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Abstract Linear stability analysis of a thin liquid film falling down a uniformly 
heated slippery inclined plane has been performed. The spatial growth rates for 
thermocapillary P mode and S mode have been estimated by solving a coupled 
set of boundary value problems employing Chebyshev spectral collocation method. 
Marangoni number is found to destabilize both the P mode and S mode, and Biot 
number seems to have a dual influence on the S mode instability. The S mode gets 
stabilized with the increase in spanwise wavenumber, whereas the P mode gets 
destabilized. The hydrodynamic shear mode has also been captured analytically for 
inviscid flow, which indicates a slight stabilizing effect of Marangoni number on it. 
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1 Introduction 

Thin film flows are encountered in several engineering and scientific applications 
such as thermal protection of rocket engines, cooling of semiconductors, heat transfer 
in condensers and evaporators, etc. Therefore, it is of particular interest to study 
the instabilities in heated thin film flows as it affects the interfacial heat transfer 
significantly. The linear stability of a thin film flow down an uniformly heated inclined 
plane has been studied by Lin [7]. He has analytically predicted the critical Reynolds 
number as a function of Marangoni number and inclination angel for hydrodynamic 
surface mode of instability. Lin [6] has also shown the existence of hydrodynamic 
shear mode in the falling film flow and predicted the critical Reynolds number for 
it. Goussis and Kelly [3] have examined the influence of Marangoni number on 
thermocapillary P mode and S mode. Incorporating energy budget analysis, they 
have also suggested some mechanisms by virtue of which the S mode, P mode, and 
H mode instability triggers. The influence of Soret number on the temporal and spatial 
stability of a heated binary film has been studied by Hu et al. [4]. The thermocaillary
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P mode has been partially captured for low values of streamwise wavenumber in 
this study. Samanta [9] has deciphered the effect of electric field on the shear mode 
instability. He has found a stabilizing effect of applied electric field intensity on shear 
mode. The effect of different flow parameters on the shear mode at inviscid limits 
has also been analysed. Pascal and D’Alessio [8] have analysed the linear stability of 
a heated binary film flow where the density of the liquid film varies with respect to 
temperature. The influence of Marangoni number at low Reynolds number on surface 
and S modes of instability have been examined. Bhat and Samanta [1] have carried out 
a linear stability analysis of a falling film having insoluble surfactant contamination. 
They have examined the effect of different parameters on the hydrodynamic surface 
mode and shear mode. They have also performed the inviscid analysis where they 
have shown a stabilizing influence of slip on shear mode. Choudhury and Samanta 
[2] have performed the temporal stability of a heated falling film down a slippery 
incline. The authors have performed a detailed parametric study on four different 
instability modes i.e., H mode, P mode, S mode, and shear mode. 

From these literatures, it can be observed that there exist several studies regarding 
the temporal stability of all the four modes of instability, that is, H mode, S mode, P 
mode and shear mode. The studies of spatial stability is also performed for H mode 
and shear mode only. But there are no studies found regarding the spatial stability 
of thermocapillary P mode and S mode. Our aim for the present study is to provide 
these missing links in the present literature. 

2 Mathematical Formulation 

Consider a viscous liquid thin film falling under the action of gravity down an incline 
as shown in Fig. 1. The inclined plane is maintained at a uniform temperature Tw 

which is higher than the ambient temperature T a and it makes angle θ with the 
horizon. All the thermophysical properties of the fluid such as viscosity (μ), density 
(ρ), thermal conductivity (κ) etc. are kept constant for carrying out the linear stability 
analysis. Although the surface tension (σ ) is considered to vary with temperature 
according to the relation (1) as we are interested to study the thermocapillary modes 
of instability. 

σ (T ) = σ0 − ε(T − Ta), (1) 

where, σ0 denotes the surface tension at ambient conditions and ε = −  dσ 
dT

|
|
T =Ta 

> 
0. The Cartesian coordinate system is considered to originate from the slippery 
plane and the orientation of it is shown in Fig. 1. The film thickness corresponding 
to the base flow is d, and h(x, z, t) denotes the thickness of the perturbed liquid 
film. Now following the work of Choudhury and Samanta [2] we can formulate the 
Orr-Sommerfeld type boundary value problem (OS-BVP)
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= 0, at y = 1, (7) 

φ̂ − i (kx − ω) ̂η = 0, at y = 1, (8) 

where D stands for the differential operator d dy . In Eqs. (2)–(8), φ̂, τ̂ , and η̂ denotes the 
amplitude of perturbation velocity, perturbation temperature and perturbation film 
thickness. The imposed disturbances to the perturbation quantities are considered 
to be in normal mode form, where ω = ωr + i ωi denotes the angular frequency 
and k = √

k2 x + k2 z is the wave number. In this case, kx and kz are streamwise and 
spanwise wavenumbers, respectively. Again the complex spanwise wavenumber can 
be represented as k = kr + iki , where −ki is the spatial growth rate. The angular 
frequency ω remains real while calculating the spatial growth rate. The temporal 
growth rate is denoted by ωi and the wavenumber k remains real while calculating 
temporal growth rate. In the OS-BVP (2)–(8), Re, Ma, Bi, Pe, We denotes Reynolds 
number, Marangoni number, Biot number, Peclet number, and Weber number respec-
tively. Again Peclet number can be written as Pe = Re Pr where Pr denotes Prandtl 
number. The dimensionless slip length and base flow velocity is denoted by β 
and U = (

2y − y2 + 2β
)/

(1 + 2β). To capture the effect of Marangoni number 
and Biot number on the S mode and P mode instability properly we will use the 
transformations: M = Ma(1 + 2β)1/3 (2Re)2/3 , Bi = B(2Re)1/3 /(1 + 2β)1/3 , and 
Ka = We(1 + 2β)1/3 (2Re)2/3)2/3. Here Ka denotes the Kapitza number.
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Fig. 1 Schematic of uniformly heated falling film 

3 Results and Discussion 

3.1 Spatial Stability Analysis 

3.1.1 Validation 

The Eigen value problem (2)–(8) have been solved numerically incorporating Cheby-
shev spectral collocation method. To check the consistency of the present numerical 
code, we have verified the present results with the existing results in literature. In 
Fig. 2, the neutral stability curve corresponding to H mode and S mode instability 
has been shown for M = 15 and M = 30 when B = 1, Ka = 250, kz = 0, β = 0, θ = 
15°, and Pr = 7. It can be clearly observed that present numerical code reproduces 
the results of Kalliadasis et al. [5] quiet accurately. In this case, at lower value of M, 
we get two separate neutral curves for hydrodynamic H mode and thermocapillary S 
mode of instability. But as the Marangoni number Ma, or equivalently M increases, 
both the modes merge and forms a single neutral stability curve.

3.1.2 Influence of Marangoni Number 

Here, we shall discuss the independent influence of Marangoni number, or equiva-
lently M on the spatial growth rate of thermocapillary P mode and S mode which have 
been captured numerically. The modes are been distinguished from each other on the 
basis of their phase speed. Note that from now onwards all the numerical results are 
produced keeping the parameters Ka = 240, Pr = 6.5, θ = 15° and β = 0.03 fixed. 
In Fig. 3a, the spatial growth rate for S mode have been plotted in (kr , ki) plane for 
M = 14, M = 10, and M = 6 when Re = 0.1, B = 1, and kz = 0. The spatial growth 
rate is found to be increasing with the increase in M for S mode instability. The S
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Fig. 2 Evolution of neutral 
stability curves for M = 15 
and M = 30 when B = 1, Ka 
= 250, kz = 0, β = 0, θ = 
15°, and Pr = 7. Black and 
Blue lines represent M = 15, 
and M = 30 respectively. 
The results from Kalliadasis 
et al. [5] are represented by 
symbolic points

mode instability triggers at low Reynolds number due to the surface tension gradient 
imposed by non-uniform temperature distribution at the liquid–air interface. As M 
increases, the surface tension gradient also increases between crest and trough of the 
waves at free surface resulting in a destabilizing effect on the flow. It is interesting to 
note that with the increase in Reynolds number the S mode instability gets stabilized 
as inertia force takes over the Marangoni force. Now the independent effect of M on 
the P mode will be analysed. The spatial growth rates related to P mode in (kr , ki) 
plane have been shown in Fig. 3b for  M = 20, M = 21, and M = 22 when Re = 10, 
B = 1, and kz = 0. Now, from Fig. 3b, it can be clearly observed that as the value 
of M increases the spatial growth rate also increases significantly. Hence, we may 
conclude that M or equivalently Ma destabilizes the P mode instability. It can also 
be observed that the P mode instability is found at the short wave regime unlike the 
S mode instability, which can only be present at long wave regime.

3.1.3 Influence of Biot Number 

Now the influence of Biot number on the spatial growth rate of S mode and P mode 
will be discussed. Interestingly, we have found a dual effect of Biot number Bi or, 
equivalently B on the S mode depending upon the range of B. In Fig.  4a the evolution 
of spatial growth rate −ki has been plotted against the real part of streamwise wave 
number kr at small values of B (B ≤ 0.75) when M = 17, Re = 0.1, and kz = 0. At 
lower range of B, it can be noticed that B imparts a destabilizing effect on the S mode. 
On the contrary, at the higher values of B (B ≥ 0.75) it may be noticed that with the 
increase in the value of B, the spatial growth rate decreases as shown in Fig. 4b. 
Therefore we may conclude that B has a stabilizing effect on S mode at higher range 
of B. This phenomenon can be attributed to the fact that with the increment in B, the  
relative heat transfer increases, resulting in lower temperature of free surface and 
hence stabilizing the S mode.
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Fig. 3 a Evolution of spatial growth rate −ki for the S mode in (kr , ki) plane when Re = 0.1. 
b Evolution of spatial growth rate −ki for the P mode in (kr , ki) plane  when  Re  = 10. The parameters 
B = 1 and  kz = 0 are kept constant

Fig. 4 a Evolution of spatial growth rate −ki for the S mode in (kr , ki) plane when Re = 0.1. 
b Evolution of spatial growth rate −ki for the S mode in (kr , ki) plane  when  Re  = 0.4. The 
parameters M = 17 and kz = 0 are kept constant 

Now we will decipher the solo influence of Biot number on the P mode. The P 
mode instability is basically triggered by the steady convection rolls within the flow 
which is formed due to the surface tension gradient at the liquid–air interface. The 
variation of spatial growth rate ki with respect to real part of streamwise wavenumber 
has been shown in Fig. 5 for B = 1, B = 1.25, and B = 1.5, when Re = 10, M = 21, 
and kz = 0. It can be noticed that with the increase in B the spatial growth rate for 
P mode decreases significantly. Hence we may conclude that Biot number stabilizes 
the thermocapillary P mode.
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Fig. 5 Evolution of spatial 
growth rate −ki for the P 
mode in (kr , ki) plane  when  
Re = 10, M = 21, and kz = 0 

3.1.4 Influence of Spanwise Wavenumber 

In this section the independent effect of spanwise wavenumber on both S mode and P 
mode instability will be deciphered. In Fig. 6a the spatial growth rates corresponding 
to S mode have been plotted in (kr , ki) plane for kz = 0.1, kz = 0.05, and kz = 0 when 
Re = 1, M = 25, and B = 1. It can be observed that the maximum spatial growth 
rate for S mode reduces with the increase in kz. The onset of stability for the S mode 
also decreases significantly with the increase in kz. Therefore it may be concluded 
that spanwise wavenumber has a stabilizing influence on the S mode instability. It is 
also interesting to note that we have a finite growth rate at kr = 0 at non-zero values 
of spanwise wave number. Now we will discuss the effect of spanwise wavenumber 
on the thermocapillary P mode instability. The spatial growth rates corresponding 
to P mode have been shown in (kr , ki) plane for various values of kz when Re = 
10, M = 20, and B = 1 in Fig.  6b. It can be noticed that the spatial growth rate 
increases significantly with the increment in spanwise wavenumber and hence it can 
be inferred that spanwise wavenumber has a destabilizing influence on the P mode 
instability. It is also interesting to note that the range of kr within which the P mode 
instability occurs, shifts towards lower values of kr significantly. It indicates that 
with the increment of spanwise wavenumber the P mode instability shifts towards 
long wave regime from short wave regime.

3.2 Inviscid Analysis 

According to Squire’s theorem, the two dimensional disturbances get unstable at 
lower values of Reynolds number compared to the three-dimensional ones [2]. Hence,
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Fig. 6 a Evolution of spatial growth rate −ki for the S mode in (kr , ki) plane when Re = 1, and M 
= 25. b Evolution of spatial growth rate −ki for the P mode in (kr , ki) plane  Re  = 10 and M = 20. 
For both the plots B = 1

for performing inviscid stability analysis, we will consider two dimensional distur-
bances only, that is, kz = 0 and kx = k. Now the perturbation velocity is converted to 
perturbation stream function ψ ' as the flow is two-dimensional and it is considered 
to be in normal mode form 

ψ ' = υ̂ exp[ik(x − ct)]. (9) 

Now we will introduce two new parameters W = We/Re and m = Ma/Re which 
will be used equivalently for showing the effect of Weber number and Marangoni 
number. At inviscid limits, we will consider Reynolds number to be large (Re → 
∞) and inclination angle to be small (θ → 0). Therefore, in this limiting case, the 
OS-BVP (2)–(8) will take the following form

(

U − c
)(

D2 − k2
)

υ̂ + 2 υ̂ 
1 + 2β 

= 0, y ∈ [0, 1] (10)

(

U − c
)

τ̂ + Bi 

1 + Bi 
υ̂ = 0, y ∈ [0, 1], (11) 

υ̂ = 0, at y = 0, (12)

(

c − U
)2 
D υ̂ − 2

[

k2
(

W − m 

1 + Bi

)

+ 2 cot θ 
(1 + 2β)Re

]

υ̂ = 0, at y = 0. (13) 

In Eq. (13) the  term  2 cot θ/{(1 + 2β)Re} is not neglected. This is due to the fact 
that although the value of 1/Re is small, the value of cot θ will be large and hence 
the ratio cot θ /Re will have a finite value. The complex wave speed is denoted by c 
= cr + ici in Eqs. (10)–(13) where cr and ci denotes the real and imaginary part of
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c. Now to solve the second-order BVP (10)–(13), we will employ the transformation 
υ̂(y) = (U − c)ϒ(y), which will lead to the following set of BVP 

D
[(

U − c
)2 
Dϒ

]

− (

U − c
)2 
k2 ϒ = 0, (14)

(

U − c
)
[

τ̂ + Bi 
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ϒ
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= 0, (15) 

ϒ(0) = 0, (16)
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)2 
Dϒ(1) =

[
2 cot θ 
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+ k2
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1 + Bi

)]
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Note that here the Governing energy equation is not considered here as τ̂ can be 
directly predicted from Eq. (11). In order to solve the set of Eqs. (14)–(17), we will 
multiply it with ϒ∗, the complex conjugate of ϒ . After that Eq. (14) is integrated with 
respect to y when y ∈ [0, 1] and the boundary conditions (16)–(17) are incorporated 
to get the following expression. 

1∫
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where P = (

k2|ϒ(y)|2 + |Dϒ(y)|2) ≥ 0. Now, to compute the values of cr and ci, 
the real and imaginary parts of Eq. (18) are compared. 
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ci 

1∫

0

(

U − cr
)

P dy = 0. (20) 

Now for the shear mode to become unstable we should have ci > 0. From Eq.  (20), 
it can clearly be observed that for a non-trivial solution the unstable shear mode will 
not exist if cr > 1. Therefore, for cr < 1, we can have a solution for phase speed of 
unstable shear mode as 

cr = 1 −
[

1 −
∫ 1 
0 (1 − y)2 P dy 

(1 + 2β)
∫ 1 
0 P dy

]

. (21) 

Now from Eqs. (21) and (19) we get the expression for ci as follows
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From the expression of c2 i , we can clearly observe that with the increase in m the 
temporal growth rate related to shear mode increase. Therefore, we may conclude 
that Marangoni number has a destabilizing effect on the shear mode instability. This 
result is perfectly consistent with the results of Choudhury and Samanta [2]. 

4 Conclusion 

Linear stability analysis of a liquid incompressible film flowing down an inclined 
plane has been performed. The inclined plane is considered to be uniformly heated 
and slippery. The liquid follows the Newton’s law of viscosity. At the free surface or, 
the liquid–air interface the heat transfer is governed by the Newton’s law of cooling. 
To carry out the spatial stability analysis, we have formulated a coupled set of OS-
BVP type equations containing perturbation velocity and temperature. In order to 
estimate the spatial growth rate at arbitrary wave numbers, we have numerically 
solved the coupled set of equations employing Chebyshev collocation technique. 
Marangoni number is found to have a destabilizing influence on both the S and P 
modes. On the contrary, Biot number is found to have dual effect on S mode. At lower 
range (B ≤ 0.75) although Biot number has a destabilizing effect on the S mode, at 
higher range (B ≥ 0.75), it is found to have a stabilizing effect. Biot number exerts 
a stabilizing effect on thermocapillary P mode also. It has been observed that with 
the increase in spanwise wavenumber the spatial growth rate of S mode and P mode 
attenuates and intensifies respectively. We have also analytically solved the OS-BVP 
for the limiting case of inviscid flow where Re → ∞. In inviscid limit, the temporal 
growth rate for shear mode been evaluated which indicates a destabilizing effect of 
Marangoni number on the shear mode. 

Nomenclature 

Ma Marangoni number [–] 
Re Reynolds number [–] 
Bi Biot number [–] 
Pe Peclet number [–] 
We Weber number [–] 
Pr Prandtl number [–]
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k Wavenumber [m−1] 
kx Streamwise wavenumber [m−1] 
kz Spanwise wavenumber [m−1] 
c Wave speed [m s−1] 
ω Angular sped [rad s−1] 
θ Inclination angel [rad] 
σ Surface tension coefficient [N m−1] 
ϕ Perturbation velocity amplitude [m s−1] 
τ Perturbation temperature amplitude [K] 
η Perturbation film thickness [m] 
Ψ ' Perturbation streamfunction [m2 s−1] 
β Dimensionless slip length [–] 
T a Ambient temperature [K] 
Tw Wall temperature [K] 
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