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Abstract The flow phenomena for a rotating cylinder with the application of an 
impulsive translational motion is studied using ANSYS FLUENT 19R3. The study 
is carried out for power-law index n = 1 and 2 at a fixed Reynolds number (Re = 
40) for different non-dimensional rotation rates (α = 0.5, 1, 2). After the initial flow 
field reaches a steady state, the impulsive motion is applied by implementing a User 
defined function (UDF) which assigns a zero-inlet velocity. The time evolution of 
vorticity contours provides insights into the developing flow field after the impulsive 
motion. For both the power indices, it has been found that a higher rotational rate leads 
to faster flow stabilization and can be used for flow control. The flow phenomena 
is studied quantitatively in terms of aerodynamic coefficients. The Drag coefficient 
value decreases by 36.47% as value of α increases from 0.5 to 2 for n = 1. The sudden 
variation in force coefficients and their subsequent variation is used to interpret the 
effect of rotation rate on the disturbed flow field due to impulsive motion. 

Keywords Rotating cylinder · Impulsive motion · Vortex shedding · Drag 
coefficient · Lift coefficient 

1 Introduction 

The study of fluid flow characteristics around a circular cylinder is a classical bluff 
body problem in fluid mechanics, with studies dating back to the fifteenth century. 
Flow over a cylinder can be classified as both an external and internal flow. Flow
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over a cylinder in an unconfined domain can be categorized as an external flow, 
whereas flow over a cylinder in a confined domain can be categorized as an internal 
flow. Despite having a simple geometry, flow past a circular cylinder is a baseline 
example of more complicated flows having significant real-life applications. These 
applications often involve fluids flowing over complex geometries, like missiles, 
bridge pillars, jets, wings, submarines, and turbines. Moreover, research pertaining 
to flow around cylinders serves as a foundation for understanding various industrially 
significant applications such as heat exchangers, cooling towers, nuclear reactors, 
chimney stacks, and other offshore structures. Over the years, several studies have 
employed a wide range of Reynolds numbers to investigate laminar to turbulent 
transition in the wake, boundary layer transition, unsteady vortex shedding, and 
turbulent separation. As a fundamental method for flow control, rotating cylinders 
have gained significant traction over stationary cylinders. Cylinder motion can be 
classified into two types–forced (externally applied force) or free motion (movement 
due to fluid flow forces). An impulsive motion, which can be categorized as a forced 
motion, significantly enhances flow control by altering the flow field drastically. This 
work aims to develop an understanding and compare fluid flow characteristics over 
an impulsively rotating circular cylinder for Newtonian and for non-Newtonian fluid 
using the Carreau Model. 

2 Literature Review and Objective 

In recent decades of fluid dynamics research, the study of flow phenomena around 
static and rotating circular cylinders has attracted many researchers. Similarly, studies 
of impulsive cylinder motion have gained attention due to its application in many 
real-life scenarios. However, there has been no work on flow past impulsively moving 
rotating cylinder to the best knowledge of authors. This section aims to provide a 
brief overview of relevant past studies and their significant findings. Streeter [1], in 
his book, described several experimental and numerical investigations of the flow 
dynamics that have been described using hydrodynamic parameters such as drag and 
lift coefficients, vortex shedding, wake generation. One of the first comprehensive 
review studies of flow past a steady circular cylinder highlighted vital flow kinematics 
such as the range of Reynolds number for flow separation, the increase of wake 
Length, and flow transition with Reynolds number [2, 3]. Chew et al. [4] numerically 
investigated the shedding of vortices and the formation of wakes in a two-dimensional 
viscous incompressible flow generated by an impulsively rotating circular cylinder 
by a hybrid vortex scheme. The results indicated a critical value of α = 2 when a 
closed streamline began to circulate around the cylinder. Prasad et al. [5] investigated 
the effect of rotation on flow across a cylinder for different blockage ratios (β = 0– 
50%), non-dimensional rotational velocity (α = 0–2), and Reynolds number (Re 
= 35–170). They concluded that under counter clockwise rotation, a downward lift 
force was generated, which increased with increasing blockage ratio. Panda et al. 
[6] explored power-law fluid flow over a rotating cylinder for 0.1 ≤ Re ≤ 40 and
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non-dimensional rotational velocity 0 ≤ α ≤ 6. They found that at low Reynolds 
numbers, the power-law index has a much stronger influence on drag and lift than at 
high Reynolds numbers. Thakur et al. [7] explored the steady two-dimensional flow 
of incompressible Bingham plastic fluids past a rotating circular cylinder for 0.1 ≤ 
Re ≤ 40 and non-dimensional rotational velocity 0 ≤ α ≤ 5. They found an increase 
in the Bingham number with a decrease in the rotational velocity. 

Hourigan et al. [8] studied the vortex dynamics of the flow past a suddenly arrested 
translating circular cylinder. They found that the Kármán wake vortices roll up on 
each side of the cylinder to form two larger structures over a long distance. Ta 
Phuoc Loc [9] numerically investigated the mechanism of creating secondary vortices 
behind an impulsively started circular cylinder with greater precision numerical tech-
nique at Re = 300, 550 and 1000. He studied the properties of the creation and the 
development of the primary and secondary vortices and verified it with the available 
experimental data. Koumoutsakos et al. [10] investigated the impulsively started 
Newtonian flow around a circular cylinder via high-fidelity computations. They 
showed that the interaction of primary and secondary vorticity is the underlying 
mechanism for drag reduction and increase. Collins et al. [11] studied the initial flow 
in a viscous fluid in the direction normal to an infinite circular cylinder that is started 
impulsively from rest with uniform velocity. They found that the friction and pres-
sure drag are equal for all Reynold numbers at the start of the motion. Pantokratoras 
[12] has numerically investigated the flow of Carreau fluid over a cylinder using drag 
and lift coefficient and reported the increase in drag coefficient for shear-thickening 
fluids and a decrease for shear-thinning fluid on increasing the Carreau number (Cu). 
Ohta et al. [13] studied numerical simulations of Carreau model fluid flows past a 
circular cylinder. They found the effective Reynolds number advocated in this study 
allows one to fully describe the flow state of Carreau model fluids past a circular 
cylinder on par with Newtonian fluid flows. 

Based on the literature survey on the flow around a circular cylinder, it is observed 
that a majority of the work describes the effects of rotation and impulsive motion 
separately. Furthermore, little is known about the impulsive motion and rotation 
effects on aerodynamic parameters like drag and lift coefficients. The present work 
aims to study and compare the flow phenomenon on an impulsively moving rotating 
circular cylinder for different power-law indices and explain the behaviour of the 
aerodynamic parameters. As the shear-thickening fluid for power-law index n = 2 
was modelled, the Carreau model was chosen over the power-law model. 

3 Mathematical Modelling 

3.1 Governing Equations 

The flow is assumed to be 2-D incompressible with a uniform inlet velocity before 
the impulse. The continuity and momentum equation for the flow can be written as
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Continuity equation 
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Equation of Carreau model 

μ = μ1 + (μ0 − μ1)[1 + (λγ )2] n−1 
2 (4) 

3.2 Boundary Conditions 

At the domain boundaries and cylinder wall, the boundary conditions for the present problem 
are written as follows: 

• At the inlet, before the introduction of impulse, a constant uniform flow profile in 
the x-direction and zero velocity in the y-direction can be written mathematically 
as 

ux = u∞ and uy = 0 (5)  

After the introduction of impulse, zero velocity is assigned to both x and y velocity 
components 

ux = 0 and uy = 0 (6)  

• On cylinder surface: No-Slip boundary condition is applied throughout. It can be 
written as 

ux = uy = 0 (7)
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• At upper and lower wall: Symmetry boundary condition in the x direction is 
applied. It can be written as 

∂ux 

∂y 
= 0 and uy = 0 (8)  

• At the outlet: The outflow boundary condition is used throughout. The outflow 
condition corresponds to zero diffusion fluxes in the direction normal to the outlet 
planes. It is used for all the dependent variables. 

∂ux 

∂x 
= 0; ∂uy 

∂x 
= 0 (9)  

3.3 Numerical Methodology 

Finite-volume method (FVM)-based commercial software ANSYS FLUENT 19R3 
is used to for the current study. Figure 1 shows the computational domain used for the 
study. Full pressure–velocity coupling is achieved using a pressure-based coupled 
solver, resulting in faster convergence. The convective term in the flow equation is 
discretized using Linear Upwind Differencing (LUD) which uses a three-point stencil 
to give second-order accuracy, whereas the approximation for the diffusion term is 
automatically second-order accurate. Discretization with respect to time is first-order 
implicit, magnifying the stability envelope several-fold. A convergence criterion of 
10–6 is set for the residuals of velocity and continuity terms. The accuracy of our 
results has been ensured by performing the grid, domain, and time independence 
tests.

A zoomed-in view of multi-block structured mesh as shown in Fig. 2 is used due 
to the accuracy and stability of solution provided by the structured mesh over the 
unstructured mesh.

3.4 Grid Independence Test 

A square domain of varying dimensions is considered for the grid independence test. 
The independence test is performed at Reynolds number Re = 40 and dimensionless 
rotational speed α = 0.5 for a Newtonian fluid. Based on the increasing accuracy of 
aerodynamic parameters shown in Table 1, an optimum grid G2 is finalized for the 
current study.
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Fig. 1 Schematic of the 
computational domain for 
initial conditions

Fig. 2 Multi-block 
structured mesh used for the 
study

Table 1 Grid independence test 

Grid (no. of nodes) Drag coefficient (CD) Lift coefficient (CL) 

G1 (18,800) 0.906 −5.60 

G2 (55,200) 0.889 −5.629 

G3 (109,200) 0.865 −5.635
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Table 2 Comparison of present results with literature 

Re α n Present values Literature values 

CD LW CD LW 

40 2 1 0.84 – 0.83 [6] – 

40 0 1 1.53 2.24 1.50 [12] 2.15 

40 0 2 4.52 0.27 4.33 [12] 0.29 

4 Results and Discussion 

4.1 Validation 

Relevant validatory studies have been performed to establish the suitability of chosen 
numerical methodology. Validation cases Pantokratoras [12] have been used to verify 
the suitably chosen methodology for fluid flow over stationary cylinder, whereas 
cases from Panda and Chhabra [6] have been used to validate the same methodology 
for rotational effects. Table 2 is presented to compare the obtained force coefficient 
values with literature values. The obtained result shows excellent agreement with the 
result presented in the literature with a maximum of 4.38% deviation. 

4.2 Vortex Shedding Characteristics 

Vorticity contours for both the power-law indices have been presented in Fig. 3 to give 
a qualitative understanding of the flow phenomena. Positive (Counter-Clockwise) 
vortices are shown by solid lines and Negative (Clockwise) vortices are shown by 
dashed lines in the vorticity contours. The flow fields are contrasted at different values 
of α to understand its significance. In this study we have denoted the developed flow 
field with t = 0, at which the flow fully develops with the initial inlet condition. 
Subsequently, we demonstrate the development of flow field at different instances of 
time after the impulse.

4.2.1 Power-Law Index n = 1 

We notice the primary (P) vortices surrounding the cylinder at all values of α. These 
primary vortices are formed due to boundary layer separation and the formation of 
a recirculation zone behind the cylinder. As expected, at α = 2, the cylinder tries 
to wrap the nearby vorticity around itself due to extremely high rotational inertia. 
We observe this dynamic steady state pattern up until t = 2.5. At t = 2.5, with 
the implementation of the User Defined Function (UDF) the flow velocity drops to 
zero instantaneously. In fact, this sudden drop in velocity can be characterized as
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Fig. 3 Comparison of time evolution of vorticity for different rotational rates for a n = 1 b n = 2

impulsive. We notice that the primary (P) vortices have detached from the cylinder 
surface, and the void is filled in by the secondary (S) vortices. Due to the cylinder’s 
continued rotation, these secondary vortices also start to wrap around the surface. 
As we move from α = 0.5 to α = 2, the amount of negative vorticity engulfing the 
cylinder increases. Moreover, as α increases, the diffusion of the primary vortices 
accelerates. As we move to the subsequent time-instants (t = 5 and t = 7.5), we notice 
that for α = 0.5, the negative/clockwise secondary vortex starts to spill. Whereas it 
remains highly compact for α = 2. Again, this can be attributed to the increased 
rotational inertia of the flow. Furthermore, at t = 5 and 7.5, the cylinder space is 
completely devoid of any hint of primary vortex for α = 2. In addition, the cylinder 
is only surrounded by negative vorticity at α = 2 for the time instant t = 7.5. Thus, 
it can be summarized that higher α values can lead to accelerated diffusion of the 
vortices. 

4.2.2 Power-Law Index n = 2 

Similar to the Newtonian case, we observe primary vortices surrounding the cylinder 
at t = 0. However, one striking feature to note is the magnitude of the vorticity 
contours and the extent to which they are spread out. Higher inertia of the shear-
thickening fluid leads to the development of enveloping vortex for α = 2 even before 
the application of impulse. Implementation of UDF at t = 2.5 leads to detachment of 
primary vortices (P) and development of secondary vortices (S) for α = 0.5 whereas
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for α =1 and α = 2 no visible detachment is observed. The existing counter clockwise 
(CCW) vortices however change their orientation. The vortices take longer time to 
decay in comparison to their Newtonian counterparts for all the rotational rates. This 
behaviour of the flow field can be attributed to shear-thickening nature of the working 
fluid. 

4.3 Variation of Force Coefficients with Time and Rotation 
Speed 

In this section, the variation of force coefficients, for both power-law indices, through 
the impulsive motion is discussed with the help of Fig. 4. Both the drag and lift 
coefficients are studied once the flow with the initial inlet condition is fully developed, 
i.e., at t = 0. The sudden spike observed for both drag and lift coefficients can be 
attributed to the impulsive motion introduced at t = 2.5. The dip for drag coefficient 
can be attributed to a change in flow inertia with the introduction of impulse that leads 
to an instant detachment of the Primary vortices (P) and subsequent development of 
Secondary vortices (S). For n = 1, the magnitude of dip in drag coefficient is less 
in comparison to the dip for n = 2. The spike in lift coefficient for the Newtonian 
fluid, can be attributed to detachment and subsequent development of oppositely 
signed vortices over time. However, for the non-Newtonian case there is no spike 
for α = 1 and α = 2 due to non-detachment of vortices. This observation can be 
attributed to increased inertial properties of the shear-thickening fluid. The variation 
in coefficients has been studied till they reach a steady state after the introduction of 
the impulse. An important observation is concluded from observation of time taken, 
through variation of force coefficients, for the flow to reach steady state after the 
impulsive motion. For n = 1, the time taken by α = 2 is less that the amount of time 
taken by α = 0.5. This can be attributed to a faster dissipation rate at α = 2 leading 
to faster stabilization of flow.

5 Conclusions 

In this paper application of impulsive translational motion on a rotating cylinder at 
different rotation rates (α = 0.5, 1, 2) for a Newtonian fluid and shear-thickening 
fluid having power-law index n = 2 is studied. The Reynolds number based on 
cylinder diameter is kept constant. The non-dimensional rotation rate is varied so as 
to study the effect of rotation on disturbed flow field due to impulsive motion. In order 
to interpret the results both qualitatively and quantitatively, vorticity contours and 
force coefficients have been studied respectively. A comparison of the time evolution 
of vorticity contours for different rotational rates shows the enhanced dissipation 
rate at a higher rotational rate. In a quantitative sense, the sudden change in sign of
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Fig. 4 Variation of force coefficients through the impulsive motion for a n = 1 b n = 2
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force coefficients explain the formation of oppositely signed vorticity contours with 
the application of impulsive motion for the Newtonian fluid and the change in the 
orientation of enveloping vortices for higher rotational rate for non-Newtonian fluid. 
Moreover, a significant amount of time is taken, which is monitored here by variation 
of force coefficients, for α = 0.5 in comparison to α = 2 establishes the fact that a 
higher rotation rate leads to better flow control. This study can be further extended to 
investigate the effect of multiple impulses and their effect on higher rotational rates. 

Abbreviations 

Nomenclature 

CD Drag Coefficient 
CL Lift Coefficient 
D Diameter of Cylinder (m) 
H Height of the computational domain (m) 
LW Wake length (m) 
u∞ Free stream velocity (m/s) 
ux x-Component of velocity (m/s) 
uy y-Component of velocity (m/s) 
p Pressure (Pa) 
τi j Extra stress tensor (Pa) 
n Power-law index 
μ0 Zero shear viscosity (Pa s) 
μ1 Infinity-shear viscosity (Pa s) 

Greek Symbols 

α Non-dimensional rotational velocity [= D ω/2 u∞] 
ρ Density of working fluid 
ω Angular velocity 

References 

1. Streeter VL (1961) Handbook of fluid dynamics. McGraw-Hill, New York 
2. Zdravkovich MM (1997) Flow around circular cylinders, 1 fundamentals. Oxford University 

Press, New York



666 S. Panda et al.

3. Zdravkovich MM (2003) Flow around circular cylinders, 2 applications. Oxford University 
Press, New York 

4. Chew YT, Cheng M, Luo SC (1995) A numerical study of flow past a rotating circular cylinder 
using a hybrid vortex scheme. J Fluid Mech 299:35–71 

5. Prasad K, Paramane SB, Agrawal A, Sharma A (2011) Effect of channel-confinement and 
rotation on the two-dimensional laminar flow and heat transfer across a cylinder. Num Heat 
Trans Part A Appl 60(8):699–726 

6. Panda SK, Chhabra RP (2010) Laminar flow of power-law fluids past a rotating cylinder. J 
Nonnewton Fluid Mech 165(21–22):1442–1461 

7. Thakur P, Mittal S, Tiwari N, Chhabra RP (2016) The motion of a rotating circular cylinder in 
a stream of Bingham plastic fluid. J Nonnewton Fluid Mech 235:29–46 

8. Sheard GJ, Leweke T, Thompson MC, Hourigan K (2007) Flow around an impulsively arrested 
circular cylinder. Phys Fluids 19(8):083601 

9. Loc TP (1980) Numerical analysis of unsteady secondary vortices generated by an impulsively 
started circular cylinder. J Fluid Mech 100(1):111–128 

10. Koumoutsakos P, Leonard A (1995) High-resolution simulations of the flow around an 
impulsively started cylinder using vortex methods. J Fluid Mech 296:1–38 

11. Collins WM, Dennis SCR (1973) The initial flow past an impulsively started circular cylinder. 
Quart J Mech Appl Math 26(1):53–75 

12. Pantokratoras A (2016) Steady flow of a non-Newtonian Carreau fluid across an unconfined 
circular cylinder. Meccanica 51(4):1007–1016 

13. Ohta M, Toyooka T, Matsukuma Y (2020) Numerical simulations of Carreau-model fluid flows 
past a circular cylinder. Asia-Pac J Chem Eng 15(6):e2527


	 Numerical Study of Impulsive Motion Past a Rotating Cylinder for Newtonian and Non-newtonian Fluid
	1 Introduction
	2 Literature Review and Objective
	3 Mathematical Modelling
	3.1 Governing Equations
	3.2 Boundary Conditions
	3.3 Numerical Methodology
	3.4 Grid Independence Test

	4 Results and Discussion
	4.1 Validation
	4.2 Vortex Shedding Characteristics
	4.3 Variation of Force Coefficients with Time and Rotation Speed

	5 Conclusions
	References


