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Abstract The development of experimental and simulation technologies has 
afforded us access to material science data on a more massive scale than that in 
the past. For such large-scale data on various materials, effective and efficient anal-
ysis methods have been developed using applied mathematics and data science. For 
analyzing structural order, statistical analysis approaches based on chemical bonding 
are used. This approach can evaluate the structural order on a short-range scale. How-
ever, it cannot analyze structural order on the scale over the length of the chemical 
bonding referred to as the intermediate range, which is essential for understanding 
amorphous or glassy materials. This chapter introduces two useful characterization 
approaches based on applied mathematics for a geometric structure, which are useful 
to identify hyperordered structures in intermediate-range scale. The first approach 
is based on the topological structure of an atomic configuration (or point cloud) 
based on persistent homology. The second approach is based on the network topol-
ogy of chemically bonded atoms based on rings. This chapter introduces the applied 
analyses of amorphous materials using these methods. 

Keywords Persistent homology · Topology · Ring · Geometric structure ·
Intermediate-range structural order 

11.1 Introduction 

The development of experimental and simulation technologies has afforded us access 
to material science data on a more massive scale than that in the past. For such a 
large-scale data on various materials, effective and efficient analysis methods have 
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been developed using applied mathematics and data science. This research area that 
focuses on developing such analytical methods is referred to as material informatics. 
It includes methods for efficient data mining from experimental microscopic data [ 1, 
2], material property predictions, and quantitative evaluations of structural orders in 
disordered materials [ 3]. 

The characterization of a material structure is critical for understanding its struc-
tural order. A basic chemical characterization approach is based on chemical bond-
ing, wherein coordination numbers (the number of chemical bonds of each atom) and 
angles of chemical bonds are evaluated statistically. However, the characterization 
evaluates the structural order only on a short-range scale; the scale over the length 
of the chemical bonding is referred to as the intermediate range. For amorphous or 
glassy materials categorized in disordered materials, it is necessary to evaluate the 
structural order in the intermediate-range scale for understanding the structural and 
material properties. The conventional approach allows us to conduct a pair distribu-
tion function (PDF) analysis that utilizes experimental diffraction measurements for 
computing the distribution function between atom pairs. However, such an analysis 
limits the information on the two atoms although the intermediate-range structural 
order comprises larger units, which include more than three atoms. 

This chapter introduces two useful characterization approaches based on applied 
mathematics for a geometric structure, which are useful to identify hyperordered 
structures hidden in intermediate-range scale. The first approach is based on the 
topological structure of an atomic configuration (or point cloud) based on persis-
tent homology [ 4– 6]. The second approach is based on the network topology of 
chemically bonded atoms based on rings [ 7– 12]. This chapter introduces the applied 
analyses of amorphous materials using these methods. 

The above-mentioned characterizations are useful for investigating how these 
structures correlate with the physical parameters and properties of materials. The 
quantitative characterizations of the structural order can be used as inputs (or descrip-
tors) of machine learning models for predicting material properties expected to be 
more effective than direct inputs of microscopic images or atomic configurations 
in many cases. In addition, prediction models based on these descriptors are more 
interpretable than the direct inputs for understanding the relationship between the 
structural order and material properties. 

11.2 Persistence Homology 

In this section, we introduce persistent homology (PH) [ 4– 6], which is an emerging 
data analysis method based on the mathematical concept of topology. PH allows 
us to characterize the shape of data at multiple scales using topological structures 
such as holes, rings, and hollows. Further, PH is widely applied in various scientific 
research fields such as network systems [ 13], life science [ 14– 16], geology [ 17], 
medical image analysis [ 18], and materials science [ 19– 36].
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11.2.1 Foundation of PH 

As the first example, we consider a point cloud (a collection of data points) as shown 
in Fig. 11.1a. The point cloud shown in Fig. 11.1a has no rings because all points 
are separated; however, it appears to have two rings because of the proximity of the 
points. Discs are placed on all points whose radii are the same to construct topological 
structures on the data; the rings appeared on the points as shown in Fig. 11.1b–e. 
We can count the number of rings in these figures using the mathematical theory of 
topology. 

Here, we focus on the problem of determining the radii . r . The number of rings 
changes with changes in the radii, and the fundamental idea of PH is to examine the 
changing process in the topology as radii change. The radii . r is gradually increased 
from 0, as shown in Fig. 11.1a–e. From the left to the right, a ring .X appears at 
.r = b1, and another ring. Y appears at .r = b2. The ring. Y disappears at .r = d2 as its 
interior fills up, and finally, .X disappears at .r = d1. The theory of PH makes pairs 
of appearance and disappearance of rings; in this example, .(b1, d1) and .(b2, d2) are 
paired together. The radii when a ring appears and disappears are referred to as the 
birth time and death time, respectively; the pairs of birth and death times are referred 
to as birth-death pairs. The collection of birth-death pairs is called a persistence 
diagram (PD), and it is visualized using a scatter plot (Fig. 11.1f) or 2D histogram. 
Intuitively, the birth time contains information about the density of the points on 
the ring, and the death time contains information about the size of the ring. The 
information on the two ring structures shown in Fig. 11.1a is summarized in the two 
birth-death pairs. We remark that the PH community often uses the squares of radii 
instead of radii, as indicated in Fig. 11.1f, where radii .b1, b2, d1, and.d2 are squared. 
We also follow this convention. 

11.2.2 Mathematical Idea 

In the above-mentioned example, we need to identify the rings shown in 
Fig. 11.1a–e. Although identifying the rings seems to be an easy task, this is not 
the case. The basic mathematical theory for a deeper understanding of PH is worth 
discussing. 

Fig. 11.1 Persistence diagram. a Input point cloud; b Point cloud with discs of radii .r = b1; c 
.r = b2; d .r = d2; e .r = d2; f Persistence diagram
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Fig. 11.2 a Tetrahedron without faces; b View of a from top; c Four linearly dependent rings 

Table 11.1 Number of holes 

1D holes 2D holes 

Tetrahedron without faces 3 0 

Tetrahedron with faces 0 1 

We counted the number of rings in Fig. 11.2a, which is a regular tetrahedron 
without faces. How do we count the number of rings in the figure? The figure has 
four triangles, and therefore, it seems to have four rings; however, when this figure 
is viewed from above, the number of rings appears to be three (Fig. 11.2b). The 
theory of homology, which is a part of the topology theory, provides a solution to 
the problem using linear algebra. The homology theory states that (4) = (1) + (2) + 
(3), which means that the four rings (1), (2), (3), and (4) in Fig. 11.2c are linearly 
dependent, and the number of linearly independent rings is three, not four. This idea 
solves the ambiguity of counting the rings. 

Further, the homology theory computes the number of hollows (cavities). A tetra-
hedron with four faces has one hollow interior. In homology theory, rings are classi-
fied as one-dimensional holes, and hollows are classified as two-dimensional holes. 
Therefore, the homology theory states that a tetrahedron with faces has one 2D hole. 
Table 11.1 summarizes the number of holes. 

PH can be applied to 3D data using balls instead of discs. Rings and hollows 
appear and disappear when the radii of the balls are increased gradually. We can 
capture the pairs of appearance and disappearance of rings (1D holes) and hollows 
(2D holes) using the PH theory; this information is summarized in a 1D PD and a 
2D PD. 

11.2.3 Toy Examples 

It is worthwhile to examine the PD for simple examples before applying PH to real 
data. To this end, we consider regular tetrahedral and octahedral point clouds as 
examples (Fig. 11.3). The distance between the two nearest points is denoted by . a.



11 Structural-Order Analysis Based on Applied Mathematics 269

Fig. 11.3 Regular tetrahedral and octahedral point clouds and their PDs. The numbers on PDs 
indicate the multiplicities of the birth-death pairs. a Regular tetrahedral point cloud; b 1D PD of the 
tetrahedral point cloud; c 2D PD of the tetrahedral point cloud; d Regular octahedral point cloud; 
e 1D PD of the octahedral point cloud; f 2D PD of the octahedral point cloud 

Fig. 11.4 Birth and death of 
a ring in the regular 
triangular point cloud 

The three birth-death pairs at .(a2/4, a2/3) in Fig. 11.3b correspond to the three 
regular triangles of the tetrahedron. The birth and death times are determined as 
shown in Fig. 11.4. The ring appears at .r = a/2 and disappears at .r = a/

√
3; the  

squared values are used for the PDs. The multiplicity of the birth-death pairs in 
Fig. 11.3b is three instead of four because the four triangular rings in Fig. 11.2a 
are not linearly independent, as explained in Sect. 11.2.2. The birth-death pair at 
.(a2/3, 3a2/8) in Fig. 11.3c corresponds to a hollow tetrahedron (Fig. 11.3a). The 
hollow appears at .r = a/

√
3 when the balls fill all faces of the tetrahedron; it dis-

appears at .r = a
√
3/8 when the balls fill its internal structure. The birth and death 

times are identical to (the square of) the circumradius of the faces of the tetrahedron 
and the circumradius of the tetrahedron, respectively. 

Figure 11.3d shows eight regular triangular rings and one regular tetragonal ring, 
but 1D PD (Fig. 11.3e) has only seven birth-death pairs. The seven pairs correspond 
to the seven triangles of the octahedron. The 1D PD does not contain information on 
one triangular or tetragonal ring because of the linear independence rule. This rule 
tends to make PDs count fewer rings than that when using other methods. The birth-



270 M. Shiga and I. Obayashi

death pair at .(a2/3, a2/2) in Fig. 11.3f corresponds to the hollow in the octahedron. 
The birth and death times are determined in a manner similar to that in the tetrahedron 
example. 

11.2.4 Toward Applications in Materials Science 

PH is currently used to investigate the structures of various materials such as granular 
materials [ 21], network formers [ 19, 20], metallic glass [ 22, 23], and polymers [ 24, 
25, 36]. To apply PH, the atomic configurations or particle positions are considered 
as point clouds. 

One important issue in materials science is to explain the physical properties of 
materials based on their structures. To this end, we quantify the geometric structures 
of the materials; in other words, appropriate descriptors are required. 

Thus far, various descriptors have been proposed to analyze totally ordered struc-
tures such as crystals, and these descriptors are effective. Mathematical theories 
such as the Fourier analysis and group theory effectively describe such periodic 
structures. Other types of descriptors that use statistical information work efficiently 
for analyzing totally disordered structures such as gases. The probabilistic theory 
and mathematical models are used to describe totally disordered systems. 

This approach has been successful for these two extremes; however, it is difficult to 
find appropriate descriptors for intermediately disordered systems such as amorphous 
systems because it is difficult to quantify complex systems. PDs can be used as 
descriptors of such intermediately disordered structures, and the topology theory 
from mathematics can help describe such structures. 

From a practical point of view, we compare PH with conventional methods such 
as radial distribution functions, ring statistics, and Voronoi analysis. The following 
list illustrates the advantages of PDs over other descriptors: 

1. Ability to encode multiscale geometric structures 
2. Ability to capture the relationship of many bodies 
3. Robustness to noise 
4. Interpretability 

Considering the increasing number of balls, we can encode the information of 
multiscale geometric structures in PDs. Further, we can describe the diversity of 
the target complex system as a distribution of birth-death pairs on PDs. The radial 
distribution function has this feature; however, it does not have the second feature. 

PH considers rings or hollows, and therefore, it can summarize many-body rela-
tionships easily. This is advantageous over the radial distribution function, which is 
sufficiently effective for describing crystalline and liquid structures but unsatisfactory 
for analyzing complex structures such as amorphous structures. 

Robustness to noise is another important feature of PDs. Conventional methods 
such as Voronoi analysis and ring statistics provide discrete outputs; therefore, the 
output is sensitive to noise. In contrast, the effect of noise on the PD is mathematically 
formalized, and therefore, robustness to noise is ensured.
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One other advantage of PH is interpretability. PH has a useful feature called inverse 
analysis, which can identify the ring or hollow corresponding to each birth-death pair. 
Inverse analysis helps understand the analysis by PH, which is a functionality that is 
well utilized in the following applications. 

It is difficult to find a descriptor with all the above features, which is a signif-
icant advantage of PDs. The first two features make PD useful as a descriptor for 
intermediately disordered systems, and the last two features make it easy to use. 

11.2.5 Data Analysis Using HomCloud 

This subsection aims to learn the procedure for analyzing atomic configuration data 
using HomCloud [ 37], 1 which was developed by Ippei Obayashi, one of the authors 
of this chapter. We analyze the open material data for practice. HomCloud has already 
been used in various material research studies [ 23, 24, 26– 36]. 

We demonstrate HomCloud on Google Colaboratory, which is a data science 
environment provided by Google. 2 Collaboratory allows you to write and execute 
Python in your browser with the required zero configuration; we use HomCloud from 
Python. Before attempting this demonstration, readers should learn the basic usage 
of Python, Google Colaboratory, and Numpy. 3 The demonstration code is available 
on the authors’ website. 4

In this demonstration, we analyze crystalline copper, which has a face-centered 
cubic (FCC) structure. The structural data can be downloaded from The Materials 
Project website 5; you will need to create an account on this website before starting 
this demonstration. 

After logging in, the CIF file of the crystal copper can be downloaded from the 
mp-30 6 webpage. Click on the “Export as” icon of the web page and select “CIF” to 
download the file. 

The following code makes Colab install HomCloud and ASE (Atomic Simulation 
Environment) [ 38]. ASE is required to read the CIF file. Please input the following 
code into a notebook cell and run it: 

!apt-get install libcgal-dev cmake 

!pip install forwardable imageio Cython cached-property wheel 

!pip install ripser 

!pip install homcloud 

!pip install ase

1 https://homcloud.dev/. 
2 https://colab.research.google.com/. 
3 https://numpy.org/. 
4 https://homcloud.dev/hyperorder-book-ph/. 
5 https://materialsproject.org/. 
6 https://materialsproject.org/materials/mp-30. 

https://homcloud.dev/
https://homcloud.dev/
https://homcloud.dev/
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https://colab.research.google.com/
https://colab.research.google.com/
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https://colab.research.google.com/
https://numpy.org/
https://numpy.org/
https://numpy.org/
https://homcloud.dev/hyperorder-book-ph/
https://homcloud.dev/hyperorder-book-ph/
https://homcloud.dev/hyperorder-book-ph/
https://homcloud.dev/hyperorder-book-ph/
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https://materialsproject.org/
https://materialsproject.org/
https://materialsproject.org/materials/mp-30
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https://materialsproject.org/materials/mp-30
https://materialsproject.org/materials/mp-30
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After installation, you can upload copper’s CIF file to Colaboratory’s environment. 
Please execute the following code in a new cell and select “Cu.cif” for the upload: 

from google.colab import files 

uploaded = files.upload() 

Next, HomCloud, ASE, and other libraries are imported. 

import ase 

import ase.io 

import homcloud.plotly_3d as p3d 

import homcloud.interface as hc 

import numpy as np 

import plotly.graph_objects as go 

You read the CIF file using the code 

cu_atoms = ase.io.read("Cu.cif") 

The following code shows the atomic positions. 

cu_atoms.get_positions() 

OUTPUT: 

array([[0. , 0. , 0. ], 

[0. , 1.810631, 1.810631], 

[1.810631, 0. , 1.810631], 

[1.810631, 1.810631, 0. ]]) 

The unit cell had only four Cu atoms, and the number of atoms is too small to analyze 
using PH. Therefore, the unit cell is repeated using the following code: 

cu_atoms_8 = cu_atoms.repeat(8) 

atoms_positions = cu_atoms_8.get_positions() 

The number of atoms in the repeated cell is .4 × 8 × 8 × 8 = 2048. 
Now, we add a small amount of noise to the atomic configuration. For computing 

PDs, the input point cloud should be in a general position because Delaunay trian-
gulation is used internally. For example, any three points in a point cloud should not 
lie on the same line. A small amount of noise is required because no crystal structure 
satisfies this condition. A small noise has been mathematically proven to have no 
significant effect on the PH analysis. The following code adds uniform.±10−5 noise 
to the atomic configuration.
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Fig. 11.5 1D and 2D PDs 

atoms_positions += np.random.uniform(-1e-5, 1e-5, 

size=atoms_positions.shape) 

Now, let us compute the PDs. 

hc.PDList.from_alpha_filtration(atoms_positions, 

save_boundary_map=True, 

save_to="cu.pdgm") 

The PDs  are stored in a file  called  cu.pdgm. “save_boundary_map=True” is  
required to use inverse analysis later. 

The following code loads the 1D and 2D PDs from the file and plots them 
(Fig. 11.5): 

pdlist = hc.PDList("cu.pdgm") 

pd1 = pdlist.dth_diagram(1) 

pd1.histogram((1, 4), 32).plot(colorbar={"type": "log"}) 

pd2 = pdlist[2] 

pd2.histogram((1, 4), 32).plot(colorbar={"type": "log"}) 

Argument (1, 4) specifies the range of the PD histogram, and 32 specifies the 
number of bins; both these parameters can be changed freely. HomCloud automati-
cally determines the range from the minimum and maximum birth and death times 
if the range is not specified. 

The birth-death pairs near the diagonal are less important because the corre-
sponding rings or hollows quickly disappear immediately after appearing in the 
ball-increasing process. Therefore, in Cu PDs, the pairs around .(3.3, 3.3) in the 1D 
PD and around .(3.4, 3.4) in the 2D PD are not very important. Thus, we focus on 
the birth-death pairs around .(1.65, 2.2) in the 1D PD, pairs around .(2.2, 2.5) in the 
2D PD, and pairs around .(2.2, 3.3) in the 2D PD. 

We collected the pairs around .(1.65, 2.2) in 1D PD using the code 
pairs_in_rectangle, which provides a list of all pairs in a specified rectangle.
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pairs = pd1.pairs_in_rectangle(1.6, 1.8, 2.0, 2.2) 

The following code shows the number of pairs and the first pair in the list. 

print(len(pairs)) 

print(pairs[0]) 

OUTPUT: 

8753 

Pair(1.6391743672237564, 2.185556940990912) 

We apply an inverse analysis method called stable volume [ 39]; this method 
identifies the geometric origins that correspond to the birth-death pairs. We apply 
this method to ten randomly sampled birth-death pairs in the list. A noise-bandwidth 
parameter larger than the noise scale and smaller than the effective scale of the 
system is required to apply stable volumes. In the following code, we chose . 10−3

as the noise-bandwidth parameter because we added .±10−5 noise to the atomic 
configuration before computing PDs. 

import random 

stable_volumes = [ 

pair.stable_volume(1e-3) 

for pair in random.sample(pairs, 10) 

] 

We attempt to visualize the stable volumes in the configuration space. We use 
plotly 7 for 3D visualization. 

go.Figure(data=[ 

p3d.PointCloud(atoms_positions), 

] + [  

sv.to_plotly3d(width=4) for sv in stable_volumes 

], layout=dict(scene=p3d.SimpleScene())) 

Figure 11.6a shows these results, which indicate that these pairs correspond to 
regular triangles in an FCC structure. We computed the distances between the three 
vertices of a triangle to verify this fact numerically. The coordinates of the vertices 
were obtained using the code 

triangle = stable_volumes[0].boundary_points() 

print(triangle)

7 https://plotly.com/python/. 

https://plotly.com/python/
https://plotly.com/python/
https://plotly.com/python/
https://plotly.com/python/
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OUTPUT: 

[[25.348832871909277, 18.10630839551028, 21.72756692986956], 

[23.538195226279456, 19.9169500932218, 21.72757166031115], 

[23.538210461120787, 18.106313277690905, 19.91693518482487]] 

We used Scipy’s distance matrix function to compute all pairwise distances. 

import scipy as sp 

sp.spatial.distance_matrix(triangle, triangle) 

OUTPUT: 

array([[0. , 2.56063118, 2.56061337], 

[2.56063118, 0. , 2.5606269 ], 

[2.56061337, 2.5606269 , 0. ]]) 

The distances are almost the same, and therefore, we conclude that the triangle is 
regular. 

Further, we applied inverse analysis to the birth-death pairs in the 2D PD. The 
birth-death pairs around .(2.2, 2.5) are collected by running the code 

pairs = pd2.pairs_in_rectangle(2.1, 2.3, 2.4, 2.6) 

print(len(pairs)) # Print the number of pairs 

print(pairs[0]) # Print the birth and death times 

OUTPUT: 

3375 

Pair(2.1855700679162915, 2.4587593294511856) 

The total number of pairs is 3375. The stable volumes are also applied, as shown in 
Fig. 11.6b. 

(a) (b) (c) 

Fig. 11.6 Result of inverse analysis a for birth-death pairs around .(1.65, 2.2) in 1D PD; b for 
birth-death pairs around.(2.2, 2.5) in 2D PD; c for birth-death pairs around.(2.2, 3.3) in 2D PD
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# Stable volumes are computed for ten random pairs 

svs = [p.stable_volume(1e-3) for p in random.sample(pairs, 10)] 

# 3D Visualization 

go.Figure(data=[ 

p3d.PointCloud(atoms_positions), # Show the atoms 

] + [  

sv.to_plotly3d(width=4) for sv in svs 

], layout=dict(scene=p3d.SimpleScene())) 

For pairs around .(2.2, 3.2), the following code is available (Fig. 11.6c). 

pairs = pd2.pairs_in_rectangle(2.1, 2.3, 3.2, 3.3) 

print(len(pairs)) # Print the number of pairs 

print(pairs[0]) # Print the birth and death times 

svs = [p.stable_volume(1e-3) for p in random.sample(pairs, 10)] 

# 3D Visualization 

go.Figure(data=[ 

p3d.PointCloud(atoms_positions), # Show the atoms 

] + [  

sv.to_plotly3d(width=4) for sv in svs 

], layout=dict(scene=p3d.SimpleScene())) 

OUTPUT: 

1372 

Pair(2.1855970966540634, 3.2783496277922546) 

The birth-death pairs in the 2D PD are considered to correspond to the tetrahe-
dral and octahedral sites of the FCC structure. We verify this by comparing them 
with PDs for tetrahedral and octahedral sites in Sect. 11.2.3. Further, we compute 
.(death time)/(birth time) of the birth-death pairs. 

• In the 1D PD for a regular triangle (Fig. 11.3b, e): . a
2/3

a2/4 = 4
3 = 1.3333 . . .

• In the 2D PD for a regular tetrahedron (Fig. 11.3c): . 3a
2/8

a2/3 = 9
8 = 1.125

• In the 2D PD for a regular octahedron (Fig. 11.3f): . a
2/2

a2/3 = 3
2 = 1.5

These ratios coincide with those of the copper PDs. The following code is used to 
compute the ratios: 

pair = pd1.nearest_pair_to(1.65, 2.2) 

print(pair.death_time() / pair.birth_time()) 

pair = pd2.nearest_pair_to(2.2, 2.5) 

print(pair.death_time() / pair.birth_time()) 

pair = pd2.nearest_pair_to(2.2, 3.3) 

print(pair.death_time() / pair.birth_time())
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OUTPUT: 

1.3333206503450052 

1.1249973231629395 

1.4999935036373224 

At the end of this demonstration, we remark on the regular tetragonal rings in the 
FCC structure. The 1D PD of the copper crystal has only one type of birth-death 
pair besides the diagonal; the birth-death pairs correspond to a regular triangle in 
the FCC structure. However, the FCC structure has another type of ring: a regular 
tetragonal ring. The copper PD does not have a birth-death pair corresponding to a 
regular tetragonal ring because of the linear independence rule, which is the same as 
that for the octahedral point cloud. 

This section presents the PH analysis of an FCC crystal using HomCloud. Infor-
mation on the triangles in the structure is encoded in the 1D PD, and information 
on the tetrahedral and octahedral sites is encoded in the 2D PD. We applied inverse 
analysis to examine PD in more depth. Please refer to review papers[ 6, 37] for  more  
details. 

11.3 Ring Analysis 

This section introduces analysis methods for a network topology comprising chemi-
cally bonded atoms. In this network, the nodes and edges (or links) are the atoms and 
chemical bonds, respectively. The network topology analysis is useful for evaluating 
the structural order of crystalline and amorphous (or glassy) materials. A descriptor 
for network topology is the node degree, which is the number of edges connected 
to the node, i.e. the coordination number in chemistry. The distribution of the node 
degrees has been analyzed for WWW, social networks, and biological networks [ 40– 
42]. These analyses concluded that hub nodes, whose degrees are much larger than 
those of other nodes, play crucial roles in the system. However, such a simple descrip-
tor may not be useful for distinguishing networks in material structures because the 
node degrees are almost the same in chemically bonded networks. Therefore, other 
descriptors computed from a larger number of atoms are necessary for analyzing 
material structures. This section focuses on statistical analysis based on rings, which 
are closed paths in a chemically bonded network. 

11.3.1 Notation and Preliminaries 

A network (or a graph) structure is defined by a set of nodes. V and a set of edges. E . A  
node is a point in a graph, which corresponds to an atom in the material structure. An 
edge is a linkage between a pair of nodes, which corresponds to a chemical bonding
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Fig. 11.7 Examples of networks. a The network includes nine nodes and ten edges. It has three 
rings: .ra1 = (v1 → v2 → v3 → v4 → v5 → v9 → v1), . ra2 = (v1 → v8 → v7 → v6 → v5 →
v9 → v1), and  .ra3 = (v1 → v2 → v3 → v4 → v5 → v6 → v7 → v8 → v9). Guttman rings are 
.ra1 and .ra2; further, they are also primitive rings. King rings are .ra1, .ra2, and  .ra3. b The 
network includes nine nodes and twelve edges; it has at least eight rings: . rb1 = (v1 → v2 →
v3 → v9 → v1),.rb2 = (v3 → v4 → v5 → v9 → v3),.rb3 = (v5 → v6 → v7 → v9 → v5),. rb4 =
(v7 → v8 → v1 → v9 → v7), .rb5 = (v1 → v2 → v3 → v4 → v5 → v9 → v1), . rb6 = (v1 →
v8 → v7 → v6 → v5 → v9 → v1), .rb7 = (v1 → v2 → v3 → v9 → v7 → v8 → v1), and  . rb8 =
(v3 → v4 → v5 → v6 → v7 → v9 → v8). Guttman rings are.rb1,.rb2,.rb3, and.rb4; they are prim-
itive rings. King rings are.rb1,.rb2,…,. rb8

between a pair of atoms. Network topology can be analyzed using tools in graph 
theory, which is a subcategory in mathematics. 

The path in a network is a sequence of edges. It can also be described as a 
sequence of nodes when there are no multiple edges between the same pair of nodes. 
For simplicity, this section uses the latter description. A path is called simple if all 
nodes are distinct; a path is closed if the start and end nodes are the same. A simple 
closed path is known as a cycle, and it is also called a ring in network topology 
analysis of materials science. The size of a ring is defined by its number of nodes 
(atoms). In some cases, the ring size is defined by the number of network-forming 
atoms in the ring; e.g. Si atoms in SiO. 2 and Ge atoms in GeO. 2. 

The distance between two nodes in a network is defined as the shortest distance 
between these nodes. The shortest distances and their paths can be computed auto-
matically by efficient algorithms such as Dijkstra’s algorithm, which was developed 
in graph theory. The diameter of a network is defined as the maximum distance 
between any pair of nodes, i.e. the longest distance over all shortest distances in the 
network. 

Figure 11.7 shows examples of these networks. The network in Fig. 11.7a includes 
nine nodes: .V = {v1, v2, . . . , v9} and ten edges: . E = {(v1, v2), (v2, v3), . . . ,
.(v1, v8), (v1, v9), (v5, v9)}. The distance between nodes .v1 and .v5 is two because 
the shortest length among the possible simple paths is . (v1 → v2 → v3 → v4 →
v5), .(v1 → v8 → v7 → v6 → v5), and .(v1 → v9 → v5). The graph diameter is 
four because the longest path between a node pair is .v3 → v4 → v5 → v6 →
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v7. The graph includes three rings: . ra1 = (v1 → v2 → v3 → v4 → v5 → v9 →
v1),.ra2 = (v1 → v8 → v7 → v6 → v5 → v9 → v1), and. ra3 = (v1 → v2 → v3 →
v4 → v5 → v6 → v7 → v8 → v9). For the network in Fig. 11.7b, describing net-
work descriptors such as nodes, edges, and rings is an exercise for readers. 

11.3.2 Ring Criteria Based on the Shortest Distance 

The maximum size of the ring can be twice the graph diameter, and therefore, we 
can enumerate the large rings from a large network. The large rings in which nodes 
overlap are redundant. In addition, such rings are too large for analyzing the structural 
order in the intermediate-range scale. Therefore, we need to enumerate the relatively 
smaller rings, which contribute to the structural order of the materials. 

The graph in Fig. 11.7a shows that ring.ra3, whose size is eight, could be considered 
redundant because it can be decomposed into .ra1 and .ra2, whose sizes are six. Ring 
analysis should consider only nonredundant rings that satisfy certain criteria based 
on the shortest distance. This section introduces the four major ring criteria and their 
enumeration algorithms. 

The ring definition proposed by Guttman [ 7] consists of one of the shortest paths 
between two atoms connected by an edge, and it starts from one of these two atoms 
to the other and does not use the direct path between them. A ring that satisfies this 
criterion is called the Guttman ring. An efficient algorithm for enumerating Guttman 
rings first selects a pair of atoms connected by an edge. The edges between the atoms 
from the network are removed, and the shortest paths starting from one of these 
atoms to the other are then enumerated. By connecting one of the shortest paths to 
the removed edge, a Guttman ring is enumerated. If there are other shortest paths 
between these atoms, they are used to enumerate other Guttman rings. Then, the edge 
is returned to the network. Next, another pair of atoms was selected to enumerate the 
other Guttman rings. The algorithm may enumerate the same rings, which consist of 
the same set of atoms, multiple times; such redundant rings must be removed from 
the list of enumerated rings. 

In the network shown in Fig. 11.7a, two Guttman rings. ra1 = (v1 → v2 → v3 →
v4 → v5 → v9 → v1) and.ra2 = (v1 → v8 → v7 → v6 → v5 → v9 → v1) are enu-
merated. However, ring . ra3 = (v1 → v2 → v3 → v4 → v5 → v6 → v7 → v8 →
v9) is not a Guttman ring. For the network in Fig. 11.7b, there are four Guttman 
rings: .rb1 = (v1 → v2 → v3 → v9 → v1), .rb2 = (v3 → v4 → v5 → v9 → v3), 
.rb3 = (v5 → v6 → v7 → v9 → v5), and.rb4 = (v7 → v8 → v1 → v9 → v7). 

King proposed a definition of a ring [ 8, 9] as a cycle that consists of the shortest 
path between a pair of atoms connected by a center atom. An algorithm for enumer-
ating King’s rings first chooses an atom that connects to at least two atoms as the 
center atom. Next, two atoms connected to the center atom are selected, and the edges 
between the center and two selected atoms are removed from the network. Next, the 
shortest paths starting from one of these neighbor atoms to the other are enumerated. 
A King ring is enumerated by connecting one of the shortest paths and two edges
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between the center and neighbor atoms. If there are other shortest paths, they are used 
to enumerate the other King rings. Subsequently, the removed edges are returned to 
the network. Next, another atom as the center and two neighbor atoms are selected to 
enumerate the other King rings. After enumeration, redundant rings that comprise the 
same sets of atoms have to be removed; this is similar to the enumeration algorithm 
for Guttman rings. 

In the network in Fig. 11.7a, King rings are . ra1 = (v1 → v2 → v3 → v4 →
v5 → v9 → v1),.ra2 = (v1 → v8 → v7 → v6 → v5 → v9 → v1), and. ra3 = (v1 →
v2 → v3 → v4 → v5 → v6 → v7 → v8 → v9). In the network in Fig. 11.7b, 
King rings are.rb1 = (v1 → v2 → v3 → v9 → v1),. rb2 = (v3 → v4 → v5 → v9 →
v3),.rb3 = (v5 → v6 → v7 → v9 → v5),.rb4 = (v7 → v8 → v1 → v9 → v7),. rb5 =
(v1 → v2 → v3 → v4 → v5 → v9 → v1), . rb6 = (v1 → v8 → v7 → v6 → v5 →
v9 → v1),.rb7 = (v1 → v2 → v3 → v9 → v7 → v8 → v1), and. rb8 = (v3 → v4 →
v5 → v6 → v7 → v9 → v8). 

A ring is primitive if all paths between any pair of nodes in the ring are the 
shortest, which implies that there are no shorter paths in the external path [ 10– 12]. 
This definition is equivalent to the criterion that a ring cannot be decomposed into 
two smaller rings. A ring that satisfies the above criterion is called a primitive ring. 
The enumeration algorithm for primitive rings first computes the distances of all 
atom pairs in the network using the shortest distance algorithm. Next, all atom pairs 
with distances less than the threshold are enumerated; the threshold is set to half 
the maximum size of the primitive rings to be enumerated in a subsequent analysis. 
Then, all shortest paths between the enumerated pair of nodes whose distance is 
less than the threshold are enumerated. Ring candidates are generated by connecting 
two shortest paths that do not share any internal nodes. Next, the primitive criterion 
is inspected for the generated ring candidates and only candidates that satisfy the 
criterion as primitive rings remain. This procedure can enumerate primitive rings 
with an even number of nodes. To enumerate primitive rings with an odd number of 
nodes, the shortest paths between the neighbor node from one of the two nodes and 
the other node are enumerated. Next, the cycle through one of the original pair, the 
other, the neighbor, and the start node is enumerated as a primitive ring. 

In the network in Fig. 11.7a, two primitive rings . ra1 = (v1 → v2 → v3 →
v4 → v5 → v9 → v1) and.ra2 = (v1 → v8 → v7 → v6 → v5 → v9 → v1) are enu-
merated. In Fig. 11.7b, four primitive rings .rb1 = (v1 → v2 → v3 → v9 → v1), 
.rb2 = (v3 → v4 → v5 → v9 → v3),.rb3 = (v5 → v6 → v7 → v9 → v5), and. rb4 =
(v7 → v8 → v1 → v9 → v7) are enumerated. 

A ring is strong if it cannot be decomposed into smaller rings. Based on this 
definition, a strong ring is always primitive; therefore, the strong criterion is a gener-
alization of the primitive criterion. An algorithm for strong rings first enumerates the 
primitive rings as candidates. Next, a strong criterion is inspected for each enumer-
ated candidate, and only candidates that satisfy the criterion as strong rings remain. 
In this algorithm, the computation for inspecting the criterion is difficult when the 
network is large because it requires a combinatorial computation. Thus, enumeration 
can be implemented only for small networks.
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Fig. 11.8 Networks that include a ring which is a primitive but not strong in both network a and 
b. The ring is indicated by bold lines 

The importance of the strong criterion is illustrated in Fig. 11.8a. In this example, 
the largest ring with six nodes, indicated by bold lines, is enumerated as a primitive 
ring. However, it is not a strong ring because it can be decomposed into three small 
rings with four nodes. Smaller rings are considered essential components of this 
network. Figure 11.8b shows another example. In this example, the large ring with 
nine nodes (indicated by bold lines) is a primitive ring but it is not a strong ring 
because it can be decomposed into several smaller rings with five or six nodes. 
This result may not fit with our intuition. These examples indicate that there is no 
perfect criterion that fits everyone’s intuition. Thus, we should carefully select the 
ring criterion for the network topology analysis. 

11.3.3 Statistical Analysis Using Enumerated Rings 

We assume the two networks shown in Fig. 11.9. Both networks have 16 nodes, 
but their topologies (connectivity patterns) are different. Figure 11.9a shows that 
this network has one ring with four nodes: .r1 = (v2 → v3 → v4 → v7 → v2), 
and two rings with six nodes: .r2 = (v1 → v2 → v3 → v4 → v5 → v6 → v1) and 
.r3 = (v1 → v2 → v7 → v4 → v5 → v6 → v1). All rings in the network satisfy 
Guttman, King, and primitive criteria. In contrast, as shown in Fig. 11.9b, there is 
one ring with four nodes: .r1 = (v7 → v8 → v9 → v10 → v7), and two rings with 
six nodes: .r2 = (v1 → v2 → v3 → v4 → v5 → v6 → v1) and . r3 = (v11 → v12 →
v13 → v14 → v15 → v16 → v11). All rings in the network satisfy Guttman, King, 
and primitive criteria. The distributions of the number of rings in these networks are 
the same; however, their topologies are clearly different. Therefore, another descrip-
tor is necessary to distinguish between these network topologies. 

There are two major methods for counting rings. The first.Rc represents the number 
of rings per cell, which counts all different rings corresponding to the property we 
are looking for, e.g. a criterion and ring size, in a unit cell (or a simulation box). The 
counting method is straightforward.
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Fig. 11.9 Networks to compare their topologies 

Table 11.2 Number of rings per cell in the networks in Fig. 11.9 

(a) Network in Fig. 11.9a (b) Network in Fig. 11.9b 

Size Guttman/King Primitive Guttman/King Primitive 

4 1/16 1/16 1/16 1/16 

6 2/16 2/16 2/16 2/16 

Table 11.3 Number of rings per node in the networks in Fig. 11.9 

(a) Network in Fig. 11.9a (b) Network in Fig. 11.9b 

Size Guttman/King Primitive Guttman/King Primitive 

4 4/16 4/16 4/16 4/16 

6 10/16 12/16 12/16 12/16 

The second method .Rn represents the number of rings per node, which counts 
the rings for each node that is a starting point during ring enumeration. Thus, this 
method counts the same ring multiple times. Both methods normalize the counted 
numbers by the number of nodes to compare networks of different sizes. 

The computed results for.Rc and.Rn for the networks in Fig. 11.9 are summarized 
in Tables 11.2 and 11.3. Table 11.2 shows that the distribution of .Rc cannot distin-
guish these networks because all three criteria are the same. .Rn shown in Table 11.3 
distinguishes these networks using the distributions for Guttman or King criteria 
because the .Rn of six nodes in the graph of Fig. 11.9a is ten, while that of Fig. 11.9b 
is twelve. These differences are caused by the overlap of rings, and the resulting rings 
with six nodes are not counted when node 3 or 7 is a start node for enumerating the 
Guttman and King rings. 

Another descriptor of network topology is a connectivity matrix, which evaluates 
the connectivity between rings. This matrix is defined as
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Table 11.4 Connectivity matrix in the networks in Fig. 11.9 

(a) Network in Fig. 11.9a (b) Network in Fig. 11.9b 

Guttman/King Primitive Guttman/King Primitive 

. 

(
4/16 2/16 

2/16 5/16 

)
. 

(
4/16 4/16 

4/16 7/16 

)
. 

(
4/16 0/16 

0/16 12/16 

)
. 

(
4/16 0/16 

0/16 12/16 

)

C = 

⎛ 

⎜⎜⎜⎝ 

P(r ) P(r, r + 1) · · · P(r, N ) 
P(r + 1, r) P(r + 1) · · ·  P(r + 1, N ) 

... 
... 

. . . 
... 

P(N , r) · · · · · · P(N ) 

⎞ 

⎟⎟⎟⎠ 
, 

where the diagonal elements .P(n) represent the proportion of nodes that are the 
starting nodes of the rings with. n nodes. The off-diagonal elements.P(i, j) represent 
the proportion of nodes that are the start nodes of both rings with. i and. j nodes. The 
smallest size . r is three because the smallest size of a ring is three when there is no 
self-loop in a network. Table 11.4 summarizes the connectivity matrices of the two 
networks shown in Fig. 11.9. The off-diagonal elements of the network in Fig. 11.9a 
are larger than those in Fig. 11.9b; this implies that rings with different numbers of 
nodes in the former network are more densely connected than those in the latter. In 
this demonstration, the connectivity matrix can be used for distinguishing between 
network topologies. 

11.4 Application for the Structural-Order Analysis 
of Amorphous Silica 

This section provides examples of the structural-order analysis of disordered materi-
als. An amorphous material includes order within a disorder. Thus, structural-order 
analyses like PH and ring analyses have been most actively applied to these materials. 
The first practical example of the application of PH is amorphous silica (.SiO2), which 
is a typical network-forming amorphous material. PH was first applied to amorphous 
silica by Nakamura et al. [ 19], followed by Hiraoka et al. [ 20]. We introduce topics 
from these two studies. 

Before applying PH, we explained known facts about the structure of amorphous 
silica. The building blocks of amorphous silica are.SiO4 tetrahedrons comprising four 
oxygen atoms, with one silicon atom at the center. The vertex-sharing network of the 
tetrahedrons forms a complex structure of amorphous silica. Tetrahedrons correspond 
to the short-range order (SRO) of amorphous silica. The network appears random; 
however, it is believed to have a medium-range order (MRO), which has a longer 
length scale than SRO.
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Fig. 11.10 Left: 1D PD of amorphous silica obtained from molecular dynamics simulation. Right 
top: Histogram of death for curve as a function of wavenumber (see [ 20] for how to compute these 
curves). Right bottom: Structure factor (Modified version of Fig. 6 of [ 37], CC-BY 4.0) 

Figure 11.10 shows the 1D PD of amorphous silica obtained from the molecular 
dynamics simulations. The PD has outstanding features .CT ,CP ,CO , and .BO . 

We found that .CT mainly corresponds to the triangles formed by Si–O–Si by 
applying the inverse analysis to .CT . This triangle is part of the tetrahedral structure 
of four oxygens; therefore, we can say that.CT corresponds to the SRO of amorphous 
silica. 

.CP ,CO , and.BO correspond to the more complicated structures. An inverse anal-
ysis can be used to clarify the geometric origins of these features (Fig. 11.10). . CP

corresponds to a ring with alternating Si and O atoms. In other words, .CP repre-
sents the network structure of the chemical bonds. The birth times correspond to the 
length scale of the chemical bonds, and the number of deaths equals the ring size. 
Therefore, the distribution of the death time in.CP indicates the diversity of the rings 
in the networks. 

.CO corresponds to triangles formed by the three oxygens appearing in the .· · · – 
O–Si–O–Si–O–.· · · network;.BO corresponds to a quadrangle or pentagon formed by 
four or five oxygens. The analysis shows that .CT ,CO , and .BO are the substructures 
of the network structures of chemical bonds that correspond to.CP and 1D PD; such 
substructures have a specific order..CP ,CO , and.BO can be considered to correspond 
to MRO because .CP ,CO , and .BO contain information on scales longer than .CT . 

We discuss the relationship between .CP ,CO , BO , and the first sharp diffraction 
peak (FSDP) of the structure factor .S(q) to understand the relationship between 
MRO and PD (see 2.2 for detailed background on structure factor and FSDP). The 
FSDP of amorphous silica is characteristic and is thought to be related to MRO. The 
FSDP was observed for the configuration data obtained by the molecular dynamics 
simulation of amorphous silica (Fig. 11.10 (bottom right)). Figure 11.10 upper right 
panel shows a histogram of the death times of .CP ,CO , and .BO as a function of the 
wave number (see [ 20] for how to compute these curves). These figures indicate that



11 Structural-Order Analysis Based on Applied Mathematics 285

the length scale of MRO originates from a mixture of the length scales of .CP ,CO , 
and.BO . This discussion shows that structures extracted by PH correspond to MRO. 

At the end of this example, we note the following three points. The first is the 
origin of the curvilinear distribution of birth-death pairs; this distribution indicates 
the existence of geometric constraints on the atomic configuration. The distribution 
of .CP is restricted by the Si–O bond lengths; the distribution of .CT is restricted 
by the .SiO4 tetrahedron. Constraint .CO is more complex. The details are provided 
in [ 20]. This constraint is considered part of the source of MRO. The second point 
is the initial radii of the atoms. In Sect. 11.2.1, the radii of all balls are identical. 
The initial radii of the points can be changed to reflect the atomic types in the PH 
analysis. In the analysis of amorphous silica, two initial radii,.rO and.rSi are used (see 
the supporting information of [ 20]). Finally, we remark that not all rings detected by 
PH are formed by chemical bonds; for example, there is no chemical bond between 
the two oxygens in the triangles corresponding to .CO . The ability of PH to detect 
rings without bonds using increasing balls allows us to capture geometric features 
that conventional methods cannot find. 

We introduce another analysis of densified amorphous silica reported by Onodera 
et al. [ 27]. They synthesized four amorphous silica by different processing conditions 
designated by a combination of temperature and pressure for the process: RT/7.7 GPa, 
400 . ◦C/7.7 GPa, 1200 . ◦C/7.7 GPa, and RT/20 GPa. For example, 1200 . ◦C/7.7 GPa 
refers to the material recovered after hot compression at 1200 . ◦C. The densities of 
1200. 

◦C/7.7 GPa and RT/20 GPa are almost the same, and they are larger than those 
of RT/7.7 GPa and 400. 

◦C/7.7 GPa [ 27]. In addition, we generated structural models 
using molecular dynamics simulations followed by refinement using the reverse 
Monte Carlo techniques to reproduce experimental diffraction data. (See [ 27] for  the  
detailed procedure.) 

We first compared the distributions of ring sizes in these glasses. Figure 11.11a 
shows the distributions of the primitive rings. For comparison, the results for the 
silica crystals of .α-cristobalite, .α-quartz, and coesite are shown in Fig. 11.11b. The 
density of.α-cristobalite, which is the same as the density of normal amorphous silica, 
is the smallest among these crystals. In contrast, the density of the coesite was the 
highest. The sizes of all rings in .α-cristobalite are, while those in coesite vary. This 
implies that .α-cristobalite is topologically ordered, whereas coesite is disordered. 
For the distributions of glasses, all peak positions are six or seven, which is similar 
to that of.α-cristobalite. The distribution of 1200. 

◦C/7.7 GPa is skewed toward larger 
sizes; this indicates that glass under 1200 . 

◦C/7.7 GPa is more disordered than other 
densified glasses. 

Next, we computed persistent diagrams from a point cloud of Si atoms in densi-
fied amorphous silica and crystal polymorphs. The computed results are shown in 
Fig. 11.12a–e. In these figures, the boxed regions parallel to the death axis highlight 
persistent cycles. Histograms with respect to the death values in these regions are 
shown in Fig. 11.12f. These figures demonstrate that the death value of the persistent 
cycles decreases with increasing density in both densified glasses and crystal poly-
morphs. For the hot-compressed glass (1200 . 

◦C/7.7 GPa), a sharp peak in the PD is 
accompanied by a loss of the long-death tail in the histogram shown in Fig. 11.12f.
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Fig. 11.11 Distributions of multiplicity (relative counts) of the ring size. Rings are enumerated by 
the primitive criterion. Ring size. n is measured by the number of Si atoms in a ring. a Distributions 
obtained for glassy SiO. 2 from the MD-RMC models: RT/7.7 GPa (black), 400 . ◦C/7.7 GPa (red), 
1200. ◦C/7.7 GPa (blue), and RT/20 GPa (cyan). b Distributions obtained from the crystal structures 
of.α-cristobalite (green),.α-quartz (magenta), and coesite (gray) (Modified version of Fig. 6 of [ 27], 
CC-BY 4.0) 

Fig. 11.12 Persistent diagrams computed from a point cloud of Si atoms for densified amorphous 
silica of a RT/7.7 GPa, b 400. ◦C/7.7 GPa, c 1200. ◦C/7.7 GPa, d RT/20 GPa, and e crystals. Crystal 
polymorphs visualized in e are.α-cristobalite (green), .α-quartz (magenta), and coesite (gray). The 
multiplicity per Si atom is indicated by the color bar. f Distributions of the multiplicity in the boxed 
regions colored magenta along the death axis. The bars in the top panel represent the crystalline 
polymorphs and the curves in the bottom panel represent the densified glasses (Modified version of 
Figs.  7  and 8 of [  27], CC-BY 4.0)
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These analyses using persistent homology and ring analysis concluded that the net-
work topology is disordered in the hot-compressed glass, but the homology (the 
shape of voids) is more ordered than in other densified glasses, which is consistent 
with the sharpest FSDP of the hot-compressed glass in the diffraction data. 
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