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Abstract We numerically study the dynamic flow-induced vibration (FIV) response 
of a flexible vertical plate cantilevered at its bottom in a two-dimensional flow at 
Reynolds number, Re = 100. The incompressible Navier–Stokes and continuity 
equations are solved for fluid flow, and the Saint Venant–Kirchhoff material model 
is used for the structure. Plate dynamics is studied concerning reduced velocity, 
which represents the ratio of solid to fluid dynamic time scales. A parametric study 
is performed by sweeping through its bending stiffness (or the non-dimensional 
elasticity) at a constant mass ratio of 10. The dynamic characteristics are studied in 
terms of amplitude and frequency variation of plate oscillations against the reduced 
velocity. The oscillation frequencies of the plate are compared with its first and 
second-mode natural frequencies to understand the lock-in behavior. The modal 
frequencies are calculated by approximating the plate as an Euler–Bernoulli beam. 
The observed response is broadly categorized into four regimes: (i) lock-in with 
the first mode, (ii) de-synchronization, (iii) lock-in with the second mode, and (iv) 
de-synchronization. Overall, the plate locks in and de-synchronizes with its natural 
modes as the reduced velocity changes. This behavior is similar to Vortex-Induced 
Vibrations (VIV) of an elastically mounted rigid cylinder. 

Keywords Fluid–structure interaction · Flow-induced vibration · Flexible plate ·
Lock-in · Energy harvesting 

1 Introduction 

Flow-induced deformation of flexible plates is ubiquitous. There are plenty of natural 
and artificial examples of such systems: from aquatic vegetation to flexible blades. 
These systems inspire many engineering applications such as drag reduction by 
flow-induced reconfiguration, wind energy harvesting from flow over flexible blades. 
Many researchers have attempted to model and simulate these problems from both
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static and dynamic perspectives. For instance, [1] and [2] studied the drag variation as 
a function of the fluid flow velocity. For bluff bodies, the drag and square of velocity 
ratio scales as the zeroth velocity power, i.e., D/U 2 α U 0, where D is the drag force, 
and U is flow velocity. They suggested that this relation gets modified for flexible 
bodies as D/U 2 α Ue, where e is an exponent that can be treated as a measure of 
reconfiguration. They collected numerous data on plants, such as potted pines, and 
concluded that e = −1.13 for speeds above 6 m/s. Luhar and Nepf [3] worked in  
the same field by using a combination of experiments and theoretical models. They 
developed an Euler–Bernoulli beam model for static analysis of flexible plants. A 
balance between drag force, buoyancy, and beam inertia results in a second-order 
ordinary differential equation that can be solved to find the relation between drag 
force and flow velocity. Later, [4] modified the same model by adding the role of skin 
friction. Leclercq and de Langre [5] developed an analytical model to quantify the 
drag reduction for flexible cantilever beams. They predicted the value of the Vogel 
exponent that quantifies the drag reduction in such configurations. 

The dynamic characteristics of these systems have also been explored vastly. Py 
et al. [6] studied the dynamic interaction between the waves and crop. They developed 
a lock-in mechanism model and compared its output with experimental results. De 
Langre [7] presented a review on the flow-structure interaction between plants and 
wind, where he examined the dynamics of plants when they are strongly coupled 
to the wind. He performed this analysis by modifying the elementary oscillator 
model using wind load to understand the modal response of plants. Luhar and Nepf 
[8] performed a combination of experimental and numerical studies to describe the 
motion of flexible blades that imitate the dynamic behavior of aquatic vegetation. 
They considered two main parameters in their study: (i) Cauchy number (Ca), and 
(ii) the blade length to wave travel ratio. The studies were performed for Ca << 1 
and Ca >> 1. Zhang et al. [9] investigated the dynamic behavior of wall-mounted 
2D flexible filaments (single and double). They demonstrated the frequency lock-in 
with different structural modes and explained the physical driving mechanisms. 

With the understanding gained from these studies, there have been many attempts 
to develop energy harvesting models to utilize wave energy by applying these 
systems. Yu et al. [10] presented a review on the energy extraction from flag vibra-
tions. They studied the vibration and vortex dynamics of the proposed system to 
understand their feasible practical applications. They assert that flag vibrations are a 
good energy solution to provide power in various industrial applications. Shoele and 
Mittal [11] developed a numerical model of an inverted piezoelectric flag. They exam-
ined the dynamic response of the inverted flag and investigated its energy harvesting 
performance. 

In most studies, the plate is analyzed in a wall-mounted configuration [5–7, 9]. We 
propose a fixed bottom of the plate, but not mounted to the wall as shown in Fig. 1. 
This arrangement allows the flow at both top and bottom of the plate, and the flow 
energy consumption in boundary layer formation near wall is eliminated. It results 
in a lower critical Re for the onset of flow-induced plate vibrations [9]. As a result, 
maximum flow energy is utilized in plate vibrations. Such arrangement is useful 
where intensive plate vibrations are required at low Re such as energy harvesting.
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Fig. 1 Schematic of the computational domain with respective dimensions and boundary conditions 

2 Computational Model 

We use an in-house, partition approach-based fluid–structure interaction (FSI) solver 
with a two-way coupling between the fluid and solid domains. Fluid is solved over 
an Eulerian mesh while the structure solver uses the Lagrangian framework. Details 
of the fluid and structural solver used are as follows. 

2.1 Fluid Dynamics 

The 2D unsteady, incompressible Navier–Stokes equations are solved along with the 
continuity equation (Eqs. 1 and 2) using a sharp interface immersed boundary (IB) 
method-based flow solver developed by [12]. This IB method is based on the ghost 
cell methodology and uses a Cartesian grid for computations. Discretization in space 
is done on a cell-centered collocated grid using the finite difference method, and the 
fractional step method is used for time marching. The flow solver is implemented 
in two steps: (i) solving the advection–diffusion equation using the Crank-Nicolson 
scheme, and (ii) solving the pressure Poisson equation using the geometric multigrid 
method with divergence-free velocity constraint. The method is verified and tested 
for second-order accuracy [12].
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2.2 Solid Dynamics 

The structural solver is an open-source finite element solver [13] that was developed 
at Sandia National Labs, CA. Using it, we solve 2D Navier’s equations of motion 
(Eq. 3) for plane strain condition. We use the Saint Venant-Kirchoff material model 
to simulate large solid deformations accurately. In this model, the solid is treated as a 
(i) geometrically nonlinear, (ii) linear elastic material. The constitutive relation and 
the Second Piola-Kirchoff stress expressed as a function of Cauchy stress is shown in 
Eq. 4. The Green-Lagrangian strain tensor is written as a function of the deformation 
gradient as shown in Eq. 5. 
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S = λtr  (E)I + 2μE ; S = J F−1 σ F−T (4) 
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2.3 Coupling of the Flow and Structural Solvers 

The fluid and structural solvers are coupled using an implicit strong coupling 
(see details in Ref. [14–16]). The FSI field is solved numerically using a parti-
tioned approach where fluid and solid domains are solved alternately with interface 
boundary conditions. For the flow field, a one-time step is marched to obtain the 
updated pressure and velocity field with the current deformed shape of the solid. The 
updated flow field is used to solve the structural dynamics then. At the interface, the 
continuity of velocity and traction is maintained as given by Eqs. 6 and 7, respec-
tively. These interface conditions are forced as boundary conditions while marching 
in time for fluid and solid. 

u i, fluid = ḋ i, solid (6)
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σi j, fluid n j = σi j, solid n j (7) 

2.4 Key Parameters 

The geometry and material properties of the plate primarily govern its dynamic 
response. We consider two such parameters viz. (i) bending stiffness (Eq. 8), and (ii) 
mass ratio (Eq. 9). We perform the simulations at different values of bending stiffness. 
These values are obtained by varying the non-dimensional Elasticity (E) and keeping 
all other parameters constant. We study this dynamic problem concerning reduced 
velocity, UR (see Eq. 10). It’s a dimensionless parameter representing the ratio of 
solid to fluid dynamics time scales. The chosen time scale for fluid is the convective 
time scale. For the solid, the dynamic time scale is the inverse of its natural frequency. 
Natural frequencies of the plate in vacuum are calculated by treating it as an Euler– 
Bernoulli beam (Eq. 11). We focus on the first and second modes and ignore the 
higher modes for the present work. It should be noted that the consideration of natural 
frequencies in vacuum is an approximation since the plate natural frequencies are 
modulated by various effects due to the presence of a surrounding fluid: (i) added mass 
effect, (ii) flow-induced damping effect, (iii) added stiffness due plate curvature in its 
mean position, and (iv) nonlinear effect due to large amplitude oscillations. Zhang 
et al. [9] argued that the added mass and flow-induced damping tend to decrease 
the plate natural frequency while added stiffness effect increases the same. Both 
cancel each other’s effect to some extent, however, implications of nonlinear effects 
are hard to analyze theoretically. As a result, the natural frequencies in vacuum are 
approximate plate natural frequency values that are used in this study to compare 
with the plate’s oscillation frequency and analyze its response. 
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For post-processing of the obtained data, we define an angle θ concerning the 
probe point (x, y) and reference coordinates of the beam (x0, y0) as shown in Fig. 2. 
This transformation is similar to the θ definition presented by [9] in their study of
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Fig. 2 Location of the probe point, and moving from XY space to θ space for the plate oscillation 
frequency ( fp) and amplitude (Aθ ) calculation 

wall-mounted flexible plates. However, they defined θ from the X-axis while we take 
θ as the angular deformation from its initial vertical position. The probe is installed 
at the tip of the plate with coordinates (x, y) = (20.05, 19.00) at time t = 0. As the 
solid deforms, the global coordinates of this point change, but it remains fixed locally 
to the solid. We use this transformation to move from XY space to the θ space for 
calculating the plate frequency, f p and amplitude of vibrations, Aθ . The amplitude 
is now defined as Aθ (= Δθ/2) instead of ΔX and ΔY separately, and it’s calculated 
as the peak to peak amplitude. Since θ depends on both X and Y-coordinates of the 
probe point, it results in an advantage of accounting both X and Y parameters into 
one. 

3 Validation and Testing 

3.1 Grid and Domain Size Independence Test 

The grid and domain independence tests are performed at Re = 100. The chosen 
parameters for the solid are: (i) modulus of Elasticity, E = 400, (ii) Poisson’s ratio, 
ν = 0.4, (iii) Mass ratio, M = 1. The test cases are compared using the root means 
square (RMS) displacements (both X and Y ) of the probe point (see Fig. 2). First, a
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Table 1 Domain independence test for minimum grid size 0.02. % Error is computed with respect 
to the benchmark case 

Domain size rms dx % Error rms dx % Error  

75 × 50 0.844 0.0 0.52 0.0 

65 × 40 0.842 0.23 0.524 0.73 

60 × 50 0.841 0.29 0.525 0.94 

60 × 40 0.8415 0.25 0.5245 0.81 

Table 2 Grid independence test for domain size 60x40. % Error is computed with respect to the 
benchmark case 

Grid size (min Δx = Δy) rms dx % Error rms dx % Error 

0.01 0.844 0.0 0.52 0.0 

0.02 0.842 0.25 0.525 0.81 

0.025 0.841 0.31 0.525 0.98 

benchmark case is simulated with a domain size of 75 × 50, a minimum grid size of 
0.01 (Δx = Δy) close to the plate, and a time step size of 0.005. During both tests, 
it serves as the reference solution for computing the relative errors. 

For the domain independence test, all the domains consist of a minimum grid size 
of 0.02 (Δx = Δy) and a time step size of 0.01. The domain sizes are varied in 
both x and y directions, as shown in Table 1. For all simulations, the CFL number 
is retained well below 1 to ensure numerical stability. The chosen domain size for 
further simulations is 60 × 40 with an error below 1%. 

The grid independence test is performed over a domain size 60 × 40 and a time 
step size of 0.01. Three different grid sizes are chosen, and errors are compared with 
the benchmark case as shown in Table 2. The selected grid size for further simulations 
is min. Δx = Δy = 0.02. 

3.2 Code Validation 

We use a FORTRAN code that is based on the sharp interface immersed boundary 
method developed by [12]: see Sect. 2.1 for details of the method. The code has been 
validated extensively in previous literature. The flow solver has been validated by 
[12] using a combination of 2D and 3D problems, to name a few, flow past: (i) circular 
cylinder, (ii) sphere, (iii) suddenly accelerated normal plate, etc. The solver has been 
further extended for flexible body deformation (see Sect. 2.2 for details) by [14]. 
Bhardwaj and Mittal [14] and Kundu [15] validated the same using the benchmark 
problem ‘flow over splitter plate attached to a cylinder’ proposed by Turek and Hron 
[17]. They demonstrated that the structural solver is capable of accurately simulating 
large-scale deformation problems.
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4 Results and Discussion 

We perform simulations by varying the plate’s modulus of Elasticity, E in a range of 
[2 × 105, 365] keeping all other parameters constant. It results in a variation of plate 
bending stiffness (Kb) and reduced velocity (UR). As these parameters change, the 
dynamic response of the plate changes. We track the coordinates of the probe point 
(see Fig. 2) and use this data to compute the oscillation frequency and amplitude of 
vibrations as explained in Sect. 2.4. 

4.1 Frequency and Lock-In Characteristics 

Flow over the plate results in vortex shedding from its top and bottom, as shown in 
Fig. 3. The vortices are shed in a C(2S) pattern at low values of UR where coalesced 
vortices of similar signs are shed that are arranged in two distinct rows. At large 
values of UR, the plate becomes very soft and is streamlined to the flow. As a result, 
the vortex shedding modifies to a 2S pattern in which two single vortices are shed 
in an opposite sense of rotation per cycle. The alternately shedding vortices are a 
result of the competing inertia and viscous forces that impose a periodic forcing on 
the plate. Due to this phenomenon, the plate bends at a certain angle and starts to 
oscillate about a curved mean position as shown in Fig. 2. The mean position of 
plate, θ depends on the chosen modulus of Elasticity (E): softer the plate (represents 
a low value of E), larger its mean position.

The dynamic response of the plate is captured by the peak to peak amplitude 
(Aθ ) and frequency ( fp) of its vibrations as shown in Figs. 4 and 5, respectively. 
Figure 4 demonstrates the variation in plate amplitude (Aθ ) with UR. On the other 
hand, in Fig. 5, we plot the amplitude spectral density (ASD) of the displacement 
signal (θ ) without any normalization. The contours represent the spectrum of plate 
oscillation frequency ( fp) with varying reduced velocity (UR). Histogram distribution 
is used on a uniform frequency scale (Δ f = 0.025) for interpolating the frequencies. 
The cut off lowest frequency shown on the plot is 1% of the maximum oscillation 
frequency. A logarithmic scale is used for plotting the color map, and its normalized 
with the maximum frequency. Darker contour areas represent a dominant output 
frequency and vice-versa, at any value of UR. In addition to this, we compute the 
first and second-mode natural frequencies of the plate ( fn1 and fn2, respectively) 
using Euler–Bernoulli beam theory (see Eq. 11) and plot them as solid red and 
blue lines, respectively, on the same plot. The resulting plot demonstrates the lock-
in/de-synchronization behavior of the system with first/second natural modes as 
UR changes. Both plots (i.e., Figs. 4 and 5) are shown on the same scale of the 
UR to demonstrate the variations in plate amplitude as the frequencies lock-in or 
de-synchronize. We qualitatively identify four regions as follows:

Region 1: Lock-in with first mode: It’s a small reduced velocity, UR, region where 
the plate’s modulus of Elasticity, E is high (order of 104). Lock-in with the first mode
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Fig. 3 Vorticity contours along with instantaneous plate deformation at selected values of reduced 
velocity, UR for a fully developed flow



676 A. K. Pandey et al.

Fig. 4 Variation in amplitude of the plate vibrations Aθ with respect to reduced velocity, UR 

Fig. 5 Contour plot for plate’s frequency response with UR. The first and second mode plate natural 
frequency lines ( fn1 and fn2) are drawn in red and blue, respectively

occurs for a range UR ≈ (2.0, 4.9). In this range, the amplitude starts to increase 
from a value of 0.7

◦ 
. At  UR ≈ 3.5, the observed plate amplitude is maximum, i.e., 

3.52◦.
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Region 2: De-synchronization: As we further reduce E (order of 103), the plate 
becomes softer and it de-synchronizes with its first mode. The amplitude drops back 
to around 1◦. This starts to occur at UR ≈ 4.9. The plate keeps oscillating for a 
large range of UR where it does not lock-in with any other mode. The observed 
range of this de-synchronized plate vibrations is UR ≈ (4.9, 13.0). We also observe 
secondary dominant frequencies in the range UR ≈ (5.0, 10.5). The physics behind 
the presence of these secondary dominant frequencies in this UR range is yet to be 
explored. 

Region 3: Lock-in with second mode: With a further reduction in E (order of 102), 
the plate becomes very soft and starts to show large deformations. At UR ≈ 13.6 
the plate response frequency reaches closer to its second-mode natural frequency 
and lock-in with second mode is observed. As a result of this lock-in, amplitude of 
vibrations again starts to increase with UR. At  UR ≈ 18.13 plate completely locks 
in with its second mode and a peak amplitude of 7.54

◦ 
is noted. This amplitude is 

almost three times the amplitude in first-mode lock-in. This is understandable by the 
fact that the plate is softer in the second-mode lock-in as compared to the first-mode 
lock-in, and is expected to show larger deformations. 

Region 4: De-synchronization: The plate remains locked in with its second mode 
for a larger range of UR ≈ (14.8−20). Above UR = 20 the plate becomes extremely 
soft (E ≈ 150) and very large deformations occur. Due to a very low mass ratio (M) 
and modulus of Elasticity (E), the simulations become hard to be handled by our 
solver at very high UR. Due to this, for now, we limit our simulations to UR = 20 for 
maintaining accuracy. However, we are investigating other parametric combinations 
to achieve high UR simulation cases as a part of our future plans. It is expected that 
the plate should de-synchronize with the second mode at a high value of UR. 

5 Conclusions 

In this study, we investigated the flow-induced vibrations of a flexible plate in a 2D 
incompressible flow field. The vortex shedding patterns were examined to under-
stand the onset of plate vibrations. The amplitude and frequency response of these 
vibrations were plotted, and insights were given into the plate dynamics concerning 
its first and second-mode natural frequencies with reduced velocity. We found that 
the plate response is similar to the vortex-induced vibrations (VIV) of elastically 
mounted rigid cylinder. Similar to the VIV, plate response is divided into various 
regions. In these regions, the plate locks in and de-synchronizes with its first and 
second-mode natural frequencies as the reduced velocity changes. Overall, the plate 
exhibits rich dynamics that later has been further investigated [18] for potential 
practical applications such as energy harvesting and drag/lift optimization. 
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Nomenclature 

Aθ Plate amplitude (peak to peak) 
CD Coefficient of drag 
CL Coefficient of lift 
d Displacement 
dx Probe point displacement in X 
dy Probe point displacement in Y 
E Modulus of Elasticity 
fi Body force 
fni Plate natural frequency; i = 1, 2, 3... 
fp Plate oscillation frequency 
F Deformation gradient 
h Plate thickness 
J Jacobian 
Kb Bending stiffness 
L Plate length 
B Width of computational domain 
W Height of computational domain 
M Mass ratio 
p Pressure 
Re Reynolds number 
S Second Piola-Kirchoff Stress 
St Strouhal number 
t Time 
u Velocity 
U Free stream velocity 
UR Reduced velocity 
x Space variable 
ρs Plate density 
ρf Fluid density 
μ Fluid dynamic viscosity
Δθ Angular displacement of plate 
ν Poisson’s ratio 
σ Cauchy Stress
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