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Abstract Active systems have garnered interest from researchers worldwide for 
their fascinating displays of congregations and the far-reaching scope of biomimetic 
applications. The current chapter talks about one such application: the use of active 
particles to induce mixing in a stratified passive system. Simulations using a Langevin 
model in two dimensions shows the mixing state of the initially stratified system reach 
a saturation point in finite time. Interestingly, with change in the number of active 
mixers, only the rate of mixing is found to be affected, while the final mixed state is 
perceived to be almost similar. Active particles numbering not more than 20% of that 
of the passive species is found to be enough to induce brisk mixing. An investigation 
is parallelly carried out into the maximum rotation allowed for each active mixer to 
maximise the overall mixing effect. The objective of this discourse is to provide a 
numerical backbone to the feasibility of the use of micro/mini robots for mixing of 
living/non-living entities, while also discussing the factors affecting the process. 

Keywords Active–passive system · Mixing · Gini coefficient · Over-damped 
Langevin model 

1 Introduction 

Researchers have always been amused by the pattern formation in schools of fish, 
swarms of bees, flocks of starlings, armies of ants, etc. The curiosity about the 
underlying processes leading to such intricate phenomenon have motivated the study 
and evolution of active matter systems. Such systems continuously consume energy 
for their activity and hence, are always out of equilibrium. Researchers have been 
trying to capture and accurately decode the behaviour of such active entities since the 
last few decades and in the recent years, the advent of high-speed computing facilities 
has aided the process by allowing large-scale numerical modelling of the active
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systems with a high temporal and spatial resolution. Some notable mathematical 
models proposed to mimic these active systems are the Vicsek model [1], the Active 
Brownian Particle model [2], the Run and Tumble model [3] among others. 

The interaction between active (those with the ability to self-propel) and passive 
(those which cannot self-propel) particles have been a centre of attention for 
researchers due to intriguing behaviour such as segregation [4], Motility Induced 
Phase Separation (MIPS) [5], cluster formation [6], etc. The upcoming section 
discusses several works highlighting the dynamics of such systems with dispersity 
in motility. 

2 Literature Review and Objective 

The study of active matter systems was initially pursued from a numerical view-
point during the 1990s with the advent of various mathematical models [7]. Since 
then, there has been extensive research in the field using both experimental and 
computational methods. Even though active matter systems evolved after observing 
behavioural patterns in living systems, there are reported studies where interactions 
could also be observed among active (both living & artificial) and passive parti-
cles (particles with no activity) in a pool [8, 9]. One of the major limitations with 
experiments in the field comes from the data collection, where a wide area is often 
considered for the study. There are also constraints in realising larger systems on a 
laboratory scale. Such limitations can be overcome by numerical modelling. 

Wu and Libchaber [10] carried out experimental investigations on passive beads in 
an active bacterial (Escherichia Coli) bath. They made use of soap film as a substrate 
upon which both these species are dispersed for interaction. Higher concentration of 
bacteria resulted in a fluctuated motion of beads where ballistic motion was observed 
for shorter distances and Brownian motion is detected at long time scales. Experi-
mental investigations by Leptos et al. [11] on the dynamics of passive tracers in both 
dilute and dense bath of alga Chlamydomonas Reinhardtii revealed diffusive move-
ment of the tracer particles. The probability distribution function for the same tracers 
showed a non-Gaussian (yet similar) form with an exponential tail and broadened 
base that grows along with swimmer concentration. 

Numerical studies in the field have been carried out using both periodic and 
bounded domains, with most belonging to the former category. Periodic boundaries 
are usually used to study larger domains where a small unit of the larger domain is 
analysed. This helps reduce the computational cost and time considerably. Numer-
ical simulations on active–passive particle mixture by Hinz et al. [12] using peri-
odic boundaries demonstrated the emergence of three different phases—a disordered 
meso-turbulent phase, a polar flocking phase and a vortical phase. The manifestation 
of the vortical phase is sensitive to the domain size, whereas the other phases are 
indifferent. It is of particular importance that even a small number of active agents 
are capable of generating effective dynamics and associated patterns. Phase sepa-
ration behaviour of an initially disordered mixture of monodisperse active–passive
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system is reported in numerical investigations by Stenhammar et al. [5] with periodic 
boundary conditions. The phenomenon was observed with as low as a 1:6 active– 
passive particle ratio but at high activity. Their study suggested that by controlling 
the parameters like activity and active–passive particle ratio, one can transition the 
system between a homogeneous phase and phase separation. In another study by 
Dolai et al.  [6], interaction between active–passive mixtures of different size ratios 
and different packing fractions were investigated with comparable volumes of active 
and passive particles. The results suggested the appearance of three distinct phases 
for the passive particles—a homogeneous phase, a clustered phase of small and large 
sizes, and a segregated phase where passive particle segregation is observed. Mixing 
behaviour of initially segregated binary system constituting only active particles has 
been investigated by Mahapatra and Mathew [13]. Here, both the particles are initially 
arranged in two separate boxes connected by a passage. In addition to self-propulsion 
force and interaction force, alignment and friction forces are also considered in the 
model. The system exhibits thermal, rotational and oscillatory phases at high packing 
fraction while exhibiting a predominantly rotational phase at lower packing fractions. 
The extent of mixing within the system is calculated using a mixing index, i.e., lower 
the mixing, higher the value of the index. Agrawal and Mahapatra [14] investigated 
the dynamics of an active-passive particle mixture with and without alignment force 
in a confined square boundary. Collective milling motion arises as a result of the 
alignment, whereas the absence of such a force results in a disordered phase. In most 
of the studies, where active particle systems or active–passive particle systems are 
investigated, the simulation is carried out in a 2D square domain. The dynamics of a 
binary mixture of self-propelling active particles and passive particles on a spherical 
surface is investigated by Ai et al. [15]. The particles are modelled as soft spheres 
and dynamics is governed by Langevin equations with holonomic constraint. Both 
rotational diffusion and polar alignment are considered, variation of which causes 
three distinct phases to occur—two segregated phases and one mixed phase. 

From the literature, it is clear that several studies have been carried out to observe 
the dynamics of active–passive particle mixtures with cases varying from a single 
passive particle in a pool of active particles to passive particles with volume fractions 
comparable to active particles. Most of the investigations are in 2D with periodic 
boundary which not only reduces the complexity but also the computational time. 
With slight modifications, similar simulations carried out in a 2D surface can be 
realised over curved surfaces. 

It is, however, interesting that there is a paucity of literature, where the active 
particles have been used to mix two or more different species of passive particles. 
The current chapter addresses this issue by demonstrating how a small amount of 
active mixer particles could be used to mix different passive species in a confined 
domain (which could also be realized under laboratory conditions).
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3 Materials and Methods 

3.1 Numerical Modelling 

In the current work, we consider a monodisperse system of athermal particles 
arranged inside a 2D circular domain. The particle count is denoted by NP for passive 
and NA for active respectively. All the particles have the same radius (r). The domain 
radius (R) is chosen as 40r. The wall of the bounded system constitutes of one layer 
of circular discs of the same size as that of interior particles. The packing fraction 
(∅) is given by ∅ =  Nr2/R2, where N is the number of interior particles. 

The dynamics of active particles is governed by the overdamped Langevin equa-
tions, consisting of a self-propulsion drive and an inter-particle repulsion drive (see 
Eqs. 1 and 2) [16]. 

dr i 
dt 

= v ̂ni + μ
Σ

j 

Fi j (1) 

dθi 
dt 

= ηi (t) (2) 

where r i represents the position of the centre of particle i, v represents the self-
propulsion speed of the active particles, in direction n̂i = (cos θi , sin θi ) μ and k are 
the mobility and the force constant, respectively. The repulsion force between the 
particles i and j (the surrounding particles of the particle i) acts when the particles 
overlap with each other and can be defined as, Fi j  = k

(
2r − di j

)
r̂ i j  , where di j  =||r i − r j

|| and r̂ i j  =
(
r i − r j

)
/di j  . The direction of the self-propulsion velocity 

depends on an angular Gaussian white noise η where
{
ηi (t)ηi

(
t ,
)} = 2Dr δi j  δ

(
t − t ,

)
. 

Dr is coefficient of rotational diffusion. 
The equation for passive particles differs from that of the active particles due to 

their inability to self-propel and is formulated in Eq. (3). 

dr i 
dt 

= μ
Σ

j 

Fi j (3) 

The parameters μ and k are assumed to have the same values for both active 
and passive particles. The wall particles are designed to be immobile barriers which 
confine the interior particles in the domain of interest by way of the repulsion drive. 
All the particles are assumed to be athermal, that is, the translational diffusion 
is considered to be negligible compared to the rotational diffusion [16]. To make 
self-propulsion velocity and time dimensionless, they are scaled by rμk and 1/μk 
respectively. Scaled speed is represented by vo and scaled time is denoted by τ . 

The passive particles are segregated into two species. All the particles are initially 
arranged in a uniform random distribution such that one of the species of passive 
particles occupy the upper half of the domain and the other species occupy the lower
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half. The active particles are then distributed in a uniform random sense within 
the entire circular domain. The initial orientations of the active particles are also 
uniformly randomized in the range [0, 2π ]. 

Passive particle packing fraction
(
∅P = π

ΣNP 
i=1 r

2 
i

/
π R2

)
, that is, the ratio of the 

area occupied by the passive particles (numbering NP) to the total area of the domain 
is 0.6 and is maintained invariable across all the simulation cases. Simulations are 
carried out, altering the number of active particles by defining an active–passive 
particle fraction (ψ = NA/NP). The  value of ψ is varied from 0.1 to 0.5 so that 
the maximum overall packing fraction (∅ = ∅A + ∅P) is not more than 0.9. Euler-
Maruyama scheme is employed for numerical integration of Eqs. 1–3 with a timestep 
10−2 s. 

Figure 1 showcases a representative initial distribution of particles in the domain. 
The passive species are coloured blue and green, while the active particles are 
coloured red respectively. 

The simulations are carried out till the system reaches a stable state, indicated by 
the saturation of a mixing parameter defined in the next subsection. The simulations 
are run using an in-house code written in Python 3.7 along with the JAX functionality 
for highly parallel GPU computations.

Fig. 1 Distribution of active 
and passive particles inside 
the circular domain; 
(ψ = 0.3) 
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3.2 Mixing Parameter 

Mixing index (β) quantifies the degree of mixing of the two passive species on the 
basis of the current and the initial positions of the particles. The calculation of the 
mixing index follows the weak sense mixing technique proposed by Doucet et al. 
[17], employing Principal Component Analysis (PCA) to compute the Eigen values 
of the position matrix, and used a priori by Mahapatra and Mathew [13]. We define 
the mixing using a mixing parameter, γ = 1− β(τ ) 

β0 
, where β(τ ) is the current mixing 

index and β0 is the mixing index for the initial particle distribution without overlap. 
Higher values of γ represents a better mix. 

3.3 Validation 

The numerical model used in the current work has been validated against the results 
reported by Yang et al. [16] on the interactions among mono-dispersed self-propelling 
athermal disks in a confined square-shaped 2D space. For a range of parameters such 
as diffusion coefficient, self-propulsion velocity and overall packing fraction, they 
observed particle aggregation at the walls and quantified it using Gini coefficient (ζ ). 
Gini coefficient is calculated by dividing the domain in to ‘n’ concentric squares of 
equal width and applying the equation ζ = 1 

2n2|ρ|
Σ

i

Σ
j

||ρi − ρ j
||, where ρ is the 

particle number density in the corresponding strip and ρ is the mean density. Higher 
the value of ζ (beyond 0.50), the system is wall aggregated where as a lower value 
represents homogeneous state. Using our numerical model with the parameter set and 
domain properties, the results are found to be in good agreement with those reported 
by Yang et al. [16] (Fig. 2). Two values of overall packing fraction are considered 
(0.720 and 0.831); the speed vo is varied from 0.01 to 0.10 and the Gini coefficient is 
computed for each vo after the system reaches a steady state. The results displayed 
are the average of five realisations that have been carried out for each parameter set 
and the curves seem to be in good agreement. The deviations at higher values of vo 
can be attributed to the stochastic nature of the problem and the slight differences in 
the model/parameters used.

4 Results and Discussion 

Preliminary simulations have been carried out to determine the parameter space 
for inducing mixing in segregated passive systems using active particles. Active 
particles with a low rotational diffusion coefficient Dr are found to have a tendency 
to aggregate at the walls instead of promoting mixing (Fig. 3; inset Dr = 0.001, 
τ = 2 × 104). Hence, a study is carried out to determine the optimum values of 
Dr to obtain maximum degree of mixing. The diffusion coefficient is varied in the
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Fig. 2 Comparison of Gini coefficient ζ obtained from our simulation to that of Yang et al. [16] 
for overall packing fractions: a ∅ =  0.720 and b ∅ =  0.830; (μk = 10 s−1, r = 1)

Fig. 3 Variation of mixing 
parameter γ with time τ for 
varying Dr; (ψ = 0.3) 

range of 0.001 to 0.05. With higher values of Dr, the active particles are observed 
to constantly agitate their passive counterparts. The system thus always maintains 
a dynamic state and the two species of passive particles undergo mixing across the 
domain. The quantification of this visually detected mixing phenomenon is done 
with the help of a mixing parameter, as discussed in the next subsection. 

4.1 Effect of Rotational Diffusion on Mixing 

The system is simulated for different values of Dr keeping the value of ψ fixed 
at 0.3. The system is seen to have reached a steady state in around τ = 105. The  
positional data of the passive particles is used to compute the mixing parameter γ 
throughout the time period of the simulation (see Fig. 3). For any value of Dr, γ is 
found to increase with the progression of time, as the active mixers keep agitating the
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Fig. 4 Variation of 
time-averaged mixing 
parameter γ with rotational 
diffusion coefficient Dr; (ψ
= 0.3) 

system. However, γ reaches a saturation at a value of around 0.4. There seems to be 
no further temporal change to the mixing parameter beyond this point. It should be 
noted, though, that at lower value of Dr (0.001), the value of γ is low in comparison 
to other cases. As Dr increases to 0.003, there is a sudden increase in γ establishing 
a better mix within the domain. Increasing the Dr further increases the value of γ 
albeit at a slower rate. To find out an optimum value of Dr for which γ is maximum, 
the simulation is further carried with higher values of Dr. 

The average of γ in the range τ = 8 × 104 to 105 is plotted against Dr (Fig. 4). It 
can be noted that for lower values of Dr, an increase in the value of Dr increases γ 
rapidly. This is because the active particles, rather than aggregating at walls, move 
more vigorously in both rotational and translational manner. However, after reaching 
a maximum value at Dr = 0.01, a further increase in Dr decreases γ but gradually. 
This could be due to the fact that the active particles tend to undergo more of a local 
traverse (as they more often take larger turns) than a global one. 

4.2 Effect of Active to Passive Particle Ratio on Mixing 

The effect of concentration of active particles is studied by varying the active–passive 
particle fraction (ψ) from 0.10 to 0.50 in steps of 0.10. For each case, the simulation 
is carried out until τ = 2.5 × 105. Longer run times ensure the occurrence of a 
steady state in the system. The rotational diffusion coefficient is set to the optimum 
value of Dr = 0.01. Figure 5 elucidates the occurrence of mixing reported by the 
mixing parameter γ through snapshots of the particle distribution within the domain 
at different instances of time. In the figure, four different time instances of the system 
are showcased corresponding to active–passive particle ratiosψ:0.10, 0.30 and 0.50. 
When ψ is 0.10, the active particle count is very low to cause sufficient agitation 
in the system for the mixing to take place. In addition, many of the active particles 
are concentrated adjacent to the wall. The gradual cross flow of the two passive
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Fig. 5 Snapshots of the 
system for different active to 
passive particle ratios ψ at 
various time instances 

species is also elucidated as the time progresses. At ψ = 0.30, the aggregation 
of active particles near the wall is still evident, albeit to a lower extent. Mixing has 
improved as there are more active particles dispersed within the domain. Mixing atψ
= 0.50 is comparable to that at 0.30, except the fact that we can see a more uniform 
distribution of active particles within the domain. In addition, the aggregation of 
active particles near the wall is less prominent. Ideally, this should further increase 
the mixing parameter, but a larger number of active particles has created a near-
jammed state in the system which leads to local confinement of the active particles 
and subsequently the inability to move the passive particles. 

The manifestation of activity-induced mixing in the domain can be visually 
confirmed in Fig. 5. To quantify the extent of mixing, the mixing parameter is estab-
lished (see Sect. 3.2) and computed for the different values of active–passive particle 
fractions ψ. The variation in the rate of mixing with the increase in ψ, delineated in 
Fig. 6 corroborates the observations from Fig. 5. A striking feature of Fig. 6 is that 
all the curves (pertaining to different ψ) tend to attain a similar value of γ (~0.40) 
at steady state. At a very low concentration of active particles (ψ = 0.10), the curve 
is less steep which implies a longer time for the system to attain a steady mix. By 
increasing ψ to 0.20, i.e., by doubling the number of active particles, mixing is 
achieved at a faster rate and steady state is achieved at a considerably lower time. 
Increasing the ψ further to 0.30 helps achieving the same steady state γ at roughly 
half the time compared to ψ = 0.10. Further increasing ψ to 0.40 does not cause 
any significant change in γ or in the time taken to achieve steady-state mixing. Any 
further hike in the number of active particles proves to be detrimental to mixing as 
accentuated by the reduction in γ at ψ = 0.50. The analysis of the rate of change of 
mixing parameter for the different active–passive particle fractions depicts a require-
ment of the number of active particles not exceeding 20% of the number of passive 
particles, in order to obtain brisk mixing.
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Fig. 6 Change in mixing 
parameter γ with time τ for 
varying Ψ ; (Dr = 0.01) 

5 Conclusions 

The behaviour of an initially segregated binary system of passive particles is studied 
in the presence of a controlled number of active athermal mixers. The system consti-
tuting of the two passive species and the active mixers placed in a confined circular 
domain are modelled using a set of overdamped Langevin equations. At low values 
of rotational diffusion coefficient, the active mixers are found to aggregate along the 
wall, leading to little mixing of the passive species. For a certain value of passive 
packing fraction and active–passive particle fraction, it is found that there exists an 
optimum value of rotational diffusion coefficient for which mixing occurs most effi-
ciently. The mixing of the two passive species is measured in terms of a mixing param-
eter based on the Eigen values of the position matrix at any time instant compared 
to that of the initial positions. In the base case considered (∅P = 0.60, ψ = 0.30), 
the optimum value for Dr is obtained as 0.01. It is also observed that the concen-
tration of active particles is a major factor affecting the rate of mixing. However, 
the extent of mixing in the system on reaching steady state (at large time scales) 
remains largely unaltered across different active particle concentrations. An impor-
tant outcome from the current study is the number requirement of the active mixers 
for obtaining sufficient mixing at comparatively low time scales. It is noted that an 
active–passive particle fraction not exceeding 0.2 provides ample agitation to cause 
brisk mixing of the passive species. Due to the confined boundary conditions and 
the experimentally relatable parameter set, this study could find application in the 
case of artificial micro-robots to obtain rapid mixing among various living/artificial 
entities. 
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Nomenclature 

r Particle radius [m] 
R Domain radius [m] 
vo Non dimensional self-propulsion speed [–] 
r Position vector [–] 
μ Mobility [s/kg] 
k Force constant [N/m] 
Ψ Active-passive particle fraction [–] 
Dr Rotational diffusion coefficient [rad2/s] 
γ Mixing parameter [–] 
η Gaussian white noise [–] 
τ Non dimensional time [–] 
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