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Abstract The stability analysis of non-isothermal annular parallel flow through a 
highly permeable porous medium is studied. The flow is governed by the buoyancy 
force induced due to the different temperature conditions on the surface of inner 
and outer cylinders. A linear stability analysis subjected to normal mode analysis 
has been considered to investigate the influence of gap between cylinders (defined 
by the curvature parameter, C), Darcy number (Da, which is defined in terms of 
permeability of the porous medium) as well as Prandtl number (Pr) on the flow 
instability characteristics. The existence of the inflection point in the laminar base 
flow profile is checked. Depending on the value of controlling parameters (C, Pr, 
and Da), the least stable disturbance is found to be axisymmetric for smaller gap and 
non-axisymmetric for a larger gap between cylinders. The physical mechanism of 
the flow instability has been examined through kinetic energy analysis. 

Keywords Natural convection · Porous media flow · Linear stability theory 

1 Introduction 

The natural convection in a vertically oriented porous slab/duct has been thoroughly 
explored due to its practical relevance appeared in electronic industry, thermal-
hydraulics of nuclear reactors [1], chemical processing equipment [2], geothermal 
engineering [3] and building engineering [4]. Knowledge of the heat transfer char-
acteristics and fluid flow mechanism for duct flow systems can guide in optimization 
of the thermal design and ensure a high degree of safety in the devices used in these 
applications. As a result, understanding the flow dynamics and heat transfer mech-
anism under different geometry is crucial before initializing the duct flow through
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porous media in any appliance. The storage of nuclear wastes is another significant 
application of the flow through vertical porous slab, and it is essential to determine 
the insulating impact of the annular air gap surrounding a cylindrical nuclear waste 
canister implanted in a geologic repository. In such a situation, the temperature of 
the canister is critical because it is the primary factor that determines the life span of 
the metal containers. To determine if heat will be transferred through the air gap by 
conduction or convection, the stability of the parallel motion must be investigated. 

Generally, the flow through porous medium can be show to depend on the Prandtl 
number (Pr), Grashof number (Gr), permeability of the porous medium and geometry 
of the porous enclosure. There are numerous studies that explore the influence of Pr 
and the media permeability on the instability characteristics of natural convection in 
a rectangular channel saturated with porous material, which are well documented in 
refs. [5, 6] and references therein. The annular flow is unlike the conventional channel 
flow in terms of heat transfer mechanism and the flow instability characteristic [7]. 
Based on the gap between circular coaxial cylinders, the study of the annular flow 
provides a more general overview of the duct flow (including channel flow as well 
as flow through a circular pipe with a thin rod its center) dynamics. Therefore, 
motivated by the strikingly different stability characteristics of the flow in annular 
configuration compared to the flow in channel and the use of annular set up in many 
industrial situations [8], an extension of the work of Khan and Bera [9] to the natural 
convection case is established in the present study. From the best of our knowledge, 
there are only two studies [10, 11] on the stability of a natural convection in a vertical 
annulus filled with porous media. These studies are restricted to the stationary base 
flow. They have only looked into the effect of radius ratio (or curvature parameter), 
ignoring the effects of the permeability of the porous medium and the type of fluid in 
terms of Prandtl number. In a tall vertical slot, if the flow is assumed to be parallel, 
the velocity profile persists a nonlinear shape, with the fluid moving downward near 
the cooler wall and upward near the warmer wall [12]. It has been observed for the 
purely viscous media flow through vertical annulus. In a parallel flow, the flow is said 
to be in the conduction regime since heat is only carried across the duct by conduction 
between the fluid layers. The conduction regime when Gr is small was also validated 
by the experimental data [13]. However, as Gr rises, the flow becomes unstable, first 
giving rise to multicellular secondary flow patterns and then, as Gr rises even higher, 
turbulence. It has also been studied into whether the natural convection conduction 
regime is stable [14]. The Pr effects on the flow instabilities of natural convection 
in annular geometry filled with isotropic porous material have never been studied. 
Therefore, a step has been taken in the present work to understand such instability 
characteristics. Here, we have focused on the Prandtl number, curvature parameter 
(characterized in terms of the gap between cylinders), and media permeability on the 
type of instability and have been shown that these parameters are also responsible 
for the resulting type of insatiability and heat transport in the annular domain.
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2 Methodology 

The problem under consideration is the natural convection in a vertically oriented 
annular passage filled with isotropic porous material. The annulus is delimited by 
homogeneous and isotropic porous layers. The inner wall of the annulus is kept 
at constant heat flux and the outer wall is insulated. The fluid’s thermo-physical 
properties are considered to be constant except for the dependence of the buoyancy 
force term in the momentum equation on the fluid density, which is satisfied by the 
Boussinesq approximation. For the present theoretical investigation, we consider the 
Darcy-Brinkman model including the local time derivative based on the volume-
averaged Navier–Stokes equations developed by Whitaker [15]. 

After scaling the dimensional variables, the non-dimensional space coordinates 
(n, ψ,  z), dependent variables (u, v, w, θ,  p) and time t are determined as follows: 

(u, v, w) = 
(u∗, v∗, w∗) 

w∗
s 

, z = z∗ 

(ro − ri ) 
, η  = 

(r∗ − ri ) 
(ro − ri ) 

, 

θ = 
(Tw − T ∗)ν 
k(ro − ri )2 

, p = 
p∗ 

ρ f w∗2 
s 

, t = t∗w∗
s 

(ro − ri )2 
, 

here w∗
s is defined as gβk(ro − ri )4 /ν2, which can be obtained by balancing 

the buoyancy force and viscous force in the vertical momentum equation. The 
non-dimensional governing equations for continuity, momentum and energy, after 
dropping asterisks, in cylindrical coordinate (n, ψ,  z), are  given as  
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The used dimensionless parameters in the governing equations are the curvature 
parameter, C = ri 

ro−ri 
, porosity, ε, the Grashof number, Gr = ws (ro−ri ) 

ν
, the  Darcy  

number, Da = K 
(ro−ri )

2 , ratio of specific heat capacities, σ = cp 
cv 

and the Prandtl 
number, Pr = ν 

α . Here  ri , ro, ν,  K , cp, cv, α  and ρ are the radius of inner cylinder, 
radius of outer cylinder, kinematic viscosity, permeability of the porous medium, 
specific heat capacity at constant pressure, specific heat capacity at constant volume, 
thermal diffusivity and the density of the fluid phase, respectively. To avoid too many 
parametric studies, we have fixed the heat capacity ratio at 1. 

2.1 Basic Flow Equations 

The basic flow, whose stability will be analyzed, is a steady, unidirectional and fully 
developed flow. Using these assumptions to Eqs. (2)-(6), the basic flow becomes 
independent of the axial and azimuthal coordinates and the simplified governing 
equations are 

W '' + 
1 

η + C 
W ' − 

1 

Da 
W − Θ = Gr 

d P  

dz  
(6)

Θ'' + 1 

η + C
Θ' = −1 (7)  

where W, P and Θ are the basic velocity, pressure and temperature, respectively. 
The prime (

'
) denotes the derivative with respect to η. The corresponding boundary 

conditions are 

W = Θ = 0 at  η = 0 and W = Θ' = 0 at  η = 1 

The axial pressure gradient can be determined by the requirement of global mass 
conservation: 

1 ∫
0 
(η + C)Wdη = 0 

2.2 Linear Stability Analysis 

The normal mode analysis [16] is employed to investigate the stability of the above 
considered basic flow. The dependent field variables are decomposed into a basic 
state variables and an infinitesimal disturbance. The velocity field, temperature and 
pressure are written as:
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(u, v, w, θ,  p) = (
ũ, ṽ, W (η) + w̃,Θ(η) + ~θ,P(z) + p̃

)

These infinitesimal disturbances of corresponding field variables are split into the 
following normal mode form as:

(
ũ, θ̃ ,  p̃

)
=

(
û(η), θ̂ (η), p̂(η)

)
e(i[α(z−ct)+nψ]) (9) 

where u = (u, v, w), α,  c = cr
Ʌ+ ici

Ʌ

, and n are the velocity field, axial wavenumber, 
complex disturbance wave speed, and azimuthal wavenumber, respectively. Upon 
substitution of equations above decomposition into the non-dimensional governing 
equations and neglecting the nonlinear terms, the linearized perturbation equations 
are given as follows: 
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} + W 'û
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Here, prime (
'
) denotes the first order derivative of a field variable with respect to η. 

The boundary conditions required to solved of the perturbation equations are 

û(0) = v̂(0) = ŵ(0) = θ̂ (0) = 0 and 

û(1) = v̂(1) = ŵ(1) = θ̂ '(1) = 0.
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Table 1 Validation of present results with the published results of Rogers and Yao [12] for different 
values of Pr, C and n 

(Pr, C, n) Published results [12] Present results 

(Grc, αc, cr ) (Grc, αc, cr ) 
(0.01, 0.6, 1)

(
13900, 2.5, 0.19 × 10−2

) (
13913.2, 2.5, 0.20 × 10−2

)
(0.01, 10, 0)

(
15140, 2.73, 0.42 × 10−2

) (
15135.4, 2.73, 0.42 × 10−2

)
(10, 10, 0)

(
5526, 1.58, 0.43 × 10−2

) (
5520.6, 1.58, 0.43 × 10−2

)
(10, 100, 1) and (10, 100, 0) (6100, 1.52,) (6086.6, 1.52,) 

The basic flow equations as well as linear disturbance equations are solved by 
using spectral collocation method. The Chebyshev polynomials are used to approxi-
mate the dependent field variables. The domain [0, 1] is transformed to the canonical 
domain of Chebyshev polynomials by using transformation, ξ = 2η−1. The highest 
order of Chebyshev polynomial used in the approximation of velocity, temperature 
and pressure fields is 80. The procedure of solving the linear disturbance equations 
and finding the critical value of controlling parameters is well explained in ref. [17]. 
To validate the presented numerical results, we have computed the critical value of 
Grashof number, the critical value of axial wavenumber, and critical wave speed for 
different values of C and Pr to the special case of purely viscous media flow [12] by  
setting Da = 1012. Table 1 provides good support for the present results. 

3 Results and Discussion 

The parameters in this problem are Gr, Pr, C and Da. For  a fixed  Pr, C and Da, 
the flow becomes unstable as Gr increases and a complete linear instability map 
is obtained by considering the effect of Pr, C and Da on Grashof number. In this 
article, the impact of Pr on Gr is examined for two values (0.1 and 10) of C, three 
values (10−1, 10−2 and 10−3) of  Da and a wide range [10−3, 102] of Prandtl number. 
The current choice of Pr provides a complete picture of the instabilities present in 
the considered physical scenario. It is worthwhile to note that the ideal gases will 
have Prandtl numbers greater than 0.4, which is known from kinetic theory, while 
most common liquids have Prandtl numbers greater than 1. The exceptions are liquid 
metals, whose Prandtl numbers are less than 0.1. Consequently, no common fluids 
will have Prandtl numbers in the intermediate range. However, data are presented 
for a continuous range of Prandtl number to demonstrate the results of the instability 
calculations. 

It is crucial to understand how controlling parameters C and Da affect the point of 
inflection’s appearance since the point of inflection on the basic flow velocity profile 
acts as a possibility for the flow instability [18]. In this connection, we have shown the 
basic flow velocity (W ) for different value of both curvature parameter and Rayleigh 
number, as shown in Fig. 1a. The corresponding basic flow temperature (Θ) profile
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displayed in Fig. 1b. The velocity profile for C = 10 is almost symmetric about η = 
0.5, while the profile for C = 0.1 is asymmetric. This is because C = 10 corresponds 
to an annulus with a narrow gap, approaching a two-dimensional slot, while C = 0.1 
represents an annulus with a much more pronounced curvature effect. Both of these 
velocity profiles contain inflection points, which suggests a potential for inviscid 
instability. Moreover, it can be seen from the velocity profiles that on changing the 
value of curvature parameter from 0.1 to 10, the point of inflection shifts from the 
inner cylinder to the center of the annular domain. However, on decreasing the media 
permeability, the same shifts from the center to the inner cylinder. On increasing the 
value of C, the maximum magnitude of the velocity decreases representing the stabi-
lizing nature of C. The media permeability played just a reverse role in the stability 
of the flow. The temperature profile does not influence by the media permeability for 
a fixed gap between cylinders, whereas a significant impact of C is visible in Fig. 1b. 

The linear instability boundary for the considered set of parameters is shown in 
Fig. 2a and b. Figure 2a represents the graph of critical value of Gr (i.e., Grc) as a  
function of Pr for C = 0.1 and Fig. 2b represents the same for C = 10. The solid line 
in each figure demonstrates the Grc-profile for two-dimensional axisymmetric distur-
bance, whereas the dashed line demonstrate the Grc-profile for three-dimensional 
non-axisymmetric disturbance. It can be seen that the least stable disturbance may be 
axisymmetric or non-axisymmetric depending on the value of C. For smaller value of 
C, the least stable disturbance are always three-dimensional, i.e., non-axisymmetric 
(see Fig. 2a). However, for larger value of C, the least stable disturbance are always
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Fig. 1 Base flow velocity and temperature profile for different values of C and Da. The green solid 
line and red dashed line correspond to Da = 10−1 and Da = 10−2 
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two-dimensional, i.e., axisymmetric (see Fig. 2b). The solid and dashed lines in the 
same figure appear to overlap, but after closely examining the data, we found that 
the solid line is always lower than the dashed line, signifying that the axisymmetric 
disturbance is most unstable. On decreasing the media permeability in terms of Da, 
the critical value of the Grashof number increases for both values of C. Further, 
an increase in the curvature parameter results in an increase in the critical value of 
Grashof number, demonstrating the stabilizing nature of C. In general, it can be seen 
from both figures that on increasing the value of Pr, the critical value of Gr decreases 
rapidly up to a threshold value of Prandtl number, and above that threshold value 
of Prandtl number the change in Grc is smooth and gradual. To get a greater under-
standing of the variation of instability boundary, we have taken the help of kinetic 
energy budget [17]. To derive the balance of kinetic energy, the disturbed velocity 
field is multiplied on both sides of the disturbed momentum equations (before substi-
tuting the normal mode form of the disturbance), which are then integrated over the 
volume: [0, 1] × [0, 2π /α] × [0, 2π /n] of the disturbance cell. Thus, the rate of 
change of kinetic energy balance is given as 
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Fig. 2 Linear instability boundary as a function of Prandtl number in (Pr, Gr)- plane for a C = 
0.1 and b C = 10
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In the above equation, the symbol ⟨ ⟩ indicates the integration over the volume of 
a disturbance cell. In Eq. (20), the integrands in the above equation can be calculated 
by using the eigenvectors from the linear stability theory. The left-hand side of the 
Eq. (20) is zero at the critical values of controlling parameter because the disturbances 
neither grow nor decay along neutral-stability boundary. On the right side of the Eq. 
(20), the three terms E_D, E_d, and E_b stand for the dissipation of kinetic energy 
due to work done by surface drag, the dissipation of kinetic energy due to viscous 
effects, and the production of kinetic energy through work done by the fluctuating 
body force, respectively. Overall, KE balance Eq. (20) depicts a balance between the 
dissipation of disturbance kinetic energy caused by viscous force and surface dragand 
the production of disturbance kinetic energy caused by the buoyant mechanism. 
Figure 2 clearly indicates that at larger values of Pr, the dominant instability is 
insensitive to changes in Pr for both values of C. Moreover, the critical value of axial 
wavenumber shows an asymptotic nature (figure not shown). On the other hand, at 
smaller values of Pr, instability appears which is strongly dependent on Pr, with Gr, 
decreasing with increasing Pr. Moreover, in the case of purely viscous media [12], at 
larger values of the Prandtl number, the flow instability is strongly dependent on Pr, 
with Gr, decreasing with increasing Pr, whereas at small values of Pr, the dominant 
instability is insensitive to changes in Pr. In the present case, at a large value of Pr, 
the buoyant production is balanced by the dissipation of disturbance kinetic energy, 
which is due to the effect of viscosity as well as surface drag. Therefore, for all 
considered values of Da and C, the type of instability is thermal-buoyant. In this 
instance, for a high value of Pr, the buoyant production is counterbalanced by the 
dissipation of disturbance kinetic energy, which is caused by the impact of viscosity 
as well as surface drag. In all cases when Da and C are taken into consideration, the 
kind of instability is thermal-buoyant. Additionally, the buoyant, viscous and surface 
drag disturbance forces acting on the flow through the porous material cause the 
point of inflection in the basic velocity profile to exist or not appear. 

4 Conclusions 

The present work considered the linear stability analysis of stably stratified non-
isothermal parallel flow through a vertically oriented annular domain filled with 
porous material. The point of inflection in the considered stable laminar flow results in 
flow instability. The flow is stabilized by the curvature parameter, which is described 
in terms of the space between the coaxial circular cylinders. The media permeability 
has a destabilizing impact on the flow. The fluid with a relatively low Prandtl number 
is linearly most stable against non-axisymmetric disturbance whereas the fluid with 
relatively high Pr is linearly most stable against axisymmetric disturbance. When 
the Prandtl number is comparatively bigger, the kinetic energy budget shows that the 
dominating instability predominantly derives its energy through buoyant production. 

To acquire a comprehensive view of the transition to turbulence, the influence of 
the Prandtl number on the type of bifurcation and secondary flow pattern may also



38 A. Khan et al.

be studied via nonlinear stability analysis of the same problem. These analyses are 
left for our future study. 
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