
Wavy Dynamics of Confined and Inclined 
Falling Liquid Films 

Saurabh Dhopeshwar, Ujjwal Chetan, Toshan Lal Sahu, Prabir Kumar Kar, 
Suman Chakraborty, and Rajaram Lakkaraju 

Abstract We present direct numerical simulations of thin viscous films falling in 
inclined channel of constant relative confinement, η = 2. The two films with the 
same Kapitza number, Ka = 509.5, flow in a passive and quiescent atmosphere of 
air, in presence of gravity, with a suitable monochromatic perturbation, applied at the 
liquid-velocity inlets. The study is made for different values of liquid flow Reynolds 
number, Re as a control parameter defined in terms of Nusselt flat film solution. Any 
orientation of films other than vertical leads to symmetry breaking causing the waves 
to grow differently on both interfaces. Variations of film flow characteristics such as 
wave amplitude (h), streamwise velocity (u), and minimum occlusion distance (dmin) 
are examined with Re for both films. The oscillatory behavior of films ranging from 
progressive periodic to solitary waves with flow reversals is observed for different 
values of Re. These flow variations are subjected to suppression when the films 
undergo strong confinement. Suitable scaling law is reported for dmin as a function 
of Re for two different values of channel inclination. 

Keywords Reynolds number · Kapitza number · Solitary wave · Hydrodynamic 
and Rayleigh–Taylor instability 

1 Introduction 

Liquid film flow in narrow channels has numerous industrial applications. For 
example, transport operations in microelectronic equipment [1] and distilled columns 
in structural packing [2] employ liquid films to perform desired functions. In these
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applications, the wavy interaction between phases becomes important as it governs 
the efficiency of the concerned technological operation. Films over solid and inclined 
surfaces undergo an interfacial instability often referred to as hydrodynamic or 
Kapitza instability [3]. The waves on the liquid–air interface evolve either natu-
rally, or “forced” via the imposition of inlet frequency forcing, which ensures that 
waves are of constant amplitude on the films within a finite length of the domain 
[4]. When excited at low frequencies, films exhibit solitary waves, which are large 
amplitude humps with long tails and steep fronts, along with front running capillary 
ripples at the interface [5]. The fluctuation of velocity underneath the wave trough 
and capillary wave region was observed to have much higher values as compared 
to the other flow regions, due to the large interfacial curvature there [6]. Backflow 
phenomena or flow reversals in the capillary region due to its short wavelength and 
curvature are reported for laminar falling liquid films [7, 8]. These reversals are prone 
to occur due to adverse pressure gradients acting in opposite direction to streamwise 
gravity. The variations in solitary wave characteristics on inertia-dominated falling 
films were studied for Reynolds number, plate inclination angle, and other control 
parameters, and suitable scaling laws were proposed [9]. Films flowing underneath 
the solid surfaces are also subjected to Rayleigh–Taylor instability apart from the 
hydrodynamic one [10]. Similar to films flowing over surfaces, these films also show 
the dependence of wave characteristics on Reynolds number and inclination angle. 

Wavy films may experience flooding in the form of wave coalescence or occlusion 
when three fluid systems flow in a confined environment such as a channel or tube. The 
trigger of wave occlusion was observed to have a strong dependence on higher values 
of both Reynolds number and inclination angle [11, 12]. The occlusion scenarios were 
numerically examined by Dietze et al. [13] in terms of minimum occlusion distance 
variation with gravity, inertia, and surface tension coefficients. The occlusion was 
found to get delayed with gravity but precipitated with an increase in inertia and 
surface tension. 

The occlusion scenarios in wavy films flowing in a three-layer system lead to plug 
formation (or slug flow) that causes enormous stress on the solid walls as well as 
drastically affects the performance of the desired industrial application [14]. To the 
best of our knowledge, less attention has been focused on film flows in such geome-
tries. Moreover, a similar study with inclined films motivates us to investigate and 
compare the wave evolution on films on each channel wall for different orientations 
and identify the critical parameter(s) that ultimately leads to occlusion scenarios. As 
far as wave evolution and propagation are concerned, the channel orientation leads to 
the growth of waves differently on both interfaces. Consequently, it will also affect 
the flow structures and momentum transport between different fluid phases. In the 
present work, we study the variation of wave characteristics on two films with time 
at different Reynolds numbers, such that the channel is oriented at a specific angle. 
Consequently, we also compare the occlusion distance variation with Re to that of 
vertically oriented films and deduce a suitable scaling law.
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2 Methodology 

The solver, interFoam based on FVM framework from OpenFOAM 7.0 toolbox [15, 
16] is used to study the present work. It utilizes the volume of fluid (VOF) method 
[17] particularly to solve multiphase problems of isothermal, incompressible, and 
immiscible fluids. 

2.1 Physical System and Governing Equations 

We consider a laminar flow system of two viscous liquid films in a quiescent atmo-
sphere of air and confined between two planar walls of an inclined channel (see 
Fig. 1). The two films flow under gravity as shown in the figure. The fluid system 
is initially assumed to have well defined flat liquid–gas interfaces such that by 
Nusselt’s theory, film thickness and fully developed stream-wise velocity is given by 
hN =

(
3ν2 

l Re/g sin θ
)1/3 

and uN = g sin θh2 N/3νl respectively, where νl = μl/ρl is 
the kinematic viscosity of the liquid films. The two walls of the channel are separated 
from each other by a constant confinement ratio, η = H/2hN = 2 so that H = 4hN. 
The length, L of the walls is also considered as a function of film thickness, equal to 
500hN. Such a choice of variable length was found to be sufficient to accommodate 
the fully developed waves [6]. The Reynolds number for the liquid film is defined as 
Re = uNhN/νl, which compares flow inertia to the viscous effects. The two films are 
considered to be of the same Kapitza number, Ka = 509.5. The  x and y coordinate 
axes are aligned as shown in the figure such that the channel is symmetrical about 
the x-axis. The left, right, and top walls of the channel are subjected to no slip and no 
flux conditions. The two liquid films enter the domain each through an inlet section 
which is taken the same as the corresponding value of hN. The inlet velocity of the 

liquid film is considered as uin = 6uN
[(

Y 
hN

)
−

(
Y 
hN

)2
]
.[1 + ε sin(2π f t)]. where 

Y = ±(H/2 − y) such that the variation in y is valid only in the liquid regions; 
the positive sign stands for the right film while the negative sign for the left film. 
The above form of scaled parabolic inlet velocity is coupled with a monochromatic 
perturbation with amplitude and frequency as ε = 0.05 and f = 15 Hz respectively 
[18].

The fluid flow in the present system is described by Navier–Stokes equations 
through the VOF method which is based on solving a single set of conservation 
equations of continuity and momentum for a hypothetical fluid of density ρ and 
dynamic viscosity μ. These properties of the fluid are calculated as the weighted 
average of the corresponding properties of individual fluids: ρ = αρl + (1 − α)ρg 

and μ = αμl + (1 − α)μg. The quantity α corresponds to the volume fraction of the 
reference fluid. Subscripts l and g stand for the liquid and gas phases respectively. 
The relevant continuity and momentum equations are:
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Fig. 1 Schematic diagram of wavy falling films in an inclined channel

∇.{u = 0 (1)  

ρ 
D({u) 
Dt 

= −∇  p + μ∇.(∇{u + (∇{u)T ) + ρ {g + {Fs (2) 

where {u is the velocity, p is the pressure and −→Fs represents additional forces due 
to interfacial surface tension which is distributed over a thin interfacial layer. The 
continuum surface force (CSF) has been employed to model surface tension [19]. 
With the introduction of weighted average α, the interface between the phases is 
tracked by solving an additional advection equation 3 of scalar α. 

∂α 
∂t 

+ ∇.({uα) = 0 (3)  

α = 0.5 is used for the representation of the liquid–gas interface. In all our simulations, 
an adaptive time step was used such that the maximum Courant number did not exceed 
the value of 0.3.
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Fig. 2 Validation: 
Comparison of time variation 
of dimensional liquid film (in 
mm) at location x = 120 mm 
from inlet for simulated 
vertical falling film with Ka 
= 509.5, Re = 15, f = 16 Hz 

2.2 Validation 

To assure the validity of the methodology, validation is carried out for the non-linear 
wave evolution on falling liquid films over plane surfaces (see Fig. 2) with the same 
flow conditions and transport properties as reported by Dietze et al. [18]. The plots 
in the figure show good agreement for film height. 

3 Results and Discussion 

Falling films over flat surfaces are subjected to hydrodynamic instabilities in which 
the streamwise component of gravity, g sin θ assists the waves to grow at the liquid– 
air interface. The cross-stream component, g cos θ acts normal and towards the 
surface resisting wave growth [3]. On the other hand, films flowing underneath the 
flat surfaces (hanging films) are subjected to Rayleigh–Taylor instabilities along with 
the hydrodynamic one [10]. In these cases, g cos θ also acts normally but away from 
the planar surface, thus assisting the wave growth along with that of g sin θ . 

Figure 3 depicts the time variation of liquid film’s heights on both walls at 
x/L = 0.75 and θ = 60◦. The heights are normalized with their respective Nusselt 
thicknesses, hN. For  Re = 5 (see Fig. 3a), the waves on the surfaces of the two films 
vary almost out of phase with each other such that the waves on the right film show 
higher amplitude as compared to that of the left film. This is because the right film is 
the hanging one subjected to both hydrodynamic and Rayleigh–Taylor instability. At 
this Reynolds number, the inertia plays only a perturbative role and the amplitudes 
of the waves result due to the competition between gravity and viscous forces. These 
waves are progressive periodic waves resembling the appearance of Stokes waves. At
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Re = 10, the inertia becomes dominant over both gravity and viscous forces. Conse-
quently, the disturbances over film interfaces also increase showing the formation of 
large wave humps with small front running capillary ripples. These wave humps are 
nothing but solitary waves that are of constant amplitudes and occupy the maximum 
span of the film interfaces. The difference in phases of both films is reduced and the 
amplitudes with respect to Nusselt thickness are increased. The heights of the films 
increase further at Re = 15 with two additional differences observed as compared to 
that of Re = 10. The first difference is that the number of smaller ripples ahead of the 
wave hump increase. The second is, the left film responds to the disturbance lately 
as compared to the right film such that the waves on the left film lag the right one 
which was the opposite in the case of Re = 10. With increase in Re, the difference 
in wave amplitudes of both films reduce such that at Re = 17 (not shown here), the 
amplitude becomes equal. For Re ≤ 17, a higher amplitude is found for the right 
film as compared to the left film. However, at Re = 20 (see Fig. 3d) a suppression of 
instability is observed for the hanging film such that the maximum height of this film 
decreases as compared to the left one. Instead, the maximum height of the left film 
was observed to rise with an increase in Re even after Re ≥ 17 (till the maximum 
value of Re examined), dominating the spatial region in the cross-stream direction. 
The growth of disturbance makes both the films come in proximity such that they start 
interacting in a manner that the one that lags in response to disturbance, dominates 
the other. At Re = 20 the left film lags and hence dominates the hanging film.

Figure 4 shows the time variation of the stream-wise velocity field at location 
x/L = 0.75 measured from the inlet for four different Reynolds numbers. The 
velocity field is normalized with Nusselt flat film average velocity, uN. The reason 
for normalization is that it eases the understanding of the response of the velocity field 
to the disturbance with respect to the average velocity. Two different location points 
in the liquid bulk: Y hN 

= ±0.1 where Y = ±(
H 
2 − y

)
are considered for computing 

the velocities in the liquid domain close to the walls. At Re = 5, velocity fields are 
enslaved to film height evolution with space and time and show similar oscillatory 
behaviour even though the location of sample points is far from the respective liquid– 
air interfaces. The velocities vary differently in phases but with the same maximum 
amplitude. At Re = 10 (see Fig. 4b), the fluctuation of velocity fields is almost the 
same in phase for both films. However, a momentarily negative velocity (in the form 
of sharp valleys) can be observed that depicts the reverse flow within the liquid film 
that takes place at a particular instant. The reverse flow is due to the adverse pressure 
gradient acting in front of the main hump [7]. It is found to be higher in the hanging 
film as compared to the other one. In the case of Re = 15, the velocity fields vary 
neck to neck for both the films with a slight increment in both peaks and valleys of the 
right film compared to that of the left film. At Re = 20 (see Fig. 4d), a decrement in 
both maximum and minimum velocities is observed compared to that at Re = 10 and 
15 for both films. It is important to note that the dimensional velocities would have 
higher values at this Re as compared to that of lower Re values. At this Reynolds 
number, the films interact with each other as they come under close confinement 
leading to the suppression of instability. This too causes a decrement in the growth
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Fig. 3 Variation of normalized film height with time of both the films at x/L = 0.75, θ  = 60◦ for 
different Reynolds number

of disturbance on the velocity field, which possibly would not have been observed if 
the films were largely confined.

Figure 5 depicts the variation of minimum occlusion dmin with Re for the two 
different channel inclination values. dmin is calculated by taking the average of all 
valleys after the waves attained the fully developed state till the final simulation time. 
For both the angles, dmin decreases with an increase in Re with an approximate fit: 

δ = dmin/H = aRe2 − bRe + c (4) 

where a, b, c are constants that depend on the value of θ . The values of fitting 
parameters are given in Table1. It is important to note that at every Re value, the 
magnitude of dmin for θ = 60◦ is higher as compared to that of θ = 90◦. When the 
channel is vertically oriented, the two films are symmetrical to each other and only 
the stream-wise component of gravity acts on both films without any presence of 
a cross-stream component. Therefore, the waves on both films grow and propagate 
symmetrically with maximum amplitude and phase and minimum occlusion distance 
is least for vertically oriented falling films. When the channel is oriented at any angle
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Fig. 4 Variation of normalized streamwise velocity with time in bulk of both the films close to the 
wall for different Reynolds number. Locations 1, 2: (x/L , ∓(H/2−y)/ hN ) = (0.75, 0.1), θ = 60◦

other than θ = 90◦ (θ = 60◦ in the present case), the symmetry breaks due to different 
actions of the cross-stream component of gravity on both films. The left film now is 
subjected to only hydrodynamic instability while the right film is subjected to both 
hydrodynamic and Rayleigh–Taylor instabilities. This leads to a difference in both 
the growth of wave amplitudes and phases. The peaks now do not lay one over the 
other as in the case of vertically oriented films, rather their locations are somewhat 
relatively misaligned. Consequently, the minimum occlusion distance is higher as 
compared to that of vertical films. 

Table 1 The values of the 
fitting parameters 
corresponding to the fitting 
equation in Fig. 5 

θ a b c 

60◦ 0.0014 0.067 0.9 

90◦ 0.0017 0.075 0.9



Wavy Dynamics of Confined and Inclined Falling Liquid Films 187

Fig. 5 Variation of 
minimum occlusion distance 
with Reynolds number 

4 Conclusions 

In this chapter, two-dimensional numerical simulations of wavy liquid films in 
inclined channels are performed using the VOF method. The two films with the 
same Kapitza number were considered to flow in a quiescent atmosphere between 
them along with monochromatic forcing applied at their respective inlets. The effects 
on flow parameters were studied for Reynolds number (Re) as the control parameter. 
On increasing Re, it was found that the interfacial disturbance grows with space 
and time on the interface of both the liquid films. Symmetry breaking is observed 
for films oriented at an angle θ = 60◦ due to different actions of the cross-stream 
component of gravity on both films (which is not applicable for the case of θ = 90◦). 
The hanging film on the right wall showed a higher amplitude than that of the other 
film at lower Re values. However, at comparatively higher Re values, the waves on 
films grow and come under proximity to influence each other such that the film that 
lags in response to disturbance (left film) dominates the other (hanging film). In this 
case, the stabilizing (left) film occupies the space of destabilizing film suppressing its 
maximum height. Similar behaviour is reflected in the time variation of the velocity 
field such that the growth of disturbance on the velocity field suppresses at a higher 
Reynolds number. Reverse flow is observed at values of Re ≥ 10. However, the 
strength of reverse flow decreases when the films come under strong confinement. 
The minimum occlusion distance is found to vary quadratically with Re for both 
channel inclinations. The behaviour of the films so observed should be true for all 
other inclinations and is open for further investigation. 
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Nomenclature 

t Time [s] 
g Gravitational acceleration [m/s2] 
x, y Streamwise and cross-stream coordinates [mm] 
u, v Streamwise and cross-stream velocities [m/s] 
ρ Density [kg/m3] 
μ Dynamic viscosity [Pa s] 
ν Kinematic viscosity [m2/s] 
hN Nusselt flat film thickness [mm] 
uN Nusselt flat film average streamwise velocity [m/s] 
Re Reynolds number [–] 
Ka Kapitza number [–] 
θ Channel inclination [–] 
L, H Length and width of channel [mm] 
η Channel confinement ratio [–] 
ε Perturbation amplitude at inlet [–] 
f Perturbation frequency at inlet [Hz] 
α Scalar volume fraction [–]−→
Fs Interfacial surface tension force [N] 
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