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Density Functional Theory Calculations 
for Materials with Complex Structures 
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Abstract Quantum-mechanics-based first-principles density functional theory 
(DFT) calculations are promising for elucidating the relationship between structures 
and physical properties at the atomic scale. DFT calculations are highly accurate 
but conventionally time consuming, which limits the application of DFT to mate-
rials having complex structures and reactions affected by many metastable states. 
To overcome this problem, multi-scale simulations have been conducted using DFT 
cooperating with statistical methods, such as machine learning techniques, the kinetic 
Monte Carlo method, and microkinetic modeling. Large-scale calculation methods 
that reduce the computational cost of DFT have been proposed to treat the complex 
materials. In this chapter, we summarize the basic concepts of the quantum mechanics 
calculations (ab initio molecular orbital calculations and first-principles DFT calcula-
tions) and then introduce examples of multi-scale calculations using DFT for defects, 
surfaces, and interfaces and large-scale DFT calculations. 
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8.1 Quantum Mechanics Calculations 

Calculations based on quantum mechanics without using empirical parameters are 
often called “ab initio” or “first-principles” calculations. In quantum mechanics, 
electrons are described as either a particle or a wave. De Broglie’s equation expresses 
the relationship between particle motion and wave motion: 

λ = 
h 

p 
, (8.1) 

where p and λ are the momentum and wavelength and h is Planck’s constant. On 
the basis of Eq. (8.1), Schrödinger’s wave equation, the fundamental equation of 
quantum mechanics, was derived. The time-independent Schrödinger equation is 

HΨ = EΨ, (8.2) 

where the operator H is called the Hamiltonian and corresponds to the energy E 
of the stationary state of the system and Ψ is the wave function containing all the 
information of the state. Ψ itself is not an observable, but the square of Ψ is an 
observable. 

Once energies of the systems are calculated, energy-related properties such as the 
formation energy, adsorption energy, and reaction energy can be calculated. Addi-
tionally, from the derivative of the energy with respect to the atomic coordinates, the 
force acting on each atom can be calculated, making it possible to calculate stable 
structures, transition-state structures, and energies along reaction paths. A molec-
ular dynamics (MD) calculation using these atomic forces is called an ab initio MD 
(first-principles MD) calculation. 

Equation (8.2) expresses a two-body problem and can thus be solved exactly 
for hydrogen atoms and hydrogen-like atoms (such as He+ and Li2+) that have one 
electron and one nucleus but not for atoms larger than He or molecules that contain 
three or more particles. 

In the case of a hydrogen atom, considering that the proton is much heavier than 
the electron, the nucleus appears to be stationary from the electron’s point of view, 
and the wave function in polar coordinates is written as

Ψ(r, θ, ϕ) = Rn,l (r )Yl,m(θ,  ϕ). (8.3) 

Rn,l (r ) is a radial function that represents the spatial distribution of the wave func-
tions. Yl,m(θ,  ϕ) is the spherical harmonic function and represents the directionality of 
the wave functions. The index n is called the principal quantum number. n = 1,2,3… 
corresponds to the K-shell, L-shell, M-shell…. l is called the azimuthal quantum 
number (or angular momentum quantum number) and m is called the magnetic 
quantum number. l = 0,1,2 … corresponds to s-, p-, d-, … functions, and these func-
tions split according to m = (−l, − l + 1, …, 0, …, l − 1, l). That is to say, for the
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s-function (l = 0), m = 0; for the p-function (l = 1), m = −  1, 0, + 1, corresponding 
to px, py, pz; for the d-function (l = 2), m = −  2, − 1, 0, + 1, + 2, corresponding 
to dxy, dyx, dzx, dx2−y2 , dz2 . 

8.2 Ab Initio Molecular Orbital Theory 

For systems containing three or more particles, Eq. (8.2) cannot be solved exactly, 
and the goal is thus to obtain an approximate solution that is as accurate as possible 
[1]. The nucleus is much heavier than the electrons, and the nucleus can thus be 
approximated as being stationary, which is referred to as the Born–Oppenheimer 
approximation or adiabatic approximation. Equation (8.2) for electrons then becomes 

HelecΨelec
(
x1, x2, · · ·  , xNelec

) = EelecΨelec
(
x1, x2, · · ·  , xNelec

)
, (8.4) 

Helec = T + VNe + Vee = 
Nelec∑

i

(
− h

2m 
∇2 
i

)
− 

Nelec∑

i 

Nnuc∑

A

(
Z Ae2 

ri A

)
+ 

Nelec∑

i< j

(
e2 

ri j

)
. (8.5) 

Helec is the electronic Hamiltonian and Ψ elec is the N-electron wave function. Nelec 

and Nnuc are the numbers of electrons and nuclei, respectively. x is a spin coordinate 
that involves the spatial coordinate r and spin state s. T, VNe, and V ee are the kinetic 
energy, nucleus–electron interaction, and electron–electron interaction terms, respec-
tively. The indices i and A run over electrons and nuclei respectively, and ZA is the 
charge of nucleus A. T and VNe depend on only one electron i, whereas V ee depends 
on two electrons i and j. When there are three or more electrons, it is difficult to 
determine the electron–electron interaction exactly because the interaction between 
two electrons is affected by the other electrons. Therefore, the electron–electron 
interaction is approximated as the interaction between one electron and the mean 
field created by the other electrons. This is called the mean-field approximation or 
one-body approximation. Under this approximation, each wave function corresponds 
to an electronic state of one electron. This one-electron wavefunction corresponds 
to what is called the molecular orbital (MO) in isolated systems such as molecules 
and the band in periodic systems such as solids. 

We need to consider another important quantity of electrons coming from the 
quantum nature of the electrons, namely the electron spin. In treating electron spin 
rigorously, we need to consider the relativistic effect. When we simply consider the 
non-relativistic case, there are two orthogonal spin states, namely α and β spins (also 
called the up and down spins). The Pauli exclusion principle states that “two electrons 
cannot occupy the same quantum state (i.e., space and spin) at the same time.” 
Electrons are fermions, and the electron wave functions are thus anti-symmetric; 
i.e., the sign of the wave function is inverted when the spaces of two electrons in 
the same spin state are exchanged. This anti-symmetric behavior can be expressed
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using the Slater determinant for wave functions. As a result, the Hartree–Fock (HF) 
equation is derived as 

Fψi = εi ψi , (8.6) 

Fψi (r1) = (T + VNe + J + K )ψi (r1) = −
(

h

2m 
∇2 + 

Nnucleus∑

A

(
Z Ae2 

ri A

))

ψi (r1) 

+ 
Nelectrons∑

j

⟨ψ j (r2)| 1 
r12 

|ψ j (r2)⟩ψi (r1) − 
Nelectrons∑

j

⟨ψ j (r2)| 1 
r12 

|ψi (r2)⟩ψ j (r1) 

. 

(8.7) 

The third and fourth terms, J and K, in Eq.  (8.7) are Coulomb and exchange inter-
actions, respectively. The exchange integration originates from the Pauli exclusion 
principle. 

In practical calculations, one-electron wave functions are described using basis 
functions. In calculations of molecules, basis functions in the form of atomic orbitals 
(AOs) such as s-functions and p-functions are used frequently. The one-electron wave 
function is approximated as a linear combination of AOs, 

ψi =
∑

k,μ 

ci k,μχk,μ, (8.8) 

where χ k, μ is μth AO of atom k and k runs over the atoms in the system. The 
wave function of a hydrogen atom is a Slater-type function with a cusp at the posi-
tion of the nucleus. In actual calculations, however, Gaussian functions are widely 
used because they are easy to integrate. Multiple Gaussian functions with different 
shapes are combined to reproduce the shapes of AOs. In most cases, the calcula-
tion accuracy improves as the number of Gaussian functions increases, although a 
systematic improvement in accuracy is not guaranteed. In calculations of periodic 
systems such as solids and surfaces, plane waves are often used as basis functions. In 
this case, the accuracy of calculations systematically improves as the wave spacing 
is narrowed (i.e., the wave number is increased). Meanwhile, high-precision plane-
wave basis functions often have a considerably higher computational cost than AO 
basis functions. When plane-wave basis functions are used, the core electrons are 
not treated explicitly but are often replaced by a function called a pseudopotential. 
Pseudopotentials are created on the basis of the all-electron calculation of atoms, 
and the core-electron pseudopotentials are smoothly connected to the potential of 
the valence electrons treated explicitly using the basis functions. This approach is 
based on the idea that the change in core electrons from the isolated atom state is 
small even when atoms are bonded to other atoms. There are several types of pseu-
dopotentials, such as norm-conserving pseudopotentials, ultrasoft pseudopotentials, 
and projector-augmented waves.
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The HF method can describe more than 99% of the total energy of a system, 
although the electron correlation is roughly approximated by the mean-field approx-
imation. However, actual applications mostly require not the absolute value of the 
energy of a system but relative energies, which are the differences between the 
energies of different systems, such as the reaction energy and ionization energy. To 
discuss these relative energies, a precision of a few kcal/mol (the so-called chemical 
accuracy) is required in many cases, and the precision of the HF method is often 
insufficient. The accuracy of the calculation can be improved by including electron 
correlations more accurately. The energy difference between the exact wave function 
(Eexact) and HF wave function (EHF) corresponds to the electron correlation energy 
(Ecorr): 

Ecorr = Eexact − EHF. (8.9) 

Several post-HF methods, such as the configuration interaction (CI) method, 
coupled-cluster (CC) method, and Møller–Plesset (MP) perturbation method, include 
electron correlation. Figure 8.1 shows that the computational cost of the post-HF 
methods is much higher than that of the HF method. Full-CI is a method that fully 
includes electron correlations, and the Full-CI calculation with complete basis func-
tions thus provides the exact energy of the system. However, Full-CI has an enormous 
computational cost and can only handle very small molecules. 

Meanwhile, the density functional theory (DFT) method described in the next 
section has a computational cost comparable to that of the HF method and is more 
accurate than the HF method because the DFT method includes electron correlation 
through exchange–correlation functionals. The DFT method has become the main-
stream method for electronic structure calculations because it provides reasonable 
calculation accuracy at a reasonable calculation cost. 

Well-known software packages for quantum mechanical calculations are listed in 
Table 8.1. Gaussian is commercial software that includes a variety of methods for 
calculating many types of property. Gaussian is widely used not only by theoreticians 
but also experimentalists because of its rich interface and user-friendliness. GAMESS 
is software developed mainly by Iowa State University and available free of charge,

Fig. 8.1 Quantum 
mechanical calculation 
methods and their 
computational costs. The 
computational cost is shown 
as the order with respect to 
the number of atoms N 
(O(Nx)) 
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Table 8.1 Software packages for quantum mechanical calculations and their websites 

QM software package website (accessed Jan 2023) 

ADF https://www.scm.com/product/adf/ 

GAMESS https://www.msg.chem.iastate.edu/gamess/ 

Gaussian https://gaussian.com/ 

NWChem https://nwchemgit.github.io/ 

Q-Chem https://www.q-chem.com/ 

and it has a variety of functions. Other software packages, such as ADF, NWChem, 
and Q-Chem, have been developed with varying performance and functionality. 

8.3 Density Functional Theory (DFT) 

As mentioned in the previous chapter, the DFT calculation is a highly accurate method 
that includes electron correlation at a computational cost approximately the same as 
that of the HF method. DFT is a powerful tool for the investigation of hyperordered 
structures. DFT describes the electronic state according to the electron density ρ 
instead of the wave function, considering that the properties of the system are defined 
by the distribution of electrons [2, 3]. The electron density ρ and N-electron wave 
function Ψ

(
r, r2, · · ·  , rNelec

)
have the relationship 

ρ(r) =
∫

dsdr2 · · · drNelec

||Ψ
(
r1, r2, · · ·  , rNelec

)||2 , (8.10) 

N =
∫

ρ(r)dr. (8.11) 

Although the starting points for the DFT and HF methods are different, the basic 
equation of DFT, the Kohn–Sham equation, [4] has a form similar to that of the HF 
equation. Below, we look at the DFT method in more detail. 

The fundamental theorem of DFT, the Hohenberg–Kohn theorem, [5] and Levy’s 
constrained search [6] guarantee a one-to-one correspondence between the electron 
density and the external potential v(r) and the variational principle of the DFT total 
energy. ρ is a function of the coordinate r, and the energy E of the system in DFT 
is thus a functional of ρ written as E[ρ]. When the interaction with the nucleus is 
treated as an external field v(r), E[ρ] is written as 

E[ρ] = ET[ρ] + ENe[ρ] + Eee[ρ] = ET[ρ] +
∫

ρ(r)v(r)dr + Eee[ρ]. (8.12)

https://www.scm.com/product/adf/
https://www.msg.chem.iastate.edu/gamess/
https://gaussian.com/
https://nwchemgit.github.io/
https://www.q-chem.com/
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ET and Eee are the kinetic and electron interaction energies, where E[ρ] 
corresponds to the exact energy including electron correlations in the N-electron 
system. 

Kohn and Sham introduced the concept of one-electron orbitals [4] into DFT. 
Using the Kohn–Sham (KS) orbitals, Eq. (8.10) is rewritten as 

ρ(r) =
∑

i 

fi |ϕi (r)|2 , (8.13) 

where f i is the occupation number of the i-th KS orbital. When EKS 
T is the kinetic 

energy calculated using the KS orbitals rather than the electron density, the exchange– 
correlation energy Exc can be written by separating the kinetic energy EKS 

T and 
Coulomb repulsion energy J[ρ] from ET[ρ] and Eee[ρ] in Eq.  (8.12): 

Exc[ρ] = ET [ρ] − EKS 
T + Eee[ρ] − J [ρ]. (8.14) 

Exc is the non-classical term obtained by subtracting the classical term from E[ρ] 
and includes corrections for both EKS 

T and Eee. Given that the Euler equation for 
Eq. (8.12) is solved using Lagrange’s method of undetermined multipliers, the KS 
equation is written as 

Fϕi (r) = (T + VNe + J + Vxc)ϕi (r) 

=
[
− h

2m 
∇2 + v(r) +

∫
ρ(r') 

|r − r'| dr ' +  
δExc[ρ] 

δρ(r)

]
ϕi (r) 

= εi ϕi (r). (8.15) 

ρ is updated as in Eq. (8.13) depending on ϕ updated as in Eq. (8.15) should thus 
be solved self-consistently. This KS equation has the same form as the HF equation, 
Eq. (8.7), except that the KS equation contains Exc instead of the exchange energy K 
that is included in the HF equation. In other words, the many-electron correlation is 
put into Exc, and Eq. (8.15) itself is reduced to the one-electron problem. Thus, the 
KS equation can be solved with the same computational order as the HF equation, 
while the electron correlation is considered via Exc. 

Compared with the HF method, which is based on an approximate theory that 
fundamentally lacks electron correlation, the KS method obtains exact energies 
without approximation if the exact form of Exc is known. However, because the 
exact Exc is unknown at present, an approximate exchange–correlation functional 
must be used in actual calculations. Therefore, the accuracy of DFT calculations 
depends on the exchange–correlation functional used. 

The exchange–correlation functional can be divided into two parts: the exchange 
part and correlation part. Various types of exchange–correlation functional have 
been proposed according to two fundamental requirements, namely the adequacy of 
the description of fundamental physical properties (e.g., a description of exchange– 
correlation holes) and the accurate reproduction of physical quantities (e.g., the repro-
duction of molecular structures and reaction energies). The most basic exchange– 
correlation functional is the local density approximation (LDA), which assumes a
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uniform electron gas with density ρ. Although the LDA is a crude approximation 
that expresses the exchange–correlation functional in terms of density ρ(r) alone, 
it is often accurate enough for the calculation of the electronic structures of solids 
and has often been used successfully. However, there remain several problems; for 
example, the cohesive energy of solids cannot be calculated with high accuracy, 
and physical quantities cannot be described with chemical precision in molecular 
calculations. Therefore, the generalized gradient approximation (GGA) functional, 
which improves on the LDA functional by adopting the density gradient ∇ρ, was  
developed. GGA functionals such as PBE [7] and PBEsol [8] are now the mainstay 
of calculations for solids. Although the use of the GGA has improved the accuracy 
of calculations, there remain problems, such as the underestimation of the band gap 
of semiconductors and insulators and the inability to represent dispersion forces. 

Therefore, meta-GGA and hybrid functionals have been developed to further 
improve the GGA. Meta-GGA is a correction of the GGA functional made using the 
second derivative of density ∇2ρ and kinetic energy density τ [9–11]. The hybrid 
functional corrects the GGA exchange functional by adopting the HF exact exchange 
term. (In contrast to the hybrid functional, the functional without the correction with 
the HF exchange term is often called the pure functional.) One of the most widely used 
hybrid functionals is the B3LYP functional, [12] which is a combination of Becke’s 
three-parameter (B3) hybrid exchange functional and Lee–Yang–Parr’s correlation 
functional. In the HF method, the unphysical self-interaction (i.e., the interaction 
when the indices i and j in Eq. (8.7) are the same) disappears completely through J 
and K, canceling each other out. In contrast, in DFT using the pure functional, the self-
interaction remains because the exchange functional is not exact. This self-interaction 
error can be reduced by mixing the HF exact exchange term in the hybrid functional. 
Range-separated functionals [13–15] allow the use of different proportions of the 
HF exact exchange for long- and short-range interactions. Meta-GGA and hybrid 
functionals thus dramatically improve the accuracy of bandgap calculations. 

The use of the DFT + U method improves the accuracy of the description of 3d 
and 4f electrons, which are highly localized and have strong electron correlations. In 
this method, the orbital energy levels are artificially adjusted by correcting Coulomb 
interactions in the form of the Hubbard model with the parameter U. Although it 
is a somewhat empirical method, it improves the accuracy of calculations for 3d 
transition metal oxides, such as TiO2, when the U parameter is set appropriately. 

The calculations of dispersion forces have been improved using the van der 
Waals (vdW)-density functional (DF) [16, 17] and DFT with dispersion correction 
(DFT-D) [18] methods, which incorporate long-range electron correlations approxi-
mately. These methods enable accurate calculations for organic solids and physically 
adsorbed systems. For example, the calculation of the graphite interlayer distance 
has been much improved using the vdW-DF method [19]. 

A further way to improve the exchange–correlation functional is to consider 
the effect of unoccupied orbitals. Improvements in the accuracy of the functional 
are still being widely made and are approaching a universal functional. Perdew’s 
Jacob’s ladder [20] succinctly describes this stepwise improvement of the functional
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Fig. 8.2 Jacob’s ladder for the improvement of density functionals [20] 

(Fig. 8.2). Additionally, the use of machine learning to improve the accuracy of DFT 
calculations has been proposed recently. 

DFT fits well with calculations using periodic boundary conditions such that is 
widely used for solid and surface calculations. Additionally, the DFT method is now 
the mainstream method for molecules as well, because it has the same or better accu-
racy at a lower computational cost relative to the MP2 method (see Sect. 8.2), which 
has conventionally been used for chemical reaction calculations. Meanwhile, it is 
noted that the improvement in the accuracy of the exchange–correlation functionals 
in DFT calculations is not as systematic as that for the post-HF methods. It is neces-
sary to use functional and correction methods that are appropriate for the calculation 
target. Some of the often-used DFT calculation programs for solid-state physics are 
given in Table 8.2, and many other solid-state physics DFT calculation programs 
exist. The DFT method is also implemented in the quantum chemistry calculation 
programs given in Table 8.1. 

Table 8.2 DFT codes used in solid-state physics 

DFT software website (accessed Jan 2023) 

CASTEP http://www.castep.org/ 

PHASE https://azuma.nims.go.jp/ 

QUANTUM ESPRESSO http://www.quantum-espresso.org/ 

STATE-Senri https://state-doc.readthedocs.io/en/latest/index.html 

VASP https://www.vasp.at/

http://www.castep.org/
https://azuma.nims.go.jp/
http://www.quantum-espresso.org/
https://state-doc.readthedocs.io/en/latest/index.html
https://www.vasp.at/
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8.4 Application of DFT to Defects, Surfaces, and Interfaces 

In this section, several applications of DFT to defects, surfaces, and interfaces are 
presented. Solid surfaces and interfaces, as well as impurities and defects in solids, 
play a major role in determining device functions and performance. Therefore, in 
constructing devices that are more efficient, it is important to clarify the correlations 
between the structures and functions of surfaces/interfaces, impurities, and defects, 
and to control them. However, because solid surfaces, interfaces, and defects do not 
have translational symmetry and are usually complex structures, it is often difficult to 
clarify the atomic structure only by experiment. In the field of hyperordered structure 
science, attempts are being made to experimentally clarify solid surfaces, interfaces, 
and defect structures. However, it remains difficult to determine the structure clearly 
only by experiment. Therefore, highly reliable and computationally efficient first-
principles electronic structure simulation methods play important roles [21, 22]. 

Heterogeneous catalysts play important roles in various fields relating to material 
synthesis, energy, and environmental problems. Heterogeneous catalytic reactions 
do not necessarily occur on a stable flat solid surface but rather steps, kink sites, and 
more complex so-called active sites that have formed on a small part of the solid 
surfaces, where most of the catalytic reactions take place. The clarification of these 
special active sites is a target of hyperordered structure science. 

First-principles electronic structure calculation methods based on DFT have 
become widely used, and the chemical reactivity of various solid surface structures 
such as flat surfaces, steps, kink sites, and nanoclusters has been investigated. 

To truly understand the catalytic reaction mechanism, we need to investigate ther-
modynamically metastable but catalytically highly active sites for non-equilibrium 
conditions under which chemical reactions are proceeding. To this end, multi-scale 
simulation techniques involving first-principles calculations and statistical methods 
such as machine learning techniques, kinetic Monte Carlo (KMC) simulation, and 
microkinetic modeling are indispensable. 

This section provides an overview of the status of these research topics. 

8.4.1 As and B Co-Doped Si 

Controlling the formation of impurity clusters is important when doping a semicon-
ductor with impurities at a high concentration. Through photoelectron holography 
combined with first-principles simulations, we reported that some of the inactivated 
As atoms form a cluster structure called AsnV (n = 2 to 4) for As doped in Si [23]. 
This structure is one in which two to four As atoms occupy the nearest neighboring 
sites around the Si vacancy. 

Meanwhile, we theoretically predicted that replacing the vacancies of the above 
cluster structure with B atoms in the process would stabilize the structure and activate 
the electrically inactive As atoms (Fig. 8.3) [21, 22]. This suggests the possibility of
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Fig. 8.3 As and B dopants 
become stable by forming a 
cluster in contrast with 
isolated individual dopants

developing a new processing technology that further increases the upper limit of the 
active As concentration. Even if B itself is activated as an acceptor to compensate 
for the donor of As, the electron carrier concentration can be increased if 2–4 atoms 
of As per B atom can be doped (Fig. 8.4). 

We show the density of states for (a) pristine Si crystal, (b) As-doped Si crystal, 
and (c) an As2V cluster in Si crystal in Fig. 8.4. Two-way arrows indicate the band 
gap of the host Si crystal. If an As atom replaces a Si atom in the Si crystal, one extra 
electron is donated into the conduction band, leading to the shift of the Fermi level 
from the middle of the band gap to the bottom of the conduction band (Fig. 8.4b). 
In contrast, if two As atoms are located at the second nearest neighbor sites and are 
separated by one Si vacancy, forming an As2V cluster, then a mid-gap state appears 
in the band gap, causing electron or hole trapping, clearly indicating the inactive 
nature of the cluster (Fig. 8.4c). To suppress the mid-gap states, we propose forming 
a complex of dopants, namely two As dopants with one B dopant, forming an As2B 
cluster. By forming a composite cluster of As and B, the mid-gap state disappears 
and the Fermi level is positioned at the bottom of the conduction band (Fig. 8.4d), 
clearly showing that the As2B complex cluster acts as an n-type dopant. Therefore, 
we propose co-doping As and B in a Si crystal at a ratio of 2:1 to form a highly doped 
n-type semiconductor. We then predict that active As2B complex clusters will form 
and AsnV type inactive clusters are suppressed even under heavy doping conditions.
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Fig. 8.4 Density of states of a pristine Si, b Si doped with a single As atom, c a cluster of two As 
atoms and V, and d Si co-doped with As and B. Reproduced with permission from Ref. [22]

8.4.2 Cu–Zn Surface Alloying on Cu(997) Using 
the Machine Learning Potential 

Catalysts based on metal alloys are well recognized in the world of heterogeneous 
catalysis given that they have unique properties when alloyed. Given the optimal 
composition and environment, these catalysts can outperform their alloy constituents 
in terms of catalytic performance. 

In heterogeneous catalysis, metal alloys are known to have highly specific reac-
tivities compared with simple metals. Reactivity varies greatly with alloy composi-
tion, so predicting how reactions will change with alloying is important to catalyst 
design. There are various examples of the application of metal-alloy-based catalysts 
in heterogenous catalysis. Methanol is synthesized from gas mixtures of H2, CO,  
and CO2 using Cu/ZnO/Al2O3 (CZA) catalyst, and isotope experiments showed that 
the C source of methanol is CO2 rather than CO. Furthermore, it has been reported 
that Cu–Zn surface alloy is active for methanol synthesis from CO2 and H2. Experi-
ments combining surface science and powder catalyst have been carried out, with the 
reactivity and activation energy of methanol synthesis on the Zn-deposited Cu(111) 
surface being in good agreement with the results for powder catalysts, indicating that 
a Zn-deposited Cu surface is a good model catalyst of CZA. Further experiments have 
investigated the reactivity of methanol synthesis on Zn-deposited Cu(111) surfaces, 
finding that the activity increased in proportion to the Zn coverage up to 0.19 ML.
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Fig. 8.5 Bird-eye’s view of 
the Cu(997) slab model, 
which has six layers and 
comprises 2352 atoms with 
two step edges and 20 atoms 
in each row per unit cell 

In this study, to understand the formation process of catalytically active Cu–Zn 
alloys at the atomic level, we constructed a machine learning potential from the data of 
the first-principles electronic structure calculation and used the potential in long-time 
molecular dynamics simulations [24]. The MD simulations were carried out using a 
force field trained by Gaussian process (GP) regression, which utilizes the uncertainty 
information of predicted forces and enables an active on-the-fly learning scheme for 
building the force field efficiently. The database, containing information on atomic 
forces acting on various environments, was obtained from DFT calculations. We used 
a program called “Fast Learning of Atomistic Rare Events (FLARE)” to construct a 
GP force field [25]. 

We used a Cu(997) surface model that consists of 2352 atoms with two step edges 
and 20 atoms in each row per unit cell (Fig. 8.5). 

To investigate the alloying process, we performed a molecular dynamics simula-
tion with an NVT ensemble at 700 K for up to 6.25 μs. Figure 8.6 shows the time 
evolution of Zn atoms on Cu(997) until the Cu–Zn surface alloy forms. To clearly 
show the distribution of Zn atoms substituted on the surface Cu atoms, the distribu-
tion of substituted Zn atoms in each row when viewing the surface from the side is 
also shown in the figure. Such plots accompany each MD snapshot in Fig. 8.6.

Initially (Fig. 8.6a), the Zn atoms are localized at the step edge and cover the Cu 
steps. After 1.25 μs, some Zn atoms are attached at the upper and lower terraces near 
the step edges (Fig. 8.6b). It is seen that many Zn atoms are accommodated on the 
upper terraces, whereas few atoms are accommodated on the lower terraces. 

Zn is incorporated into the subsurface layer, such as at 1.25 μs (Fig. 8.6b) and 
3.75 μs (Fig. 8.6d). At 6.25 μs, we finally find Zn atoms on the middle terrace 
(Fig. 8.6f). The trend observed in this simulation suggests that the alloying initiates 
on the upper and lower terraces near the step edges, and Zn atoms are found later on 
the middle terrace. 

Our simulation reveals details of the alloying process at the atomic scale; i.e., the 
incorporation of Zn adatoms to the Cu substrate from the step edges. We found Zn 
atoms not only on the upper terrace but also on the lower and middle terraces near 
the step edges, which has not been considered in previous DFT studies on methanol
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Fig. 8.6 Top and side snapshots of MD simulations for Zn-deposited Cu(997) surfaces. The green 
to yellow spheres indicate Cu atoms, the red spheres indicate Zn adatoms, and the blue spheres 
indicate substituted Zn atoms. The distribution of adatoms and substituted Zn atoms in each row is 
also shown. In each plot, the red, blue, light green, and dark green bars indicate the number of Zn 
adatoms, Zn incorporated atoms, Cu surface atoms, and Cu atoms covered by the additional Cu or 
Zn layer. Reproduced from Ref. [24]. CC-BY 4.0
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synthesis on a Cu–Zn surface. We also found that all the elementary events involving 
Zn atoms have a lower barrier than the pure Cu system, suggesting Zn atoms enhance 
the step edge fluctuations. 

The time evolution of the surface structure reveals that alloying occurs near the 
step edges. In addition, a detailed energy analysis reveals that the activation energy 
barrier for an atom to pop-out or kick-out another atom is much lower near the step 
edges than on a flat terrace. Furthermore, alloyed Zn atoms are observed near the 
center of the terrace as time passes. It was found that the formation of alloyed Zn 
near the center of these terraces is related to the steps. Initially, alloyed Zn forms 
near the step, and the location of the step then sways away, leaving the alloyed Zn at 
the center of the terrace. 

8.4.3 Equilibrium Step Fluctuations on the Cu(111) Surface 
Using Kinetic Monte Carlo Simulation 

The molecular dynamics method based on the machine learning potential is epoch 
making in that it greatly extends the time and space scales while maintaining the 
computational accuracy at the level of the first principles simulations. However, the 
time scale is still limited to the μs order. The kinetic Monte Carlo (KMC) method is 
effective for studying longer phenomena on the order of seconds. Here, we introduce 
a recent study on step fluctuations on the Cu(111) surface using the KMC method 
[26]. 

We study the diffusion of Cu adatoms on the Cu(111) surface using DFT-KMC 
simulation tools. There are two main reasons why we begin with this model. First, 
the investigation on Cu surfaces can be considered as a prerequisite in the elucidation 
of active sites of the industrial catalyst Cu/ZnO/Al2O3. Second, the homoepitaxial 
growth of Cu has been well investigated in a large number of theoretical and experi-
mental studies [27–32]. One important topic of study is the time correlation function, 
from which the dominant atomic diffusion process can be identified. Therefore, in 
this work, we conduct a DFT-KMC simulation adopting cluster expansion (CE) to 
elucidate the microscopic mechanism of the surface diffusion of Cu, especially with 
defects such as steps and kinks. 

The CE method describes the total energy of a system as the sum of the effec-
tive cluster interactions of small clusters such as two-body, three-body, and tetra-
body interactions. The Hamiltonian of the system or the total energy of a lattice 
configuration, denoted as H(σ), is given by 

H(σ ) = 
NC∑

k=1 

EC I  k 
GMk 

NC  Ek(σ ), (8.16)
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where ECIk is the effective cluster interaction of cluster k, GMk is the graph multi-
plicity of cluster k, and NCEk is the number of detected clusters k in the current 
configuration. There are 48 clusters, including fcc, hcp, and fcc-hcp clusters. 

The activation energy barrier of each process is described using the Brønsted– 
Evans–Polanyi principle from the initial and final state energies of each process: 

E f wd 
act (σ ) = max(0,ΔE(σ ), E f wd,0 

act (σ ) + ω · (ΔE(σ ) − ΔE0 (σ ))), (8.17) 

Erev 
act (σ ) = max

(−ΔE(σ ), 0, Erev,0 
act (σ ) − (1 − ω) · (

ΔE(σ ) − ΔE0 (σ )
))

, 
(8.18) 

where E f wd 
act and Erev 

act are respectively the activation energy barriers for the forward 
and reverse reactions, and Δ E is the reaction energy, which is the energy difference 
between the final and initial states of the reaction. The superscript “0” for the reaction 
energy and activation energy barriers indicates the limit at zero coverage. These 
energies were obtained by calculation with low coverage of adatoms on the Cu(111) 
surface using DFT. Ñ is the proximity factor of the transition state relative to the final 
state of the reaction, ranging from 0 to 1. 

We performed KMC simulation using a graph-theoretical framework, as imple-
mented in Zacros developed by Stamatakis et al. [33]. As the elementary process, 
we adopted reversible hopping from the fcc hollow site of the adatom to the hcp 
hollow site. We used an approximate pre-exponential factor of 1012 s−1 as suggested 
by previous studies. We used a surface model of 42 × 42 unit cells having fcc and 
hcp lattice sites to capture the stable structure of the adatoms. A periodic boundary 
condition was imposed for both x and y axes. 

This type of model has four important parts. Step A comprises the (100) facet 
whereas step B comprises the (111) facet, kink sites, and the flat terrace of Cu(111). 
We confirmed that the number of rows between the two steps was sufficient to avoid 
the mutual interaction of the steps. We first performed the equilibration of the surface 
structure by conducting the KMC simulation (shown schematically in Fig. 8.7) for  a  
certain length of time until no significant change in the step structure or energy was 
detected.

To confirm the reliability of our CE, we compared the reaction and activation 
energies of various diffusion events at step A estimated from CE with direct DFT 
calculations. The activation energies are presented in Fig. 8.8. Our calculations show 
that the reaction energies obtained from CE and DFT are in good agreement with 
each other, with the difference being no more than 0.10 eV. The discrepancy between 
the CE and DFT is attributed to the limited size of the clusters that we used and the 
effect of atomic relaxation from DFT calculations.
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Occupied fcc site 

Occupied hcp site 

Unoccupied fcc site 

Unoccupied hcp site 

Fig. 8.7 Starting configuration in our KMC simulation. Blue circles and diamonds represent the 
occupied fcc and hcp sites, respectively. Grey circles and diamonds represent the unoccupied fcc 
and hcp sites, respectively. Reproduced from Ref. [26]. CC-BY 4.0
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Fig. 8.8 Activation energies for various processes obtained from direct DFT calculations (blue 
bars) and the CE framework (green bars) for step A. Reproduced from Ref. [26]. CC-BY 4.0
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8.4.4 Formic Acid Adsorption and Decomposition 
on Cu(111) in Micro-Kinetic Analysis 

The KMC simulations combined with the first-principles electronic structure calcu-
lation method are limited to a time-scale order of seconds. Micro-kinetic modeling, 
which treats the reaction rate as a function of concentration in a mean-field manner, 
is effective for examining reactivity over a longer time scale. Micro-kinetic modeling 
has often been combined with first-principles simulations to predict the reactivity of 
heterogeneous catalysis. Here, we introduce recent work on formic acid adsorption 
and decomposition on Cu(111) [34]. 

In recent years, how to store hydrogen safely and efficiently has become an issue 
for the realization of a hydrogen society. Formic acid is attracting attention as a 
candidate solution. Formic acid will be useful as a hydrogen carrier if it can be 
decomposed into hydrogen molecules and carbon dioxide with high selectivity and 
efficiency. Therefore, the development of an efficient and highly selective catalyst 
for formic acid decomposition is desired. We investigated the adsorption and decom-
position processes of single HCOOH on Cu(111) using DFT calculations including 
vdW forces and compared them with the results of room-temperature experiments. 

Next, the kinetic analysis of the desorption and decomposition reaction processes 
of formic acid was carried out. Activation energy barriers and pre-exponential factors 
were estimated from the results of first-principles electronic structure calculations. 
The desorption rate was derived from the detailed balance condition of the adsorption 
and desorption rates, assuming that the surface adsorbates are in equilibrium with 
the gas-phase formic acid at temperature T and pressure P. The rate of desorption 
can be expressed by the flux (F) of impinging molecules on the surface per unit area 
and unit time, multiplied by the sticking probability S(θ , T ), 

rdes = rads = FS(θ,  T ) = Peq. √
2πmkBT 

S(θ,  T ), (8.19) 

where Peq., m, kB, and T are equilibrium pressure, molar mass of the molecule, 
Boltzmann’s constant, and temperature of the system, respectively. 

We calculate the decomposition rate using Eyring’s transition state theory with the 
assumption that the activated complexes are in equilibrium with the reactants. Thus, 
the kinetic constant for the decomposition, which corresponds to the decomposition 
rate per surface adsorbate, is expressed as 

kdec = 
rdec 
nsθ 

= 
kBT 

h 

QTS. 

Qads. 
exp

(
− 
Edec 

kBT

)
, (8.20) 

where Edec is the difference in energy between the transition state and the HCOOH 
adsorbed on the surface (Edec = ETS − Eads). QTS. and Qads. are the products of 
partition functions of the translational, rotational, and vibrational degrees of freedom 
for the transition state and adsorbed phase, respectively.
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The reaction path and activation energies for the decomposition (Edec) of the  
OH-perpendicular configuration on the Cu(111) surface are shown in Fig. 8.9. We  
conclude that the decomposition starting from the OH-perpendicular configuration 
to the bidentate HCOO is the most dominant path among the three decomposition 
paths considered and accordingly, in the decomposition rate analysis, we focused 
on the decomposition path from the OH-perpendicular configuration to bidentate 
HCOO on the Cu(111) surface. 

On the basis of vdW energy functionals, the desorption energy is greater than 
the activation energy barrier for the decomposition of HCOOH. At first glance, this 
seems to indicate that decomposition dominates desorption, which is inconsistent 
with the experimental result that no formic acid decomposition was observed on 
the Cu(111) surface when the surface was exposed to gas-phase HCOOH at room 
temperature whereas the decomposition was observed when the surface was exposed 
to the gas-phase HCOOH at low temperatures and heated to approximately 188 K 
[35–41]. This seemingly contradictory result can be resolved by calculating the reac-
tion rate from first-principles calculations. In other words, the pre-exponential factor 
for desorption is much larger than the pre-exponential factor for decomposition, such

Fig. 8.9 a Decomposition of the OH-perpendicular configuration. IS, TS, and FS represent the 
initial state, transition state, and final state, respectively. b Energy profile for the OH-perpendicular 
configuration decomposition on Cu(111). The energy zero is taken as the energy of the gas-phase 
HCOOH (HCOOH(g)). Reproduced from Ref. [34]. CC-BY 4.0 
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Fig. 8.10 Calculated reaction rates per surface adsorbate for the desorption and decomposition of 
the OH-perpendicular configuration. The red dashed line with circles and blue solid line with squares 
respectively represent the decomposition and desorption rates obtained using the two-dimensional 
lattice gas. Reproduced from Ref. [34]. CC-BY 4.0 

that the desorption with a large activation energy barrier is dominant at high temper-
atures, leading to faster desorption at temperatures higher than 187 K as shown in 
Fig. 8.10, in good agreement with the experimental results. Our study demonstrates 
the importance of kinetic theory along with accurate energetics to a more accurate 
and precise description of catalytic reactions. 

8.4.5 Large-Scale DFT Calculations 

The applicability of the first-principles DFT method for complex structures and 
reactions with multi-scale simulation techniques was demonstrated in the previous 
section. Meanwhile, there have been extensive efforts to make first-principles calcula-
tions themselves more efficient so that larger systems can be handled at higher speeds. 
Large-scale DFT calculations enable us to investigate precisely the energetics and 
electronic structures of complex systems. 

As mentioned in Sect. 8.1, the computational cost of DFT calculations increases 
dramatically with the number of atoms N in the system (i.e., with the number 
of electrons and basis functions in the system), on the order of N2 and N3 for
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Fig. 8.11 Surface structure 
models with approximately 
a 150 and b 8000 atoms 

memory and computation time. For example, if the number of atoms in the system 
increases by a factor of 50, the computation time formally increases by a factor of 
125,000 (Fig. 8.11). Owing to this rapid increase in computational cost, DFT calcu-
lations cannot handle large systems. Although depending on the amount of available 
computer resources, it is usually difficult to perform DFT calculations on systems 
with more than 1000 atoms. Even with recent advances in computing power, most 
DFT calculations still target systems with 500 or fewer atoms. 

Even with the above size limitation, as we have seen in the previous sections, 
meaningful analysis is possible if the problem can be adequately represented by 
local structures. Meanwhile, there are many problems that cannot be adequately 
represented with a small structural model, such as those of nanoscale structures with 
large defects (such as dislocations); co-dopants; and composite defects, interfaces, 
and large non-periodic structures (such as amorphous materials and biomolecules). 
Many hyperordered structures, which are the subject of this book, are also included in 
these large-scale problems. Even in the case of a single dopant or single defect, a large-
scale structure model is required to reproduce a situation in which the concentration 
is as low as in the actual situation (Fig. 8.11b). 

In overcoming the size limitation, large-scale DFT calculation methods have been 
proposed to handle large-scale structure models with several thousand atoms or more. 
Table 8.3 lists large-scale DFT calculation programs. 

Table 8.3 Large-scale DFT 
calculation software and 
websites 

software website (accessed Jan 2023) 

BigDFT https://bigdft.org/ 

CONQUEST http://order-n.org/ 

CP2K https://www.cp2k.org/ 

ErgoSCF http://www.ergoscf.org/ 

ONETEP https://onetep.org/ 

OpenMX https://www.openmx-square.org/ 

PARSEC https://parsec.oden.utexas.edu/ 

RSDFT https://www.rsdft.jp/ 

SIESTA https://siesta-project.org/siesta/

https://bigdft.org/
http://order-n.org/
https://www.cp2k.org/
http://www.ergoscf.org/
https://onetep.org/
https://www.openmx-square.org/
https://parsec.oden.utexas.edu/
https://www.rsdft.jp/
https://siesta-project.org/siesta/


208 A. Nakata and Y. Morikawa

There are three important considerations in making large-scale DFT calculations: 
(1) the function used to represent the wave function and electron density, (2) how 
the KS equation is to be solved, and (3) the parallelization efficiency of the program. 
The three factors are briefly explained below, focusing on CONQUEST [42, 43], a 
large-scale DFT calculation program developed by the authors. 

For (1), in Sect. 8.1, it was mentioned that AO basis functions and plane-wave 
basis functions are used to represent wave functions in conventional first-principles 
calculations. The locality of basis functions is an important factor in improving 
computational efficiency, with local functions such as AO basis functions being 
more suitable than plane-wave basis functions for large-scale calculations. Gaussian-
type AO basis functions, which are widely used in calculations for molecules, have 
distributions with long tails, and the Gaussian functions of an atom would thus 
overlap with those of another atom at long range; i.e., the calculation of the matrix 
product of two atoms cannot be truncated easily. Meanwhile, the pseudo atomic 
orbital (PAO) basis functions, which are used in large-scale DFT codes such as 
CONQUEST [44], SIESTA [45, 46], and OpenMX [47, 48], are designed to be 
exactly zero at some distance. Core electrons are represented by a pseudopotential, 
and the PAOs thus represent only valence electrons (so that the functions are called 
pseudo AO functions). This locality of the PAOs results in the overlap matrix of the 
electronic Hamiltonian and basis function being sparse. This sparsity enables us to 
dramatically reduce the computational cost. Similar to the case for conventional AO 
basis functions, multiple PAOs are often used to improve accuracy. In the multi-site 
method [49–51] that was introduced recently in CONQUEST, local functions that 
describe the density matrix are constructed as linear combinations of the PAOs on 
the target atom together with the PAOs of neighboring atoms: 

φiα = 
neighbors of atom i∑

atom k

∑

PAOμ∈k 
ciα,kμχkμ, (8.21) 

where the αth multi-site function of atom i, φiα , is given as the linear combination 
of the PAOs (χ with index μ) belonging to atom k, which is a neighboring atom of 
atom i within a cutoff range. c is the linear combination coefficient. The use of the 
multi-site method dramatically reduces the computational cost while maintaining the 
accuracy of the original multiple PAO functions. Using the multi-site method, large-
scale DFT calculations of several thousand to 10,000 atoms are possible even using 
conventional O(N3) calculation methods, such as exact diagonalization. Figure 8.12 
shows an example of graphene on a Rh surface comprising approximately 3000 
atoms, where the multi-site method results in acceleration by a factor of 18 [52].

For (2), in conventional DFT calculations, the electron density is optimized by 
solving the eigenvalue problem in the KS equation in Eq. (8.15) through exact diago-
nalization. The computational cost of the diagonalization is in the cubic scaling with 
respect to the number of atoms N; i.e., O(N3). A method that reduces the compu-
tational cost to a linear cost with respect to N is called a linear-scaling or order-N 
(O(N)) method (Fig. 8.13).
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Fig. 8.12 Reduction in the computational time using the multi-site method. Reproduced with 
permission from Ref. [52]

Fig. 8.13 Linear (O(N)) and 
cubic (O(N3)) scaling with 
respect to the number of 
atoms N 

A typical O(N) method is to divide a large system into small subsystems, perform 
diagonalization calculations for each subsystem, and combine the results for the 
whole system; e.g., the divide-and-conquer method [53–55] or the fragment molec-
ular orbital method [56]. The calculation accuracy of such a method depends on how 
appropriately the system is divided and subsystem results are combined. The density 
matrix minimization method used in CONQUEST and ONETEP [57] is a type of 
O(N) method in which the density matrix (i.e., electron density) is optimized by 
calculating the energy derivative with respect to the density matrix: 

∂E 

∂L 
= 6(SLH − HLS) − 4(SLSLH + SLHLS + HLSLS), (8.22) 

where H is the KS Hamiltonian and S is the overlap matrix of the local functions. L 
is called the auxiliary density matrix and is related to the density matrix K by 

K = 3LSL − 2LSLSL. (8.23) 

The condition in Eq. (8.23) helps maintain the power equality of the density matrix. 
H and S are sparse matrices owing to the use of local orbital functions as explained 
above. L is made sparse by introducing an artificial spatial cutoff, and the expression 
in Eq. (8.22) can then be calculated as a sparse matrix product. The introduction 
of the cutoff for the density matrix is based on the idea of “near-sightedness,” [58]
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Fig. 8.14 Cutoff 
dependence of the total 
energy calculated using the 
O(N) method for the Si(001) 
surface. The energy 
calculated by exact 
diagonalization is also 
shown for comparison. 
Reproduced with permission 
from Ref. [59] 

which means that electrons are hardly affected by distant electrons. The accuracy of 
the calculation depends on the cutoff, and as shown in Fig. 8.14, the result of the 
O(N) calculation approaches that of the exact diagonalization as the cutoff range 
increases. 

In the density matrix minimization method, the density matrix is optimized 
without performing diagonalization. Therefore, the KS orbitals, which correspond to 
eigenstates of the KS equation and are important for analyzing various physical prop-
erties, are not obtained. Large systems that require an O(N) method cannot be treated 
using the conventional diagonalization method, and we thus need another method 
to obtain the eigenstates. In Ref. [60], after optimizing the density matrix, one-shot 
eigenstate calculation was performed using the Sakurai–Sugiura (SS) method [61]. 
The SS method is a sparse-matrix interior eigenproblem solver that can calculate 
eigenstates in given energy regions with high parallel-computing efficiency. This 
method is useful in practical applications, which mostly require information of the 
KS orbitals only in some finite energy range of interest and not the whole range. 
Figure 8.15 shows the results of the highest occupied molecular orbital (HOMO) 
and lowest unoccupied molecular orbital (LUMO) for KS orbitals of DNA in H2O, 
where only the eigenstates around the HOMO–LUMO gap were calculated using the 
SS method.

For (3), high parallelization efficiency is crucial to large-scale calculations. Even 
with an O(N) method, large-scale calculations are difficult to perform on a personal 
laptop computer and require a parallel calculation environment using a supercom-
puter or a medium-scale cluster system. Therefore, it is important to design the 
program appropriately so that not only the calculation algorithm but also the data 
distribution and communication during the actual execution of the calculation are of 
order N [62]. Figure 8.16 shows the parallelization efficiency of a large-scale DFT
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Fig. 8.15 Structure model of hydrated DNA and the HOMO and LUMO calculated using the 
Sakurai–Sugiura method. Reproduced with permission from Ref. [60]

Fig. 8.16 Weak-scaling parallel efficiency of CONQUEST. The wall clock time for calculating the 
density matrix and atomic forces of crystalline Si using the K computer is presented. Reproduced 
from Ref. [63] 

calculation using the K computer, a supercomputer in Japan. In Fig. 8.16, an order-N 
DFT calculation of a million atoms has been achieved [63]. 

Large-scale DFT calculations have been applied to materials with hyperordered 
structures, such as the supported metal nanoparticle catalysts described in Chap. 19.
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Fig. 8.17 Structure of Au 
nanoparticles on a 
MgO(100) surface optimized 
using the multi-site method. 
Reproduced from Ref. [51]. 
CC-BY 4.0 

Conventionally, calculations of metal “cluster” catalysts rather than metal “nanopar-
ticle” catalysts on the surfaces of support bases have been widely performed, one 
of the reasons being the high computational cost of the conventional DFT calcu-
lation method. Calculations approximating nanoparticles with a continuum model 
under a periodic boundary condition have also been performed. Structural models of 
several thousand atoms are required to model the structure of nanoparticles of a few 
nanometers supported on a surface, for which large-scale DFT calculation methods 
are needed. Recently, structural optimizations and electronic structure analyses of Au 
nanoparticles having a diameter of 2 nm on a MgO support base comprising approx-
imately 3000 atoms have been performed using the multi-site methods (Fig. 8.17) 
[51]. 

Large-scale DFT calculations have also been made for complex interfaces [64]. 
One example is YGaO3, which has a characteristic interface structure where six 
domains converge at a single point (i.e., a vortex core), as shown in an experi-
mental image in Ref. [65]. A large-scale structural model is required to represent 
the complex interface structure. If the six domains are just aligned as shown in 
Fig. 8.18a, the interface can be expressed by a structural model with a few hundred 
atoms. However, to represent the vortex structure while maintaining symmetry under 
a periodic boundary condition, a structural model containing several thousand atoms 
is necessary as shown in Fig. 8.18b. Figure 8.18b shows the optimized structures and 
the electron distribution in the energy region around the bottom of the conduction 
band (CBM) calculated using the multi-site method. As shown in the figure, electrons 
are distributed more around the vortex core with P3c1 symmetry in the CBM energy 
region (Fig. 8.18b inset).

There is an example of the O(N) calculation applied to Ge/Si core–shell nanowires 
(Fig. 8.19a) [66]. The Ge/Si core–shell nanowire is expected to be a next-generation 
semiconductor owing to its high integration potential and low leakage. In the case 
of p-type semiconductors, it is considered that the separation of the electronic states 
of the Si shell part, where dopants are introduced, and the Ge core part, where hole 
carrier current flows, reduces the leakage of electron flow owing to dopant resistance. 
To investigate the electronic structure of the nanowire, it is important to make both 
the core and shell parts thick enough as for actual materials. Therefore, the O(N) 
method has been applied to optimize the geometry of the nanowire, including the
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Fig. 8.18 Structures of YGaO3 with a stripe domain pattern a and domain patterns with two vortex/ 
antivortex pairs b. The electron distribution in the energy region from the bottom of the conduction 
band (εCBM) to (εCBM + 1 eV) calculated by CONQUEST is shown in the inset. Reproduced with 
permission from Ref. [64]

Fig. 8.19 Ge/Si core–shell nanowire and its band structure b and the electron distribution in 
the energy region from the top of the valence band (εVBM) to  VBM − 0.25 eV c calculated by 
CONQUEST and using the Sakurai–Sugiura method. Reproduced with permission from Ref. [66]

optimization of the interface structure between Si and Ge, and the SS method has 
then been used to obtain the KS states around the Fermi level [66]. The calculated 
KS band energies and the electron distribution in the energy region around the top 
of the valence band (VBM) are shown in Fig. 8.19b and c. The electron distribution 
of the VBM is localized only in the Ge region, which supports the design concept of 
the nanowire; i.e., the separation of the electronic structures of the dopant site and 
the carrier site within a single material. 
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Large-scale calculations can also be applied to amorphous materials. It is often 
said that structural models comprising several thousand atoms are desirable for repro-
ducing amorphous structures observed experimentally, such as by X-ray diffraction. 
Topological analysis and machine learning have been applied to distinguish the char-
acteristic features of such large and complex structures, as explained in detail in 
Chaps. 11 and 12. There is an example in which amorphous structures have been 
made through large-scale DFT and analyzed by machine learning [67]. First, solids, 
liquids, and amorphous structures of silicon comprising approximately a thousand 
atoms each were created by first-principles molecular dynamics simulations with 
CONQUEST. The TS-LPP dimension reduction method [67] was then used to distin-
guish solids, liquids, and amorphous structures clearly. The method can also be 
used to find where a new structure corresponds to in the already-learned dimension-
reduced space, which enables analysis of the time evolution of the local structure in 
large and complex materials (e.g., the process of a structural change from liquid to 
amorphous according to the annealing temperature). Such machine learning analysis 
is expected to be effective in analyzing characteristic local structures in hyperordered 
structures and their dynamics. 
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