throughput. In addition, SPR biosensors enable label-free, real-time analysis with
increased sensitivity to the change in refractive index of the analyzed structures [27].

In recent studies, an SPR-based biosensing device has been developed that offers
an innovative approach to analyze the osteogenic change of mesenchymal stem cells
[30]. Moreover, the SPR-based biosensor has been used to monitor cardiac troponin
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Fig. 2 Schematic illustration of SPR biosensor for detecting vascular endothelial-cadherin expres-
sion. Reprinted with permission from [19]. Copyright (2017) ELSEVIER publishing

T and fatty acid binding protein 3, two biomarkers used clinically for the assessment
of cardiotoxicity [1].

Furthermore, Fathi and co-workers designed anSPRdetection system inFig. 2 that
responds accurately and rapidly to SPR signals by analyzing vascular endothelial-
cadherin expression, which can detect endothelial differentiation early [19].

3.3 Biosensor Applications in Various Diseases

3.3.1 Biosensor Applications in Neural Diseases

Biosensors enable the diagnosis of diseases by detecting various signals from tissue.
Traditional methods of diagnosing neurological diseases are time-consuming and
inconvenient to use. This is because a clinician is needed to check the symptoms of the
diseases and in most of diseases, such as Parkinson’s disease (PD), there is a risk that
about 40% of people may be underestimated in the early stages [44]. Neurological
studies are one of the research areas where cell-based biosensors are proving to
be important. With MEA technology, it is possible to monitor neuronal circuits,
physiological system and abnormalities, and detect malfunctions [46]. The MEA
technique offers advantages such as multisite recording, long-term culture, and non-
invasive monitoring of the electrophysiological activity of neuronal cells for high-
throughput screening [9]. Furthermore, Lourenco and co-workers developed a new
multimodal technique for metabolic, electrical, and hemodynamic measurements
together with neuron cell activity [38].

Based on the MEA technique, the scientists fabricated an innovative micro-
electrode arrays in Fig. 3 that combined neuronal network development under the
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Fig. 3 Schematic illustration of the design of a biochip by using the MEA method. a Schematic
illustrating the design of the biochip. b The process used to fabricate the biochip. Reprinted with
permission from [37]. Copyright (2018) ACS publications

guidance of neurite outgrowth ITO-PEM microfluidic system [37]. The biochip in
Fig. 3 included 3 different functional layers [37]. It offers a good alternative for on-
chip organ development, tissue engineering, drug discovery, disease modeling, and
biomaterial testing.

Biochips integrated into biosensors are exciting and make important contribu-
tions to related fields of study. In particular, biomimetic chip and biosensor inte-
grated systems make it possible to monitor the electrophysiological properties of
cells, early-stage differentiation, stem cell proliferation, neural network formation,
and stimulation response. Even micro-sized and ultra-flexible electrocorticography
arrays using glassy carbon electrodes have been used to monitor brain activity [53].
For instance, in another study, Xie et al. developed a nanoelectronic probe with
microscale pores to solve problems such as mechanical incompatibility and insta-
bility of conventional metal and silicon microprobes used for brain recording [57].
Thus, they developed a device with 3Dmicroscale pores decorated with wire-shaped
nanoelectrodes. This probe with micropores supports integration with the brain by
providing a neuron/probe interface. This makes it possible to record action potentials
from the somatosensory cortex in the brain. Live cell-based devices have been used
to monitor endothelial barrier function and molecules released from cells [34]. Li
and co-workers fabricated a reversible electrode for rapid diagnosis of Alzheimer’s
disease using graphene oxide nano structures with magnetic properties (Fig. 4) [33].
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Fig. 4 Schematic illustration of Aβ42-immobilized graphene-based biosensors for diagnosis of
Alzheimer’s disease. Reprinted with permission from [33]. Copyright (2016) Springer Nature
Limited.

They integrated an Alzheimer’s disease’s biomarker of Amyloid-beta peptide 1–42
(Aβ42), onto a nitrogen-doped graphene (MNG) with magnetic properties. Further-
more, another biosensor that rapidly detects PDwas developed by Yang et al. (Fig. 5)
[58]. They formed a monolayer (SAM) by attaching a DNA aptamer and an SH-
spacer onto the substrate molecule. When the biosensor is treated with PD biomarker
(a-synuclein), the DNA aptamer performs a specific attaching to the a-synuclein
protein. Subsequently, the changing signals based on optical analysis resulting from
the capturing of a-synuclein can be easily identificated under amicroscope.When the
developed biosensor is compared to conventional Western blot or ELISA methods,
these sensors appear to be novel, easily applicable and rapid strategies to facilitate
the diagnosis of neurologically based diseases.

3.3.2 Biosensor Applications in Cardiac Diseases

It has been clearly demonstrated that the monitoring and measurement of electrical
signals generated in physiological mechanisms in the body is one of the main func-
tions of biosensors. Remarkably, bioelectric activity is often monitored to control the
function of cardiac tissues. Bioelectric activity can be generated by cardiomyocytes,
which induce changes in the action potential in the membrane of the capillary cells.
Thus, due to the alteration of the action potential, cardiac cells can induce a synchro-
nized pumping behavior through organized electrical propagation [16]. Dutta et al.
conducted a study showing that the difference in oxygen level measured in tissues
significantly interrupts the regular routine of the action potential [17]. Consequently,
continued monitoring of electrocardiogram (ECG) data has emerged as a traditional
method to detect the cardiac rhythm signal in the diagnosis of cap-related diseases.
Lee and co-workers designed a small-size wearable flexible biosensor to easily
and continuously monitor heart rhythm signals [32]. With the developed cardiac
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Fig. 5 Schematic illustration of the diagnosis of a PD using PD biomarker (α-synuclein) with a
biosensor. Reprinted with permission from [58]. Copyright (2020) Royal Society of Chemistry

biosensor, changes in patients’ heart rhythm signals can bemonitored directly on their
smartphones (Fig. 6). Feiner and colleagues also produced a degradable electronic
scaffold as a heart patch. With this flexible product, the spontaneous contraction-
relaxation signals of heart cells can be detected. It also provides an external elec-
trical stimulation to control the rhythm of irregularly contracting heart cells [21].
This work, a chip containing a biosensor, also contributes to heart cells that mimic
heart-related diseases.

Fig. 6 Schematic images of a flexible, soft cardiac biosensor capable of electrocardiogram (ECG)
waveforms and measuring real-time heart rate. Reprinted with permission from [32]. Copyright
(2018) Springer Nature Limited.
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Fig. 7 Schematic illustrations of a heart-on-a-chip with Au electrode and PDMS channels.
Reprinted with permission from [35]. Copyright (2020) ACS publications

Liu and co-workers developed a Pt nanostructure array integrated on Au elec-
trode as shown in Fig. 7 [35]. The developed on-chip biosensor makes a significant
contribution to explain the effect on the electrophysiological behavior of the heart in
hypoxic state.

3.3.3 Biosensor Applications in Cancer Diseases Detection

In the last decade, cancer research has gained great momentum. Traditionally, cancer
research has focused on the development of effective therapeutic methods to treat
cancer diseases. But in some cases, patients are often diagnosedwith cancer at the last
stage. Early diagnosis is vital in cancer treatment. For this reason, the most effective
treatment period for patients diagnosed at the last stage is over [20]. Therefore, how
to diagnose cancer diseases quickly and accurately has recently become a popular
topic for cancer research. Various biomimetic cancer models have been designed to
investigate the formation, mutation, and metastasis mechanisms of cancer cells. In
another study, Kamei et al. produced a microfluidic chip that creates a cancer model
by designing a chip combining heart and liver cancer cells [26]. With this model,
the effects of drugs in the bloodstream on the migration and metabolism of liver
cancer cells can be easily monitored. Biosensors developed for early-stage detection
offer a fast and easy strategy for producing biosensors that can diagnose versatile
cancers. For instance, Pan et al. designed a chip labeledwith twodifferent biomarkers,
vascular endothelial growth factor (VEGF) and prostate-specific antigen (PSA), to
detect prostate cancer and its tumor cells (Fig. 8) [42]. These biomarkers were
designed by immobilizing gold nanorods (GNR) on a silicon chip. Then, biomarkers
secreted from cancer cells in the circulatory system were specifically captured by
the labeled chip. The binding was proven by the absorbance value obtained from
UV-Vis spectrophotometer after one hour of incubation.
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Fig. 8 Schematic representation of a prostate cancer biosensor that captures VEGF and PSA.
Reprinted with permission from [42]. Copyright (2017) Ivy Spring International Publisher

In another study, Hu et al. designed a different type of visible signal-generating
biosensor that could enable detection. Detection of low-expressed extracellular
vesicle (EV)-associated RNA in the early stage of cancer is very difficult. To over-
come this challenge, they developed a chip that integrates nanoparticles to capture and
detect EV-associated RNA. The cationic polymer nanoparticles triggered the binding
of glypican-1 mRNA, a pancreatic cancer biomarker, to EV in serum, producing
multiple signal outputs after 30 min of incubation. This technique is an innovative
approach to detect pancreatic cancer patients even at an early stage. These studies
show that biosensors integrating genomic probes play a critical role in the rapid and
early stage diagnosis of cancer diseases (Fig. 9) [25].
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Fig. 9 Schematic illustration of the biochip by linking neutravidin with a tether lipid-polymer
hybrid nanoparticle (LPHN) and loading extracellular vesicle (EV) on an Au layer. Reprinted with
permission from [25]. Copyright (2017) Springer Nature Limited.

3.4 Biosensor Applications in Bioimaging Technologies

Apart from in vitro applications for disease detection, biosensors are used to improve
sensing capability in bioimaging applications as they have a fast and sensitive
labeling function. Related to this concept, nanomaterials, which are candidates for
bioimaging due to their small size, high surface area, and modifiable properties,
are used in biosensor design for various purposes [56]. Various types of nanomate-
rials, including polymers, silicas, polymers, and carbon dots have been fabricated
for different aims, suitable for diagnostic machines such as computer topography
imaging (CT imaging),magnetic resonance imaging (MRI), fluorescencemicroscope
images [56]. In a study, they synthesized porous silica nanoparticles encapsulated
with a dye that fluoresces in the near infrared (NIR) as a breast cancer cell targeting
agent with LS277 [41]. Compared to the case where only LS277 is delivered, the
mesoporous silica nanoparticle delivers images with five times more resolution than
that used in LS277 alone. Furthermore, Bao et al. used anNIR triggering technique to
develop carbon dot-containing nanoparticles [3]. By synthesizing carbon dots with
urea, DMSO, citric acid an N, S-doped carbon dot with NIR fluorescence can be
produced and rapidly removed from organs such as kidney or liver 24 h after intra-
venous injection. Interestingly, NIR fluorescence images after injection showed that
S, N-doped carbon dots accumulated considerably in tumor tissues after applica-
tion. This result indicates that S, N-doped carbon dots activate tumor labeling of
a compound. Bao and co-workers developed magnetic iron oxide nanoparticles for
MRI imaging and Dong et al. developed gold nanoparticles for bioimaging in CT
techniques [4, 14]. Both results from their studies confirmed that the nanomaterials
function as contrast agents for use in CT and MRI imaging. By adjusting the size of
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gold nanoparticles or magnetic iron oxide, the image contrast of the nanoparticles
in diverse tissues and organs can be enhanced (Fig. 10). For instance, magnetic iron
oxide in 4 nm sizes can enhance T1 image contrasts in MR images. The same is true
for CT imaging when the size of gold nanoparticles is 4 nm [4, 14]. Moreover, by
decorating the surface of nanoparticles with chemical structures such as folic acid,
they can act as tumor contrast agents [4]. Therefore, various types of nanoparticles
used in the design of biosensors have potential use as bioimaging agents.

Fig. 10 a Schematic illustration of iron oxide nanoparticles as T1MRI contrast agents and possible
integration with CT and PET. Reprinted with permission from 64. Copyright (2018) Royal Society
of Chemistry. b The TEM images of gold nanoparticles with different particle sizes. The images
indicate that controlling the size of nanoparticles effect enhances the image contrast at various
organs. Reprinted with permission from [14]. Copyright (2019) Springer Nature Limited.
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4 Challenges and Future Perspectives

Next-generation biosensors are promising techniques that provide sensitive, selec-
tive, and rapid disease diagnosis for various applications in the field of tissue engi-
neering. Compared to conventional ELISA assays, the developed biosensors offer a
good solution for real-time acquisition of physiological signals by combining chem-
ical, physical, and biological technologies. Biosensor systems have made significant
progress in the last decade, but there is still a need to improve some of their func-
tions. The biggest challenges of biosensors are their long-term stability and scale-up
process. Stability is still a major challenge, especially during conversion to commer-
cial products. Biosensors are mostly developed as prototypes in a research labora-
tory. For this reason, scale-up technology is very important in the commercialization
phase. This is because it requires rapid mass production of good quality biosensors
from the laboratory level to the industrial level. It is very difficult and costly to scale
up the results obtained in the research laboratory to a commercially viable level on
a large scale. Furthermore, the time from the industrial production level to the retail
level to reach the user is often longer than expected. To overcome this challenge,
some biosensor chips are developed by immobilizing proteins, growth factors, and
antigens that can cause a short expiry date.

In general, biosensors suffer from the problem of stability in order to be able to
successfully perform the sensor task again in the case of long-term storage. Further-
more, biosensors are advanced systems that allow even extremely weak signals to
be recorded from small amounts of samples in a low-noise environment. But in a
real clinical setting, there is a complex matrix that cannot be predicted in advance.
Therefore, background noise can increase, which can reduce the accuracy of the
results. Furthermore, when biosensors are working, they often need to be connected
to controllers, imagers, andother equipments. This canmakebiosensors less desirable
to the user as they require complex operation and have user-unfriendly interfaces.

In order to solve the aforementioned problems, techniques with higher sensi-
tivity and faster response should be developed through interdisciplinary studies
during the production phase of biosensors. For instance, the development of various
nanostructures such as nanorods, nanocages, and nanostars within nanotechnolog-
ical developments may provide the opportunity to increase the signal and sensitivity
of the samples [54]. In addition, cell-based biosensors that can be used in vitro
have continuous and real-time monitoring functions, while lightweight biosensors in
small sizes, such as paper-based biosensors, offer great convenience for direct obser-
vation of results. Lightweight biosensors are more suitable for industrial production
and are more prone to the feasibility of scale-up from the prototype stage devel-
oped in the laboratory to the industrial stage. Consequently, the current progression
of sensors developed for tissue engineering applications is toward the evolution of
small-sized, flexible, and relatively lightweight biosensors. To this end, technologies
are being developed to facilitate the integration of biosensors into wearable devices.
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For instance, tear-based biosensors have been preferred in the development of biosen-
sors integrated into contact lenses. By using tears as a sample, glucose levels can be
measured, enabling continuous monitoring of diabetes [49].

Thus, by using body fluids such as saliva, sweat, and tears through wearable
biosensors, information about the physiological system can be obtained directly.
Furthermore, wearable biosensors integrated with smartphone applications offer an
innovative perspective that can be used for real-time continuous monitoring, diag-
nosis, or disease prognosis. We hope that this book chapter will be informative for
scientists producing new technologies in the fields of biology, chemistry, and physics
on how to design disease-related biosensors for applications in tissue engineering.
Thus, we hope that new potential applications and technologies can be discovered
for the active use of biosensors developed through academic research in clinical
applications.
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