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Abstract The application of biotechnology in cancer therapy is widespread, partic-
ularly when combined with traditional medicines. Immunotherapy the fifth pillar of 
cancer management is highly benefited with advancements in biotechnology over 
other methods such as surgery, radiation, chemotherapy, and targeted therapy. 
Engineered cytokines, designer vaccines, cell therapy, and gene therapy fall in 
immunology-based biotechnology approaches for cancer cure. These advancements 
along with combination therapy can be a potential remedy not only for cancer treat-
ment but also for the current challenges of drug resistance, disease recurrence, and 
post treatment hazard effects. 
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1 Introduction 

Over twenty million individuals globally were affected by cancer in 2020, and more 
than nine million people have died due to this malignancy(https://gco.iarc.fr/). The 
polyclonal growth tumor cells followed by stroma modification with the assistance of 
immune cells aid cancer progression (Fig. 1). Although current therapies including 
radiation treatment, and hormonal treatment are thought to be successful, their effec-
tiveness is severely hampered by secondary resistance and hazard effects. In turn, 
this heightens the necessity for an alternate strategy in addition to traditional medica-
tions to treat the patients (Qiao et al. 2016). Recombinant DNA technology, an early 
kind of genetic engineering where scientists integrated genome data from many
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species in unique ways to aid patients in the treatment or management of specific 
ailments, gave rise to the older beginnings of biotechnology in the 1970s (Khan et al. 
2016). Biotechnology approaches have been started to combine with conventional 
treatment options including chemotherapy and immunotherapy. Combining biotech-
nological approaches with traditional treatments improve patients’ overall survival. 
The invention of inhibitors of the programmed cell death protein 1/programmed cell 
death protein ligand 1 (PD1/PDL1) and cytotoxic T-lymphocyte-associated protein 
4 (CTLA-4) for cancer therapy was recognized with Nobel Prize (Tasuku Honjo 
and James P. Allison) (Sato et al. 2020). Biotechnology associated immunological 
approaches are highly competitive with other conventional therapies considering 
clinical outcome. For instance, over 20 recombinant products of available cytokines 
can not only function as important immune response signaling transmitters but also 
as powerful immunotherapy candidates. The efficient and safe injection of cytokines 
in therapy, however, faces a range of difficulties, from reduced half-life to post-hazard 
effects, and pleiotropic signaling to aggressive immune functions. Chimeric antigen 
receptor (CAR)-T cell therapy possess the capacity to develop into immunother-
apeutic agents for the treatment of hematological disorders, which present emer-
gency health demands. To overcome challenges like hazard effects corresponding 
to CAR-T, CAR-T/NK cell therapies have recently gained attention as innovative 
treatment interventions. Although vaccines possess the potential to benefit patients 
who are unresponsive to existing standard-of-care immunotherapies it has yet to be 
considered as an oncologic treatment. 

In this chapter, current cancer epidemiology and the significance of biotechnology 
integrated immunotherapy studies using the data curated from The Cancer Genome 
Atlas (TCGA)-cBioportal is discussed. The clinical advancements of CAR T cell 
therapy, monoclonal antibody (mAb), stem cell therapy, engineered cytokines, and 
various types of designer vaccines are also discussed together with the necessity of 
biotechnology advancements to integrate with combinatorial approaches over other 
conventional therapies.

Fig. 1 a Polyclonal growth of cancer b immune cells and cytokines involved in immune evasion 
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2 Current Cancer Epidemiology 

With over 8.8 million fatalities globally and 14 million new occurrences of cancer 
identified every year, cancer is among the most common diseases with high mortality. 
Monitoring epidemiologic data is essential because it offers crucial details on the 
cancer’s current status statistical, biological, and geographical viewpoints, enabling 
the creation of suitable medical interventions (Montagnana and Lippi 2017). The 
most and least common cancers based on latest update of Global Cancer Observa-
tory (GLOBOCAN)-2020 along with their percent increase or decrease comparing 
GLOBOCAN-2018 is as follows: prostate (9.7%), lung (4.6%) and colorectal cancer 
(3.7%) are the common cancer in male while Kaposi sarcoma (−3.4%), mesothe-
lioma (−0.4%) and salivary gland tumors (1.4%) are the least. Females possess 
higher incidence of breast cancer (7.6%), lung cancer (5.8%) and colorectal cancer 
(4.8%), while it is lowest in Kaposi sarcoma (−24%) (https://gco.iarc.fr/). 

A rise in cancer mortality rate even overtaking ischemic heart disease is predicted 
by WHO 2016–2060 projection data, and the prediction matches with GLOBOCAN 
2020 update (https://gco.iarc.fr/). The immunogenomic studies reported in cBio-
portal based on their potential biotechnology approaches used was curated. Studies 
entitled Glioblastoma (Columbia: 42 samples), Metastatic melanoma (DFCI: 110 
samples, MSKCC: 64 samples, UCLA: 38 samples), non-small cell lung cancer 
(NSCLC) (MSK: 75 and 16 samples), TMB and immunotherapy (MSKCC: 1661 
samples), and Clear cell renal cell carcinoma (DFCI: 35 samples) were selected. 
Somatic mutations and copy number variations contributed to greater than 95% of 
genomic profiles in these studies. The KM plot for overall survival after pooling all 
the samples have shown a significant fall within a year after availing various cancer 
therapies. The five-year overall survival rate has shown to be less than 20%, which 
indicate the need for improved therapeutic approaches in cancer cure. 

TCGA-cBioportal based 213 non-redundant studies were queried for PDCD1, 
CD274, and CTLA4 gene (Table 1), which are greatly exploited in immunology-based 
biotechnology approaches including immune checkpoint inhibitors (ICIs), mAb, and 
vaccines (Fig. 2), and their mutual exclusivity were analyzed (Table 1). PDCD1 and 
CTLA4 genes were shown Log2 Odds ratio of greater than three (p<0.001), which 
indicate their combined roles in cancer progression.

3 Biotechnology in Cancer Therapy 

3.1 Monoclonal Antibody 

Although immune checkpoint inhibitors (ICIs) are thought of a type of mAb, they 
differ in their mode of action. mAbs can locate, bind, and interfere with neo-antigens 
present on cancer cells (Buchbinder and Desai 2016). CD38, CCR4, PDGFR,

https://gco.iarc.fr/
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Fig. 2 TCGA cBioportal based data representing mutational burden of PDCD1, CD274, and 
CTLA4. Data source https://www.cbioportal.org/ 

Table 1 Mutual exclusivity of PDCD1, CD274, and CTLA4 corresponding to the proteins PD1, 
PDL1, and CTLA4 (data curated from TCGA-cBioportal: https://www.cbioportal.org/) 

A B Neither A Not  
B 

B Not  
A 

Both Log2 
odds 
ratio 

p-Value Tendency 

PDCD1 CTLA4 45,033 572 297 82 >3 <0.001 Co-occurrence 

PDCD1 CD274 44,666 616 675 38 2.029 <0.001 Co-occurrence 

CD274 CTLA4 44,917 688 354 25 2.205 <0.001 Co-occurrence

Nectin4, TROP2, CD3, CD20, CD79B, HER2, GD2 and SLAMF7 are few of neo-
antigens mAbs target in malignant cells (Zahavi and Weiner 2020). They either hijack 
growth factor assisted signaling via receptor ligand complex inhibition, subsequently 
inhibiting tumor progression (Li et al. 2005). Cetuximab, an epidermal growth factor 
receptor (EGFR) mAb, inhibit receptor dimerization and ligand binding followed by 
neoplastic cell growth inhibition (Patel et al. 2009). Trastuzumab is the pioneer drug 
approved by Food and Drug Administration (FDA) against Erbb2 receptor tyrosine 
kinase (HER)-2 which in HER2 positive breast cancer inhibit receptor internaliza-
tion (Wang and Xu n.d.; Chen et al. 2003). B cells corresponding to Non-lymphoma 
Hodgkin possess high level of CD20 expression on their surface, in contrast to normal, 
embryonic B cells. Consequently, a mAb therapy that specifically aim CD20 may 
kill the malignant cells while leaving behind embryonic B cells to restore the body’s 
pool of normal tissues. As a result, CD20 was chosen as the primary target for mAb 
treatment, and rituximab (an anti-CD20 mAb) was the first mAb to get approval for

https://www.cbioportal.org/
https://www.cbioportal.org/
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cancer therapy (Maloney et al. 1997). mAbs other than ICIs such as elotuzumab, 
mogamulizumab, ramucirumab, pertuzumab, enfortumab vedotin, sacituzumab, and 
govitecan are used to treat bladder cancer, multiple myeloma, sarcoma, gastric cancer, 
breast cancer, cutaneous T cell lymphoma, and triple negative cancer respectively 
(Anand 2019). 

To determine the impact of mAbs in various cancers, multiple clinical trials are 
now being conducted. A phase II study (NCT04895137) combining mFOLFOX6 
with PD1 and bevacizumab is being conducted to analyze tolerability and effec-
tiveness of mAb conjunctions in people tested positive for colorectal cancer. The 
effectiveness of rituximab with ixazomib in treating mantle cell lymphoma has eval-
uated in a phase II study (NCT04047797). Rituximab possesses the capacity impair 
the competence of tumor cells and to alter the immune cells, therefore slowing the 
spread of the disease. The results indicates, patients with mantle cell lymphoma may 
benefit from using rituximab with ixazomib in addition to rituximab monotherapy 
(Vose et al. 2012). 

3.2 Stem Cell Therapy 

A promising approach in cancer therapeutics is stem cell treatment, which includes 
all conventional techniques using stem cells. Due to its greater focus on tumors and 
resulting reduction in target events, it can enhance the clinical effectiveness of other 
medicines. There are now several stem cells assisted cancer therapy methods being 
researched in preclinical studies, and they provide both enormous opportunities and 
concerns (Gomes et al.2017) (Table 2). A revolution in molecular genetics occurred 
in 2006 with the discovery of Yamanaka factors, which allowed transition of somatic 
cells to become pluripotent stem cells (iPSCs) (Takahashi and Yamanaka 2006). 
These iPSCs exhibit the same traits as embryonic stem cells (ESCs) while avoiding 
the moral dilemma of embryo killing. As of present, the creation of cancer vacci-
nations (Kooreman et al. 2018; Ouyang et al. 2019) and effector NK and T cells’ 
activation rely on iPSCs and hESCs as significant sources of material. Many kinds 
of specialized cells for the tissue and organ may be produced by adult stem cells 
(ASCs). For cancer therapy, mesenchymal stem cells (MSCs), neural stem cells 
(NSCs), and hematopoietic stem cells (HSCs). Notch, hedgehog, PI3K/PTEN, NF-
kB, Wnt/β-catenin, and JAK/STAT based regulation of typical stem cell growth is 
well known. Cancer cells and CSCs will develop as a result of the ongoing alteration 
in the signaling pathways, and crosstalks (Matsui 2016). CSCs possess a strong 
ability to differentiate and self-renew, which helps with tumor development, inva-
sion and recurrence (Jordan et al. 2006; O’Brien et al. 2010). Additionally, such cells 
cause malignancies to resist standard treatment (Cojoc et al. 2015; Chang 2016; 
Batlle and Clevers 2017). To create an effective medicine for the cure of cancer, 
investigation into CSCs is crucial. Leukemia, gastrointestinal, lung, brain, and breast 
malignancies are just a few of the tumor types where CSCs have been shown to occur. 
These cells are routinely separated and recognized utilizing a number of techniques,
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such as surface protein markers, signaling components, transcriptional candidates, 
and metabolic or functional characteristics (Codd et al. 2018; Toledo-Guzmán et al. 
2018). Key traits and biochemical mechanisms of CSCs have some resemblance to 
regular stem cells, from whence they originated. Many surface markers, including 
CD133 HSC marker (Prominin-1), leucine-rich repeat-containing G-protein-coupled 
receptor (LGR)-5, CD24, CD44, epithelial cell adhesion molecule (EpCAM) are 
explored in distinguishing CSCs from extremely diverse cell types in malignancies, 
despite the fact that they may also be found in normal cells (Codd et al. 2018).

HSC transfusion has largely utilized as a primary therapy for leukemia, multiple 
myeloma, and lymphomas following multiple cycles of radiation or chemotherapy. 
Additionally, this method is now thoroughly explored in clinical trials of brain tumors 
(NCT00528437), breast cancer (NCT01807468), neuroblastoma, and sarcomas. 
Employing heterologous sources of HSCs, graft-versus-host disease (GVHD), which 
is frequently treated with immunoinhibitory medications with substantial adverse 
effects and reduced efficacy, is still a problem (Copelan 2006). 

In individuals with persistent GVHD, MSCs with immune-educating properties 
may successfully lessen pronounced immunological reactions. Upon the injection of 
MSCs and HSCs together, clinical studies reported positive results without any asso-
ciated negative effects. Mesenchymal-angioblast derived MSC transfusion is being 
evaluated for tolerability, durability, and effectiveness in people with steroid-resistant 
GVHD in active multi-center experiment (NCT02923375). MSCs can speed up the 
healing of damaged organs and may help the body tolerate high dosage chemotherapy, 
which will have a greater impact on tumor-destroying outcomes (Lee et al. 2011). 

Stem cells as possible therapeutic carriers can enhance shelf life of enclosed cargo 
by protecting from degradation, enhance target specificity and reduce systemic hazard 
effects. Nanoparticle carrying stem cells being a long running candidate in the field 
of cancer therapeutics, their lack of proper targeting potential, uncontrollable cellular 
uptake, and fall in rapid secretion from body is still challenging (Rosenblum et al. 
2018). Nanoparticles may be internally absorbed passively or actively by endocytosis, 
depending on their surface properties, size, processing period, and quantity (Behzadi 
et al. 2017). The key issues are medication dosage management and probable cell 
carrier hazard effects. Furthermore, the cells’ quick nanoparticle exocytosis might 
result in the uncontrolled secretion of therapeutic medications into places that aren’t 
intended for them. Despite affecting cell survival or functioning, Roger et al., demon-
strated efficient MSC based internalization of PLA and lipid nanoparticles (Roger 
et al. 2010). Following their immediate tumoral infusion, MSCs transported these 
nanoparticles into brain tumors in the glioma mouse model. In a different investi-
gation, intravenous injection of MSCs packed with paclitaxel-laden nanoparticles 
(PTX-NPs) produced drug deposits and increased nanoparticle localization in mice 
that established orthotopic lung tumors (Layek et al. 2018). Albeit the overall dosages 
of PTX-NPs used in these nanoparticle encapsulated MSCs were substantially lower 
than those used in PTX solution/PTX-NPs alone, it is worth noting that they greatly 
reduced tumor development and improved mouse longevity. MSCs confined in the 
lung parenchyma but later moved to tumor sites because of their cancer-tropic effect 
(Lee et al. 2009; Wang et al. 2019a, b). The method that promotes cellular nanoparticle
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absorption may enhance clinical benefits. Trans activator of transcription (TAT), for 
instance, can increase the uptake of poly (lactic-co-glycolic acid) (PLGA) NPs into 
MSCs (Moku et al. 2019). 

Immune cells are capable to quickly identifying and eliminating bare oncolytic 
viruses from the body. Interestingly, to preserve and transport oncolytic viruses to 
tumor locations, stem cells may be used as a potential carrier. For instance, hNSC 
line transfected with CRAd-Survivin-pk7 oncolytic virus, in conjunction using temo-
zolomide and ionizing radiation, might boost cytotoxicity in vitro in glioma cells and 
prolong the lifespan of mice suffering glioblastoma multiforme (Tobias et al. 2013). 
Additionally, it was shown that MSCs could successfully carry modified oncolytic 
herpes simplex virus (HSV) and oncolytic measles virus (OMV) and to inhibit the 
formation of glioblastoma and hepatocellular carcinoma, respectively (Duebgen et al. 
2014; Ong et al. 2013). 

Furthermore, stem cell derived small extracellular vesicles (sEV) can be used to 
load cargo molecules such as miRNA, small drugs or proteins. Compared to other 
manufactured nanoparticles, these endogenous carriers have a number of advan-
tages, such as exceptional intestinal absorption, durability, cargo loading efficiency, 
biocompatibility, and improved internalization into tumor cells (Fuhrmann et al. 
2015). Additionally, they are readily functionalized by adding receptors or corre-
sponding ligands to enhance targeted actions in tumor microenvironment (TME) 
(Smyth et al. 2014; Kooijmans et al. 2016; Wang et al. 2017). The conventional 
transfection method was effectively used to encapsulate genetic resources, such as 
anti-tumor siRNAs/miRNAs, into sEVs generated from stem cells. sEVs from bone 
stromal cells that expressed miR-146b have shown direct infusion into tumors in 
a brain tumor model resulted in a notable slowdown of the development of the glioma 
xenograft (Katakowski et al. 2013). Further research found that sorafenib’s anticancer 
effects on a hepatocellular carcinoma tumor model were markedly improved by 
sEVs released by MSCs that contain the miR-122 gene (Lou et al. 2015). sEVs made 
from MSCs also successfully transferred siRNA in order to silence the polo-like 
kinase 1 gene in bladder cancer (Greco et al. 2016). 

3.3 Gene Therapy 

It was initially proposed in 1966, subsequently this approach used viruses as 
the carriers of transforming genetic material in 1968. Gene replacement therapy 
followed by gene therapy trials, X-SKIDS, oncolytic virus, a gene-based medicines 
was approved in the cancer therapeutic milieu. Numerous potential approaches are 
currently ongoing for using gene therapy to treat cancer. It include: (a) use of wild 
type tumor inhibiting gene; (b) preventing the oncogene expression using an anti-
sense nucleotide approach; (c) expressing apoptosis inducing gene or increase tumor 
responsiveness to traditional therapy or drugs; and (d) improving the immunogenicity 
to promote immune cell recognition (Das et al. 2015).
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Stem cell-based gene therapy is a recent advancement in cancer cure. Gene 
directed enzyme prodrug therapy (GDEPT) employ modification of soluble factors 
such as tumor associated cytokines or prodrug converting enzymes (Malekshah 
et al. 2016; Sage et al. 2016). A healthy stem cell’s enzyme composition can 
convert prodrugs into bioactive components that are more harmful to tumor tissues. 
For instance, 5-fluorocytosine is successfully transformed into the tumor-toxic 
compound 5-fluororacil after being infused with MSCs/NSCs that display the 
cytosine deaminase enzyme (Malekshah et al. 2016; Lee et al. 2013). Similarly, 
irinotecan, relatively less powerful prodrug, can be converted into SN-38, a molecule 
that is thousand times more poisonous, when carboxylesterase is present. When 
carboxylesterase secreting NSCs and irinotecan were administered together rather 
than separately, neuroblastoma mouse xenograft model responded more effectively 
(Choi et al. 2016; Gutova et al.  2017). 

3.4 CAR-T/NK Cell Therapy 

Expression of CAR by genetically altering NK and T cells, may recognize TAA with 
precision. “Classical” CARs are made up of an extracellular domain (scFv) that is 
typically obtained from a mAb fragment and connected to ICD of T-cell receptor. T 
cell get activated upon tumor antigen coupling with scFv, in a way that is irrespective 
of MHC, followed by a cytotoxic effect (Hartmann et al. 2017). New CAR construc-
tions have constantly been created, some of which may have modified cytosolic co-
stimulatory sequences or targeting sequences. The targeting domain may be made 
up of other entities rather than scFvs, such as designed ankyrin repeat proteins 
(DARPins), nanobodies, or ligands (Balakrishnan et al. 2019; Duan et al. 2019; 
You et al. 2019; Zhylko et al. 2020). Separating antigen detection followed by CAR-
cell stimulation has also led to the development of adapter CARs. Using CAR-cells 
that identify specific adapter molecules for tumor antigens, site specific and time-
limited treatment is possible. Multiple antigens may be targeted simultaneously as 
a result, and the treatment can be modified if tumor types that lack antigens are 
discovered. This strategy also offers the opportunity to stop the immune reaction if 
serious adverse effects occur (Lee et al. 2019). 

NK or T cells from peripheral blood are initially extracted for the CAR cell produc-
tion. CAR-encoding nucleotides are then introduced into cells using viral vectors. 
To combat cancerous cells, CAR-modified cells are multiplied until an adequate 
cell count is reached and then administered by adoptive transfer to the recipient. 
Most treatment scenarios include lymphodepletion before the CAR-modified cells 
are infused to promote effective cell regeneration (Neelapu 2019). It is crucial that 
allogeneic CAR-T cell treatments are now being developed (Depil et al. 2020; Jamali 
et al. 2020; Müller et al. 2020; Reindl et al. 2020). FDA and the European Commission 
have approved three medications for the management of refractory or relapsed hema-
tological malignancies using CAR-T cells during 2017–2021 (I; U.S; Detela and 
Lodge 2019). A new CART cell approach, which the FDA just authorized (U.S), is
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now being evaluated in Europe. Following on such pinnacle results, other CAR-T cell 
treatments are presently being evaluated globally. Around 500 clinical studies looking 
into CAR-T cells for cancer care have reported. Of them, the most trials are being 
conducted in East Asia, followed by the US and Europe. In particular, CAR-NK cell 
therapies are increasingly being used in place of CAR-T cell therapies because they 
have promising benefits over CAR-T cells, including an inherent ability to destroy 
cancerous tissues and a limited number of hazard effects after infusion (Yoon et al. 
2010; Rubnitz et al. 2010; Moretta et al. 2011). Although there are several CAR-T cell 
treatments available, only a small number of CAR-NK cell studies are being carried 
out globally. On clinicaltrials.gov, nineteen studies using CAR-NK cells for solid 
tumor treatment as well as hematological malignancies are officially enrolled. There 
are now three CAR-NK cell studies active in the China and US, and just one study 
being undertaken in Europe. Just few studies are also being conducted right now that 
focus on CAR-NK/T cell products and CAR-modified cytokine-based killer cells. 

3.5 Engineered Cytokines 

Cytokines impart various biological processes involved in cancer progression through 
acting as signal mediators in immune cells and cancer stroma. Structurally modified 
cytokines are potential immunotherapeutic candidates in cancer management, in 
which more than twenty modified cytokines are FDA approved for various diseases 
including cancer. Systematic hazards, off-target effects, poor circulation and reduced 
target specificity add to the limitations of cytokine-based immunotherapies. Modified 
cytokines regarding size, modifications in single amino acids (muteins), polymer 
conjugates and biomaterial implants correspond to engineering concepts of cytokines 
(Uricoli et al. 2021) (Table 3). The engineered immunostimulatory cytokines fall to 
size range of nanometer to millimeters for muteins to hydrogel implants respectively. 
IFNα was the first approved designer cytokine in 1986 which enhance the clinical 
efficacy of hairy cell leukemia by promoting apoptosis (Berraondo et al. 2019), 
followed by the approval of IL2 in 1992 for metastatic renal cancer. Both of these 
cytokines showed a favorable result in a small subset of sample groups while keeping 
a high degree of hazard effects (Golomb et al. 1986; Sleijfer et al. 2005) including 
cardiotoxicity, treatment related death and neurotoxicity (Rosenberg et al. 1989, 
1998). Nonetheless, IL15 mediated NK cells and CD8+ T cells activation also had 
similar outcomes (Conlon et al. 2015).

Muteins, designed by single amino acid substitution, are relatively efficient in 
target based immune activation. IL2 can be considered as a potential pharmaco-
logical agent due to their pleotropic effects in vivo. IL2/IL2R complex is specific 
on CD8+T cells and NK cells than their homology counterpart (CD25) on Treg 
immunosuppressive cells, which substantiate tumor suppressive environment (Liao 
et al. 2013). For instance, IL2 superkine, mutated IL2 anywhere as R81D, I86V, I92F, 
L80F, and L85V, shows high binding affinity with IL2Rβ followed by activation of
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Table 3 Comparison of various engineered cytokines and their delivery vehicles (Uricoli et al. 
2021) 

Engineered cytokines and 
delivery vehicles 

Advantage Disadvantage 

Peptide conjugate or small 
molecule 

Reduced rate of modification; 
relatively better tissue 
infiltration; specific targetability; 
better circulation half-life 

Secondary resistance due to 
reduced expression of target 
molecule 

Antibody-cytokine fusion Recombinant product; 
scalability; target specificity; 
Receptor specificity can be 
modulated 

Competitive affinity between 
cytokines and ligands 

Nano/microparticles Controllable release kinetics; 
target specificity; extended 
half-life 

Regulatory considerations; 
costly production processes 

Polymer conjugates Receptor selectivity can be 
modified; extended half-life 

Costly production processes; 
polymer specific immune 
responses 

Hydrogels/implants Scaffold for cell infiltration; 
controllable release kinetics 

Costly encapsulation 
procedures; regulatory 
considerations

STAT5 and TGFβ signaling, which further promote tumor inhibiting crosstalk. More-
over, these muteins show competitive binding affinity comparing wildtype IL2/IL2R 
coupling, also IL2/mAb complex to an extent (Siegel and Puri 1991). Furthermore, 
two protein engineering method possess significant clinical potential by recombining 
IL2 superkine with EGFR for tumor cell targeting, and with Fc protein to prolong 
circulation and to enhance shelf life (Sun et al. 2019). This recombinant protein 
shows durable tumor suppressive effects both in monotherapy and in combination 
with chemotherapy. Muteins are also efficient in activating synthetic receptors on 
CAR-T cells (Sockolosky et al. 2018). IL2/IL2R complex crystal structures were 
used to create a double mutant IL2R (Y135F, H134D) which lack the ability to 
bind with wildtype cytokines, and then performed a yeast display-based evolution to 
enhance the affinity of IL2 to complex with double mutant receptor. Adoptively trans-
ferring CD4+/CD8+ T cells expressing adjuvant orthoIL2 or orthoIL2R therapy in 
immunocompetent mice showed enhanced expression of modified T cell population 
without any significant hazard effects. Similar effects were reported between wild 
type and engineered IL2 systems after transferring them into a syngeneic B16F10 
mouse melanoma model, highlighting the possibilities of designer cytokine-based 
immunotherapies to work in conjunction with currently available cancer therapeutic 
options like CAR-T therapy (Sockolosky et al. 2018; June et al. 2018).
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3.6 Strategies for Cytokine Engineering 

PEGylation (protein modification using PEG) was first employed in 1970 contribute 
to efficient mode of cytokine chemical modification strategy (Alconcel et al. 2011; 
Ekladious et al. 2018). It enhances drug circulation, conformational flexibility, shelf 
life, drug activity, solubility and reduce nonspecific binding, enzymatic degradation, 
and opsonization (Naing et al. 2019). PEG modified on lysine residues of IL2 and 
IL2R on Treg cells improve sustained cytokine delivery in TME and peripheral blood 
(Charych et al. 2016). Bempegaldesleukin, a PEG modified cytokine, has improved 
antitumor immunity in syngeneic mouse models of colon and breast carcinoma when 
performed in conjunction with CAR-T cell therapy (Charych et al. 2016; Parisi et al. 
2020) the drug gave promising result in clinical trial (phase I) with 35% tumor 
regression and 53.8% disease stabilization. Urotheial cancer, advanced melanoma, 
and muscle invasive bladder cancer is chosen as the disease arm (NCT04209114, 
NCT03635983, NCT03729245) (Bentebibel et al. 2019). Pegilodecakin, PEG modi-
fied IL10, promote oligoclonal T cell activation especially CD8+ Tc cells (Naing et al. 
2019). Their phase I monotherapy trial showed 27% OS in renal cell carcinoma, but 
in combination with PDL1 antibodies showed 40% OS in renal ell carcinoma and 
43% in NSCLC. Nonetheless, pegilodecakin has discontinued from phase II and III 
trials due to their challenging overall survival rates while comparing with FOLFOX 
therapy (Tsai et al. 2016) or antiPD1 therapy (Sun et al. 2020). 

Photolabile polymers can enhance the target specificity of recombinant cytokines 
by masking them in conjugated form and restoring upon light exposure (Perdue et al. 
2020). It can potentially enhance the activation strength, temporal control, and time 
scale of cytokine signals. PEG modified IL15, IL12, and IL2 linked with o-nitro 
benzyl linkers precisely retain protein activity upon the exposure of blue LED light. 
Modifications using photolabile molecules specifically enhanced IL12 half-life in 
C57BL/6 mice 16-fold by biasing IL2/IL2R binding, while monochromatic light 
exposure restored IL2 mediated T cell growth and JAK/STAT cascade. 

Cytokine hybridization with ECM components is one of the potential strategies 
to target cytokine response in TME (Xu et al. 2019). Collagen can act as poten-
tial tumor agonistic-targeting candidate. IL2 and IL12 fused to collagen type I/IV-
binding protein (lumican) significantly improved tolerability and clinical responses in 
melanoma mouse models, as compared to monotherapy. It further shows therapeutic 
potential while combining with checkpoint blockade immunotherapy and CAR-T cell 
therapy. A3 domain of collagen binding domain was fused with IL2 and immune 
checkpoint blocking antibodies like PDL1 and CTLA4. They reported total remis-
sion in 9 out of 13 animals getting combination treatment after systemic therapy in 
xenograft mouse models of melanoma. With regard to 1 out of 13 mice who received 
an unaltered combination treatment of collagen binding domain-checkpoint inhibitor 
and collagen binding domain-IL2, who achieved full remission, monotherapy with 
CBD-IL-2 did not show significant response (Ishihara et al. 2019). 

Cytokines can also be combined with their corresponding receptor fragments 
to sterically hinder their binding affinity with specific immune cells. ALT-803 is
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an agonist complex with N72D mutation in IL15. It possesses significant binding 
potential with IL15Rβ while fused with fragments of IgG1 Fc and IL15Rα. The  
IL15/IL15R binding affinity caused a 150-fold increase both in NK and T cells, 
promising enhanced survival in MOPC-315P and 5T33P multiple myeloma cancer 
models in an IFNγ independent mechanism. Moreover, CD44++ Tc cell proliferation 
was coupled with NKG2D upregulation without PD1 expression. This validates an 
innate-like nonspecific tumor suppression (Xu et al. 2013). ALT803 and IL15 in CT26 
and B16F10 cancer models showed a competing advantage of anti-tumor activity 
achieved by 20 fold higher in vivo half-life. ALT803 phase I trial (NCT01885897) in 
lymphoma and leukemia cases showing relapse after hematopoietic cell transfer no 
hazard effects and 96h constant serum concentration. Furthermore, 19% of patients 
have shown measurable Tc cell and NK cell proliferation without Treg proliferation 
(Liu et al. 2016; Margolin et al. 2018). Combination of rituximab (anti-CD20) with 
ALT803 in preclinical studies has increased NK mediated granzyme secretion and 
IFNγ production in primary B-cell lymphoma and follicular lymphoma cells (Rosario 
et al. 2014). Nivolumab along with ALT803 is ongoing in a phase II trial focusing 
grade 3 tumors (NCT02523469) (Wrangle et al. 2018). 

Antibody-cytokine complexes can further therapeutic potential of cytokine 
monotherapy. IgG recombined with IL21, IL10, IL12, IL4, IL2, and TNFα showed 
improved circulation and tissue specificity in clinical trials and murine models 
(Hutmacher et al. 2019). The whole antibodies or paratope fragments such as scFv, 
nanobody, Fab, and diabody domains can be linked with cytokines using the prin-
ciples of affinity binding or using flexible peptide linkers. Antibody complexes can 
be used to bias cytokine site specific binding, for instance, IL2-S4B6 murine anti-
IL2mAb complexes bind with IL2Rβ expressing Tc cells and NK cells but can bind 
with Treg cells while substituting this antibody with JES61 (Létourneau et al. 2010). 
The same effects were reported in vivo. Hu14.18-IL2 complex are made using anti-
body clone 14.18 binding Fc fragment of GD2, which is a disialoganglioside reported 
in NET like melanoma and neuroblastoma (Neal et al. 2004). Phase I/II clinical 
trials of Hu14.18-IL2 complex showed clinical outcomes when performed along 
with additional therapies. Hu14.18-IL2 along with GM-CSF showed 16.1% objec-
tive response, but 76% partial response with combination therapy (Shusterman et al. 
2019). Clinical studies are now being conducted with Hu.14.18-IL2 for the treatment 
of Stage IV unresectable melanoma in conjunction with ipilimumab, nivolumab, and 
radiation therapy (NCT03958383), additionally for the ex vivo growth of function-
alised NK cells in neuroblastoma (NCT03209869) (Albertini et al. 2012). More-
over, immunocytokines like L19, F8, F16 can also target neo vasculature or ECM 
constituents such as extra domain A/B of fibronectin (Villa et al. 2008). F8-IL2 
complex specifically deliver IL2 to neo vasculatures, and showed improved clinical 
efficacy while treated with cytarabine in acute myeloid leukemia (Gutbrodt et al. 
2013).
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3.7 Methods of Cytokine Delivery 

Genetic, particle and chemical-based approaches 

IL10 is released by immune system cells, both adaptive and innate, to control the 
action of proinflammatory cytokines. Evidence to justify the use of autocrine IL10 
signaling in cancer immunotherapy, particularly when combined with immune check-
point suppression are reported. This signaling may extend CD8+ T cell activity 
(Trinchieri 2007). Utilizing IL-10, nanoparticle systems show tumor suppressive 
responses via the activation of Th17 cells in colon and lung cancer (Li et al. 2018). 
Polylactic acid (PLA) microspheres produced using phase inversion nanoencapsu-
lation were used to administer IL-10 orally, and the colon cancer model showed 
improved survival after dosing. This remarkably effective treatment outcomes were 
linked to a decrease in pro-tumorigenic Tregs (Foxp3+ CD4+ RORγt-) and Th17 
(RORγt+ CD4+ IL-17+) cells, as well as an increase in Tc cells (Gu et al. 2017). Intra-
tracheal delivery of PLA IL10 in the LSL-K-rasG12D genetic model of NSCLC like-
wise resulted in the restoration of Th17 axis dysfunction and decreased tumor devel-
opment, which further the potential of particle-based cytokine delivery (Li et al. 
2018). 

TRAIL can modulate innate immune systems. Lipopolysaccharide (LPS) and 
IFNβ stimulation induce TRAIL upregulation in monocytes and macrophages, as 
well IFNγ induce similar effects in dendritic cells and NK cells (Falschlehner et al. 
2009). TRAIL/death receptor (DR)-4 and -5 coupling induce apoptotic effects in 
various cancers, and TRAIL-based immunotherapy demonstrated therapeutic bene-
fits in at least six types of cancers. Their poor circulation and limited target speci-
ficity causes modest clinical responses (Soria et al. 2011). To manage, gold, lipid, 
DNA, and polymer-based structure formulations in nanoparticles are under consid-
eration. TRAIL liposomes can effectively target the tissue sites and can benefit 
from membrane based presentations (de Miguel et al. 2015). For instance, TRAIL-
functionalized liposomes in colon cancer xenograft models enhance ligand-mediated 
apoptosis through DR5 activation (de Miguel et al. 2015). More sophisticated method 
such as TRAIL and R8H3 based liposomes modified with hyaluronic acid gel (gel-
lipid nanostructure) consisting of doxorubicin can deliver both TRAIL and doxoru-
bicin with improved specificity achieving tumor suppressing potential in breast 
cancer xenograft model (Jiang et al. 2014). As well, PLA2 degradable POPC lipo-
some shell surrounded by a DNA nanocore can efficiently transfer TRAIL to cancer 
sites (Sun et al. 2014). This complex achieved tumor cell apoptosis and leukocyte 
adherence, respectively, by using TRAIL and E-selectin dual conjugated nanopar-
ticle. Xenograft mouse model corresponding to prostate cancer has shown enhanced 
apoptosis of circulating tumor cells (CTC) and inhibition of metastasis by integrating 
TRAIL based nanoparticles with leukocytes in vivo (Ming et al. 2017). 

IFNγ can enhance effector activity of Tc cell, M1 macrophages, and dendritic 
cells. IFNγ-engineered delivery systems have the potency to improve the tumor 
site’s localization prior to clearance to reduce the effects on systemic dosing. IFNγ 
encapsulated within liposomes can be a method in melanoma vaccination and has
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experimented in melanoma induced mice models (van Slooten et al. 2000). External 
magnetic field directed IFNγ-encapsulated nanoparticle enhance tumor infiltration 
of macrophages and Tc cells in comparison to nondirected nanoparticles in Pan02 
pancreatic cancer model (Mejías et al. 2011). IFNγ based nanoparticle consisting of 
poly lactic-co-glycolic acid (PLGA) and polyvinyl alcohol (PVA) layer for structural 
support and cytokine secretion, respectively, can adhere to macrophages in vitro while 
hindering phagocytosis (Wyatt Shields et al. 2020). Comparing naked IFNγ treat-
ment, this complex enhanced M1 polarization and improved OS in 4T1 mammary 
tumor models. 

TNFα assisted isolated limb perfusion (ILP) in soft tissue sarcoma can be compet-
itively benefited with gold nanoparticles due to their potency to deliver rhTNFα 
in vivo. The particles can be stabilized using Au-S bond and surface conjugation of 
PEG-SH. Moreover, rhTNFα has three-fold tolerative dose comparing cytimmune 
(CYT-6091) with no dose-limiting hazard effects (Libutti et al. 2010). Zr/IFNγ and 
TNFα complexed colloidal gold (CYT-IFNg and CYT-Z-TNF respectively) are also 
considered (Jiang et al. 2014). 

The poor circulation and notable hazard effects of engineered IL12 cause fall 
in phase III clinical trials (Berraondo et al. 2019). In hypoxic tumor microen-
vironments, Poly (β-amino ester) consisting of 2-(4-imidazolyl) ethylamine, 1,6-
hexanediol diacrylate, and amino-terminal PEG disintegrate, therefore preferentially 
release IL-12 cargo. In a B16-F10 xenograft mouse model, this system has reported to 
be durable at physiological pH, significantly enhance intratumoral IL-12, suppress 
carcinogenesis, and alter TAM phenotype without exhibiting any harmful effects 
(Overwijk and Restifo 2001). 

Hydrogel and implants-based approach 

Cytokines can be encapsulated within macroscale matrices or implants to over-
come systemic immunotherapy challenges (Chao et al. 2020). Degradable (lactate-) 
hydroxyethyl methacrylate dextran (dex-lactate-HEMA) hydrogels and nondegrad-
able dextran methacrylated (dex-MA) hydrogels enable for the regulated and 
adjustable delivery of IL2 (Cadée et al. 2002). Similar clinical efficacy to exoge-
nous IL2 administration and refusal of tumor cell reactivation was obtained after 
implanting IL2-based hydrogels in mice models of metastatic lymphosarcoma (Bos 
et al. 2004). Poly(ethyl-l-glutamate)-poly (ethylene glycol)-poly(ethyl-l-glutamate) 
hydrogels (PELG-PEG-PELG) were loaded with IL-2, IFN, and doxorubicin in 
B16-F10 melanoma mice model and has shown two-fold tumor inhibition capacity. 
Chemotherapy-immunotherapy combination approach has also shown similar results 
using cisplatin and IL15 encapsulated within mPEG-b-PELG assisted hydrogels 
(Wu et al. 2017). Moreover, IFNα loaded hydrogels hinder tumor proliferation in 
hepatic xenograft mice models. Hyaluronic acid-based hydrogel loaded with PEGy-
lated TRAIL significantly reduce tumor burden in pancreatic xenograft mice models 
(Wang et al. 2022).
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3.8 Cancer Vaccines 

One of the biggest therapeutic breakthroughs of 20th century was the development of 
vaccinations to combat contagious illnesses, however the vaccination strategies go 
further than disease prevention (Lin et al. 2022). mAb trials was challenging two 
decades back before the success of nivolumab, rituximab, CAR-T cell and antiPD1 
antibody (Berger 2008). The vaccines can generally mimic the structure of anti-
gens such as tumor cells, neoantigens, long and short peptides, and RNA/DNA, 
while immune cells such as dendritic cells, carrier proteins, CD40L, and TLR 
agonists act as adjuvants (Melief et al. 2015). Antigens in vaccines may be either 
predetermined (known) or anonymous (unknown). The former contains predeter-
mined common antigens (expressed in most patients) or predetermined individu-
alized antigens (specific for individual patient). Ex vivo (in a lab) or in situ (in 
the tumor site) colocalization of anonymous antigen vaccines with APCs are under 
consideration (Lin et al. 2022). 

3.9 Shared Vaccines 

Shared antigens are displayed in a high enough percentage of cancer patients so that 
vaccine developers may focus on these patient populations. Shared antigens can target 
both tumor specific antigens (TSA) and tumor associated antigens (TAA), and can be 
tested using standard tests like IHC, flow cytometry and cytology. They are the major 
focus of preclinical and clinical studies since 1990 (Lin et al. 2022). Neo-epitope 
TSA EGFRvIII is exhibited in around 25% of EGFR-overexpressing glioblastomas 
(Katanasaka et al. 2013), while viral TSA HPV E7 and E6, and TAA Wilms’ tumor 
protein are upregulated in most breast malignancies, Wilm’s tumor, and acute myeloid 
leukemia (AML) (Maslak et al. 2018). These vaccines are beneficial in terms of time 
and resource comparing personalized vaccines. TSAs of EBV virus encode various 
neoantigens such as latent membrane protein (LMP)-1 and -2 in NKT cell lymphoma 
and nasopharyngeal carcinoma (Tsao et al. 2002). 

Modified vaccinia Ankara (MVA) virus with positive for EBNA-LMP2 fusion 
protein enhanced T cell response (Taylor et al. 2014). P53 and RB proteins can be 
sequestrated by HPV E7 and E6 TSAs promoting squamous carcinoma progres-
sion. ISA101, a synthetic long peptide vaccine induces tumor regression through 
activating T cell response in intraepithelial neoplasia (Kenter et al. 2009). More-
over, LCMVi vectors with E7+ induce E7 specific T cell activation. Overex-
pressed EGFRvIII are mutant self-proteins widely reported in NSCLC and glioblas-
toma. Glioblastoma patients previously undertaken CAR-T cell therapy have shown 
promising anti-EGFRvIII outcomes (O’Rourke et al. 2017). Phase II clinical trial 
using rindopepimut, an EGFRvIII peptide vaccine, together with temozolomide and 
GM-CSF activate humoral responses (Schuster et al. 2015) albeit the inability of the 
trial to show significant clinical outcome (Weller et al. 2017).
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TAAs are associated with either tumor site, tumor development, or tumor abun-
dant proteins while comparing with TSAs. Wilm’s tumor protein is a development-
based TF that assist tumor progression (Cheever et al. 2009). WT1 peptide vaccines 
with higher HLA affinity enhance clinical responses in acute myeloid leukemia 
cases and prompted to phase III trials now (NCT04229979) (Maslak et al. 2018). 
Melanoma-associated antigen 3 (MAGE-A3) is a widely used biomarker in NSCLC, 
melanoma, and myeloma wherein it induces anti-apoptotic effect. TLR4-agonist 
MAGE-A3 vaccine, AS02B, as well show humoral tumor suppressive effects without 
significant clinical benefits (Vansteenkiste et al. 2013). However, AS15, another 
TLR4 agonist shows competing clinical benefits over AS02B, and is in phase II 
clinical trials now (Kruit et al. 2013). 

HER2 is upregulated in 30% breast carcinoma but a relatively smaller percentage 
in ovarian and gastrointestinal tumors, and can get bound by anti-HER2 mAb. 
Nelipepimut-S, HLA-I-restricted peptide vaccine, can induce Tc cell response but 
with reduced clinical benefits (Mittendorf et al. 2016), and is similar to AE37 (HLA-
II-restricted) (Mittendorf et al. 2019). Interestingly, a multi-epitope-based HLA-I or 
II restricted targeting showed Tc cell response durable for a year (Knutson et al. 
2001). 

3.10 Personalized Vaccines 

Personalized vaccines are designed specific to cancer patients and are designed using 
high-throughput nucleic acid sequencing methods. Germline nucleic acid extrac-
tion, sequencing, and HLA typing are employed upstream to personalized vaccine 
designing. For instance, neo-epitopes of TSA KRAS G12D, which has reduced 
frequency in terms of oncogene, is employed. This method puts the responsibility on 
the vaccinator to repeatedly identify the significant epitopes, however it also enables 
the immune system to approach malignancies without recognized common antigens. 
The avidity between HLA and TCR ensures clinical efficiency of vaccine as a whole 
(Lin et al. 2022). When combined to checkpoint blockage, targeting customized anti-
gens releases patients’ broad T cell responsiveness is increased by T cells that evade 
thymic −ve determination(Sahin). Putative neo-epitopes are selected from somatic 
mutations using techniques like NetMHC algorithm based on their affinity for the 
patient’s HLA alleles (Nielsen et al. 2003). After prioritizing neo-epitopes based 
on analysis of tumoral transcriptome data, It is customary to choose up to 20 neo-
epitopes, and then produce RNA, neo-epitope viral vectors, or peptides that adhere 
to good manufacturing practice (GMP). Neo-epitopes may promote APC activation 
or keep APC uptake stable to help them be more immunogenic. 

Patients diagnosed with advanced melanoma responded anecdotally to an earlier 
customized vaccination employing synthetic RNA vaccine to generate 10 neo-epitope 
potential targets, primarily CD8+ and CD4+ neo-epitope-specific T cell activity 
(Nielsen et al. 2003). These poly-specific processes, which might be made more 
potent by inhibiting PD-1 or rendered useless by reducing tumor cell HLA class
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I, most certainly had a key role in the dramatic decline in long-term metastatic 
episodes. Accordingly, another study using 13–20 long fragments of projected NEO-
PV-01 (neo-epitope) generated higher CD4+ over CD8+ T cells particular to altered 
sequence (Ott 2017). 

Another tumor-specific alteration is the distinctive Ig or TCR idiotype, which 
results via somatic hypermutation and locus gene recombination. These mutations 
are often retained in tumor tissues and is reported in lymphomas, myelomas, and 
hematologic malignancies. In the Genitope and Favrille phase III studies, lymphoma 
patients who had received rituximab or chemotherapy but had an idiotype associated 
to KLH delivered with GM-CSF were given the vaccine. Neither research demon-
strated a therapeutic advantage over a placebo. When given to patients in standard 
therapy following chemotherapy, a different NCI-Bioves trial (phase III), using the 
same vaccine approach showed a substantial DFS; however, the relevance of the 
consequence was obscured by the high rate of patient dropout prior to vaccination. 
Flt3L has shown advantage over GM-CSF based APC activation, substantially with 
more efficient adaptive immune response (2016). 

3.11 Ex Vivo Vaccines 

APC colocalized or ex vivo include tumor cell isolation and colocalization with 
APC in order to enhance their antigenic effects. Ex vivo vaccines in patient body can 
express antigens to T cells. HSP such as HSP70, gp96, and HSP110-based ex vivo 
vaccines has shown to cause tumor suppressive responses (Moseley 2000). HSP-
gp96 complex (HSPPC-96) could not report significant survival benefits in renal 
cell carcinoma and melanoma (Testori et al. 2008; Wood et al. 2008). Glioblas-
toma patients receiving this vaccination showed inverse correlation between PDL1 
expression and survival, suggesting combinatorial approaches using antiPDL1 and 
HSSPC-96(NCT03018288) (Bloch et al. 2017). TAAs can be enriched in ex vivo 
vaccines focusing KRAS, P53, and EGFR. Canvaxin, prostate GVAX, melacine, and 
lucaxin are few ex-vivo vaccines but with limited survival values (Kozłowska et al. 
2013). Tumor cells expressed with GM-CSF (GVAX) in acute myeloid leukemia 
patients did not show clinical benefits (Ho et al. 2022), however their combination 
with anti-furin shRNA to inhibit TGFβ production shows clinical benefits in Ewing’s 
sarcoma (Ghisoli 2016). 

3.12 In Situ Vaccines 

In situ vaccines present APC to stimulate tumor loading antigen, followed by T 
cell activation. They are benefited for their ability to present wide ranges of TSA 
while comparing with ex vivo. DCs which are usually inactivated in TME can be 
administered ex vivo to stabilize intratumoral cytokine levels including IL12, TNF
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and IL8 (Subbiah et al. 2018). Despite minimal radiotherapy, embryonic dendritic 
cells with improved phagocytic capability can be infused with GMCSF and rituximab 
(Kolstad et al. 2015). The importance of vigilant immune surveillance is highlighted 
by periodic T cell regressions and activation at nearby and distant malignancies. 
Similar research without radiation produced lymphoma-specific Tc and Th activa-
tion as well as tumor regressions in untreated malignancies (Cox et al. 2019). CC 
chemokine ligand (CCL)-1 expressing DCs injected in NSCLC patients induced 
PDL1 expression and Tc cell infiltration, indicating their anti-tumoral effects (Lee 
et al. 2017). 

Flt3L, cross-presenting fraction cDC1, is the main hematopoietic progenitor 
development and differentiation component that mobilizes dendritic cells. There-
fore, administering Flt3L rather than their direct administration could be a more 
feasible way to replace tumor tissue dendritic cells. Nine out of 29 vacci-
nated NSCLC patients who received targeted irradiation with Flt3L infusion had 
corresponding responses (Cox et al. 2019). B cell lymphoma patients who received 
intratumoral Flt3L, low-dose radiation and poly-ICLC, as part of a phase I-II study 
had early signs of memory Tc cell infiltration to untreated tumor locations linked 
to overall tumor shrinkage, a few of them lasted from months to years (Hammerich 
et al. 2019), however their follow up trial targeting PD1 in situ vaccination in breast, 
head and neck cancer is ongoing (NCT03789097). 

Dendritic cells like plasmacytoid (pDC) express TLR9 receptors but not in cDC1. 
TLR9 agonists include hypomethylated CpG islands especially CpG-A, -B, or -C 
that can cause IFN production that is pro-inflammatory. Phase III trial using CpG-
B tilsotolimod and ipilimumab showed ORR of 9% (Haymaker), which is similar 
to ipilimumab monotherapy. CMP-001 (CpG-A) vaccine in melanoma patients 
28% ORR while administered in combination with pembrolizumab albeit CMP-
001 monotherapy causes systemic regression (Milhem et al. 2020). TLR3 expressed 
on cDC1 can activate nuclear factor (NF)-kB pathway. Hiltonol, a TLR3 agonist, 
can control tumor growth and prolonged survival in head and neck cancer, and liver 
cancer (Torre 2017; Kyi et al. 2018). 

Oncolytic bacteria and viruses that are intratumorally injected can be a subtype of 
in situ vaccination. The possibility for systemic vaccination following intratumoral 
delivery of oncolytic viruses might lead to a variety of therapeutic strategies. The 
only oncogenic virus recognised by the FDA is talimogene laherparepvec (TVEC), 
a transgenic GM-CSF-releasing herpes simplex virus (HSV)-1 that has increased 
tumour shrinkage and survival in non-injected areas (Andtbacka 2015; Kaufman 
et al. 2016). 

3.13 Vaccine Delivery Vehicles 

Biotechnology has the potency to answer limitations of cancer vaccines especially 
regarding toxicity, shelf life, tumor penetration, opsonization, and off-target effects 
by designing vaccine delivery vehicles (Rosenblum et al. 2018; Kudling et al. 2022).
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Nanoparticle based delivery systems can carry antagonists or agonists to modulate 
tumor immune system. It includes liposomes, extracellular vesicles, dendrimers, inor-
ganic nanocarriers, and more (Li et al. 2022; Reda et al. 2022). It can be exploited 
well in combination therapy, for instance administration of cytokines along with 
chemotherapeutic drugs. Magnetic nanoparticles (Feridex, EndoremVR, Gastro-
markVR), virus derived, taxane based, and polymer nanoparticles can incorporate 
pharma compounds to the target sites (Carrasco-Esteban et al. 2021). Extracellular 
vesicles are nanosized membrane enclosed structures naturally derived from cells 
and consist of a wide spectrum of their parent cells (Wiklander et al. 2019). They 
are involved in normal physiology as well in pathology through transferring cargo 
(Yang et al. 2021). Engineered EVs derived from fibroblast like mesenchymal cells, 
for instance, target KRAS pathway with the help of their cargo such as siRNA 
and shRNA (Ma et al. 2021). Additionally, because they lack the carriers recom-
mended for the treatment of cancer, pharmaceuticals themselves may function as 
nanoscale therapies. Antibody-drug conjugates (ADCs), drug nanocrystals, drug-
drug conjugate nanoparticles, and prodrug self-assembled nanoparticles are examples 
of nanoparticles devoid of carrier molecules. For instance, the drug SN38 (7-ethyl-10-
hydroxycamptothecin) has indeed been coupled with the PEG-CH=N-Doxorubicin 
precursor (pH-responsive) to increase drug release to tumors and destroy both CSC 
and non-CSCs (Carrasco-Esteban et al. 2021). 

4 Biotechnology Approaches Over Traditional Therapy 

Surgery, radiation therapy, chemotherapy, targeted therapy, and immunotherapy are 
the five conventional cancer care modalities (Siamof et al. 2020). With unique short-
comings in these therapeutic approaches are now being addressed by designer, 
specially formulated drugs designed to increase survival rates and reduce adverse 
effects, clinical cancer treatment has undergone a fundamental revolution. Following 
surgery, the whole lung tumor and any nearby lymph nodes must be eliminated (Hoy 
et al. 2019). Radiation treatment cannot be performed in aggressive situations. It 
destroys malignant cells that are allowed for radiation. It also damages the normal 
tissue that are located in its exposure (Bogart et al. 2022). Chemotherapy stops malig-
nant cells from growing and dividing, multiplying, and generating additional cells 
(Nagasaka and Gadgeel 2018). Immunotherapy aim to improve the body’s natural 
defenses fight cancer. For the purpose of re-establishing immune response function-
ality, it uses substances that may be created in vivo or in vitro. Patients with NSCLC 
may get immunotherapy alone, or in conjunction with other chemotherapy medicines. 
When targeted treatment is not an option, immunotherapy or their combinational 
methods may be used (American Society of Clinical Oncology (ASCO) 2020). 

ICIs, mAb, vaccines, and adoptive cancer therapy (ACT) are the recent biotech-
nology advancements in cancer immunotherapy. The biotechnology applications 
though ranges from nucleic acid-protein sequencing, drug discovery, vaccine 
designing, cancer model preparations, it is widely benefited in chemotherapy,
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immunotherapy, and combination therapy. ICIs are generally designed to target PD1/ 
PDL1, and CTLA4, and the former ones are FDA approved (Jain 2018; Sharon 
2014) (Fig. 3). ICIs mainly function by inhibiting the immune suppressive signal 
crosstalk that is triggered by the interaction between PD1 and PDL1, regaining T 
lymphocytes’ basic ability to eradicate tumor cells (Sławiński et al. 2020).

IgG1 and IgG4 antibodies, such as avelumab, atezolizumab, cemiplimab, durval-
umab, pembrolizumab, and nivolumab, may hijack PD1/PDL1 axis in NSCLC in 
combinatorial first-line treatment. They can elicit tumor inhibiting effects via adap-
tive and innate immune system pathways (Chen 2017; Mezquita and Planchard 2018; 
Yuan et al. 2019; Akinleye and Rasool 2019). A range of disorders, particularly 
cancers with different origin, are now being treated using ICIs, especially blocking 
via mAbs. Integrated treatment, which employs mAbs as well as other drugs at a 
reasonable dosage, may increase patients’ chances of surviving NSCLC (Rosenblatt 
and Avigan 2017). 

The effectiveness of ipilimumab (CTLA-4 inhibitor) in ES-SCLC in conjunction 
with the first treatment was investigated in the CA184-041, ICE, and CA184-156 
phase 2 and 3 investigations. 42 participants were included in the ICE study and 
administered ipilimumab along with etoposide and carboplatin. PFS was indeed 
the study’s primary goal, however it wasn’t effectively attained (PFS 6.9 months) 
(Antonia et al. 2016). CTLA4 based therapy require combinatorial approaches for 
better clinical benefits. 

5 Combination Therapy Involving Biotechnology 

Patients with NSCLC or aggressive melanoma respond well to ICI, but B cell acute 
lymphoblastic leukemia cases have reported with outstanding results in CAR T-cell 
therapy. Understanding why particular medicines have been extremely effective in 
treating certain cancers but less effective in treating others might aid in the more 
rational design of clinical trials to test therapy for additional malignancies (Khalil 
et al. 2016). Immune hijacking adopted by TME can suppress endogenous TILs 
and CAR-T cells from producing a potent antitumor response (John 2013; Moon et al. 
2014). Immune modifying mAbs, including those that provide checkpoint blockage, 
would probably be required for the formation of immune based antitumor treat-
ments for tumors with significant neoantigen expressing capability in a immunosen-
sitive milieu. Evolutionarily conserved T cells may be oblivious to cancers with 
reduced neoantigen-presenting ability, like those with fewer possibly immunostim-
ulatory genetic abnormalities such as B cell acute lymphoblastic leukemia (Alexan-
drov 2013) or those other ways, do not display neoantigens due to reduced antigen 
processing, demonstration, or HLA expression. It is possible that in an immunoin-
hibitory milieu, these cancer kinds did not face the urge to co-evolve. mAbs individ-
ually would be fewer likely to induce a potent antitumor activity in this circumstance 
since TIL and antigen presentation load are likely to be modest. In contrast, CAR-T
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Fig. 3 RCSB-PDB structures of PD1 and CTLA4 complexed with various ligand or drug molecules. 
Green color represents PD1 and CTLA4, while further colors denote heavy and light chains of bound 
molecules. a 6UMT: PD1/PDL2 (Tang and Kim 2019) b 7VUX: PD1/609A Fab (Zhao et al. 2022) 
c 5WT9: PD1/nivolumab d 7CU5: PD1/camrelizumab (Liu et al. 2020) e 6JBT: PD1/toripalimab 
(Liu et al. 2019) f 7E9B: PD1/ HLX10 (anti-PD1 antibody) (Issafras et al. 2021) g 1I85: CTLA4/ 
B7 (Schwartz et al. 2001) h 5GGV: CTLA4/tremelimumab (Lee et al. 2016) i 5TRU: CTLA4/ 
ipilimumab (Ramagopal et al. 2017). Data source https://www.rcsb.org/

https://www.rcsb.org/
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cells does not get inhibited by such inhibitors, and as shown for CD19 targeted CAR-
T cell treatment for B-ALL, may cause fast full cures in approximately to 90% of 
participants with this cancer type, which has a modest mutational rate (Alexandrov 
2013). Combination treatment will exert the efficient anticancer impact when PD1 
axis and CTLA4 are blocked. Combined anti-PD1 t and anti-CTLA-4 treatment has 
reported a great deal of potential (Postow 2015; Chapman et al. 2015; Larkin 2015). 
For instance, individuals with metastatic melanoma (phase III) showed a remark-
able 58% RR when treated using this strategy. Again, for treatment of malignancy, 
medicines hitherto believed to not work via immune regulation as well as combina-
tions with other types of immune regulation are being extensively researched (Larkin 
2015). 

ISA101 (LSP vaccine) and anti-PD-1 medication were combined in research that 
showed improved therapeutic benefits compared to either treatment used alone, 
including in PD-L1 positive malignancies (Quezada et al. 2006). Higher humoral 
effects as well as an OS advantage as a supplementary, inadequate objective were 
seen in randomized phase II study of EGFRvIII vaccine along with bevacizumab. 
The findings imply that tumor inhibitory humoral mechanisms could not be enough 
and that selecting the best possible combination therapy may determine effective-
ness of vaccines (Postow 2015). Neoantigen-based therapeutic benefits and T cell 
responses may be stronger comparing those anticipated with anti-PD1 monotherapy, 
according to a wider trial that included anti-PD-1 and neo-epitope vaccination in 
60 melanoma cases, bladder cancer and NSCLC (Lozano et al. 2012). In a pilot 
investigation, anti-neo-epitope and tumor inhibitory effects by T cells connected 
to long-term survival were induced in 25 ovarian cancer cases when autologous 
dendritic cells with oxidized autologous tumor cell homogenate were injected alone 
or in combination with chemotherapy and anti-VEGF mAb (Wang et al. 2019a, b). 

6 Conclusion and Future Perspectives 

Although years of research in cancer have yielded many therapeutic strategies, 
disease resistance, recurrence, and post-medication hazard effects are still a major 
concern. The PDCD1, CD274, and CTLA4 gene which are widely exploited in mAb 
designing and ICIs, were curated from TCGA-cBioportal and have shown signifi-
cant co-occurrence and expression overlaps. This indicates the need for a combined 
approach in designing ICIs and mAbs. Moreover, the exact regulation or controlling 
engineered cytokines or their delivery vehicles’ activity is a significant barrier to the 
efficiency of cancer immunotherapy. As an alternative approach, ongoing research 
examines the role of photolabile cytokines on adoptively transplanted T cell durability 
and specificity, and the application of photocages with enhanced local penetrance. 
The addition of cytokines with IgG motifs can significantly change target specificity 
as well as the eventual safety and effectiveness the otherwise poorly tolerated or
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ineffective cytokine treatment. Continued studies on TME, novel antibody architec-
tures, and cytokines in innate immunity may contribute to the designing of antibody-
cytokine combinations and hybrids and, consequently, the therapeutic outcomes for 
patients receiving this potential category of immunotherapy. T cell responses corre-
sponding to neo-antigens and clinical responses that may have exceeded those antic-
ipated with anti-PD1 monoclonal therapy were found in larger research involving 
multiple solid tumors (Ott et al. 2020). Understanding the initial cancer mutational 
burden of each patient before the application of conventional therapeutic approaches 
and combining these advancements may be a potential strategy for cancer cure. 
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