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Abstract Linear stability analysis of steady two-dimensional flow past elliptic cylin-
ders with different aspect ratios (Ar) has been conducted for Reynolds number (Re) 
up to 200. The main characteristics of the steady flow (bubble length, bubble width, 
drag coefficient, and maximum vorticity on the cylinder surface) have been presented. 
From the linear stability computations, we find that there are three sets of complex 
eigenmodes which become unstable with increasing Re. We refer to them as primary 
wake mode (PWM), secondary wake mode, and tertiary wake mode (TWM), respec-
tively. PWM and SWM have already been reported in the literature for flow past a 
circular cylinder. In this work, we report a new unstable mode (TWM) along with 
PWM and SWM in the wake of elliptic cylinders. The structure of TWM shows that 
it is not so prominent in the near wake but has the longest range of presence and 
extends all the way up to the downstream boundary. The critical Re for the onset 
of instability of these modes and the corresponding Strouhal number (St) have been 
computed. Least-square fit equations for critical Re and St as a function of Ar have 
also been presented. 
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Nomenclature 

a Semi-major axis [m] 
b Semi-minor axis [m] 
Ar Aspect ratio [−] 
H Computational domain half width [−] 
LB Bubble length [−]

D. Kumar (B) 
Department of Mechanical Engineering, NIT Durgapur, Durgapur 713209, India 
e-mail: dkumar.me@nitdgp.ac.in 

B. Kumar 
Department of Mechanical Engineering, IIT Guwahati, Guwahati 781039, India 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 
K. M. Singh et al. (eds.), Fluid Mechanics and Fluid Power, Volume 2, Lecture Notes in 
Mechanical Engineering, https://doi.org/10.1007/978-981-99-5752-1_25 

301

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-5752-1_25&domain=pdf
mailto:dkumar.me@nitdgp.ac.in
https://doi.org/10.1007/978-981-99-5752-1_25


302 D. Kumar and B. Kumar

WB Bubble width [−] 
CD Drag coefficient [−] 
ωmax Maximum vorticity on the cylinder surface [−] 
Re Reynolds number [−] 
St Strouhal number [−] 
λr Growth rate [−] 
PWM Primary wake mode [−] 
SWM Secondary wake mode [−] 
TWM Tertiary wake mode [−] 

1 Introduction 

Bluff body wakes have been of interest in fluid mechanics since a long time. Flow 
past an elliptic cylinder is the generalization of flow past a circular cylinder which 
involves a new variable: the aspect ratio (Ar). In the past, there have been several 
attempts to investigate this flow [5, 12–14, 20, 24, 26]. The dynamics of the wake of 
an elliptic cylinder is much more rich compared to the same for a circular cylinder. 
As we change the aspect ratio of the cylinder, the flow becomes more and more 
complex. For example, flow past an elliptic cylinder is characterized by the presence 
of a near wake vortex street (von Kármán vortex street) followed by the diffusion 
of vortices to form two parallel shear layers. As we go downstream in the wake, the 
oscillations in the shear layers intensify, finally causing the secondary vortex street 
to develop [19]. With a decrease in aspect ratio, the extent of the von Kármán vortex 
street reduces in the wake and the onset location of the secondary vortex street moves 
close to the cylinder. For low aspect ratios, the shedding pattern is very complex and 
chaotic with the appearance of vortex pairing and long wavelength wake oscillations 
[24]. 

The flow transition between steady to unsteady occurs at Re which depends on 
Ar of the cylinder. Several researchers [12, 17, 24] in the past have conducted linear 
stability analysis of steady flow past elliptic cylinders in order to investigate the tran-
sition phenomenon. Based on such studies, it is known that the cause and appearance 
of the Kármán vortex street could be related to the first instability of the wake. The 
first instability of the wake is related to the growth of the unstable mode, sometimes 
referred to as the Kármán mode. In the present work, we refer to it as PWM. This is 
therefore seen as the fundamental cause of unsteadiness in the flow. In the literature, 
the nature and characteristics of this mode is known for more than forty years. For 
flow past a circular cylinder, Barkley and Henderson [2] concluded that there is only 
one mode which becomes unstable leading to the primary wake instability in a two-
dimensional flow before the three-dimensionality appears. In contrast, Boppana and 
Gajjar [3] reported the presence of a second unstable mode before the onset of three-
dimensionality. We refer this mode as SWM. According to them, the second unstable 
mode loses stability somewhere between Re = 125 and 150. In the same year, Verma
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and Mittal [25] conducted a linear stability investigation of two-dimensional flow 
past a circular cylinder. They reported Re = 110.8 for the onset of instability of the 
SWM. They found that structure of SWM is very similar to PWM. However, SWM 
has a lower growth rate and higher St than PWM. 

In this work, we share the discovery of yet another mode which is unstable in 
flow past elliptic cylinders, apart from the two already known. We refer this new 
mode as TWM. Knowledge of the nature and characteristics of these modes is of 
great relevance in understanding the wake flows. The present work examines the 
characteristics of these modes. We conduct this study for varying Ar of the cylinder 
and different Re in the range 30–200. 

2 Methodology 

The governing equations for the fluid flow are the incompressible form of the Navier– 
Stokes equations. In this work, we use the stabilized finite element formulation to 
solve the Navier–Stokes equations as well as the eigenvalue problems emanating 
from the linear stability equations. The stabilized finite element (streamline-upwind/ 
Petrov–Galerkin and pressure-stabilizing/Petrov–Galerkin) method has been devel-
oped and used by several researchers in the past [4, 10, 11, 16, 23]. Mittal and Kumar 
[16] briefly describe the formulation and the numerical method employed here. 

Applying the finite element formulation to linear stability equations leads to a 
generalized matrix eigenvalue problem, and its solution results in the eigenpair. 
Since the numerical dimension of the problem is usually very large, we look for the 
few modes which have the largest real part. 

Figure 1 illustrates the flow configuration, the computational domain, as well as the 
boundary conditions. The elliptic cylinder is placed symmetrically in a rectangular 
domain with its major axis (2a) aligned with the flow direction. The cylinder center 
is considered the origin of the Cartesian coordinate system. Semi-major axis of the 
ellipse is taken as the length scale for presenting the results. The length of the minor 
axis is denoted by 2b, and b/a represents Ar of the cylinder. Nine different Ar values 
(= 1, 0.75, 0.5, 0.375, 0.25, 0.125, 0.0625, 0.03, 0.01) are used in this study. In 
the present work, the domain boundaries are located far enough so that there is 
no significant effect on the overall flow field. The distance of the downstream, the 
upstream, and the cross-stream boundaries are 700, 200, and 100 from the center of 
the cylinder. The finite element mesh employed in this work contains 249,165 nodes 
and 247,654 elements in the computational domain. Close to the cylinder surface and 
in the wake region, the mesh is kept fine enough to capture the separating shear layer, 
the boundary layer, the wake bubble of the steady flow, and the linear stability modes 
accurately. In the direction away from the cylinder, the mesh gradually becomes 
coarser. The details about the finite element mesh can be found in our recent article 
[15].

The following boundary conditions are used to compute the steady base flow. The 
velocity at the upstream boundary is given a free-stream value. In the downstream
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Fig. 1 Problem description: a computational domain and boundary conditions, where Ld and Lu 
represent the downstream and upstream boundaries location, and H denotes the half width of the 
cross-stream dimension. b elliptic cylinder geometry. The cylinder center is used as an origin to 
measure all the linear distances

boundary, a boundary condition of Neumann type is imposed on the velocity, which 
corresponds to a zero stress vector. The components of velocity normal to and stress 
vector along the lower and upper boundaries are assigned zero values. The cylinder 
surface is a no-slip boundary. Linear stability computations are based on the same 
boundary conditions except at the inflow border, where the velocity components are 
set to zero. 

The mesh convergence study is comprehensively discussed in one of our recent 
publications. Tables I and II of Kumar and Kumar [15] provide a detailed discussion 
of the mesh convergence study, and based on these results, it can be safely concluded 
that the mesh considered here is appropriate for performing the present study. Tables 
III and IV of Kumar and Kumar [15] compare the steady flow characteristics with 
the published data. The comparison reveals that the present results match very well 
with the earlier investigations on flow past elliptic cylinders. 

3 Results and Discussion 

3.1 Steady Flow Results 

Here, we display results for steady flow past elliptic cylinders for (nine) different 
Ar and for Re in the range 30–200. As of now, it is well established that, beyond a 
particular Re, the flow separates from the cylinder surface [5, 20], which causes the 
formation of the wake bubble. Figure 2 demonstrates the description of the separation 
wake bubble. The bubble length (LB) is characterized as the distance between the 
rear stagnation point and the wake stagnation point along the wake centerline of the 
cylinder. The bubble width (WB) is measured as the maximum distance between the 
lower and upper separation streamlines.
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Fig. 2 Description of the 
symmetric wake bubble: LB 
denotes the bubble length, 
while WB represents the 
bubble width 

L B = −0.7155 + 0.1301Re 
WB = 0.4788 + 0.2444Re0.5 
CD = 0.2938 + 7.6937Re−0.5 

ωmax = −2.9870 + 2.3980Re0.35 

⎫ 
⎪⎪⎬ 

⎪⎪⎭ 
(1) 

Figure 3 displays the variation of the bubble parameters with Ar and Re. For each 
Ar, it has been found that LB grows practically linearly as Re increases. The decrease 
in Ar causes bubble to substantially grow. A non-linear growth is observed for WB 

as Re increases while Ar decreases. The drag coefficient (CD) shows a monotonic 
decrease with increase in Re and Ar. The maximum vorticity on the cylinder surface 
(ωmax) increases with decrease in Ar and increase in Re. The least-square fit of the 
steady flow data shown in Fig. 3 indicates that for Ar = 1.0, LB, WB, ωmax, and 
CD vary linearly as a function of Re, Re0.5, Re0.35, and Re−0.5, respectively. These 
results agree with the characteristics of steady flow past a circular cylinder reported 
by several investigators in the past [6–8, 21, 22]. Theoretical study by Smith [22] 
showed that LB grows linearly with Re while WB increases like O(Re1/2). Fornberg 
[6] calculated the steady flow numerically up to Re = 600. He observed that LB 

increases linearly with Re, whereas WB grows as O(Re1/2) up to Re  = 300 and 
increases linearly after that. Recently, Sen et al. [21] reported the empirical relations 
for steady flow past Ar = 1.0 at low Re in the range 6–40. They found that LB, CD, 

and ωmax vary with Reynolds number as Re, Re−0.5, and Re0.5, respectively. The 
variation of ωmax is accurate for low Re. For Re > 30, we find Re0.35 gives better 
results.

The empirical equations obtained for the curve fit for Ar = 1.0 are given in Eq. 1 
for Re in the range 30–200. In general, with the decrease in Ar, it is observed that, the 
characteristics of the wake bubble vary in the same fashion as for Ar = 1.0, except 
that a higher-order polynomial fit is required. This shows that the non-linearity in 
the bubble properties increases with decrease in Ar. However, CD is one exception 
to this change. It shows linear variation with Re−0.5 even for smaller aspect ratios. 
The maximum percentage error between the actual value and the data obtained from 
the given equations are 0.88 for LB, 2.22 for  WB, 0.31 for  CD, and 0.53 for ωmax. 
The trends represented by the equations therefore are a good representation of the 
variation of the flow properties.
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Fig. 3 Steady flow characteristics: effect of Re and Ar on a LB, b WB, c CD, d ωmax on the cylinder 
surface

4 Linear Stability Analysis 

In the past, linear stability analysis of flow past an elliptic cylinder has been carried 
out by several researchers [12, 17, 24]. However, the results are very scanty and do not 
give a comprehensive view of the flow behavior. Here, we provide a detailed analysis 
of the related flow problem. The linear stability study is carried out for cylinders with 
different Ar and different flow Re. Our results show the presence of three different 
kinds of eigenmodes in the flow which become unstable with increase in Reynolds 
number. We refer to them as PWM, SWM, and TWM. These are identified based on 
their growth rate and modal structure in the flow field. The growth rate (λr) of PWM  
is the highest. It loses stability at relatively low Re and is responsible for shedding 
of von Kármán vortices. Upon increasing the Re further, first the SWM and then the 
TWM loses stability. However, TWM is not observed to become unstable for Ar = 
0.75 and 1.0. 

The parameters like Ar and Re significantly affect the flow behavior, and hence, 
their effect is studied in more detail. Figure 4 illustrates the variation of λr and St 
with Re for PWM, SWM, and TWM. For PWM, the λr curves for Ar = 1.0 and 0.75 
show a monotonic increase with Re. For other aspect ratios, it first increases and then 
passes through a maximum. It is found from these results that flow past a cylinder with 
low Ar exhibits higher growth rate at lower Re. Consequently, the critical Reynolds
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number (Rec) for the onset of vortex shedding decreases for cylinder with smaller 
Ar [13, 24]. Similar observations can be made for SWM and TWM. For SWM, the 
λr curve for Ar = 1.0, 0.75, and 0.5 increases monotonically with Re. For other 
aspect ratios, it shows a non-monotonic increase passing through a maximum. For 
TWM, the monotonic increase in λr is observed for Ar down to 0.25. Below this, the 
non-monotonic increase similar to that found with the other modes is observed. For 
the considered Re range, TWM remains stable for Ar = 1.0 and 0.75. It becomes 
marginally unstable for Ar = 0.5 at Re = 200. And for lower Ar, it becomes unstable 
over a range of Re. Bottom row of Fig. 4 displays the variation of St with Re for the 
three modes. For PWM, St curves show a non-monotonic variation for higher aspect 
ratio cylinders (Ar = 1.0, 0.75, 0.5). Similar observation has been reported for Ar = 
1.0 by several researchers in the past [1, 9, 18].  For lower  Ar, St of PWM  shows a  
non-monotonic decrease with increase in Re. SWM and TWM exhibit a monotonic 
decrease in St with increase in Re, for each Ar. There is however one difference in 
the St curves for TWM. Overall, the slope of the St curves, for TWM, is smaller than 
the other two modes, and therefore, the minimum which they reach, in the range of 
Re shown, is higher than that achieved by the other two modes. 

We determine the critical parameters (Rec and Stc) for PWM, SWM, and TWM, 
corresponding to their zero growth rate. 

Figures 5 and 6 show that the value of Rec and Stc for each eigenmode decreases 
as we decrease the cylinder aspect ratio. The possible reason for the decrease in Rec 
is because the flow past a cylinder with low Ar exhibits higher growth rate at lower Re 
(see Fig. 4). Our calculations show that TWM does not become unstable for Ar = 1.0 
and 0.75 below Re = 200. Thompson et al. [24] performed linear stability analysis of 
flow past elliptic cylinders with varying Ar. The critical parameters reported in their 
work for the onset of instability correspond to the same for PWM in our case. For 
Ar = 1.0, 0.75, 0.5, and 0.25, they reported Rec value as 47.2, 42.6, 38.8, and 35.6, 
respectively. In the present study, we find Rec value for Ar = 1.0, 0.75, 0.5, and 0.25 
as 46.9, 42.1, 38.3, and 35.1, respectively. Similarly, they reported the corresponding

Fig. 4 Variation of λr (top) and St (bottom) of PWM (left), SWM (middle), and TWM (right) with 
increasing Re for different Ar 



308 D. Kumar and B. Kumar

Stc value for Ar = 1.0, 0.75, 0.5, and 0.25 as 0.1163, 0.1144, 0.1120, and 0.1074, 
respectively. We find Stc for the same values of Ar as 0.1167, 0.1150, 0.1126, and 
0.1082, respectively. The comparison shows that the results are in agreement. 

The work done by Boppana and Gajjar [3] on flow past a cascade of circular 
cylinder showed the presence of second unstable pair (SWM in the present nomen-
clature) which becomes unstable between Re = 125 and 150. The critical value was 
however not reported. Verma and Mittal [25] were the first to determine Rec value 
for the SWM for flow past a circular cylinder. Rec value reported by them is 110.8 
and Stc though not mentioned explicitly is close to 0.12. The data presented in Fig. 5 
depict a close match with these results. The difference in Rec value with the predic-
tion of Boppana and Gajjar [3] could be attributed to the use of different lateral width 
of the domain. Table 1 gives the least-square curve fit equations for Rec and Stc as a 
function of Ar. The maximum percentage error between the data obtained from the

Fig. 5 Variation of Rec with 
Ar for PWM, SWM, and 
TWM 

Fig. 6 Variation of Stc with 
Ar for PWM, SWM, and 
TWM 
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given equations of Rec and the actual value are 0.26 for PWM, 0.47 for SWM, and 
0.19 for TWM. 

Similarly for Stc, the maximum percentage errors are 0.07 for PWM, 0.41 for 
SWM, and 0.12 for TWM. 

Figure 7 presents the vorticity field for the real parts of PWM, SWM, and TWM 
for flow past a cylinder with Ar = 0.25 at Re = 180. The mode structures shown are 
typical and are observed to have similar features at other Reynolds numbers as well. 
The vorticity field of these modes is symmetric about the wake centerline. This is 
opposite to that of the base flow. From the figure, we can see that the strength and 
extent of the three modes vary in the flow field. Here, it should be noted that the range 
of the vorticity was kept same for all plots. PWM appears more prominent in the near 
wake and decays rapidly as we move downstream. Comparatively, SWM extends to 
a much larger distance away from the cylinder. Its strength seems to increase as we 
move downstream; however, there is a decrease in strength in the far wake. TWM 
is not so prominent in the near wake, but has the longest range of presence and 
extends all the way up to the downstream boundary. In general, it is found that the 
modes with larger growth rates come close to the cylinder and are shorter in their 
streamwise length compared to the modes which have lower growth rates. In other 
words, stronger modes tend to approach the cylinder and also contract, whereas the 
modes which are weaker tend to recede and elongate. Also, the size of the vortical 
structure in the modes decreases with increase in their oscillation frequency. These 
observations are in agreement with the wide range of calculations which we have 
conducted and can also be seen to agree with the images shown in Fig. 7.

Table 1 Least-square fit equations for Rec and Stc for PWM, SWM, and TWM, obtained as a 
function of Ar 

Rec Stc 

PWM 10.2144 Ar3–13.0845Ar2 + 18.7881Ar + 
31.0082 

0.0131 Ar3–0.0352 Ar2 + 0.0381 Ar + 
0.1007 

SWM 37.3984 Ar3–59.4328 Ar2 + 60.3704 Ar + 
72.3436 

−0.0131 Ar2 + 0.0472 Ar + 0.0857 

TWM 97.5631Ar + 148.410 0.0381 Ar + 0.0667 

For PWM and SWM, 0.01 ≤ Ar ≤ 1.0 and for TWM, 0.01 ≤ Ar ≤ 0.5 
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Fig. 7 Structure of the 
eigenmodes: vorticity fields 
(real parts) of PWM, SWM, 
and TWM obtained for Re = 
180 flow past a cylinder with 
Ar = 0.25 

5 Conclusion 

The linear stability analysis of two-dimensional steady base flow past elliptic cylin-
ders of varying aspect ratios (0.01 ≤ Ar ≤ 1.0) and Reynolds number (30 ≤ Re ≤ 
200) has been investigated. The steady flow parameters, like LB, WB, ωmax on the 
cylinder surface, and CD, have been presented, and their trends are discussed. Linear 
stability analysis of steady flow past elliptic cylinders yields the presence of three 
different eigenmodes (PWM, SWM, and TWM). It is observed that these modes 
show a non-monotonic variation of growth rate with Re for low Ar cylinders. This 
may also be true for higher Ar cylinders for a larger range of Re. Low Ar cylinders 
exhibit higher growth rate at lower Re. As a result, Rec value for the onset of vortex 
shedding decreases for smaller Ar. For PWM, the variation of St with Re is non-
monotonic for higher Ar. For SWM and TWM, St decreases monotonically with Re 
for all Ar. An interesting correlation exists between the structure of the eigenmodes 
and their growth rate and St. Modes which have larger growth rate reach close to the 
cylinder surface and have comparatively shorter length in the wake. Additionally, 
the size of the vortical structures present in a mode is large if its St is small and vice 
versa. The difference in the structure of PWM, SWM, and TWM among themselves 
can be related to the corresponding change in their growth rate and St. 
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