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The Advanced Technology and Clinical 
Application in Metabolomics

Anas M. Abdel Rahman

Abstract  Metabolomics identifies and quantifies small molecules (metabolites) 
using high-throughput techniques. The biological system metabolome integrates 
metabolomics data in conjugation with metabolic pathways, including other omics 
datasets, to produce a network of endogenous metabolites (metabotype) associated 
with the phenotypes. Nuclear magnetic resonance (NMR) spectroscopy and mass 
spectrometry are the main analytical techniques in combination with some separa-
tion techniques such as capillary electrophoresis, ultra-high-pressure liquid chro-
matography, and gas chromatography. The drastic improvement in the detection 
sensitivity and accuracy of the analytical techniques has widened the covered 
metabolomics. The comprehensive coverage of metabolomics becomes more inte-
grated with other omics datasets to understand the system-level phenotypic changes 
and provide insight into the mechanisms that underlie various physiological condi-
tions and diseases. This chapter highlights analytical methods for clinical metabo-
lomics research and personalized medicine. Several innovative clinical metabolomics 
projects have reached up to patient services are discussed in this chapter.

Keywords  Metabolomics · Chromatography · Lipidomics · Biomarker discovery · 
Mass spectrometry (MS) · Nuclear magnetic resonance (NMR)
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CI	 Chemical ionization
EHMN	 Edinburgh human metabolic network
ESI	 Electrospray ionization
FFPE	 Formalin-fixed paraffin-embedded
GSEA	 Gene set enrichment analysis
HIES	 Hyper-IgE syndromes
HILIC	 Hydrophilic interaction liquid chromatography
HRM	 High-resolution metabolomics
ICR	 Ion cyclotron resonance
LC-MS	 Liquid chromatography-mass spectrometry
LGPC	 Linoleoylglycerophosphocholine
LIT	 Linear quadrupole ion trap
NAFLD	 Nonalcoholic fatty liver disease
NMR	 Nuclear magnetic resonance
QIT	 Quadrupole ion trap
ROC	 Receiver operating characteristic
SMPDB	 Small Molecule Pathway Database
TOF	 Time of flight

1 � Introduction

The history of metabolomics started from the essential biochemical genetics’ tech-
niques used routinely for patient diagnostics. The first metabolomics study was con-
ducted in 1984 by Jermey Nicholson using nuclear magnetic resonance (NMR) and 
in 1995 by liquid chromatography-mass spectrometry (LC-MS) by Gary Siuzdak at 
Scripps Research Institute [1, 2]. Metabolomics and lipidomics are the techniques 
for studying the end product of the genetic makeup of living cells. Both techniques 
cover small molecules with a size below 1500 Da. This class of molecules covers 
endogenous and exogenous molecules, including drugs, food additives, microbiome 
secretome, and environmental exposome, with more than 217,920 compounds 
based on the human Metabolome Database (HMDB 5.0) [3].

In the last couple of decades, along with the advancement of MS and NMR, 
metabolomics and lipidomics have drastically populated different fields, including 
clinical research and drug development. Multiple disease models have been used to 
study the unique metabolomics profiles such as primary cell lines, mouse, and 
human biological materials (e.g., serum, plasma, tissue) [4, 5]. The use of metabo-
lomics in medicine extends chronic diseases such as chronic kidney disease (CKD) 
[6], diabetes [7, 8], and rare syndromes with single gene deficiencies such as 
DOCK8 deficiency causing hyper-IgE syndromes (HIES) [9, 10].

In clinical research, metabolomics has shown to be a great choice for studying 
the disease mechanism, diagnostic and prognostic biomarkers, and therapeutic tar-
gets. More than 95% of the available clinical tests in the medical laboratory, 85% of 
the known drugs, and 50% of the genetic diseases are based on small molecules, 
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making metabolomics a great translational tool to improve the patient’s quality of 
life. The technology of studying metabolomics has drastically improved in the last 
couple of decades alongside the cheminformatics and bioinformatic tools. For 
instance, mass spectrometry has been developed to increase the analyzers’ mass-
resolving power and quantitative sensitivities by advancing the hardware, such as 
using ion funnels in quadrupole time-of-flight (QTOF) analyzers [11]. However, the 
pre-analytical, analytical, and post-analytical limitations associated with the instinct 
of metabolites still need to be considered in any metabolomics research to repro-
duce the findings.

This chapter introduces metabolomics and lipidomics as major analytical tech-
nologies and their applications in clinical research and personalized medicine.

2 � Mass Spectrometry

Mass spectrometry separates molecules based on their mass-to-charge ratio (m/z) in the 
gas phase under low pressure. At a given energy, molecules with the lowest m/z pass the 
analyzer the fastest. The MS performance can be evaluated based on resolution, preci-
sion, accuracy, and sensitivity. The MS resolution, the ability of the analyzer to separate 
ions and calculate as m/∆m, is based mainly on the complexity of the mixture and the 
length of the analysis path. The mass precision is based on the isotope abundance mea-
surement reproducibility, represented as the coefficient of variation (CV%) for multiple 
measurements of the same sample. The MS accuracy is more challenging than precision 
evaluation, where the analysis has to be throughout interlaboratory standards. The accu-
racy of MS is known as the proximity of the experimental measurement to the true and 
exact mass (measurement error). The minimum sample size to obtain the optimal mass 
accuracy and precision is known as the sensitivity of MS.

The separation techniques enhanced the analytical performance of the MS and 
the accuracy of molecular annotation by introducing analytes in groups based on 
their physicochemical properties and reducing the matrix effect. Liquid chromatog-
raphy (LC), gas chromatography (GC), and capillary electrophoresis (CE) are the 
main separation techniques hyphenated to MS used in metabolomics and lipido-
mics. Each technique has performance capabilities based on target molecules and 
the separation approach, such as in LC reversed-phase (RP) chromatography [12–
15]. LC and CE analyze polar nonvolatile molecules without pretreatment or 
derivatization. RP LC is a dominating technique for metabolomics profiling. 
However, for the highly polar compounds, ion-pairing reagents are used for the 
stationary phase hydrophobicity and enhance their column retention for better anal-
ysis. In high-resolution and untargeted metabolomics analysis, ion-pairing reagents 
are used in negative mode ionization. Once switched to positive, ion-pairing reagent 
will drastically develop ion suppression and ion source contamination. Hydrophilic 
interaction liquid chromatography (HILIC) was found as an alternative to ion-
pairing chromatography, where the polar stationary phase combines organic and 
aqueous mobile phases [16–18].

The Advanced Technology and Clinical Application in Metabolomics



4

Capillary electrophoresis has been used widely to analyze polar and charged 
metabolites, where the molecular separation is based on electrophoretic mobility 
(charge-to-size ratio). Although both CE and HILIC are suitable for polar and 
charged molecules, HILIC is more sensitive due to the column capacity, while 
CE’s peak is more efficient. The potential use of CE-MS in metabolomics has 
been reviewed [13]. The limitations of using CE are attributed to the lack of stan-
dardization of the small specimen load (poor sensitivity) and migration time 
variability.

The metabolomics throughput and depth of coverage have drastically increased 
after adding another dimension of post-ionization gas-phase separation using ion 
mobility (IM) to MS analyzers. The IM separation is based on molecular size, where 
the confidence of metabolites annotation is increased by adding the collision cross-
section (CCS) as a molecular descriptive [19, 20]. In addition, IM plays a crucial 
role in lipidomics by enhancing the lipids’ complex separation, improving isomer 
resolution, and increasing confidence in molecular identification and characteriza-
tion [21].

Combining multiple chromatographic and IM techniques with high-resolution 
mass spectrometry and a data extraction algorithm is known as high-resolution 
metabolomics (HRM) [22]. The physiochemical properties and abundance hetero-
geneity of the cellular metabolome make the analytical tools used to study their 
expression quite challenging. Any research group aims to expand the metabolomics 
coverage to reach the low abundant molecules by combining multiple chromato-
graphic approaches in different detection modes. The author’s laboratory experi-
ence uses an alternating strategy: two chromatographic systems (RP and HILIC) 
and two ionization polarities (positive and negative) to cover the maximum number 
of metabolites. Several classes of molecules can be overlapped but in different sen-
sitivities (Fig. 1).

Electrospray ionization (ESI) is the most common technique in both LC-MS and 
CE-MS use in metabolomics research. Moreover, the ESI ionization is considered 
soft to prevent uncontrolled in-source fragmentation, which is ideal for biomolecu-
lar analysis. The retention variations to using unbuffered mobile phase and ion sup-
pression are the main restraints in using ESI in omics applications, mainly 
metabolomics (more details are covered in chapter “Metabolomics: A Pipeline for 
Biomarker Discovery in Genetic Diseases”).

GC-MS is one of the most efficient and reproducible metabolomics platforms to 
match the standard of commercial and “in-house” established libraries and data-
bases. As an analytical tool, GC-MS is considered robust, excellent separation capa-
ble, selective, sensitive, and reproducible to cover a large group of metabolites. 
Electron ionization (EI) and chemical ionization (CI) are GC-MS’s main ionization 
techniques, producing fragments and molecular ion spectra for the target molecule. 
However, EI is the most informative ionization technique compatible with metabo-
lomics’ most available libraries and databases. Low molecular weight (50–600 Da) 
and volatile compounds are the most likely compounds that can be analyzed using 
GC-MS. The polar, thermolabile, and nonvolatile compounds can be analyzed using 
GC-MS after using some derivatization reagents to collect an informative analytical 
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Fig. 1  The 
chromatographic option to 
increase the detection 
coverage of metabolites 
using LC-ESI-HRMS

signal [12]. The volatome or volatilome, a comprehensive and untargeted study of 
the expression of volatile compounds, was used interchangeably using GC-MS. For 
instance, the nonvolatile compounds can be analyzed on GC-MS after derivatization 
based on the functional groups (e.g., carboxylic, alcohol, amines, and thiol). 
Alkylation, acylation, and silylation are the common derivatization groups, whereas 
trimethylsilylation (TMS) is the most comprehensive to cover many functional 
groups. N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) is the most popular 
metabolomics and produces minimal “artifacts” compared to other silylation 
reagents [12].

Linear quadrupole ion trap (LIT), three-dimensional quadrupole ion trap (QIT), 
orbitrap, time of flight (TOF), and ion cyclotron resonance (ICR), all of these use 
the static or dynamic magnetic/electric field that are the main mass analyzers used 
in targeted and untargeted metabolomics and lipidomics studies. The proper selec-
tion of the mass analyzer depends on the resolution, mass range, scan rate, and 
detection limit (his part has been covered extensively in chapter “Metabolomics: A 
Pipeline for Biomarker Discovery in Genetic Diseases”). The choice of analytical 
technique depends on the research objectives, experimental design, and the biologi-
cal sample queued for investigation. For unsupervised and discovery projects, it is 
highly recommended to use two or more independent or hyphenated techniques in 
multiple ionization polarities and separation modes to achieve a wide-ranging pro-
file of metabolites.

The Advanced Technology and Clinical Application in Metabolomics
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3 � Nuclear Magnetic Resonance

Nuclear magnetic resonance (NMR) is a spectroscopic analytical technique used to 
identify and quantify organic molecules based on hydrogen, carbon, nitrogen, flour, 
and phosphorus nuclei. The nuclei of the elements carry a charge that creates a 
magnetic dipole when the proton and neutron spins are not paired. The resulting 
magnetic dipole generates a spin axis along with the nucleus’ spin axis, where the 
magnitude of this dipole is a fundamental nuclear property (nuclear magnetic 
moment, μ). The charge distribution is a function of the internal structure of the 
nuclei. The transitions between nuclear spins should be observable once a magnetic 
field is applied perpendicular to a nuclear magnetic energy level. Hydrogen NMR 
(1H-NMR) is the most commonly targeted nucleus in analyzing samples of biologi-
cal origin due to its natural abundance. NMR also targets other atoms, such as 
carbon and phosphorus, for additional information on a specific class of metabolites.

Initially, NMR has played a crucial role in metabolomics for molecular character-
ization and structural elucidation, followed by expression profiling and dynamic 
determination. The sensitivity and element-selective detection of the NMR to the 
nuclear spin made it one of the major tools in metabolomics studies. Coupling NMR 
with mass spectrometry enhances metabolomics profiling and identifications. NMR 
has proven its role in medical diagnosis and clinical research that targets the protein 
[23], lipid [24], and metabolites biomarkers in addition to the whole microbiological 
species (reviewed in chapter “Bringing Human Serum Lipidomics to the Forefront 
of Clinical Practice: Two Clinical Diagnosis Success Stories”) [24]. Despite the ana-
lytical sensitivity, NMR is considered one of the highly robust techniques to quan-
tify the naturally abundant metabolites in biological matrices for diagnostic purposes.

The NMR analytical workflow starts by extracting metabolites from the biologi-
cal matrices and dissolving the dry extracts with NMR technique-compatible sol-
vents. Post-acquisition, the NMR spectral data generated for each metabolite are 
univariate and multivariate analyzed. Then, the significant features are annotated 
using public libraries such as the Human Metabolome Database (HMDB) [3]. This 
part can be further explored in chapter “Metabolomics in the Study of Human 
Mitochondrial Diseases” by David Wishart.

In conclusion, NMR complements the MS by analyzing the isobaric, hard-to-be 
ionized, or structurally unknown compounds [25]. The metabolic transformation’s 
dynamic and mechanism can be depicted using stable isotope labels-NMR (reviewed 
extensively by Markley et al. 2017) [26].

4 � Metabolomics Data Analysis

The association of metabolic dysregulation with the clinical phenotype and 
the feasibility of being a diagnostic biomarker are explored further in multiple 
packages by developing a model. The validation approach considers 
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predictive accuracy, sensitivity, and specificity. For instance, the receiver 
operating characteristic (ROC)’s area under the curve (AUC) represents the 
probability of the classifier ranking a randomly chosen positive sample higher 
than a randomly chosen negative one. ROC curve avoids systematic bias and 
is the most used performance assessment method, where the ROC’s perfect 
classifier (AUC = 1) while a random classifier will obtain AUC close to 0.5. 
An AUC > 0.7 is often considered the minimal performance for a biomarker 
test to be clinically useful [27]. The classification models are followed with a 
validation process to estimate the model’s performance to a new set of sam-
ples, particularly when a small set of samples are used in the discovery cohort. 
Permutation analysis and cross-validation testing are the two main approaches 
for validation [28].

The connection between the discovered metabolomics panel in a discovery 
cohort with the disease etiology is usually achieved through the pathway and net-
work analyses. Several computational platforms such as the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) [29–31], Small Molecule Pathway Database 
(SMPDB) [32], Edinburgh Human Metabolic Network (EHMN) [33], Wiki 
Pathways [34], and MetaCyc [35] provide extensive information of a large number 
of metabolic pathways. The metabolic pathways-based methods are known as 
metabolite set enrichment analysis (MSEA). They are based on the gene set enrich-
ment analysis (GSEA) approach, which was designed for pathway analysis of gene-
expression data [36, 37].

5 � Advancement of Metabolomics Application 
in Clinical Research

Decades of advancement in clinical chemistry are mainly based on biochemical 
analyses, where separation science and molecular spectroscopy techniques play the 
primary role. Metabolomics is considered an advanced version of the biochemical 
genetics and clinical biochemistry platforms, where newborn screening, and urinary 
organic acid profile using the GC-MS platform, is the first clinical application of 
metabolomics. The advancement of the MS techniques and the data analysis pipe-
lines enhanced the discovery rate of metabolic biomarkers and translational poten-
tial for clinical usage. Several chapters in this book will cover some clinical 
applications of metabolomics, such as endocrinology (reviewed in detail in chapters 
“Metabolomics and Genetics of Rare Endocrine Disease: Adrenal, Parathyroid 
Glands, and Cystic Fibrosis” and “Metabolomics Role in Personalized Medicine: 
An Update”), mitochondrial diseases (reviewed in detail in chapter “Lipidomic 
Profiling in Clinical Practice Using LC-MS”), the inborn error of metabolism 
(reviewed in detail in chapters “Bioinformatics Tools for Clinical Metabolomics” 
and “Untargeted Metabolomics in Newborn Screening”), etc. Some applications are 
highlighted in this section.

The Advanced Technology and Clinical Application in Metabolomics
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Clinical metabolomics research is based mainly on study design, replication, 
clinical data collection, specimen collection, storage, metabolism quenching, meta-
bolic extraction, and instrumental acquisition (reviewed in detail in chapters 
“Metabolomics: A Pipeline for Biomarker Discovery in Genetic Diseases” and 
“Metabolomics of Rare Endocrine, Genetic Disease: A Focus on the Pituitary 
Gland”). These factors have shown in multiple studies a drastic role in generating a 
reproducible and sensitive metabolic biomarker for disease diagnosis and treatment 
management. In 2019, a quality assurance (QA) and quality control (QC) consor-
tium (mQACC) was established to engage the community in addressing the quality 
challenges in untargeted metabolomics [38].

In this decade, metabolomics has been extensively applied in oncology, where 
many studies have focused on potential cancer biomarkers discovery for diagnostic, 
prognostic, therapy, and prevention.

Depending upon the genetic alterations, patient-tailored therapy by cancer’s 
genomic and epigenomic characteristics has become possible. Many studies that 
have been conducted on cancer metabolome, estrogen receptor, and Her2/neu status 
in breast cancer are some known examples in oncology [39–42].

Metabolomics has also unfolded different branches of medicine, including peri-
natology, prenatal care, and maternal-fetal medicine. Prenatal medicine pregnancy 
is a critical state with various aspects to consider, including the mother’s and child’s 
well-being. Perinatal pathologies include chromosomal aberration, preterm delivery 
(PTD), congenital heart defects, spina bifida, chorioamnionitis, and low birth 
weight. Many studies have been conducted for biomarker discovery in aneuploidy 
screening, preeclampsia, fetal growth restriction, preterm labor, and delivery 
[43–45].

5.1 � Oncology

The Warburg effect was the first to report the metabolic arm of cancer by converting 
glucose to lactate at a higher rate than normal cells [46]. This effect moves the main 
source of cellular energy from the mitochondria to the cytoplasm, which shifts the 
cell from an inert entity producing ATP to rapidly dividing cells. The metabolic 
nature of cancer progression produces many amino acids, lipids, and nucleotides, to 
produce the cellular biomass for the highly proliferating cells. Metabolomics has a 
great role in cancer personalized medicine which has been extensively reviewed 
[47]. As the frozen tissue is quite limited, an alternative formalin-fixed paraffin-
embedded (FFPE) option is still viable for cancer metabolic biomarkers, mainly for 
tumor classification [48]. This protocol combines sensitive targeted metabolomics 
that covers cancer’s most important pathways, such as glycolysis, TCA, and pentose 
phosphate pathways. For instance, more than 30 endogenous metabolites in breast 
cancer have been reported, including cholate levels (resulting from increased phos-
phocholine), low glycerophosphocholine, and low glucose, as potential biomarkers. 
These biomarkers improve the sensitivity and sensibility up to 83–100% in 
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detecting malignancy more than tumor size, lymph node hormonal status, and his-
tology [49].

Elevated levels of glutamine, glycine, cysteine, and threonine were reported in 
ovarian cancer studies, and tryptophan, histidine, and phenylalanine were degraded 
significantly (reviewed by Turkoglu et  al.) [50]. The profile based on the next-
generation metabolomics in lung cancer was reviewed extensively as biomarkers for 
diagnosis, pathogenesis, classifications, and precision medicine. Most LC metabo-
lomics markers are involved in the upregulation and reprogramming of the TCA and 
glycolysis pathways and the upregulation of phospholipid metabolic pathways and 
fatty syntheses (reviewed by Turkoglu et al.) [51]. Serum lactic acid, progesterone, 
homocysteine, 3-hydroxybutyrate, linoleic acid, stearic acid, myristic acid, threo-
nine, and valine levels were reported to be significantly dysregulated in endometrial 
cancer (EC) [52, 53]. A group of metabolites has shown great concordance with 
colorectal cancer (CC) recurrence, prognosis, and survival [54]. Most of these 
metabolites play roles in perturbing cellular respiration and carbohydrate metabo-
lism (i.e., TCA cycle and anaerobic respiration), lipid metabolism (i.e., fatty acid 
oxidation), amino acid metabolism (i.e., histidine, methionine, and tryptophan), and 
nucleotide metabolites (i.e., uracil, p-cresol, etc.) [54]. Cancer as a metabolic dis-
ease has been reviewed recently by Wishart [55].

The cancer metabolic biomarkers (oncometabolomics) open the venue for utiliz-
ing mass spectrometry in translational medicine. Removing tumor tissue accurately 
with minimally invasive, especially in brain tumors, is now closely using iKnife 
technology. These surgical cutters connected to desorption electrospray ionization 
(DESI) mass spectrometry were developed by Graham Cooks groups at Purdue 
University and Nathalie Agar at Harvard Medical School. This ambient ionization 
technique mediated a medical cutter and mass spectrometry collecting analytical 
signals for oncometabolite to accurately diagnose tissue removed during brain sur-
gery [56]. This approach reduces postsurgical complications, speeds up surgery, and 
minimizes the subjectivity of conventional pathology. Zoltán Takáts at Imperial 
College London capitalized on this technology and started to build an oncometabolite-
based library from multiple laboratories using rapid evaporative ionization mass 
spectrometry (REIMS). In BC, 63 phospholipids and 6 triglyceride species were 
responsible for 24 spectral differences between normal and tumor tissues, increas-
ing the diagnostic sensitivity and specificity to 93.4% and 94.9%, respectively, 
using REIMS [57].

5.2 � Prenatal Medicine

Pregnancy is a very natural process and complicated from a research standpoint to 
consider the mother and the baby’s well-being. A wide range of physiological changes 
is required throughout the gestation in maternal, which requires circulating some 
metabolites such as triglyceride, cholesterol, and lipids to satisfy in utero fetal devel-
opment from energy and catabolic needs. Multiple complications are known to be 
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associated with pregnancy, e.g., bleeding, ectopic pregnancy, miscarriage or fetal loss, 
placental complication, and preeclampsia or eclampsia. These complications are 
associated with overlapped risk factors such as the mother’s age, body mass index, 
and medical history. Preeclampsia is the leading pregnancy complication that affects 
about 5–8% of pregnant women worldwide. Gestational high blood pressure is the 
main preeclampsia characterization, and it is combined with protein in the urine, 
occasionally fluid retention, and in some severe cases, seizures, coma, and death.

Oxidative stress is the common metabolic pathway in most prenatal disorders, 
except preeclampsia and congenital anatomic defects. Acylcarnitine and amino acid 
metabolism are altered in both preeclampsia and CAD, while taurine metabolic 
dysregulation is unique in patients with preeclampsia. Preterm labor and deliveries 
alter bile acid and inflammation metabolism. Some energy metabolism (e.g., pen-
tose phosphate pathways, ketone body production) is dysregulated in other preg-
nancy complications, including single gene disorders.

Throughout the pregnancy, noninvasive (e.g., history analysis, ultrasound, mater-
nal serum analysis) and invasive (e.g., fetal samples of the placenta) assessments 
might be needed. Developing noninvasive tests with lower false-positive rates is 
fundamental in prenatal medicine, where metabolomics is potentially useful. 
Metabolomics has great potential for evaluating several biomarkers in a single, 
rapid, relatively low-cost, controlled experiment. This technology identifies the tar-
geted pathway altered through multiple intermediates unsupervised, which can iden-
tify the fetal or pregnancy disorders using simultaneously different compartments 
(e.g., maternal, placental, and fetal). However, overinterpretation and high false dis-
covery rates, with unestablished cutoff values for the target analytes, are the biggest 
limitation of metabolomics in prenatal medicine. Multiple metabolomics studies 
have been conducted on prenatal cases covering normal pregnancy in different tri-
mesters [43–45]. Aneuploidy screening, preeclampsia [58], fetal, preterm labor and 
delivery [45], congenital anatomic defects (CAD), and single gene disorders [43].

The cause of preeclampsia is not known, and mothers with a history should be 
under continuous monitoring for any potential risk. Several metabolic biomarkers 
were reported in the literature to predict the early onset of preeclampsia from con-
trol, such as taurine and asparagine [58]. Metabolomics Diagnostics (Metabolomic 
Diagnostics), an Ireland-based, deep-tech medical diagnostics company, specializes 
in developing novel biomarker-based diagnostic solutions. This company estab-
lished a preeclampsia screening program after screening more than 1000 pregnant 
women to validate a panel of biomarkers for preeclampsia prediction. Their panel of 
metabolites (PrePsia) is now executed as a prototype screening test to identify 
women at increased risk of developing preeclampsia in early pregnancy.

6 � Frontiers in Metabolomics

Metabolomics platforms have been drastically advanced in the past decade, with 
great translational potential in medicine. The biological fluids and materials are 
used between the study groups in the standard clinical metabolomics pipeline. 
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Single-cell metabolomics has shown promising results that explain the cellular het-
erogeneity based on the phenotypical differences to help understand the cause of 
cellular biochemical activity with implications for health and disease [59]. Single-
cell metabolomics experiments with low sample volume are based on a shotgun-like 
approach. This motivates the developments of the metabolomics pipelines such as 
the nano-DESI, ambient ionization technique, droplet-based microextraction, single 
probe with duel bore capillary, etc. Single-cell metabolomics has great potential for 
studying the cellular biochemical changes in a specific genetic disease that is hard 
to notice in biological fluids, such as mitochondrial disorders (reviewed in detail in 
chapter “Lipidomic Profiling in Clinical Practice Using LC-MS”).

Molecular imprinting polymer (MIP)-based electrochemical sensor is greatly 
applied in targeted metabolomics toward developing point-of-care tests (POCT) 
[60]. Having this line of research and technique advancement encourages the appli-
cation scientist to continue in biomarker discovery at multiple levels, including 
monitoring health statuses such as metabolic disorders and those with critical meta-
bolic risk. This part of the research is covered extensively in chapter “Transferring 
Metabolomics to Portable Diagnostic Devices: Trending in Biosensors”.

Together, the advancement of the biosensor of targeted metabolomics and the 
metabolomics biomarker discovery opens the venue toward real-time health moni-
toring, mainly for metabotyping individuals for well-being, nutritional, and person-
alized medicine. Urine metabolomics in multiple studies has shown a real-time 
behavior regardless of the analytical platform, from sample collection to analysis 
limitations [61]. By enabling patients to access continuous measurement and wear-
able devices to diagnose and control their illnesses precisely, metabolomics will 
have a great opportunity in this field by multiplexing the monitoring to avoid the 
confounding effects in each case.

Metabolomics is gaining significant interest in medicine and clinical diagnosis, 
where multiple novel assays have been licensed to provide metabolomics-based diag-
nostic services. Metabolon and Baylor College of Medicine have worked in the last 
decades in developing Global MAPSTM, a semiquantitative metabolomics profiling, 
to determine the disruption related to specific biochemical abnormalities. More 
details regarding their experience in detecting some metabolic diseases are detailed in 
chapters “Bioinformatics Tools for Clinical Metabolomics” and “Untargeted 
Metabolomics in Newborn Screening”. Quantose®IR and Quantose®IGT are metab-
olomics-based clinical assays for insulin resistance (IR) and impaired glucose toler-
ance (IGT) identification in patients with multiple conditions, such as type 2 diabetes. 
In addition to insulin, Quantose®IR is based on a panel of biomarkers comprised of a 
small organic acid (α-hydroxybutyric acid (AHB)) and two lipids (oleic acid and 
linoleoylglycerophosphocholine (LGPC)) [62]. The algorithm scoring was devel-
oped based on a nondiabetic cohort from 13 European countries, where the score 
cutoff is 63 between insulin sensitivity and resistance. This test is performed using 
LC-MSMS for treatment monitoring, such as pioglitazone [62]. Quantose®IGT iden-
tifies the prediabetes risk based on the IGT. The Quantose®IGT scores were devel-
oped based on α-hydroxybutyric acid (AHB), 4-methyl-2-oxopentanoic acid (4MOP), 
oleic acid, linoleoylglycerophosphocholine (LGPC), β-hydroxybutyric acid (BHBA), 
serine, and pantothenic acid (vitamin B5) levels in the sample [63].

The Advanced Technology and Clinical Application in Metabolomics
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Nonalcoholic fatty liver disease (NAFLD) is a highly prevalent progressive 
chronic disease in which the liver displays histological features like those induced 
by excessive alcohol intake but in the absence of alcohol consumption. NAFLD is 
very common in people with diabetes and the obese. Its early identification is impor-
tant due to the burden of the disease and the fact that NAFLD often presents with 
only mild or no symptoms. OWLiver® Care and OWLiver® are noninvasive assays 
for fatty liver screening and NASH diagnosis. These two tests use highly sensitive 
laboratory processes to determine the form of disease present in the patient’s liver. 
These tests determine the risk of developing NASH, reflected in the patient’s life-
style and medical management. This part is covered extensively in chapter “Bringing 
Human Serum Lipidomics to the Forefront of Clinical Practice: Two Clinical 
Diagnosis Success Stories”.
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Mass Spectrometry-Based Metabolomics 
for the Clinical Laboratory

Joshua A. Dubland

Abstract  In the clinical laboratory, analysis of small molecules using mass spectrom-
etry (MS) primarily encompasses  the targeted and quantitative determination of 
known biomarkers for disease diagnosis and monitoring, general health status evalu-
ation, toxicology, and therapeutic drug monitoring. Although there are exceptions, 
MS-based assays in the clinical laboratory typically involve the utilization of analyte-
specific calibration curves for quantitation, and stable isotope-labeled internal stan-
dards to correct for any sample preparation and instrument-related variability. A 
clinical MS-based assay usually consists of a relatively small panel of biomarkers in a 
certain diagnostic context that are compatible with the same sample preparation pro-
tocol. Alternatively, the term metabolomics generally refers to the comprehensive and 
systematic large-scale profiling of small molecules within a  biological system. 
Targeted and quantitative MS-based assays containing relatively large panels of small 
molecules (metabolites) are routinely utilized for  newborn screening (NBS), bio-
chemical genetics testing, and toxicology. Broad nontargeted metabolomics investiga-
tions have found some utility in the aforementioned testing areas, but are not currently 
commonplace in the clinical laboratory. This chapter discusses current state-of-the-art 
MS instrumentation, describes  several applications, and  provides implementation 
considerations for MS-based metabolomics in the clinical laboratory.
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Abbreviations

AC	 Alternating current
APCI	 Atmospheric chemical ionization
APPI	 Atmospheric pressure photoionization
CCS	 Collisional cross section
CI	 Chemical ionization
CID	 Collision-induced dissociation
Da	 Dalton
DC	 Direct current
EI	 Electron ionization
ESI	 Electrospray ionization
eV	 Electron volt
FTICR	 Fourier-transform ion cyclotron resonance
FWHM	 Full width at half maximum
GC	 Gas chromatography
HILIC	 Hydrophilic interaction liquid chromatography
HPLC	 High-performance liquid chromatography
HRMS	 High-resolution mass spectrometry
ICP	 Inductively coupled plasma
IEMs	 Inborn errors of metabolism
IMS	 Ion mobility spectrometry
kV	 Kilovolt
LC	 Liquid chromatography
m/z	 Mass-to-charge ratio
MALDI	 Matrix-assisted laser desorption/ionization
MRM	 Multiple-reaction monitoring
MS	 Mass spectrometry
MS/MS	 Tandem mass spectrometry
QTOF	 Quadrupole time-of-flight
RF	 Radiofrequency
TOF	 Time-of-flight
UPLC	 Ultra-high-performance liquid chromatography

1 � Introduction

Mass spectrometry (MS) is a powerful tool for investigating biological processes 
and has been extensively utilized for metabolomics, which is the comprehensive 
and systematic large-scale analysis of small molecules within biological systems. 
MS-based metabolomics can provide insights into the biochemical status and flux in 
both the healthy and diseased states. Metabolomics investigations can be either tar-
geted or nontargeted (or a mixture of these approaches).

Targeted metabolomics has been used in both research and clinical diagnostic 
laboratories, and focuses on identifying and accurately quantifying small metabolite 
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panels (typically <10 analytes). For targeted metabolomics, analytes have been pre-
selected and the analytical approach has gone through some form of validation to 
ensure the accuracy of the results. Targeted and quantitative analysis of relatively 
large small molecule panels (>10 analytes) using MS has found applications in new-
born screening (NBS), biochemical genetics testing, and toxicology.

Alternatively, nontargeted (global) metabolomics aims to detect as many specific 
metabolites or metabolomic features as possible within a given sample. The term 
“metabolomic feature” refers to a certain mass-to-charge ratio (m/z) at a unique chro-
matographic retention time. Nontargeted metabolomics can involve  the following 
or combinations of the following: (1) m/z pattern recognition and relative signal com-
parisons between samples, (2) quantitative or semiquantitative analyses using calibra-
tion curves and/or surrogate calibrants, and (3) spectral comparisons with MS 
libraries  to try and identify some or all of the metabolomic features. Nontargeted 
metabolomics analyses can lead to the discovery of new metabolites and potential bio-
markers. Confirmatory analyses are still needed, including chromatographic retention 
time and m/z comparisons with synthesized or commercially available compounds, 
and/or nuclear magnetic resonance (NMR) spectroscopy to elucidate the chemical 
structure of isolated metabolite chromatographic fractions. Large-scale nontargeted 
(global) MS-based metabolomics investigations have been utilized primarily for 
research purposes and have not been widely utilized in the clinical diagnostic laboratory.

This chapter starts with a description of the basic concepts of a mass spectrom-
eter and instrumental interfacing with several chromatographic techniques. Next, 
some current examples of MS-based metabolomics in the clinical diagnostic labora-
tory are described. A brief discussion on guidance documentation and validation 
considerations for small molecule MS assays in the regulated clinical setting is 
then provided.

2 � Components of a Mass Spectrometer

On a simplistic level, a mass spectrometer consists of three components: an ion 
source, a mass analyzer, and a detector. The ion source first generates charged mol-
ecules (ions) in the gas phase from the sample being analyzed. The mass analyzer 
component separates and isolates the ions based on their m/z. The abundance of 
isolated ions at specific m/z's are then recorded by a detector. A mass spectrometer 
requires low pressure (high vacuum) to direct ions through the instrument and 
remove contaminants [1]. Specialized software is used to control the mass spec-
trometer and analyze data.

2.1 � Sample Ionization

A variety of ionization techniques are available for introducing charged molecules 
into a mass spectrometer. Currently, the most utilized methods of ionization include 
electron ionization (EI), chemical ionization (CI), electrospray ionization (ESI), 
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atmospheric chemical ionization (APCI), and matrix-assisted laser desorption/ion-
ization (MALDI). A mixture of ionization approaches is needed to improve metabo-
lite coverage for global metabolomics analysis of biological specimens (extensively 
reviewed in chapter “The Advanced Technology and Clinical Application in 
Metabolomics”) [2].

EI is frequently utilized for ionization and fragmentation of thermally stable 
volatile small molecules. It is a process where a beam of electrons (typically having 
a kinetic energy of 70 eV) is emitted from a heated filament and collides with gas-
phase neutral molecules to generate charged ions and fragments. This process must 
occur in a vacuum in order to avoid oxidation and beam scattering. The electron 
beam abstracts one electron from a neutral molecule, generating a radical cation, 
which then breaks into smaller, either charged or neutral, fragments. Neutral frag-
ments are eliminated or removed via a vacuum on the EI chamber walls. Positively 
charged ions are drawn out of the source using an electric field, and the beam of ions 
is focused [3]. The generated EI fragment spectra (ions are typically separated and 
isolated by a quadrupole mass analyzer prior to detection) are useful for quantita-
tion, structural characterization, and library matching. EI is a very common ioniza-
tion and fragmentation method used for coupling gas chromatography (GC) with a 
mass spectrometer (GC-MS).

CI is a soft ionization technique (lower energy than EI) where a proton is added 
or removed from the neutral molecule using a reagent gas such as methane or 
ammonia. An electron beam produces a number of ionized and reactive reagent gas 
species, which transfer a proton to the neutral molecule of interest and generate a 
product ion. Generally, there is minimal fragmentation, and a protonated molecular 
ion is abundantly present in the mass spectra. Typically, CI is operated in positive 
ion mode (addition of a proton), as most neutral molecules can form positive ions 
through reactive intermediates. CI can also be conducted in negative ion mode if the 
molecules being ionized can stabilize a negative charge from electron capture, such 
as carboxylic acid groups or highly electronegative halogens [4, 5]. A CI source can 
be used in GC-MS, but is less routinely utilized than EI.

ESI is also a soft ionization technique and operates at atmospheric pressure. It is 
the standard ionization source utilized when liquid chromatography (LC) is coupled 
to a mass spectrometer (LC-MS). The ESI source exists in many variations, but con-
sists of the same general components. The liquid sample first passes through a capil-
lary inside a sample probe. An electrical voltage of less than 5 kV is applied to the 
capillary, leading to the generation of charged droplets as the liquid exits the capillary 
[1]. A heated nebulization gas (usually nitrogen) moving parallel to the sample capil-
lary is used to help facilitate liquid droplet formation, directionality, and evaporation. 
Charged liquid droplets generate smaller liquid droplets as they move through the 
atmospheric region, which then completely evaporate (desolvate), resulting in the for-
mation of gas-phase ions. Singly or multiply charged ions can be generated. After 
moving through the atmospheric region, the ions enter the mass spectrometer via a 
small orifice in a sampling cone that has a voltage applied to it. The capillary that 
generates charged droplets can be directly pointed toward the sampling cone orifice or 
positioned orthogonally to it. One or more cones (skimmers) in a series are sometimes 
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utilized. A neutral gas running perpendicular to the direction of ions moving through 
the cone orifice is used to prevent contamination of the MS. ESI works well with polar 
compounds that can hold a charge or exist in a charged state [4, 6].

In the APCI source, no voltage is applied to the capillary needle. Instead, the 
heated nebulization gas alone, flowing parallel to the capillary, generates solvent 
droplets as the solvent exits the tip of the capillary. The nebulization gas helps with 
the desolvation of the liquid droplets and is typically heated to higher temperatures 
than in ESI. The solvent in the vapor becomes charged from being in close proximity 
to a corona discharge needle that has a current (microamps typically) applied to it. 
The charge on the solvent (e.g., water, methanol, acetonitrile) is transferred to mole-
cules in the vapor to produce ions. Like ESI, APCI operates at atmospheric pressure. 
APCI can provide more efficient ionization than ESI for nonpolar molecules. Both 
ESI and APCI are considered soft ionization techniques and generate minimal analyte 
fragmentation compared to EI.  In-source fragmentation can occur for some mole-
cules with ESI and APCI as a result of the high heat (between 300 and 650 °C) and/
or the electric charge applied. LC is most often coupled to MS using ESI or APCI 
sources [1, 4, 7]. The solvents (mobile phases) carrying analytes from the LC into the 
ESI or APCI source are frequently made basic or acidic using modifiers such as for-
mic acid, ammonium hydroxide, or a pH buffer such as ammonium formate to 
enhance the addition or removal of a proton (charge). Solvent modification can 
increase the MS signal intensity as more ions may be generated in the source and 
then enter the MS.

A variation of APCI much less commonly utilized is atmospheric pressure pho-
toionization (APPI). In APPI, a photon-emitting lamp generates ions instead of a 
corona discharge needle. An ionizable dopant such as toluene or acetone is com-
monly infused in parallel to the nebulization gas for APPI. The dopant increases 
charge exchange or proton transfer to the molecule(s) being analyzed [8, 9]. Like 
APCI, APPI is generally used for the analysis of nonpolar analytes. In some cases, 
using APPI can lead to increased analyte ionization and higher signal intensities 
than APCI.

Matrix-assisted laser desorption/ionization (MALDI) is an ionization technique 
where a pulsed laser generates ions from a sample on which a UV-absorbing matrix 
has been applied. The matrix often acts as a proton donor to generate charged ana-
lytes. MALDI is a soft ionization technique that produces mostly singly charged 
ions [5]. MALDI is often used to generate ions for imaging MS of proteins and 
small molecules in tissue samples [10, 11]. Each MALDI laser shot at a certain 
location on a tissue section provides a mass spectrum comparable to a pixel in digi-
tal imaging. The combined analysis of many pixels provides spatial distribution 
information about ions across a tissue. An alternative surface ionization technique 
to MALDI is desorption electrospray ionization (DESI). With DESI, a charged sol-
vent is directed toward the surface of a sample instead of a laser, and the charged 
solvent desorbs ions directly from the sample [5]. It is, therefore, a combination of 
ESI and surface desorption approaches. Interestingly, DESI has potential applica-
tions for real-time surgical tissue analysis as it is performed at atmospheric pressure 
and has simplified sample preparation relative to MALDI [12].
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Direct analysis in real time (DART) is a rapid analysis approach that also pro-
duces ions directly from the surface of a sample without the need for the addition of 
any matrix or time-consuming sample preparation. With DART, an electrical current 
is applied to a heated inert gas to generate excited neutral species, which are directed 
at the sample of interest. The electronically excited inert gas (e.g., helium) interacts 
with water vapor and other gases at atmospheric pressure to generate reagent ions, 
which then cause chemical ionization of the analytes on the sample’s surface. Gas-
phase ions generated from the surface of the specimen then enter the MS for analy-
sis [13]. DART can be performed in an open environment and is well suited for trace 
analysis screening purposes (e.g., drugs of abuse, plant material, explosives) [14] 
and has also been utilized for metabolite profiling [15].

2.2 � Mass Analyzers

A variety of mass analyzers are commercially available, the most common of which 
are the quadrupole, time-of-flight (TOF), ion trap, orbitrap, and Fourier-transform 
ion cyclotron resonance (FTICR) mass analyzers. Mass analyzers vary in their m/z 
range, mass accuracy and resolution, and acquisition speed. At a very basic level, 
mass analyzers can be classified as either beam or trapping-type instruments. In 
beam instruments, ions make a single pass through the mass analyzer and are 
recorded using a detector. In trapping instruments, ions are confined using combina-
tions of electric and magnetic fields, which are manipulated in order to measure 
selected ions. Beam instruments generally operate on the timescale of microseconds 
to milliseconds, whereas trapping instruments can operate from milliseconds to 
minutes  (or even longer). Quadrupole and TOF mass analyzers are beam instru-
ments, whereas ion trap, orbitrap, and FTICR instruments are trapping instruments. 
Although the development of the first mass spectrometers date back over 100 years 
[16–18], the basic utilization of electric and magnetic fields for separating and iso-
lating ions remain the same. It is common for several types of mass analyzers to be 
combined within the same instrument and incorporate collision cell(s). These tech-
nical arrangements allow for the analysis of intact charged metabolites (precursors) 
and charged fragments of metabolites (products), which is critical for targeted anal-
yses as well as nontargeted investigations.

2.2.1 � Quadrupole

The quadrupole mass analyzer consists of four symmetrically arranged cylindrical 
metal rods with an ion flight path in the center that is parallel to the rods’ direction 
(the Z-axis). Both alternating current (AC) and direct current (DC) are applied to 
pairs of rods directly opposing each other in the configuration. One set of opposing 
rods has a positive AC potential applied (X-Z plane), while at the same time, the 
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other set of opposing rods has a negative potential applied (Y-Z plane). This means 
that the AC or radio frequency (RF) waveform applied to one set of rods is 180° out 
of phase with the waveform applied to the other set of rods. At the same time, the 
DC potential of one set of opposing electrodes is positive (X-Z plane), while the 
other is negative (Y-Z plane). The applied voltages affect the flight path of ions 
between the rods as they traverse the device. When the AC potential is positive, the 
ions are accelerated onto the central Z-axis. In contrast, when the AC potential is 
negative, the ions are defocused and accelerated toward the rods. Depending on the 
voltage applied, ions either travel along the length of the quadrupole and pass 
through or are eliminated by colliding with the rods [19, 20].

In the X-Z plane, heavier ions will be mostly influenced by the positive DC 
potential and not affected by the high-frequency AC potential. Lower mass ions, on 
the other hand, will be significantly affected in the X-Z plane by the AC potential 
and, if they are light enough, may collide with the rods and be eliminated. In the Y-Z 
plane, heavier ions will be defocused from the central Z-axis. They may be elimi-
nated on the Y-Z rods as they will mainly feel the destabilizing effect of the negative 
DC potential and not the high-frequency AC potential. However, lighter ions will be 
focused onto the central Z-axis in the Y-Z plane by the high-frequency AC potential 
and pass through the quadrupole.

In essence, the opposing rods in the X-Z plane act as a high-pass mass filter as 
only higher m/z ions will be transmitted and lower m/z ions will strike the X-rods 
and then be removed as neutral species by the turbo pumps. Conversely, the oppos-
ing rods in the Y-Z plane act as a low-pass mass filter transmitting only lower m/z 
ions and eliminating higher m/z ions [19]. Mathieu’s equation describes the stability 
or instability of certain m/z ions in the X- and Y-coordinates in relation to AC and 
DC voltages on electrodes of opposite potential [21, 22]. The combination of the 
high-pass and low-pass mass filters creates a narrow band pass window (Δ m/z) of 
ions transmitted through the quadrupole. Changing the amplitude of the RF voltage 
can select (tune) for different masses to be transmitted through the quadrupole. A 
complete mass spectrum can be obtained by simultaneously varying the amplitude 
of the AC and DC voltages applied to the quadrupole rods but keeping the DC/RF 
ratio fixed. The mass resolution can be varied by changing the DC/RF ratio [19]. 
Generally, parameters are set such that the band pass window (Δ m/z) is constant 
across the entire m/z range, which provides sufficient mass resolution to separate 
isotopes of small molecules that are singly charged. Mass resolution is calculated as 
[(m/z)/(Δ m/z)]. The quadrupole mass analyzer can act as either a mass filter (i.e., 
isolate single Δ m/z’s as set by the user) or as a scanning instrument (i.e., scan Δ m/z 
across a range as set by the user) [4].

The benefits of quadrupole mass analyzers include high sensitivity, a  large 
dynamic range, fast positive and negative mode polarity switching, small size, 
robustness, and low cost. Limiting factors are a mass range typically less than 
2000 m/z, low mass accuracy (greater than 100 ppm), and a mass resolution of 0.5 
to 1 Dalton (Da) full width at half the maximum (FWHM) [1, 4]. One Da is equiva-
lent to 1/12 of the mass of carbon 12 in its lowest energy state. Some quadrupole 
analyzers can reach resolutions of ≤0.1  Da at FWHM with specially designed 
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quadrupole rods [23]. A quadrupole mass analyzer is commonly combined in series 
with another quadrupole mass analyzer, but is also frequently combined with ion 
trap (termed a QTRAP) or TOF (termed a QTOF) mass analyzers.

2.2.2 � Triple Quadrupole

Triple quadrupole or tandem mass spectrometers (MS/MS) are a very common 
instrument found in the clinical laboratory for quantitative analysis as a result of their 
high specificity and sensitivity. The development of the triple quadrupole mass spec-
trometer was initially reported in 1978 by Yost and Enke [24]. A triple quadrupole 
mass spectrometer consists of the following: a quadrupole mass filter (Q1), a low 
energy collision cell usually consisting of an RF-only quadrupole (Q2), another 
quadrupole mass filter (Q3), and then an electron multiplier to detect transmitted ions.

The tandem mass spectrometer has several modes of operation: multiple-reaction 
monitoring (MRM), product ion scan, precursor ion scan, and neutral loss scan. The 
most utilized mode of operation for quantitative analysis is MRM. In MRM mode, 
a single mass is selected in Q1, fragmented in the Q2 collision cell, and then a prod-
uct ion is selected in Q3 and detected. The instrument can acquire one MRM at a 
time for a set amount of time, which is termed the dwell time. MRM dwell times are 
on the order of milliseconds (typically between 10 and 300 ms). A product ion scan 
selects a certain m/z in Q1, fragments the ion in Q2, and obtains a product ion spec-
trum by scanning an m/z range in Q3. A precursor ion scan is the reverse of a prod-
uct ion scan. A fragment ion m/z is selected in Q3, and Q1 is scanned for all precursor 
m/z’s that give that Q3 fragment ion. This mode is useful for analyzing compounds 
with a known common fragment ion. In a neutral loss scan, both Q1 and Q3 are 
scanned, looking for a common neutral mass difference (loss) between precursor 
and product ions [4, 25].

The Q2 collision cell is usually a low-energy collision-induced dissociation 
(CID) device that contains an inert gas such as argon or nitrogen. Ions transmitted 
from Q1 are given kinetic energy as they enter the CID device, collide with the inert 
gas, and are fragmented. Collision energies are typically between 1 and 100 eV. The 
Q2 quadrupole is operated in an RF-only mode (i.e., all ions are transmitted) by 
removal of the DC potential on the quadrupole rods [19, 26]. Although CID is the 
most common fragmentation method utilized in a triple quadrupole MS, other 
methods such as electron capture dissociation or surface-induced dissociation frag-
mentation methods are possible [27].

2.2.3 � TOF

A TOF is a beam type mass analyzer where m/z is determined from the time it takes 
for an ion with a certain kinetic energy to travel through a long tube under a vacuum. 
An electrostatic field first accelerates packets of ions entering the TOF. The ions all 
obtain the same kinetic energy and then are separated over a drift path and 
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registered by a detector. Lower mass ions arrive at the detector first. The ion flight 
path length limits a TOF device’s resolution. To increase the flight path and not the 
overall size of the instrument flight tube, the flight path can be reflected multiple 
times within the tube [28, 29]. The TOF mass analyzer is a pulsed instrument by 
nature but is frequently paired with a continuous incoming ion beam from ioniza-
tion sources such as ESI, APCI, or EI. In order to extract packets of pulsed ions from 
the continuous incoming ion beam, the TOF drift tube is placed orthogonally to it. 
Ion packets are then accelerated and injected into the TOF low-pressure drift tube in 
pulses [30]. A TOF mass analyzer is also often paired with MALDI, which is already 
a pulsed incoming ion beam.

The TOF instrument is a high-resolution mass spectrometer (HRMS) that can 
measure the exact mass of an ion, typically within a mass error of five parts per mil-
lion (ppm). This high-resolution mass measurement allows the TOF mass analyzer 
to be useful in identifying unknown compounds by matching the measured exact 
mass to a library of compounds of known molecular weight. Often, a quadrupole 
mass analyzer followed by a collision cell is placed between the ionization source 
and the TOF mass analyzer in order that high resolution fragment ion spectra can 
also be collected. This instrumental  arrangement is called a QTOF [31]. A TOF 
mass analyzer has a very fast acquisition rate of microseconds, making it compati-
ble with being placed after a quadrupole mass analyzer that has an acquisition rate 
of milliseconds. The quadrupole allows for initial low-resolution selection of spe-
cific ions or a range of ions, followed by fragmentation of those ions in the collision 
cell and then high-resolution measurement of those fragments by TOF. Metabolomics 
studies are often performed using a QTOF. The combination of measuring both the 
exact mass of intact precursor ions and the exact mass of the fragmentation (product 
ions) spectra greatly increases the spectral library matching performance. In addi-
tion, LC or GC is usually performed prior to molecules entering the MS in order to 
separate compounds and thereby improve spectral quality. The LC or GC retention 
time data also can be informative for identifying unknown molecules in combina-
tion with the exact mass spectra [4, 20].

Benefits of a TOF mass analyzer include high-resolution mass measurement 
capabilities, high spectral acquisition rates, very large mass measurement ranges, 
relative simplicity, durability, and having relatively reasonable cost. Disadvantages 
include a lower analytical sensitivity range than quadrupole mass analyzers, the 
requirement for a highly controlled instrument temperature environment, and lower 
resolution capabilities than other HRMS systems such as orbitrap or FTICR 
instruments.

2.2.4 � Ion Traps

An ion trap is a mass analyzer that traps and stores ions using electric or magnetic 
fields. Several configurations of ion traps exist and are discussed briefly in the fol-
lowing section. These include the 3D-type quadrupole ion trap, 2D-type linearity 
ion trap, orbitrap, and ion cyclotron resonance mass analyzer.
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The 3D-type quadrupole ion trap (also called a Paul ion trap) functions similarly 
to a quadrupole mass analyzer as oscillating RF fields and DC voltages are utilized. 
Quadrupole ion traps differ in their configuration  though, as they consist of a 
hyperbolic ring electrode situated between two symmetrical hyperbolic entrance 
and exit end cap electrodes. Ions enter and exit the device through holes in the end 
caps. Unlike a quadrupole, which is a mass filter in 2D space, the ion trap accumu-
lates ions confined in a circular 3D space between the electrodes. Storage of 
selected ion species or a certain mass range can be set in the ion trap. The incoming 
ion beam is first trapped, and then, ions are subsequently scanned out based on 
their m/z by manipulating the electric fields [22, 25]. Ion traps have high sensitivity 
but are limited in the overall number of ions that can accumulate due to space 
charging effects, which restricts the dynamic signal range. Since ions are accumu-
lated in the ion trap spectral skewing from chromatographic peak elution does not 
affect the mass analysis. Notably, a 3D-type quadrupole ion trap is able to perform 
multiple-stage fragmentation (MSn) experiments. All ions except the ion to be frag-
mented are first ejected from the trap. Then, the ion of interest is fragmented by 
collisional activation, and the products are subsequently detected. The fragmenta-
tion and analysis process can then be repeated at higher orders. MSn experiments 
are useful for structural investigations of molecules, but higher fragmentation 
orders lead to a loss of signal intensity [20, 22, 32].

A 2D-type linear ion trap consists of a quadrupole with the addition of electro-
static plates on both ends of the device that generate a stopping potential to trap 
ions. The linear ion trap is unique because it can function as a stand-alone quadru-
pole mass analyzer or an ion trap. Relative to 3D-type quadrupole (Paul type) ion 
traps, the linear ion trap has a higher capacity for storing ions [33, 34]. Linear ion 
traps have been paired in series following a standard quadruple mass analyzer (a 
hybrid instrumental arrangement called a QTRAP). In this configuration, the hybrid 
instrument can operate as a regular quadrupole mass analyzer (i.e., generate stan-
dard MRM data) or utilize the trapping features of the linear ion trap such as 
enhanced MS scan, enhanced product ion scan, enhanced resolution scan, enhanced 
multiply charged scan, and generation of MS3 ion fragmentation data [35–38].

The orbitrap is a high-resolution mass analyzer where ions are trapped in orbit 
around a central spindle-like electrode in electrostatic fields. The general princi-
ples of orbitraps in use today are based on the ion trap device called the Kingdon 
trap that was reported in 1923 [39]. Commercial orbitrap instruments were devel-
oped by Makarov et al. in the early 2000s [40, 41]. An orbitrap mass analyzer is 
made up of a central spindle-like electrode surrounded by outer cup-shaped elec-
trodes. An ion packet from an orthogonally positioned curved linear ion trap 
(called a C-trap) is injected into the orbitrap through a small slit in the outer cup-
shaped electrodes. An incoming ion beam initially fills the C-trap and then the ion 
packet is pulsed orthogonally out of the C-trap into the orbitrap mass analyzer. The 
ions that enter the orbitrap are bent around the central axial electrode using a radial 
electric field and with the correct choice of parameters ions continue to orbit the 
central electrode. At the same time, an axial electric field induces harmonic axial 
ion oscillations. An image current signal (meaning a current induced by ions 
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passing by a conductor) from the frequency of the harmonic axial ion oscillations 
is then recorded by outer electrodes on the orbitrap device acting as receiver plates. 
The frequency of the oscillations is mathematically related to the m/z of the ion. 
After Fourier transformation of the image current signal, a mass spectrum is 
obtained [40–42]. The resolution of the orbitrap mass analyzer decreases as the 
scan speed increases and also as the m/z increases [43]. In some incidences, resolu-
tion may need to be reduced in order to increase the orbitrap scan speed. In com-
parison, a TOF mass analyzer obtains relatively lower mass resolution than an 
orbitrap, but the resolution is independent of detection time and m/z.

Orbitrap mass analyzers have also been coupled with other devices, such as 
quadrupoles, linear ion traps, and collision cells in order to increase selectivity and 
perform MSn fragmentation for structural analysis [41, 44]. The coupling of differ-
ent devices is facilitated via the C-trap, which can also serve as a T-device. Instrument 
configurations can vary, but generally, the ion beam first passes through a quadru-
pole mass filter or a linear ion trap (having fragmentation capabilities) and then 
enters the C-trap. From the C-trap, ions can be sent orthogonally to the orbitrap 
mass analyzer or pass straight through the C-trap to a high collision-induced disso-
ciation (HCID) cell or linear ion trap where fragmentation is induced. The ions are 
then returned to the C-trap, where they are orthogonally injected into the orbitrap to 
generate high-resolution mass spectra [41]. In this way, both high-resolution precur-
sor and product ion spectra can be obtained with various experiments. Other molec-
ular fragmentation methods have been utilized with orbitrap mass analyzers, such as 
electron transfer dissociation (ETD), which utilizes reagent anions to interact with 
peptide cations. ETD has helped facilitate in-depth analysis of peptides and post-
translational protein modifications [41, 45].

The FTICR mass analyzer currently offers the highest resolution and mass accu-
racy of commercially available mass spectrometers and works on the basis that ions 
within a magnetic field undergo cyclical motion (cyclotron motion). FTICR mass 
analyzers consist of a Penning trap, where a strong uniform magnetic field is applied 
to induce cyclotron motion of ions in the plane perpendicular to the magnetic field 
lines (the  radial plane). A ring and endcap electrodes are used to generate a 
weak  quadrupolar electric field, which traps ions in the axial plane. Within the 
Penning trap, ions undergo three independent motions: cyclotron, magnetron, and 
axial. Cyclotron motion is the large circular motion of ions in the plane perpendicu-
lar to the magnetic field lines (the radial plane). Magnetron motion is an additional 
slow circular drifting motion of ions in the radial plane (a drifting of the cyclotron 
motion centre). Axial motion is the harmonic oscillation of ions along the magnetic 
field lines. Excitation electrodes generate a sweeping RF potential that excites ions 
to larger cyclotron orbits in the radial plane so that they pass in close proximity to a 
pair of detection electrodes. Similar to an orbitrap mass analyzer, an image current 
is recorded by the pair of detection electrodes and then Fourier transformation is 
performed to generate mass spectra. The m/z of an ion is inversely proportional to 
the ion cyclotron frequency. Resolution can be improved by increasing the magnetic 
field strength or by increasing the scan time. FTICR instruments can also perform 
MSn experiments [46–51].
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3 � Chromatographic Separations Interfacing with MS

Physical separation of small molecules for MS analysis is important for metabolo-
mic investigations in order to reduce matrix effects, separate interferences, and 
resolve both isomeric and isobaric compounds. Standard chromatographic tech-
niques, as mentioned earlier, include liquid chromatography (LC) and gas chroma-
tography (GC). Capillary electrophoresis (CE) has also been utilized. A somewhat 
newer separation tool for MS-based metabolomics is ion mobility, where ions are 
separated in the gas phase by interactions with a neutral gas in the presence of an 
electric field. A brief discussion of these separation approaches is provided here.

3.1 � Liquid Chromatography

LC is an important laboratory technique that separates a mixture into individual 
components based on the interaction between a liquid and a solid stationary phase. 
Generally, LC refers to a separation that is performed in a column packed with a 
stationary phase. Thin layer chromatography (TLC), though, is also a type of LC 
where the stationary phase is coated on a sheet of inert material (such as aluminum 
or glass), and the liquid is drawn up the plate based on capillary action. LC columns 
use pressurized liquid to speed up chromatographic separations. Two general types 
of instruments are currently available, the high-performance liquid chromatography 
(HPLC) system and the ultra-high-performance liquid chromatography (UPLC) 
system. HPLC operates in a system pressure range generally less than 6000 psi, 
whereas UPLC operates in a pressure range of less than 18,000  psi. Due to the 
higher system pressures for UPLC, the use of stainless steel tubing is required.

Sample introduction for HPLC and UPLC is done using an autosampler. A sam-
pling needle is first used to take up a small amount (typically 1–20 μL) of sample 
from a prepared liquid specimen in a vial or plate within the autosampler. Pressurized 
mobile phases (MPs) then transfer the sample via a fix-loop or flow-through injector 
onto an LC column. Analytes are separated on the column based on their interaction 
with the MPs and the column’s stationary phase. Once analytes have eluted from the 
column they are transferred via tubing to the MS source for ionization (typically 
ESI or APCI, as described earlier in this chapter).

HPLC and UPLC columns are small, typically on the order of 30–150 mm in 
length and 1–4.6 mm in diameter. The adsorbent particle sizes for HPLC are typi-
cally between 3 and 5 μm in diameter. UPLC columns utilize particle diameters 
below 2  μm, which improves chromatographic efficiency (peak dispersion). 
Chromatographic efficiency is inversely proportional to the particle size. Smaller 
particle sizes increase system pressure, as the particle size is also inversely propor-
tional to the column back pressure. The use of UPLC columns, which have high 
efficiency, can increase chromatographic resolution (sharper and narrower peaks) 
and simultaneously reduce sample analysis time. Higher flow rates can be utilized 
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since the system can tolerate higher back pressures. UPLC paired with MS is a pre-
ferred approach for metabolomics investigations [52].

Generally, synthetic silica polymers are used as the adsorbent packing material 
in LC columns. Pore sizes of the silica polymer particles are typically in the 
100–300 Å range. The smaller the pore size, the larger the surface area available on 
the particle to interact with analytes. Smaller pore sizes are generally utilized for 
small molecules, whereas larger pore sizes are preferable for larger molecules such 
as proteins. The silica polymers packed into an LC column are usually covalently 
modified using alkyl chains (e.g., C8 or C18 chain lengths) or other functional 
groups (e.g., phenyl, cyano, amide, amine, fluorophenyl) to improve selectivity. In 
reversed-phase chromatography, a nonpolar stationary phase (e.g., C18 modified 
silica) is utilized. The mobile phase composition is ramped from high aqueous 
(polar) to high organic (nonpolar) solvent content. The organic solvent competes 
with nonpolar hydrophobic analytes for interaction with the nonpolar adsorbent sta-
tionary phase. Analytes generally elute in order of decreasing polarity as the mobile 
phase composition is increased from high aqueous to high organic solvent content. 
In normal-phase chromatography, the stationary phase is polar (e.g., bare silica or 
amide-modified silica), and the mobile phase composition is nonpolar. The mobile 
phase can be ramped to higher polarity content  in order to elute polar analytes. 
Nonpolar compounds generally elute first in normal-phase chromatography. 
Normal-phase chromatography is not frequently utilized with HPLC or UPLC. If 
the stationary phase is bare silica, organic solvents nonmiscible with water are gen-
erally utilized as water can become highly adsorbed to the silica and cause chro-
matographic variability. Polar-modified silica (e.g., amide modification) is a 
normal-phase chromatography approach where water can be tolerated in the mobile 
phase. Another normal-phase type approach that has also been developed is called 
hydrophilic interaction liquid chromatography (HILIC). In HILIC separations, 
polar hydrophilic compounds are retained more than nonpolar hydrophobic com-
pounds by the stationary at high nonpolar solvent content. The stationary phase is 
polar and hydrophilic. As the water (polar) content in the mobile phase increases, 
polar hydrophilic compounds elute off the column. The mobile phases used for 
HILIC generally require buffers such as ammonium formate or ammonium acetate 
to improve chromatographic peak shape. Additionally, acid or base modifiers such 
as formic acid or ammonium hydroxide are often added to mobile phases to enhance 
either positive or negative mode ionization in the MS source [53].

3.2 � Gas Chromatography

GC is a gas-phase separation technique where a gaseous sample mixture is separated 
into components using a narrow hollow metal tube filled with a porous silica-based 
stationary phase. A neutral gas such as helium or hydrogen is used to move the vola-
tile analytes through the column as a temperate ramp or constant temperature is 
applied to the column using a temperature-controlled oven. GC oven temperatures 
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can reach up to 350 °C, and columns must be able to withstand these high tempera-
tures. MS is frequently used for detecting eluting analytes (typically using an EI 
source at 70 eV, as discussed earlier) when a mass spectrum is required for analyte 
confirmation or library searching. Other methods include flame ionization detection 
and thermal conductivity detection. GC columns are usually very long, being on the 
order of 10 m or more in length [54]. The first reports of combining GC with MS 
date back to the late 1950s [55]. GC-MS is a robust and well-utilized method of 
analyzing specimens for metabolic investigations and allows for the identification of 
unknown analytes using well-developed 70 eV EI libraries, but can only analyze 
volatile compounds. To enhance the volatilization of molecules derivatization is fre-
quently required. A common method is silylation to generate trimethylsilyl (TMS) 
derivatives from alcohols, carboxylic acids, and amines. Ketone groups form TMS 
derivatives following initial treatment with hydrazine. Sample preparation of bio-
logical specimens for GC-MS analysis typically involves liquid-liquid extraction 
protocols that are generally longer than sample preparation techniques required for 
LC-MS analysis of the same specimens. Urine organic acid profiling by GC-MS is a 
standard targeted and nontargeted metabolomics assay utilized in biochemical 
genetics laboratories to investigate inborn errors of metabolism (IEMs) [56].

3.3 � Capillary Electrophoresis

CE can be interfaced with MS and is an emerging method of separating analytes 
prior to MS analysis. It is a technique based on the movement of ions in a high elec-
tric field. Analytes move from one end of the capillary to the other based on their 
size and charge. CE is particularly useful for the separation of polar and charged 
molecules. ESI is a common mode of interfacing CE with MS [57].

3.4 � Ion Mobility Spectrometry

Ion mobility spectrometry (IMS) is an analysis technique where molecules are sepa-
rated based on their mobility through an inert buffer gas such as nitrogen or helium 
in the presence of an electric field. IMS generates an analytical output called a col-
lisional cross section (CCS) value that provides additional complementary data to 
m/z determined by MS. The CCS value is a measure, in square Ångströms (Å2), of 
the interaction of a molecule with the buffer gas. CCS values depend on the mole-
cules’ specific size, shape, and charge and also vary based on the buffer gas utilized 
in the device. Several different types of IMS devices are commercially available. 
These include drift tube ion mobility spectrometry (DTIMS), traveling wave ion 
mobility spectrometry (TWIMS), structures for lossless ion manipulations (SLIM), 
field asymmetric waveform ion mobility spectrometry (FAIMS), and trapped ion 
mobility spectrometry (TIMS) [58–61].
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IMS devices operate on the millisecond timescale and are, therefore, well suited 
to being incorporated into an MS instrument (termed IMS-MS), which are often 
additionally paired with either LC or GC front-end separations. IMS is a useful 
analytical technique for increasing the separation of isomers and interferences in 
addition to LC and GC, or it can also operate as a stand-alone separation method. 
An IMS-MS instrument paired with initial chromatographic separation can provide 
retention time, m/z, and CCS data that is useful for metabolomics investigations [59, 
62]. Ion mobility spectrometry has not been utilized in the clinical laboratory to any 
great extent thus far, but in the future it may offer ways to increase selectivity, 
shorten analysis times, and potentially reduce reliance on traditional LC or GC sep-
arations [63].

4 � Current Clinical Metabolomic Applications

MS has been utilized for diagnostic testing in several areas of clinical pathology 
including clinical biochemistry, microbiology, anatomical pathology, toxicology, 
and newborn screening and biochemical genetics testing (Fig. 1) [64–67]. Generally, 
clinical quantitative diagnostic assays that utilize MS consist of targeted small pan-
els of analytes where sample preparation and instrument parameters can be fairly 
easily optimized. Applications of MS for clinical biochemistry include quantitative 
LC-MS/MS analysis for steroids, vitamins, therapeutic drug monitoring of small 
molecules and antibodies, and protein biomarkers for various disorders [64, 66]. 
These types of quantitative clinical assays typically consist of a single analyte or a 
small panel of analytes. Larger profiling panel assays have also been developed to 
improve patient diagnosis. For example, a 26 analyte panel urine steroid profiling 
assay by LC-HRMS has been reported [68]. Trace metal analysis is also done by 
inductively coupled plasma MS (ICP-MS) [69]. MS is utilized in microbiology for 
the qualitative identification of microorganisms by MALDI-QTOF MS via spectral 
matching of ionizable proteins and peptides present in a bacterial culture to a vali-
dated MS library [70]. In anatomical pathology, the use of MALDI-QTOF MS for 
spatial imaging analysis of small molecules, proteins, and peptides in cancer and 
other tissue biopsies is an emerging area [71]. MS has also been used during surger-
ies to guide the removal of tumor tissues [72].

In toxicology, LC-MS/MS, GC-MS, and LC-HRMS are routinely used for drug 
screening and investigation of toxic chemical exposures. ICP-MS is also utilized to 
investigate exposure to toxic levels of metals [73]. Detecting known and unknown 
drug substances in the body involves a combination of targeted and nontargeted 
approaches. LC-HRMS and GC-MS assays utilize analytical standards and spectral 
library matching to identify known and unknown drugs and toxic substances. 
LC-MS/MS is utilized for targeted quantitative analysis. Additionally, the use of 
large panel targeted and nontargeted MS assays to detect drug metabolites and 
determine the effect of drugs on biochemical pathway metabolite formation may 
find applications in clinical toxicology to improve workflows [74–77]. Global 
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Fig. 1  Mass spectrometry applications to diagnostic testing by clinical pathology division. (i) 
Divisions of clinical pathology that MS has been applied to. (ii) Applications of MS in each divi-
sion. (iii) MS platforms typically utilized in each division. Abbreviations: FIA-MS/MS flow injec-
tion analysis-tandem mass spectrometry, GC-MS gas chromatography-mass spectrometry, ICP-MS 
inductively coupled plasma-mass spectrometry, LC-HRMS liquid chromatography-high-resolution 
mass spectrometry, LC-MS/MS liquid chromatography-tandem mass spectrometry, MALDI-QTOF 
MS, matrix-assisted laser desorption/ionization-quadrupole time-of-flight mass spectrometry.

analysis looking at exogenous xenobiotic metabolites formed in the body, in addi-
tion to the effect of drug exposure on metabolites normally found in the body, is part 
of multidisciplinary metabolomics. Metabolomics being the large-scale systematic 
analysis of small molecules (metabolites) in a biological system.

Newborn screening and biochemical genetics is the clinical pathology division 
that currently heavily utilizes large-scale MS-based metabolomics investigations of 
biochemical pathway metabolites (both targeted large panels and nontargeted anal-
yses) for diagnosing and monitoring IEMs. Targeted large panel assays primarily 
analyze for amino acids, acylcarnitines, organic acids, and purines and pyrimidines. 
Organic acid analysis also typically involves spectral library searching for nontar-
geted identification of unknowns. Other tests utilizing MS include very long chain 
fatty acids for analysis of peroxisomal disorders [78, 79], steroids for analysis of 
sterol biosynthesis and steroidogenesis disorders [80–83], glycans and intact trans-
ferrin for analysis of congenital disorders of glycosylation [84], oligosaccharide and 
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glycosaminoglycan analysis [85, 86], and lysosomal enzyme activity testing for 
lysosomal storage disorders [87].

Amino acids are the building blocks of life and are utilized to synthesize peptides 
and proteins in the body, such as enzymes, hormones, and neurotransmitters. They 
are also key energy sources and metabolic intermediates in biological pathways, 
and can be recycled when required. There are 21 amino acids that are utilized to 
generate proteins, and 9 of these are called “essential” amino acids as the body can-
not synthesize them. Essential amino acids must be obtained in the diet [88]. 
Mutations in genes involved in amino acid catabolism can cause metabolic pathway 
blockages in the body, leading to toxic elevations in certain amino acids and metab-
olites [88, 89]. Deficiency in the synthesis pathways of amino acids caused by gene 
mutations can also occur [90]. As such, the measurement of amino acids in blood, 
plasma, urine, and cerebral spinal fluid is of essential importance for both diagnos-
ing IEMs and subsequent patient monitoring [91]. Amino acid analysis for NBS is 
discussed later on. As part of the diagnostic workup, gene sequencing for patients 
suspected of an IEM is frequently performed in addition to the biochemical 
assessment.

Traditionally, deproteinized amino acids have been analyzed by ion exchange 
chromatography (IEC) with post-column ninhydrin derivatization for colorimetric 
detection [92, 93]. IEC has been considered the gold standard for amino acid analy-
sis for over half a century. This approach involves lengthy sample analysis time 
(more than 1 h of analysis time per sample), lacks specificity and analytical resolu-
tion, and has minimal calibration. Many clinical laboratories have, therefore, moved 
away from IEC in favor of LC-MS/MS amino acid analysis approaches. LC-MS/
MS approaches include pre-column or post-column amino acid derivatization, and 
underivatized analyses using ion pairing reagents in the LC mobile phases [94–97]. 
Assays must be able to cover large analytical ranges as amino acid concentrations 
span three orders of magnitude. LC-MS/MS provides a much faster sample analysis 
time relative to IEC, which can facilitate urgent patient care needs and improve 
laboratory workflows.

Acylcarnitine analysis is done to help diagnose mitochondrial β-oxidation and 
organic acid metabolism disorders [98, 99]. Typically, this is performed by flow 
injection analysis paired with MS/MS (FIA-MS/MS) for urine and serum speci-
mens. Either derivatized or nonderivatized approaches can be used. Acylcarnitine 
analysis for NBS is discussed later on. Acylcarnitine isomers have also been sepa-
rated using LC-MS/MS to increase specificity [100].

Urine organic acid analysis is traditionally done by GC-MS and covers a broad 
range of IEMs arising from enzyme or transporter deficiencies [56]. Disorders can 
affect many biochemical pathways, including the metabolism of organic acids, 
amino acids, carbohydrates, fatty acids, sterols, and purines and pyrimidines. It pro-
vides targeted analysis of known biomarkers and also nontargeted screening capa-
bilities through spectral library searching (fragmentation energy of 70  keV is 
standard for GC-MS library generation and searching). Elevated levels of excreted 
metabolites and observed metabolite patterns are used to both identify and monitor 
disorders. Normalization of values to urine creatinine levels is required for 

Mass Spectrometry-Based Metabolomics for the Clinical Laboratory



34

diagnostic evaluation. Analysis of urinary organic acids by GC-MS generally 
requires lengthy liquid-liquid extraction, derivatization to enhance organic acid 
volatilization, and long chromatography run times to separate analytes and interfer-
ences (typically greater than 30  min per sample). Recently, an LC-QTOF MS 
method was reported, allowing for simplified sample preparation without 
the need for sample derivatization [101].

Purines and pyrimidines are important molecules that help form DNA and RNA, 
act as metabolic regulators and intermediates, and provide an energy store [102]. 
Metabolic disorders of purine and pyrimidine metabolism are usually screened in a 
panel assay by LC-MS/MS [103, 104], identifying disorders by abnormal urinary 
excretion levels of these molecules. This analysis typically does not require sample 
derivatization as LC, and not GC, is utilized. Similar to urine organic acids, normal-
ization to creatinine levels is required for urinary purine and pyrimidine analysis.

NBS programs aim to identify infants in the first few days after birth that are at 
high risk of having an IEM that may not be easily identifiable otherwise (i.e., having 
a lack of initial signs and symptoms of the disorder without a blood test). Early 
detection of certain disorders, such as phenylketonuria, allows for prompt treatment 
intervention in order to prevent death and other health complications. Dried blood 
spot (DBS) cards are typically utilized for NBS as they are relatively easy to collect 
via a heal prick from a newborn and provide sufficient analyte stability for the card 
to be transported at room temperature to a testing location. DBS cards are punched 
using an automated hole punch to provide a small sample for testing. Acylcarnitines 
and amino acids from DBS cards are analyzed simultaneously for NBS by FIA-MS/
MS quantitation [105]. Derivatization with butanol hydrochloride is frequently uti-
lized for NBS FIA-MS/MS. The initial (first-tier) FIA-MS/MS analysis lacks suf-
ficient diagnostic specificity for some disorders and a follow-up (second-tier) test is 
needed to increase the overall positive predictive value without reducing screening 
sensitivity. Second-tier tests provide more specific biomarkers and/or separate inter-
ferences from the analysis. Typically, second-tier tests involve LC separations fol-
lowed by MS/MS detection. The current necessity for lack of chromatographic 
separation for first-tier NBS prior to introduction into the MS is the sheer daily 
volume of specimens that must be analyzed [106, 107]. FIA-MS/MS analysis is less 
than 2 minutes a sample, whereas second-tier analyses can range anywhere from 2 
to 15 minutes a sample. From the first-tier testing a smaller cohort of specimens is 
flagged for second-tier analysis, which allows for a more manageable screening 
workflow. Of note, a recent publication has outlined a strategy to combine first-tier 
and second-tier NBS using microfluidic capillary electrophoresis paired with 
HRMS analysis [108].

It is possible to develop large-scale targeted LC-HRMS or low-resolution 
LC-MS/MS clinical metabolomics panels for evaluations of IEMs (reviewed com-
prehensively in chapters “Bioinformatics Tools for Clinical Metabolomics” and 
“Untargeted Metabolomics in Newborn Screening”) [56, 97, 101, 103, 109, 110]. 
Nontargeted metabolomics has limited clinical application to date outside urine 
organic acids analysis, which is typically performed by GC-MS. The advantage of 
large panel analyses is the efficient utilization of instrument time and a broader 
snapshot of the biological phenotype. A disadvantage of using very large metabolite 
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panels is that quality control issues arising from both the sample preparation and 
the  instrumental analysis can occur more frequently. Analyte recovery can vary 
greatly when using a universal sample preparation approach. Obtaining optimal 
chromatographic peak shape may not be possible as columns are designed to work 
optimally with different classes of molecules. Matrix effects leading to analyte ion 
suppression or enhancement need to be considered. Using a large number of inter-
nal standards to correct matrix effects can be problematic from a technical perspec-
tive. In some situations, benefits and disadvantages need to be taken into 
consideration regarding either  condensing or expanding existing  small molecule 
test panels. Ultimately the approach must be beneficial to patient care and clinical 
laboratory workflows.

5 � Guidance Documents and Validation Hurdles

Several guidance documents exist for validating small molecule MS assays [111, 
112]. These documents describe analytical criteria that should be demonstrated in a 
method validation to prove that the assay is acceptable for use in the clinical labora-
tory. Assay parameters to be included in a method validation are sensitivity, speci-
ficity, linearity, analytical range, the limit of quantitation, the limit of detection, 
recovery, matrix effects, accuracy, precision, and sample stability. Evaluation of 
normal ranges, clinical diagnostic decision-making points, and abnormal ranges 
must be performed. Frequently, a method comparison of the new assay vs. another 
assay in use at a different laboratory is also conducted using real specimens [113, 
114]. Targeted MS-based assays almost always involve the use of stable-labeled 
internal standards. Post-validation assay performance is monitored using a system 
suitability sample that is run prior to starting a batch of samples, in addition to QC 
samples analyzed during the run. Involvement in available external proficiency pro-
grams is also often done for assay performance monitoring.

Guidance strategies are currently available and work well, for single analyte or 
small panel assays in the clinical setting. However, for larger panel targeted metabo-
lomic assays (such as some  mentioned in the prior section), sample and batch 
acceptance criteria are not as straightforward. A fit-for-purpose approach, in some 
cases, is required. The clinical importance of certain biomarkers in the context of 
assay performance must be taken into consideration.

Nontargeted global metabolomics investigations are not generally utilized out-
side urine organic acids analysis in the routine clinical laboratory [56]. A major goal 
of many nontargeted metabolomics investigations is to identify differentially pres-
ent biomarkers or biomarker signatures that may be informative of a disease or 
health state. Accurate quantitation in nontargeted metabolomics investigations is 
not generally a main goal [115]. The incorporation of HRMS nontargeted metabo-
lomics investigations with clinically validated targeted small molecule panels may 
provide further health insights. Any potential biomarkers identified in nontargeted 
analyses should be validated in a fit-for-purpose manner and not by themselves 
drive clinical decisions. Harmonization of nontargeted metabolomics approaches 
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and the use of proficiency testing specimens [116, 117] will help improve results 
and data consistency from different laboratories [118–120]. A guidance document 
has also been published regarding combining and reporting ion mobility data from 
different instruments and buffer gases utilized [121].

6 � Summary and Future Outlook

MS is an important analysis technique for metabolomics investigations. Targeted 
and nontargeted metabolomics analyses provide valuable insights into phenotype 
changes. These biochemical investigations provide complementary data to genomic 
analyses in relation to disease evaluation and overall health status. Typically, screen-
ing and diagnostic workflows in the clinical laboratory involve biochemical analy-
ses first, followed by genome investigations when a genetic disorder is suspected 
from the biochemical profile. The order of investigations may change in the future 
as the cost of genomic testing continues to decrease. At some point in the future 
genomic analyses may be performed first, screening for known gene mutations and 
variants of unknown significance (VUS) associated with various metabolic disor-
ders. Biochemical testing would then follow the genetic workup to evaluate for the 
presence of known disease biomarkers and provide further comprehensive (targeted 
and/or nontargeted) metabolic profiling  as needed. Utilizing internal standards, 
quality controls, and external proficiency monitoring for biochemical MS assays is 
important to ensure the quality of the clinical laboratory data.

Further guidance documents are needed regarding approaches to acceptance cri-
teria for large panel  targeted MS-based metabolomics analyses, as current docu-
ments are aimed at small panels of analytes. Nontargeted metabolomics investigations 
have yet to be widely implemented in the routine clinical laboratory. Still, they may 
provide an investigative means in scenarios where existing targeted diagnostic test-
ing has not provided clear answers. Harmonization of methodologies, validation cri-
teria, and proficiency testing specimens for nontargeted MS-based 
metabolomics  investigations is needed in the future. Incorporating nontargeted 
analyses into the clinical setting may facilitate the discovery of new biomarkers that 
can be validated and included in targeted analyte panels.
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Metabolomics: A Pipeline for Biomarker 
Discovery in Genetic Diseases

Lina A. Dahabiyeh and Refat M. Nimer

Abstract  Genetic disorders (GD) affect hundreds of millions of lives worldwide, 
leading to specific molecular perturbations in the metabolic profile within a certain 
biological matrix. Metabolomic studies use advanced technologies (nuclear mag-
netic resonance (NMR) and mass spectrometry (MS)) with bioinformatics to iden-
tify and quantify a set of small molecules (such as carbohydrates, nucleic acids, 
amino acids, and lipids) present in a biological system. As metabolites represent the 
downstream product of gene and protein activity, they most likely reflect the pheno-
type of an organism at a specific time. Metabolomic studies provide novel insights 
into the underlying disease pathophysiological mechanisms, evaluate the progress 
of the disease, and identify unique biomarkers for the prediction of disease and 
therapeutic outcomes. This chapter highlights the applications of metabolomic tech-
niques for biomarker discovery in GD.  It discusses the workflow followed, the 
methods used for sample analysis and data interpretation, and the major challenges 
and limitations in applying the metabolomic approach for biomarker discovery in 
GD. Moreover, the chapter provides an overview of the biomarkers identified in 
four GD: cystic fibrosis, Down syndrome, sickle cell anemia, and glycogen storage 
disorders, highlighting the promising role of metabolomics in clinical applications.
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Abbreviations

BALF	 Bronchoalveolar lavage fluid
CF	 Cystic fibrosis
CFTR	 Cystic fibrosis transmembrane conductance regulator
CID	 Collision-induced dissociation
DBS	 Dried blood spot
DDA	 Data-dependent acquisition
DIA	 Data-independent acquisition
EBC	 Exhaled breath condensate
GC	 Gas chromatography
GD	 Genetic disorders
GSDs	 Glycogen storage disorders
LOD	 Limit of detection
LOQ	 Limit of quantification
MS	 Mass spectrometry
NMR	 Nuclear magnetic resonance
OPLS-DA	 Orthogonal partial least squares-discriminant analysis
PCA	 Principal component analysis
PLS-DA	 Partial least squares-discriminant analysis
SCD	 Sickle cell disease
VIP	 Variable importance in projection

1 � Introduction

Hundreds of millions of lives are affected by an estimated 10,000 unique genetically 
determined diseases [1]. Genetic disorders (GD) refer to any disease caused by 
mutations in one or more genes. Although GDs are individually rare, they account 
for approximately 80% of rare disorders [2]. Additionally, genetic material is con-
sidered a risk factor for several frequent complex multifactorial disorders, including 
cancer, asthma, heart disease, and diabetes [2, 3]. As with any other illness, GD will 
result in specific alterations in the profile of the biological molecules within a cer-
tain biological matrix, such as biofluids, cells, and tissues. Measurements of these 
biomolecules can be used to identify disease biomarkers and aid in understanding 
the underlying molecular mechanisms of the disease.

The last few decades have witnessed increasing interest in omics studies: genom-
ics, transcriptomics, proteomics, and metabolomics (Fig.  1). They represent 
advanced and promising measurement approaches for disease biomarker discovery. 
Metabolomics is the global identification and quantification of a set of small mole-
cules, less than 1500 Da (such as carbohydrates, nucleic acids, amino acids, and 
lipids) present in a biological system [4]. As metabolites represent the downstream 
product of gene and protein activity, they most likely reflect the phenotype of an 
organism at a specific time [5]. Metabolomic studies provide novel insights into the 
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Fig. 1  The four omics sciences genomics, transcriptomics, proteomics, and metabolomics in sys-
tems biology approach. Metabolomics represents the downstream output of the genome, and 
together with environmental factors and the microbiome, it can reflect the phenotype of an 
organism

underlying disease pathophysiological mechanisms, evaluate the progress of the 
disease, and identify unique biomarkers for the prediction of disease and therapeutic 
outcomes [6–10].

Global metabolomic studies use advanced technologies with bioinformatics. 
Two main analytical technologies are employed: nuclear magnetic resonance 
(NMR) and mass spectrometry (MS) [8, 11]. Advances in MS coupled with chroma-
tography (LC-MS) have improved the efficiency and reliability of metabolite profil-
ing. Over the years, LC-MS-based metabolomics has witnessed tremendous 
improvements in sensitivity, mass resolution, metabolome coverage, and data pro-
cessing, enabling reliable identification of diverse metabolites even within complex 
biological samples [12]. The application of metabolomics in biomedical research 
has identified biochemical pathways and has discovered diverse sets of potential 
biomarkers that have enhanced the understanding of the molecular mechanisms in 
several diseases and aided in their diagnosis, including diabetes [13, 14], cancer [15, 
16], and GD [17]. A biomarker is a biomolecule (i.e., gene, protein, or metabolite-
based substance) that indicates an abnormal condition within a subject. Biomarkers 
can be used in clinical and medical settings to determine specific disorders (known 
as diagnostic biomarkers), monitor disease progression (prognostic biomarkers), 
indicate probable response to therapy (predictive biomarkers), and indicate the risk 
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of developing a disease (predisposition biomarkers) [18]. Metabolomics allows the 
identification of tens of potential biomarkers that need to undergo analytical (with 
other analytical platforms such as polymerase chain reactions (PCR) or immune 
affinity-based assays) and clinical validations before being approved to be used in 
the clinic. Metabolome profiling of biofluids can be combined with whole-genome 
profiling of single nucleotide polymorphisms to identify many gene-metabolite 
associations simultaneously in metabolomic genome-wide association studies [19].

This chapter highlights the applications of metabolomic techniques for bio-
marker discovery in GD.  The chapter discusses the workflow followed and the 
methods used for sample analysis and data interpretation in the metabolomic 
approach. Moreover, the chapter provides an overview of the most interesting recent 
biomarker discovered in the most frequent GD, such as cystic fibrosis, Down syn-
drome, and sickle cell anemia, highlighting the promising role of metabolomics in 
clinical applications. The current challenges and limitations in biomarker discovery 
in GD using the metabolomic approach will also be covered.

2 � Sample Preparation in Metabolomics

Careful consideration of different aspects of metabolomic studies, such as study 
design, is vital to ensure high-quality data and reproducible biomarker generation. 
Following standardized protocols during sample collection and processing and 
using validated analytical methods to analyze samples will result in robust and 
reproducible analyses [20].

Experimental design in metabolomic studies may differ depending on the study’s 
objective, available resources, and the type of biological sample. However, the gen-
eral experimental workflow is the same. The typical workflow in metabolomics 
includes sample preparation and metabolite extraction, metabolite separation using 
chromatography (liquid (LC) or gas chromatography (GC)), metabolite analysis 
using MS or NMR spectroscopy, metabolite identification, and data processing 
using uni- and multivariate analyses for the discovery of potential biomarkers 
(Fig. 2).

2.1 � Sample Collection

In metabolomic experiments, at least two samples (two conditions) are typically 
compared, one being the control (or reference) group. Biospecimens used for bio-
marker discovery are preferably collected from large case-control studies or cohorts 
with defined inclusion and exclusion criteria and complete information on the clini-
cal and demographic characteristics, as much as possible.

Poorly defined groups, non-matched confounding factors, or heterogeneous 
samples are potential pitfalls in the study design and may negatively affect the study 
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Fig. 2  Workflow followed in untargeted metabolomic analysis

outcomes. Poor study design during sample collection is one of the reasons that 
might explain the poor progression of discovered biomarkers toward clinical appli-
cability [18].

2.2 � Sample Type

Biomarker research aims to discover a biomarker using a noninvasive (e.g., urine, 
tears, saliva) or minimally invasive (e.g., blood and serum or plasma) sample and, if 
possible, try to avoid invasive samples (e.g., tissue). Blood is the most commonly 
used biofluid in metabolomic studies since it is easy to collect (compared to tissues). 
Its composition is stable and reflects the state of the body at the time of collection 
[21]. Blood is considered the most commonly used sample type in many GD, 
including cystic fibrosis (CF) and sickle cell disease [22–24]. Serum, plasma, sweat, 
dried blood spots, and epithelial cell cultures from cohorts of patients with CF [24–
28] were used to identify novel metabolic abnormalities associated with CF and 
discover a panel of potential biomarkers for the disease. Metabolomic studies 
involving Down syndrome, the most common human chromosomal aberration, 
mainly used amniotic fluid from fetuses with Down syndrome [29, 30]. Cultured 
fibroblasts and liver tissues were used in metabolomic studies conducted on glyco-
gen storage disease (GSD) and glucose-6-phosphatase deficiency mouse models, 
respectively [31, 32]. Inherited genetic mutations play a major role in about 5–10% 

Metabolomics: A Pipeline for Biomarker Discovery in Genetic Diseases



48

of all cancers. Many metabolomic studies on cancer patients mainly used tissue 
specimens to monitor disease progression, identify different disease stages, and dis-
cover biomarker candidates in breast and colon cancers [33–35].

2.3 � Metabolite Extraction

The matrix of the biological sample has a certain level of interferences (such as salts 
and proteins) that can affect the operation of the analytical instrument. Therefore, 
sample preparation is crucial in metabolomic analyses and might be a major source 
of variability [36]. To ensure informative and accurate metabolite profile outcomes 
in global metabolomics, the sample preparation method should be (a) unselective to 
maximize metabolite coverage, (b) sensitive and compatible with the analytical 
approach followed, (c) simple and fast to avoid metabolite degradation and mini-
mize variability, (d) reproducible, and (e) include a metabolism quenching step to 
stop any biochemical reactions after the time of sampling [37].

In the metabolomic study of serum or plasma, proteins will be precipitated first 
with organic solvent (such as methanol, acetonitrile, and acetone or a combination), 
followed by metabolite extraction. Among the most commonly used extraction 
methods are (a) liquid-liquid separation (with specified ratios of solvents), where 
metabolites of interest are separated into an immiscible solvent, (b) using a column 
or solid-phase extraction (SPE) approach to trap the metabolites, and (c) selective 
solubilization [38, 39]. Analysis involving GC-MS will typically include a step of 
derivatization before metabolic profiling. Among the solvents used in extraction, 
methanol was the best in metabolite coverage and method reproducibility [39]. On 
the other hand, sample preparation for NMR analysis is much simpler than MS-based 
approaches and requires a deuterated solvent and a chemical shift reference. 
Metabolite extraction during metabolite profiling using the LC-MS approach in CF, 
Down syndrome, and sickle cell disease mainly employed a solvent extraction 
method [23, 29, 40, 41]. It offers a simple and rapid extraction approach with excel-
lent metabolome coverage. However, the latter highly depends on the solvents used 
[37]. To ensure system stability and aid in metabolite identification, stable isotope-
labeled quality control internal standards are added during sample preparation, as in 
the metabolite profiling of sickle cell disease patients [22].

3 � Technologies Used in Metabolomics

Current technologies used in metabolomic research involve MS and NMR 
spectroscopy.
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3.1 � Mass Spectrometry (MS)

Mass spectrometry (MS) is an indispensable analytical tool and a vital technology 
in metabolomic studies. It is widely applied due to its high sensitivity (typically at 
the pg level) and fast data acquisition speed. During the last decades, MS has moved 
into the front line of metabolomic research. Several well-established methods have 
identified potential biomarkers in GD from blood plasma-derived samples, cells, 
and tissues [29, 32, 34, 42, 43]. Advances in the MS analysis were achieved due to 
enhancements in the sensitivity, ionization, mass accuracy, and the high-throughput 
capabilities of different mass analyzers and the hyphenation of MS to different sep-
aration techniques, such as LC and GC, to allow for the analysis of complex biologi-
cal samples. Common MS analyzers include quadrupole (Q; acts as a mass filter), 
high-resolution accurate mass analyzers, time-of-flight (TOF), and Orbitraps. To 
provide quality assurance for MS analysis and data acquisition, quality control (QC) 
samples, prepared from pooling aliquots of all samples to be analyzed, are random-
ized for analysis among the study samples [44]. Another approach used to compen-
sate for the effect of ion suppression and increase the reliability of the generated 
data is to spike the samples with stable isotope-labeled internal standard structural 
analogs as internal standards, which is mainly applied in the targeted metabolomics 
[45, 46].

3.2 � Nuclear Magnetic Resonance (NMR) Spectroscopy

NMR spectroscopy, including 1H NMR, is used to profile metabolites for biomarker 
discovery and develop metabolic fingerprints for disease diagnosis and monitoring 
response to treatment due to its fundamental quantitative nature. NMR-based 
metabolomics has been applied to profile plasma and urine samples from subjects 
with Down syndrome and normal controls [47, 48] and plasma samples from sickle 
cell disease patients with normal albuminuria and patients with moderately or 
severely increased albuminuria [49]. The same approach was used to identify 
plasma metabolic phenotypes of children with autism spectrum disorder, idiopathic 
developmental delay, and Down syndrome compared to typically developed con-
trols [50]. Unlike MS, NMR allows structural verification/identification of known 
and unknown metabolites and quantitation from the same measurement, requiring 
minimal sample preparation. However, NMR methods have lower sensitivity, 
dynamic range, and metabolite coverage when compared to LC-MS-based meth-
ods [12].
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4 � Metabolite Identification and Statistical Analysis

Advanced software combined with rich databases highly impacted advancement in 
metabolomic research. Typically, acquired data will be cleaned up to remove artifact 
peaks or peaks with poor repeatabilities, such as peaks detected in less than 50% QC 
samples or peaks with high variability (e.g., CV > 30% in QC). Normally, metabo-
lite identification is performed by matching accurate masses of the detected peaks 
with metabolite in specialized databases and libraries, the retention times (RT) of 
authentic standards, and/or the MS/MS fragmentation database [41]. The confi-
dence in metabolite identification in GD follows the general recommendations 
based on the Chemical Analysis Working Group Metabolomics Standards Initiative 
recommendation, where the confidence is assigned as level 1–4 (L1–4) [51, 52].

Different metabolomic studies in GD used multivariate analysis and univariate 
analysis to identify potential biomarkers of the disease [28–30, 47, 49]. For multi-
variate analysis, imported datasets are Pareto scaled, and principal component anal-
ysis (PCA), partial least squares-discriminant analysis (PLS-DA), and orthogonal 
partial least squares-discriminant analysis (OPLS-DA) are used for modeling the 
differences between the study groups. The robustness of the generated models is 
monitored by the fitness of the model (R2X) for PCA (R2Y) for PLS-DA and 
OPLS-DA and predictive ability (Q2) values. The model yielding large R2X and 
R2Y (close to 1) and Q2 values of ~0.5 indicates a robust model [53]. Mass ions are 
responsible for the class separation between diseased and control groups specified 
using variable importance in projection (VIP) of the generated PLS-DA or OPLS-DA 
model. Metabolites with VIP scores above 1.0 are considered important for the 
model and responsible for differentiating between samples [54]. An unpaired two-
tailed Student’s t-test is used for univariate analysis to identify significantly altered 
metabolites between the two compared groups. False discovery rate (FDR)-corrected 
p-value of less than 0.05 is considered significant.

5 � Approaches Followed in Metabolomics 
for Biomarker Discovery

The key to discovering new biomarkers depends on the quantification, relative or 
absolute, of the changes in the levels of the metabolites in the study versus control 
samples. Two main approaches can be applied in metabolomic analyses: untargeted 
metabolomics (sometimes referred to as “shotgun metabolomics”) and targeted 
[55, 56].
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5.1 � Untargeted Approach

Global untargeted metabolomics aims to capture all metabolites in a specific bio-
logical sample. In MS-based metabolomics, data can be acquired either in data-
dependent acquisition (DDA) or data-independent acquisition (DIA). DDA is the 
classic LC-MS/MS method for scanning metabolites in metabolomic profiling 
experiments and generating further MS information for identification. In this 
approach, MS measures ions in duty cycles. A quick MS1 (the first mass analyzer) 
survey scan for all the detectable ions will be performed in each duty cycle. Second, 
the top ions with the highest intensities will be selected for MS2 (the second mass 
analyzer) analyses. Third, a series of MS2 scans will be done for fragment ions of 
each preselected target ion [57]. DIA has gained increased interest in recent years 
due to the advancement in computer algorithms and speed. This data acquisition 
does not rely on the MS1 survey scans to detect top precursor ions for fragmentation 
and subsequent product ion scan. Although DIA can increase MS/MS information, 
it cannot generate high-quality precursor-specific MS2 spectra [58]. For untargeted 
global metabolomics, high-resolution accurate-mass MS instruments, such as TOF 
and Orbitrap coupled to quadrupole (Q) mass filter, are preferred [44]. Knowledge 
of accurate masses facilitates ion identification across different samples using online 
or commercially available databases.

Most of the metabolomic studies applied in GD used an untargeted approach for 
biomarker discovery. LC coupled with a QTOF mass spectrometer with DDA or 
DIA was used to profile metabolites of the amniotic fluid of fetuses with Down 
syndrome [30], the amniotic fluid of women carrying a fetus with Down syndrome 
[29], and blood from 292 participants with Down syndrome [40]. On the other hand, 
a hybrid Q-Orbitrap mass spectrometer was used to identify plasma metabolites 
implicated in sickle cell disease clinical heterogeneity [22]. Metabolomic discovery 
untargeted screening was also used to identify metabolites associated with neutro-
philic inflammation in bronchoalveolar lavage fluid (BALF) supernatant from pre-
school children with CF [59] and to identify perturbed metabolites in human sickle 
erythrocytes compared with human non-sickle erythrocytes [60, 61].

Although identifying specific biomarker candidates is the ultimate goal of the 
untargeted metabolomic approach, this approach will need better reproducibility 
and the detection of a high number of false positives in the presence of deficiencies 
in the experimental design. The latter will have a negative impact on the reproduc-
ibility of the method. Therefore, it is essential to have quality control over the ana-
lytical method by (a) randomization of the sequence of the samples, (b) analysis of 
blank and pooled QC samples, (c) monitoring mass accuracy of internal standards 
during the run, and (d) checking retention time and peak intensity for spiked inter-
nal standards [62, 63].
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5.2 � Targeted Approach

The targeted analysis will focus on a specific set of defined metabolites. Hence, it 
offers an improved limit of detection (LOD) and limit of quantification (LOQ) com-
pared to global metabolomic methods. The approach can provide absolute quantifi-
cation (when analyzed with standards) of tens-hundreds of metabolites 
simultaneously in a highly specific and sensitive manner. Triple quadruple MS 
instruments are the preferred analyzers in targeted quantification as they offer high 
sensitivity, particularly when running multiple reaction monitoring (MRM) modes 
[44, 64]. MRM requires the selection of precursor-to-fragment transitions; MS1 
(Q1) will selectively filter ions of a particular mass over charge m/z (within a certain 
resolution) corresponding to the intact targeted metabolite. The precursor ions are 
then subjected to fragmentation using collision-induced dissociation (CID) in a col-
lision cell (q2). Finally, the fragment ions of the target analyte with high ion inten-
sity and specificity are filtered through MS2 (Q3), generating a signal of the MRM 
transition [65].

Due to its high specificity and sensitivity, MS-based targeted metabolomics can 
be used to quantify low-abundance metabolites. It can also be applied for verifying 
and validating candidate biomarkers, especially in easily accessible blood samples 
and body fluids. It is an essential step for translating disease biomarkers into clinical 
practice. Targeted MS metabolomics was employed to quantify extra- and intracel-
lular metabolites in cultured fibroblasts from healthy controls and patients with the 
GSD Ia, GSD Ib, and GSD III [32], relevant metabolites in BALF and blood sam-
ples (spiked with isotopically labeled internal standard) from children with CF [27, 
59, 66, 67], and plasma metabolites of normal individuals and patients with sickle 
cell disease [23].

6 � Biomarker Discovery and Validation

A biomarker is a characteristic that can be objectively evaluated and measured as an 
indicator of a normal biological process, a pathogenic process, or a pharmacologic 
response to treatment [68]. Biomarkers are essential to early disease detection and 
provide useful predictive and monitoring information for more precise diagnoses 
and successful patient treatment and management. With the pivotal roles of bio-
markers in clinical applications and the recent development of new technologies, 
biomarker discovery has been a topic of intensive research [69].

Metabolomics is the closest biomolecule to the phenotype. Therefore, metabo-
lome analysis may be useful for identifying diagnostic and predictive biomarkers. 
With the growing availability of metabolome analysis, researchers’ attention has 
shifted toward analyzing biofluids and tissues to find alterations in metabolites that 
can potentially be novel biomarkers of diseases. The general premise was relatively 
straightforward: identify as many metabolites as possible in a particular kind of 
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biofluid obtained from diseased patients and compare them to those found in healthy 
individuals matched for age, sex, and other factors. Once potential candidates are 
identified; the key step is validation, which produces disease biomarkers for even-
tual clinical applications.

Metabolomic biomarker discovery has led to identifying numerous potential 
candidates for disease diagnosis, prognosis, and prediction of response to therapy. 
The field of metabolomics has significantly developed over the last 10–15 years. 
However, very few potential biomarkers discovered have been validated clinically 
and are regularly utilized in clinical practice [70]. One challenge that has delayed 
the translation of the most promising biomarker candidates into a clinical setting is 
validation [71, 72]. Due to the large physicochemical varieties of the metabolome, 
validating metabolite characteristics is still regarded as a bottleneck [4]. Potential 
biomarkers should be further validated with large-scale studies [69]. However, one 
of the obstacles in biomarker validation is the limited access to large and indepen-
dent cohort samples [72].

At the discovery level, metabolomic technologies permit only a few (20–100) 
samples to be analyzed in each class sampled from two independent populations. 
Then, the study is repeated at the internal validation stage to validate the previous 
findings from the discovery study. This step is needed to see if the proposed bio-
marker can distinguish disease states in a cohort similar to the discovery cohort. In 
the external validation stage, a larger sample size in the hundreds to thousands is 
analyzed; however, only a small number (e.g., one to ten) of metabolites are mea-
sured [73, 74]. One crucial issue often overlooked in biomarker development and 
validation is proper patient recruitment, simply because more samples need to be 
analyzed in the biomarker validation stage than in the biomarker discovery stage. 
During external validation, the biomarker must be evaluated in a population typical 
of the population for whom the test is designed; thus, ethnicity and place of origin 
should be considered. In addition, a suitable control group for the biomarker pur-
pose must also be established [70]. Notably, the test and control groups must have 
precisely the same collection conditions with similar demographics. Confounding 
variables, such as sex and age, should always be matched; other confounders, such 
as experimental conditions, diet, and drug interactions, should also be controlled 
during the discovery and validation of a metabolomic biomarker [75, 76].

After the discovery phase, targeted studies can be carried out to validate the 
results. However, in patients with nonspecific phenotypes, untargeted metabolomics 
shows promise as a validation tool for variants of unknown significance in candidate 
genes for genetic disorders [77]. Moreover, biomarker validation studies can be 
performed using affinity multiplexing assays [78]. In a second independent study, 
NMR spectroscopy was used to validate metabolites from exhaled breath conden-
sate of patients with unstable CF, stable CF, and healthy subjects [79]. Purine 
metabolism and protein catabolism pathways have been found as biomarkers for 
neutrophilic airway inflammation in CF patients.

Furthermore, these multiple metabolic pathways were validated by an indepen-
dent cohort [80]. Calprotectin and urinary glucose tetrasaccharide for hepatic GSDs 
and Pompe disease are examples of biomarkers approved for clinical use in 
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GD. Nevertheless, most of the reported biomarkers for GSD were performed with 
few patients and needed clinical validation to transfer to routine use [81].

7 � Application of Metabolomics in Disease Biomarker 
Discovery in Genetic Disorders

One of the greatest and ongoing challenges in genetics is the ability to predict the 
phenotypes of individuals from their genotypes. In GD, the genetic variants may 
alter an individual’s metabolome; this link between genetic variants with changes in 
the metabolome may help predict novel phenotypes [82]. Metabolomics differs 
from other “omics” sciences in linking gene and environmental interactions. As a 
result, scientists may investigate gene-environment interactions by studying metab-
olites and metabolism [83, 84].

Our focus in this chapter will be on cystic fibrosis, Down syndrome, sickle cell 
anemia, and glycogen storage disorders.

7.1 � Cystic Fibrosis

Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the 
gene that codes for the cystic fibrosis transmembrane conductance regulator (CFTR) 
[85]. More than 2000 mutations have been identified and reported in the CFTR1 
(CF Mutation Database) [86]. CF is a disease that affects various organ systems 
ranging from lung illness to liver disease and poor response to current treatments 
[87]. Although CF-causing mutations in the CFTR gene are known, there is signifi-
cant clinical variability in phenotype level, and the etiology of many symptoms is 
unknown. Therefore, metabolic investigations were carried out to provide a deep 
understanding of how CFTR mutations cause disease consequences and aid in find-
ing novel biomarkers [17]. A summary of selected studies and their main findings is 
presented in Table 1.

In a study, Quinn et al. [88] compared metabolite levels in the sputum of partici-
pants known to have CF with exacerbation during treatment and posttreatment and 
in stable groups [88]. They utilized LC-MS/MS to evaluate the impact of exacerba-
tions on the sputum metabolome. Platelet-activating factor (PAF) and a related 
monacylglycerophosphocholine lipid were identified as possible biomarkers of cys-
tic fibrosis pulmonary exacerbations (CFPE) [88]. Targeted metabolomic profiling 
on 39 dried blood spot (DBS) samples identified sorbitol as an important indicator 
for the mucoviscidosis seen in patients with CF. Esther et al. [59] conducted a study 
with 20 BALF samples analyzed by LC-MS/MS and GS-MS and then validated 34 
extra BALF samples with targeted MS [59]. They verified that metabolites associ-
ated with adenyl purine metabolism, dipeptides, cellular energy, and lipids 
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Table 1  A summary of the literature on applying metabolomics for biomarker discovery in CF

Sample Method
Sample 
size Main findings References

Sputum LC-MS/MS 11 Platelet-activating factor (PAF) and a 
related 
monacylglycerophosphocholine lipid 
are elevated in CF patients with 
pulmonary exacerbations

Quinn 
et al. [88]

DBS GC/MS and 
LC-MSMS

69 26 metabolites were significantly 
differentially expressed and 
characterized by amino acid, 
glycolysis, mitochondrial, 
peroxisomal metabolism, and sorbitol 
pathways

Al-Qahtani 
et al. [27]

CF patients have a significantly lower 
level of osmolyte (sorbitol) than 
healthy individuals, indicating that 
their sorbitol pathway is disturbed, 
which may explain the mucoviscidosis 
found in those with CF

BALF GC/MS and 
LC-MSMS

20/ 34 for 
validation

Early structural lung disease was 
predicted by findings that involved 
the catabolism of proteins, oxidative 
stress, and the metabolism of 
adenosine products. The enzymes 
associated with adenosine metabolism 
were also elevated in those with early 
disease samples. Metabolites and 
pathways altered with neutrophilic 
inflammation and destructive lung 
disease

Esther 
et al. [59]

Serum A chemical 
isotope labeling 
liquid 
chromatography-
mass 
spectrometry

69 Metabolites changed between CF 
mutational classes II–VI and III–
IV. The highly sensitive biomarkers 
for CF, 3,4-dihydroxymandelate-3-O-
sulfate and 5-aminopentanoic acid, 
were found in all three analyses

Masood 
et al. [66]

Serum GC/MS and 
LC-MSMS

62 Several pathways were found to be 
different in CF, indicating decreased 
activity in the oxidation of fatty acids 
CF has lower ketone bodies, lower 
medium chain carnitines, higher 
dicarboxylic acids, and lower 
2-hydroxybutyrate from amino acid 
metabolism

Joseloff 
et al. [26]

(continued)
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Table 1  (continued)

Sample Method
Sample 
size Main findings References

Primary 
human 
airway 
epithelial 
cell 
cultures

Untargeted 
metabolomic/
UHLC/MS/MS

Three 
separate 
cohorts

The levels of purine nucleotides were 
significantly reduced in CF cells. 
Decreased glucose metabolism in CF 
cells may exacerbate oxidative stress 
and limit epithelial cell response to 
environmental stress

Wetmore 
et al. [25]

DBS Nontargeted 
capillary 
electrophoresis-
mass 
spectrometry 
(CE-MS)

152 N-glycated amino acids, oxidized 
glutathione disulfide, and 
nicotinamide were differentially 
expressed in normal birth weight CF 
neonates without meconium ileus 
compared to the control group

DiBattista 
et al. [89]

Sputum Untargeted LC/
HRMS

34 Pseudomonas aeruginosa 
“metabotypes,” antibiotic resistance 
and virulence phenotypes, and 
clinical exacerbations were 
significantly associated

Moyne 
et al. [90]

Sweat Nontargeted 
capillary 
electrophoresis-
mass 
spectrometry 
(CE-MS)

68 Several metabolites associated with 
asymptomatic CF infants were 
identified in sweat, including 
asparagine and glutamine. Both 
pilocarpic acid, a synthetic sweat 
stimulant, and mono(2-ethylhexyl) 
phthalic acid, a natural sweat 
stimulant, were secreted in 
significantly lower concentrations in 
CF infants than in unaffected CF 
screen positive controls

Macedo 
et al. [28]

Exhaled 
breath 
condensate

UPLC-MS 35 4-hydroxycyclohexylcarboxylic acid 
and pyroglutamic acid were used to 
distinguish acute pulmonary 
exacerbation (APE) samples from 
stable CF samples. Lactic acid and 
pyroglutamic acid accurately 
distinguished pre-APE samples from 
stable CF samples and matched the 
APE signature when projected onto 
the APE vs. stable CF model. 
Post-APE samples had a metabolomic 
signature more similar to stable CF 
samples

Zang et al. 
[92]

Serum UPLC-MS 30 Tryptophan-kynurenine, nitric oxide, 
bile acids, and microbial-derived 
amino acid metabolites were altered 
in serum to distinguish the pre- from 
post-exacerbation state

Muhlebach 
et al. [41]
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Table 1  (continued)

Sample Method
Sample 
size Main findings References

BALF NMR 11 Alteration in amino acids and lactate 
may help distinguish the high- from 
the low-inflammation groups

Wolak 
et al. [91]

Plasma UPLC-MS 52 Fatty acid, amino acid, and 
carbohydrate metabolism differed 
between baseline vitamin D and 
placebo-treated CF patients

Alvarez 
et al. [24]

The amino acid pathways in CF 
patients treated with vitamin D3 
versus placebo were altered. Several 
tricarboxylic acid cycle intermediates 
increased, while amino acid-related 
metabolites decreased in the placebo 
group but not in the vitamin D3 group

Exhaled 
breath

GC-TOF-MS 105 Volatile organic compounds (VOCs) 
such as C16 polyunsaturated 
hydrocarbon in the exhaled breath of 
CF patients can distinguish between 
CF and non-CF patients and between 
CF patients with and without 
Pseudomonas

Robroeks 
et al. [93]

pathways are altered with neutrophilic inflammation and destructive lung disease 
[59]. Metabolites related to amino acids, di-, and tri-peptides, glutathione, gluta-
mine, glutamate, and arginine metabolism pathways have also been described as 
potential biomarkers among the CF mutational classes (II–VI) and between the 
class III and IV through analyses of serum samples by chemical isotope-labeled 
MS-based metabolomic approach [66]. Joseloff et al. [26] applied LC-MS/MS and 
GC-MS in two groups of children with CF and non-CF lung disease. They reported 
an alteration in cellular energy metabolism in CF, potentially reflecting mitochon-
drial dysfunction, which may be useful in differentiating CF from non-CF lung 
diseases [26]. Metabolomic profiling showed differences in CF and non-CF primary 
lung epithelial cells [25]. The levels of glucose, sorbitol, glycerophosphocholine, 
and various glycolytic intermediates, including glucose 6-phosphate, fructose 
6-phosphate, and lactate, were significantly reduced in CF cells compared with the 
non-CF cells [25].

Many studies have revealed that different biomarkers, based on metabolite pro-
files, could be detected in a range of biological samples, including blood [89], spu-
tum [88, 90], BALF [80, 91], exhaled breath condensate (EBC) [92, 93], cell culture 
[25], sweat [28], plasma [24], and serum [26, 41, 66]. Biomarkers in the polyamine 
(e.g., putrescine, spermidine) metabolism highlighted significant associations 
between Pseudomonas aeruginosa “metabotypes,” expression of antibiotic resis-
tance and virulence phenotypes, and frequency of clinical exacerbations in CF 
patients [90]. The level of ophthalmic acid was found to be downregulated, along 
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with amino acids (serine, threonine, proline, and glycine) present in neonatal DBS 
[89]. Mono(2-ethylhexyl) phthalic acid in sweat samples from positive CF infants 
was differentially downregulated compared to non-CF [28]. Zang et al. [92] reported 
a distinctive profile for CF in exhaled breath condensate, including two metabolic 
discriminant characteristics, 4-hydroxycyclohexylcarboxylic acid and pyroglutamic 
acid, between APE and stable CF samples. Moreover, lactic acid and pyroglutamic 
acid were found to differentiate stable CF from pre-APE [92].

7.2 � Down Syndrome

Down syndrome (DS) is the most common chromosomal-related GD. The presence 
of an extra-human copy of chromosome 21 characterizes DS. DS patients are char-
acterized by the facial appearance and various complications, including intellectual 
disabilities, mental and growth retardation, vision problems, hearing loss, infec-
tions, hypothyroidism, blood disorders, and cardiovascular abnormalities [94, 95]. 
Even though the anatomical and physiological abnormalities in DS are well known, 
and the genetic etiology of DS has been identified, understanding the exact cellular 
mechanisms linking genotype to phenotype is the major challenge. With the pres-
ence of well-established procedures for testing DS, such as ultrasonographic meth-
ods and amniocentesis, which looks for chromosome disorders, the diagnosis of DS 
based adequately on reliable biomarkers is underdeveloped [30, 96].

DS genotype affects the functional phenotype leading to changes in metabolo-
mic profiles. Therefore, metabolomics seems to be a promising tool for identifying 
disease-related biomarkers. To date, few metabolomic studies have been conducted 
to study and discover novel biomarkers in DS disease. The urinary metabolome of 
122 maternal urines has been analyzed using LC-MS and revealed that dihydroura-
cil was significantly elevated in the urine of women with a DS-affected pregnancy. 
In contrast, progesterone was decreased in a DS-affected pregnancy compared with 
normal pregnancies [97].

Parfieniuk et al. [29] reported significant differences in the level of methylhisti-
dine, hexanoylcarnitine, diacetylspermine, and p-cresol sulfate when comparing 
amniotic fluid of 13 women with fetal DS with 13 healthy fetuses [29]. Diaz et al. 
[98] conducted a study on urine levels of 2-ketoglutarate, 1-methylhistidine, 
3-hydroxybutyrate, 4-OH-hippurate, and dimethylamine and were able to distin-
guish the pregnant women carrying a baby with a chromosomal abnormality from 
the control group using NMR method [98]. Furthermore, alterations of cortisol lev-
els, free amino acids (arginine, histidine, and glutamate), and pregnenolone sulfate 
in amniotic fluid from fetuses with DS were observed and validated in a study con-
ducted by Haung et al. [30] using UPLC-MS. NMR-based metabolomic profiles of 
plasma samples from 129 people with DS and 46 healthy controls showed a dra-
matic difference in the 7 metabolites that may be used to distinguish between the DS 
and healthy groups [30]. However, the metabolomic patterns examined cannot be 
linked to the degree of intellectual disability (ID) [48]. Caracausi et  al. [47] 
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analyzed the plasma and urine metabolome from 67 DS patients and 29 healthy 
controls using NMR and reported distinguished metabolic patterns in DS attribut-
able mainly to mitochondrial dysmetabolism [47]. Moreover, a study using untar-
geted metabolomic analysis of amniotic fluid samples from women having normal 
and DS fetuses identified alterations in several steroid hormones and their deriva-
tives, glutathione catabolites coupled, gamma-glutamyl amino acids, phospholipid 
catabolites, sugars, and dicarboxylic acids [99].

7.3 � Sickle Cell Disease

Sickle cell disease (SCD) is a set of red blood cell hereditary disorders caused by 
structural hemoglobin (Hb) abnormalities known as sickle hemoglobin (HbS). A 
single nucleotide change in the gene-producing β-globin is the cause of SCD. The 
sixth position of the β-globin in hemoglobin S (HbS) is replaced by valine instead 
of glutamic acid. SCD is caused by a homozygous HbS condition (HbSS) or is the 
result of having inherited HbS with additional hemoglobin mutations such as beta0 
thalassemia (HbS-beta0 that), which refers to the absence of production of beta-
globin, HbC (HbSC), or beta+ thalassemia mutations (HbS-beta+thal) where the 
beta gene makes low levels of globin [100]. Sickle cell anemia (SCA) is a condition 
where a mutation in the β-globin gene on chromosome 11 may occur. This is an 
autosomal recessive condition. The sickle cell trait is characterized by the appear-
ance of long polymers of deoxygenated HbS (deoxyHbS), resulting in sickle-shaped 
erythrocytes and the eventual vascular hemolysis [100]. SCD symptoms include 
anemia, acute chest syndrome, stroke, transient ischemia events, severe vaso-
occlusive discomfort, severe pain, and splenic sequestration. In addition, SCD may 
cause problems in the central nervous system, lungs, kidneys, and gastrointestinal 
system [100, 101].

Currently, metabolomics is aiding scientists in precisely measuring functional 
phenotypes that arise from changes in genomic, transcriptomic, and proteomic lev-
els. Therefore, this approach can be applied to identify new potential candidates’ 
diagnostic, prognostic, and therapeutic biomarkers for SCD. In this context, several 
studies concerning the application of metabolomics in SCD have been conducted. 
Dembélé et  al. [102] presented the results of metabolomic profiling of patients 
experiencing vaso-occlusive crises compared to their sickle cell disease baselines. 
To determine the differences between these two disease states, a standardized tar-
geted metabolomic method was used for samples from 40 individuals, including 
plasma and erythrocyte fractions. They found that metabolic signatures in the 
plasma were especially notable for their differences in nitric oxide metabolism, 
which hints at connections with pain. In addition, during the crisis, red blood cells 
had extensive alterations in phospholipids, indicating significant membrane remod-
eling [102].

Several metabolomic studies were conducted on the transgenic mouse model of 
SCD. A list of 251 metabolites associated with 8 pathways, including glycolysis, 
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the pentose phosphate pathway (PPP), amino acids, nucleotides, xenobiotics, lipids, 
fatty acids, and carbohydrates, were significantly changed in SCD mouse blood 
[23]. In addition, the elevation of several metabolites was reported in SCD blood 
mice, for instance, nucleosides (including adenosine), lipids (such as sphingosine-1-
phosphate [S1P], lysophospholipids, and free acyl fatty acids), and glycolytic inter-
mediates (such as 2,3-BPG) [23, 103, 104].

Analysis of the red blood cell metabolome from 28 adult patients with the HbSS 
(hemoglobin SS) genotype in a steady state and comparing it to 24 healthy adults 
(HbAA) showed that 31 metabolites in key metabolic pathways (e.g., glycolysis, 
pentose phosphate, glutathione, ascorbate, polyamines, carnitine, creatine, and 
other amino acids) were significantly altered [60].

7.4 � Glycogen Storage Disorders

Glycogen storage disorders (GSDs) are a group of metabolic abnormalities in gly-
cogen metabolism resulting from deficiencies in glycogen production or degrada-
tion enzymes (Inborn Metabolic Diseases: Diagnosis and Treatment). GSDs are 
rare GD that usually primarily influence the liver, muscles, or the two.

Until now, studies conducted to find clinical biomarkers for GSDs have been 
limited. Among the 19 types of GSDs classified based on enzyme deficiency and 
affected tissue, glycogen storage disease type Ia (GSDIa, von Gierke disease) is 
considered the most common type that occurs in about 1 out of every 100,000 live 
births [105]. Tamara et al. [106] noted alterations in energy production pathways, 
such as the tricarboxylic acid cycle, creatine metabolism, urea cycle, amino acid, 
purine/pyrimidine metabolism, and enzyme cofactors, such as biotin. This study 
was conducted on 14 plasma samples from adult GSDI patients compared to 31 
healthy controls utilizing LC-MS/MS [106]. Similar findings were reported by 
Farah et al. [31] using cell culture and a mouse model of GSDIa. The previous study 
reported oxidative phosphorylation dysfunction, abnormalities in TCA cycle metab-
olites, reduced mitochondrial membrane potential, and dysfunctional mitochondrial 
ultrastructure [31].

To differentiate between metabolite profiles from GSDI, GSD III subtypes, and 
healthy controls, cultured fibroblasts from the three groups were analyzed by tar-
geted LCMS/MS [25]. Malfunctions in energy production pathways (glycolysis, 
Krebs cycle, succinate) and decreased creatinine and antioxidant defense of the 
cysteine and glutathione systems in GSDIa and GSD IIII have been detected [25]. 
For GSDII (Pompe disease), urine glucose tetrasaccharide has been authorized for 
clinical usage [107]. However, most of the discovered biomarkers for GSDs lack 
clinical validation.

A summary of selected studies and their main findings for DS, SCD, and GSDs 
are presented in Table 2.
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Table 2  A summary of the literature on applying metabolomics for biomarker discovery in Down 
syndrome (DS), sickle cell disease (SCD,) and glycogen storage disorders (GSDs)

Sample Method
Sample 
size Main findings References

1. Down syndrome (DS)

Urine ZIC-HILIC MS 122 Dihydrouracil is elevated in the urine of 
women with a DS-affected pregnancy, 
while progesterone is decreased

Trivedi 
et al. [97]

Amniotic 
fluid

LC-MSMS 26 There were significant differences in the 
levels of four metabolites: 
methylhistidine, hexanoylcarnitine, 
diacetylspermine, and p-cresol sulfate, 
which may be linked to the improper 
nervous system and muscle development

Parfieniuk 
et al. [29]

Urine NMR 
spectroscopy

300 Urine levels of 2-ketoglutarate, 
1-methylhistidine, 3-hydroxybutyrate, 
4-OH-hippurate, and dimethylamine 
have been shown to differentiate 
pregnant women carrying a baby with a 
chromosomal abnormality from the 
control group

Diaz et al. 
[98]

Amniotic 
fluid

LC-QTOF-MS 50 Significant differences between DS 
fetuses and controls in porphyrin, bile 
acids, amino acids, and hormone 
metabolites such as 
taurochenodeoxycholate, l-arginine, and 
taurocholate. They also found 
differences in l-histidine and 
glycocholic acid metabolites

Huang 
et al. [30]

Plasma NMR 
spectroscopy

175 Alterations in the level of 7 metabolites 
may be used to distinguish between the 
DS and healthy groups. No association 
between the differences in metabolites 
and the degree of ID

Antonaros 
et al. [48]

Plasma 
and urine

NMR 
spectroscopy

96 Several significantly altered metabolites 
of Down syndrome correlate with 
alteration of mitochondrial metabolism

Caracausi 
et al. [47]

Amniotic 
fluid

UPLC-MS 42 There were many different metabolites 
found in the amniotic fluid of DS 
pregnancies compared to normal 
pregnancies, including lower levels of 
several steroid hormones and their 
derivatives, higher levels of glutathione 
catabolites, and lower levels of 
gamma-glutamyl amino acids

Liu et al. 
[99]

(continued)
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Table 2  (continued)

Sample Method
Sample 
size Main findings References

2. Sickle cell disease (SCD)

Red blood 
cells and 
plasma

Targeted 
quantitative 
using LC-MS/
MS

40 The involvement of metabolites not 
previously identified in sickle cell 
disease, such as hexoses, acyl-carnitines, 
and -aminoadipate all help explain how 
sickle cell disease affects energetic 
metabolism

Dembélé 
et al. [102]

Red blood 
cells and 
plasma

LC/GC-MS 44 human 
and 6 mice

Erythrocyte sphingosine kinase 1 
SPHK1-mediated elevation of 
sphingosine-1-phosphate (S1P) 
contributes to sickling and disease 
progression

Zhang 
et al. [23]

Whole 
blood and 
plasma

LC/GC-MS 37 human 
and 12 
mice

Increased erythrocyte cytosolic 
phospholipase A2 (cPLA2) is a key 
factor in the imbalanced lands cycle 
seen in SCD erythrocytes, as well as the 
increased erythrocyte LysoPC and 
circulating arachidonic acid seen in SCD 
mice

Wu et al. 
[103]

Whole 
blood

UHPLC-MS 52 The concentrations of reduced 
glutathione (GSH) and oxidized 
glutathione (GSSG) were reduced in 
HbS cells, while their precursors 
(glutamine, glutamate, and glycine) 
were increased. N-acetylglutathione 
(NAG) was found to be decreased in 
HbS cells, as were two ascorbate 
metabolism metabolites, diketogulonic 
acid and threonolactone

Darghouth 
et al. [60]

3. Glycogen storage disorders (GSDs)

Plasma LC-MS/MS 45 Changes in metabolites in various 
metabolic pathways, such as the 
tricarboxylic acid cycle, creatine 
metabolism, urea cycle, amino acid, and 
purine/pyrimidine metabolism, as well 
as enzyme cofactors such as biotin these 
metabolic changes were seen in both 
GSD subtypes (Ia and Ib)

Tamara 
et al. [106]

Skin 
fibroblast 
cell lines

Targeted 
LCMS/MS

Skin 
fibroblasts

Energy production pathways (glycolysis, 
Krebs cycle, succinate) were 
dysfunctional in GSDIa and GSD III

Hannibal 
et al. [32]

Urine UPLC-MS/MS 79 Urinary glucose tetrasaccharide (Glc4) 
determination may be useful in the 
follow-up of a positive newborn Pompe 
disease screening result. A high Glc4 
indicates an infantile phenotype

Chien et al. 
[107]
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8 � Current Trends and Future Perspective

The field of metabolomics has recently seen a rapid expansion in clinical research, 
with goals ranging from elucidating disease pathogenesis to discovering clinical 
biomarkers. As a result, a new technology utilizing NMR and MS to assess metabo-
lite profiles in clinical samples has been introduced to detect the disease’s biomarker 
molecules and metabolic effects or its treatment [108].

It is difficult to determine GD’s pathogenic mechanisms because of their com-
plexity and effects on multiorgan systems. Furthermore, it appears that GD does not 
have a single biomarker that can distinguish between patients and accurately reflect 
the pathology of the disease. In this context, metabolomic analysis of clinical sam-
ples may be an excellent tool for distinguishing biomarkers from therapeutic tar-
gets [109].

Recently, the field of metabolomics has made significant contributions to study-
ing GD. This is due to the ability of metabolomics, in contrast to other “omics” 
sciences, to link gene and environmental interactions. It represents the genome’s 
downstream output and the upstream input of the surrounding environment [110]. 
As a result of its ability to detect subtle changes in large datasets through compre-
hensive metabolic measurements, metabolomics is a practical application in GD for 
clinical biomarker discovery [111].

Technological advancements in MS have made it possible to detect tens of thou-
sands of signals in complex biological systems, allowing the detection of a wide 
range of metabolites in a single test and opening up new opportunities in the preci-
sion and personalized medicine [112]. Computing tools, databases, and big data 
analytics are evolving quickly, allowing a complete annotation and identification of 
these signals. Thus, it will be possible to discover new molecules, classes of com-
pounds, or metabolism pathway configurations that have not previously been con-
sidered in studies of GD. Public databases for metabolomics are being established, 
and they will apply to a wide range of GD and therapeutic areas shortly.

Current biomarker discovery strategies on GD frequently rely on identifying 
alterations in metabolites and the association of these altered metabolites with a 
specific disease. When it comes to GD, the exact mechanism of these metabolites 
and the functional role of metabolite biomarkers are frequently unknown and under-
studied. An integrated biomarker discovery platform must be supplemented with 
genomic, transcriptomic, and proteomic data to be effective.

Despite significant progress in metabolomic research over the past decade, most 
identified biomarkers still need to replace existing clinical tests. A potential bio-
marker must be confirmed and validated using hundreds of specimens before being 
used in a clinical setting. It must also be reproducible, specific, and sensitive to be 
approved. Robust experimental designs, data acquisition, data mining, and bio-
marker validation must be performed to successfully translate the results of a 
metabolomic experiment to clinical use in GD.  In addition, future methodology 
development in sample preparation and analysis is still necessary to achieve com-
prehensive metabolome studies.
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9 � Conclusions

Genetic diseases have widely varied in pathophysiological consequences and sever-
ity of the disease. Currently, the available treatments and markers for properly man-
aging GD complications are limited. Additionally, the diagnosis and follow-up of 
GD still depend on examining chromosomes or DNA and routine laboratory tests, 
which are invasive or nonspecific. Hence, there is a high demand to identify and 
validate novel biomarkers that may have diagnostic, prognostic, and therapeutic 
values, improving the management and treatment of GD.

Metabolomic research provides insight into the human metabolome under spe-
cific disease states. Recently, metabolomics has shown promise as a readout of 
genes and the environment at a particular time. Developing a combination of dis-
ease biomarkers by metabolomic study is a promising approach, particularly 
because many of these diseases are heterogeneous and multifactorial. However, 
identified potential biomarkers should be validated (analytical and clinical valida-
tion) and confirmed using an independent sample set to ensure that they are specific 
to the disease state and are detected due to variability within the biological sample 
of patients. The ability of metabolomic studies to produce a detailed disease charac-
terization allows personalized disease management and treatment, which are the 
basis of precision medicine.
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Bioinformatic Tools for Clinical 
Metabolomics
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Abstract  Clinical metabolomics may be used for the discovery of novel disease 
biomarkers, the diagnosis of known diseases, and the understanding or rationaliza-
tion of disease mechanisms. This chapter introduces readers to some of the bioinfor-
matic tools that can be used to facilitate clinical metabolomics and provide key 
insights into disease processes. In particular, readers will be introduced to several 
important bioinformatic tools and resources in clinical metabolomics that are widely 
used for metabolite identification, for biomarker discovery, for disease diagnosis, 
and for understanding disease mechanisms. These will include discussions on the 
Metabolomics Standards Initiative (MSI), software tools for metabolite identifica-
tion and quantification (such as Bayesil and XCMS), data resources for metabolite 
annotation such as the Human Metabolome Database (HMDB) and MarkerDB (a 
biomarker database), data analysis and biomarker discovery tools such as 
MetaboAnalyst, and resources for interpreting or characterizing disease mecha-
nisms, such as the Small Molecule Pathway Database (SMPDB). Using these and 
other well-known bioinformatic resources, clinicians are now able to make more 
precise diagnoses, integrate multiple types of omics data, and provide the frame-
work for making metabolomics and integral part of precision medicine.
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1 � Introduction

Metabolomics is a branch of “omics” science that is focused on the comprehensive 
characterization of the small molecule metabolites in the metabolome. Clinical 
metabolomics involves the application of metabolomic techniques toward discov-
ery, diagnosis, and monitoring of human diseases. Clinical metabolomics can also 
be used to explore and understand the molecular basis to disease and disease mecha-
nisms. As highlighted throughout this book, metabolomics is being successfully 
used in many areas of medicine and medical genetics, including the diagnosis and 
monitoring of inborn errors of metabolism (IEMs), the detection of various endo-
crine disorders, the characterization of neurodegenerative diseases, and the diagno-
sis of cancers and cardiovascular diseases. The success of metabolomics in these 
many diverse areas of medicine and medical genetics lies in the fact that metabolites 
represent the downstream products of upstream events occurring within the genome, 
the transcriptome, and the proteome. Indeed, metabolites are sometimes called the 
“canaries of the genome.” Just as canaries were used by miners in the 1800s to serve 
as sensitive indicators of toxic gases in coal mines, metabolites can serve as remark-
ably sensitive indicators of problems in the genome. Indeed, a single base change in 
a gene can lead to a 10,000-fold change in the concentrations of certain metabolites 
[1]. This exceptional sensitivity is the basis to newborn screening, in which metabo-
lite tests have been used to detect IEMs (such as phenylketonuria) for many decades 
[2]. Metabolite concentrations are not only very sensitive to what goes on in the 
genome, but they are also very sensitive to what goes on in the environment. Indeed, 
metabolite concentrations are heavily influenced by nutrition, physical activity, 
exposure to environmental chemicals, the time of day, or the even the outside tem-
perature [3, 4].

Because metabolites are the end products of complex interactions happening 
inside the cell (the genome and the transcriptome) and events happening outside the 
cell (the environment), metabolomics is ideal for assessing the interactions between 
genes and the environment (i.e., measuring the phenotype). Therefore, metabolo-
mics offers clinicians and medical researchers an ideal route to measure and moni-
tor both human phenotypes and human diseases in “real time.” This gives 
metabolomics an important advantage over genomics. While the genome can tell 
you what might happen, the metabolome actually tells you what is happening.

As highlighted throughout this book, there are two distinct “flavors” of metabo-
lomics: (1) targeted metabolomics and (2) untargeted metabolomics. Targeted 
metabolomics is focused on the identification (and often absolute quantification) of 
a specific, predefined collection or category of metabolites in a tissue, biofluid, or 
biological matrix. Because of its ability to achieve absolute quantification, targeted 
metabolomics is widely used in clinical medicine, biomarker testing/discovery, and 
disease monitoring. On the other hand, untargeted metabolomics involves the broad, 
unbiased identification of the maximum number metabolites or metabolic features 
in a tissue, biofluid, or biological matrix. Untargeted metabolomics is not reliably 
quantitative, and so it is more widely used in early-stage biomarker discovery or 
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hypothesis generation applications. Both targeted and untargeted metabolomics can 
be, and are currently, used in clinical metabolomics. Both can be used to discover 
biomarkers or biomarker profiles, and both methods can be performed with standard 
metabolomic platforms such as liquid chromatography mass spectrometry (LC-
MS), gas chromatography mass spectrometry (GC-MS), and nuclear magnetic reso-
nance (NMR) systems. All three of these analytical platforms are capable of 
separating, detecting, and characterizing hundreds, even thousands of chemicals in 
complex chemical mixtures. In almost all cases, when NMR, GC-MS, or LC-MS 
instruments are used to analyze clinical materials, they produce spectra or chro-
matograms consisting of many hundreds to thousands of peaks.

The quantity of data generated by these platforms necessitates the use of comput-
ers and a wide variety of bioinformatic software tools. The main bioinformatic chal-
lenges in metabolomics, and clinical metabolomics in particular, are (1) determining 
which peaks in these spectra match to which chemical compounds (metabolite iden-
tification); (2) detecting which compounds are significantly altered in concentration 
or abundance (determining metabolite significance); (3) determining which metab-
olites or combination of metabolites can serve as robust disease biomarkers (bio-
marker discovery); and (4) understanding the biological and genetic context for the 
observed metabolic changes (finding disease mechanisms or causes).

This chapter is intended to provide an overview to some of the bioinformatic 
tools that can be used to facilitate clinical metabolomics and provide key insights 
into disease processes. In particular, readers will be introduced to a number of soft-
ware tools, data resources, and data standards for facilitating compound identifica-
tion (for both targeted and untargeted metabolomics), for detecting which 
compounds are significantly altered in abundance, for identifying and assessing 
metabolite biomarkers or biomarker panels, and for understanding biological and 
genetic context of the observed metabolite changes. These will include discussions 
on the Metabolomics Standards Initiative (MSI), software tools for metabolite iden-
tification and quantification (such as AMIX, Bayesil, AMDIS, and XCMS), data 
resources for metabolite annotation such as the Human Metabolome Database 
(HMDB) and MarkerDB (a biomarker database), data analysis and biomarker dis-
covery tools such as MetaboAnalyst, and resources for interpreting or characteriz-
ing disease mechanisms, such as the Small Molecule Pathway Database (SMPDB).

2 � Bioinformatic Tools for Metabolite Identification

Depending on the method used (targeted vs. untargeted) and the type of compounds 
being measured (lipids vs. non-lipids), different levels of metabolite identification 
can be achieved. According to the Metabolomics Standards Initiative (MSI) [5], 
there are actually four levels of metabolite identification: (1) positively identified 
compounds, (2) putatively identified compounds, (3) compounds putatively identi-
fied to be part of a compound class, and (4) unknown compounds. Positively identi-
fied compounds correspond to those chemicals that have a name, a known structure, 
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a CAS (Chemical Abstracts Services) number, or an InChI (International Chemical 
Identifier) string. To fall into this category, a compound must be identified using a 
purified, authentic standard collected under identical or near-identical data collec-
tion conditions. For targeted metabolomic studies, most metabolites are identified at 
a Level 1 standard. On the other hand, for most untargeted studies, achieving Level 
1 identification is rare. Putatively identified compounds (Level 2) correspond to 
those where the compound is identified based on a spectral match (i.e., MS/MS) or 
an alternative parameter (i.e., retention time and exact mass) match to a reference 
database value. In these cases, an authentic standard is not available, meaning that 
there is some ambiguity about the compound’s true identity. Certainly, if the com-
pound is known to exist in a human biofluid as indicated by numerous literature 
reports or data resources such as the HMDB, these Level 2 compound identifica-
tions are much stronger and may be considered “near positive.”

The third level of compound identification is typical of many lipids, where the 
exact structure of the compound cannot be determined, but it is known to be a spe-
cific class of lipid (a phospholipid or triglyceride) or a lipid where the total mass of 
the acyl chains is known, but the type of position of the individual acyl chains is not 
known (i.e. the phosphatidyl choline PC(38:3)). Level 3 identification is common 
for untargeted MS-based lipidomic studies. The fourth level of compound identifi-
cation is the “unknown” category. Again, this is usually only seen with untargeted 
metabolomic studies. In many cases, a compound is labeled as an “unknown” sim-
ply because the investigator has not been very thorough in their analyses or because 
their software/database being used for compound identification is inadequate, 
incomplete, or too small.

2.1 � Bioinformatic Tools for Metabolite Identification Via NMR

NMR-based metabolomics has been used in clinical metabolomics for a number of 
years. These include applications in diagnosing IEMs [6], detecting novel genetic 
disorders [7], and for lipoprotein profiling [8, 9]. There are three methods for per-
forming metabolite identification by NMR. One is to manually spike the suspected 
compound into the sample, collect the NMR spectrum of the spiked biofluid, and 
confirm that the spiked compound changes the observed NMR spectrum in the 
expected manner. This method is obviously slow and less than ideal for analyzing 
large numbers of samples or identifying large numbers of metabolites. The second 
is to use manual chemical shift “lookup” tables to match observed NMR chemical 
shifts with known chemical shifts. Many NMR labs compile their own chemical 
shift reference tables to perform manual assignments. However, there are now sev-
eral online NMR spectral databases that contain both experimentally measured and 
(accurately) predicted NMR spectra for thousands of human metabolites. These 
include the Human Metabolome Database or HMDB [10], the Natural Products 
Magnetic Resonance Database or NP-MRD [11], and the BioMagResBank or 
BMRB [12]. The HMDB is a particularly important metabolomic resource for 
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clinical metabolomics. It currently contains the largest collection (>250,000) of 
known human metabolites along with detailed information on their structures, 
descriptions, names and synonyms, biological pathways, biofluid concentrations, 
and disease associations along with their corresponding MS and NMR spectra (to 
aid in compound identification). In particular, the HMDB has experimentally mea-
sured and predicted 1H and 13C NMR spectra for more than 220,000 human metabo-
lites at NMR spectrometer frequencies ranging from 300 MHz to 1000 MHz. While 
somewhat smaller and less clinically relevant, the NP-MRD has experimentally 
measured and computationally predicted 1H and 13C NMR spectra for nearly 90,000 
metabolites and natural products at NMR spectrometer frequencies ranging from 
300 MHz to 1000 MHz. The BMRB has nearly 1000 commonly occurring metabo-
lites with experimentally measured 1H and 13C NMR spectra at 400  MHz and 
600 MHz. All of these databases support web-based, automated metabolite identifi-
cation and NMR spectral searches and/or peak matching.

The third approach to perform metabolite identification via NMR spectroscopy 
is to use spectral deconvolution. Spectral deconvolution is a computational approach 
that involves taking a complex spectrum consisting of a mixture with many chemi-
cals and simplifying it into individual spectra of its “pure” chemical components 
(Fig. 1).

This process requires a specially constructed spectral database as well as care-
fully developed spectral fitting software. The spectral database used in NMR spec-
tral deconvolution typically consists of reference 1D 1H or 13C NMR spectra of the 
pure compound(s) that are known or expected to be in the biological sample of 

a

b

c

Fig. 1  An image illustrating spectral deconvolution. On the left side is a simplified depiction of 
how an NMR mixture spectrum could be decomposed into three separate “pure” spectra from three 
separate compounds (A, B, and C). Summing the three spectra together produces the spectrum of 
the mixture at the top. On the right side of this image is a spectral deconvolution performed on a 
real NMR spectrum with the list of identified compounds and their concentrations
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interest. These reference NMR spectra must be collected under exactly the same 
conditions (same temperature, same solvent, same salt, same pH) under which the 
biological sample was analyzed.

The fact that most metabolites have distinct, almost invariant chemical shift “fin-
gerprints” made up of several compound-specific peaks is one reason why spectral 
deconvolution works so well for NMR. Furthermore, given that most metabolites 
have many NMR peaks helps to alleviate the problem of spectral redundancy. To put 
it in another way, it is highly unlikely that any two distinct compounds will have the 
same number of peaks, chemical shifts, peak intensities, spin couplings, or line 
shapes in their NMR spectra. Another reason why spectral deconvolution works so 
well with NMR is because NMR peak intensities provide precise information about 
compound concentrations. In other words, accurate spectral matches not only lead 
to exact compound IDs, but they also lead to exact or near-exact concentration 
determinations.

There are several commercial programs that support NMR spectral deconvolu-
tion for metabolite identification, including AMIX (Bruker) and NMR Suite 
(Chenomx) (for small molecule metabolites). These software packages have large 
NMR spectral reference libraries consisting of hundreds of metabolites. Newer ver-
sions of these packages such as Bruker B.I. QUANT and Bruker FoodScreener as 
well as NMR Suite (Version 7 and above) now support semiautomatic deconvolu-
tion for higher-throughput analysis. In addition to small molecule metabolite analy-
sis for clinical applications, several other companies, including LipoScience, 
Bruker, and Nightingale, have begun to offer lipoprotein analyses of serum or 
plasma samples through an automated or semiautomated spectral deconvolution. 
These programs or services generate quantitative clinically useful data on high-, 
medium-, and low-density lipoprotein particles (HDL, MDL, and LDL) from human 
plasma samples.

In addition to these commercial programs or commercial services for clinically 
based NMR metabolomics, several freely available academic programs have been 
developed to perform semiautomatic compound identification or quantification via 
NMR. These include Batman [13], AQuA [14], ASICS 2.0 [15], and rDolphin [16]. 
Unfortunately, these programs do not support automated data processing, which 
means a separate software package such as NMRPipe [17] or NMRFx [18] must be 
used to manually process the data prior to analysis. This requirement for manual 
processing significantly slows the analysis (hours per spectrum) and adds an ele-
ment of human error to the analysis pipeline.

Recently, two new NMR spectral deconvolution programs called Bayesil [19] 
and MagMet [20] have been introduced. These programs support fully automated 
NMR metabolite identification and quantification. Both Bayesil and MagMet can 
perform fully automated data processing and spectral deconvolution of one-
dimensional (1D) 1H NMR spectra to identify and quantify upward of 50 to 60 
compounds in 3–4 min. Just as with the Chenomx NMR Suite, Bayesil and MagMet 
work with most NMR instrument models and field strengths but are limited to ana-
lyzing specific biofluids such as serum, plasma, or fecal water. Both Bayesil (http://
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bayesil.ca/) and MagMet (https://magmet.ca/) are freely accessible through web 
servers.

2.2 � Bioinformatic Tools for Metabolite Identification 
Via GC-MS

GC-MS has been used in clinical chemistry for more than 50 years [21]. Indeed, 
many clinical labs continue to routinely use GC-MS as their go-to platform for 
metabolite profiling. GC-MS can be used to identify and quantify amino acids, 
organic acids, hormones, and other important clinical biomarkers. As a result, 
GC-MS can be used to diagnose and monitor many IEMs or other genetic disorders. 
While most clinical chemists are reluctant to call GC-MS analysis a form metabo-
lomics, the simple fact is that clinical GC-MS is one of the most robust and most 
widely used metabolomic platforms in clinical chemistry.

Just as with NMR-based metabolomics, compound identification via GC-MS is 
best done through a form of spectral deconvolution. A typical GC-MS spectrum or 
total ion chromatogram (TIC) from a metabolite mixture will consist of dozens of 
sharp peaks (corresponding to ion counts) covering an elution time of about 
30–45 min. Each peak often consists of one or more EI (electron ionization) mass 
spectra arising from one or more compounds. A variety of commercial GC-MS data 
analysis tools such as AMDIS, which stands for Automated Mass Spectral 
Deconvolution and Identification System [22], MassHunter (Agilent), ChromaTOF 
(Leco), and AnalyzerPro (SpectralWorks) can be used to identify and quantify 
metabolites. Once the EI-MS spectra are extracted, metabolite identification is per-
formed in a similar manner to what is done for NMR. Namely, the extracted EI-MS 
spectra from the biofluid are compared, one at a time, to EI-MS spectral reference 
libraries containing the EI-MS spectra of thousands of pure, derivatized, and authen-
ticated compounds. This process is done semiautomatically with users making 
metabolite identification calls based on the information and spectral image overlays 
that the computer programs provide.

There are three key factors that ultimately determine the quality of a compound 
identification by GC-MS: (1) the quality of the extracted query spectrum, (2) the 
quality of the spectral matching algorithm, and (3) the quality and comprehensive-
ness of the reference spectral database. Unlike NMR, where “false-positive” peaks 
are extremely rare, GC-MS is frequently plagued with an abundance of false-
positive peaks. In some cases, up to 50% of features seen in GC-MS spectra are 
fragments, adducts, or derivatives of either the column matrix, the derivatization 
reagents, or of the metabolites themselves. Different software packages tend to han-
dle these spectral artifacts differently. A study by Lu et  al. [23] compared three 
commonly used GC-MS deconvolution packages (AMDIS, ChromaTOF, and 
AnalyzerPro) using a defined mixture of 35 compounds with widely varying con-
centrations. It was found that both the AMDIS and ChromaTOF packages produced 
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unusually high numbers of false positives or false/impure spectra, while the 
AnalyzerPro package generally performed best.

Ultimately, the main factor driving the success in compound identification by 
GC-MS is the size and quality of the EI-MS spectral reference database. The most 
common and widely used EI-MS resource is the NIST (National Institute of 
Standards and Technology) EI-MS spectral database. The latest release contains 
EI-MS spectra for more than 300,000 compounds or derivatized compounds along 
with retention index (RI) values for another 140,000 compounds. However, most of 
the NIST compounds are not metabolites nor are they derived from biological mate-
rials. The paucity of real metabolites in the NIST library can lead to a number of 
false-positive identifications, especially if authentic standards are not used to verify 
the identity of a given compound. On the other hand, the HMDB [10] provides a 
much larger collection of human metabolites (>250,000) along with a much larger 
library of corresponding GC-MS data, including almost 2.3 million predicted and 
experimental EI-MS spectra and nearly seven million retention indices. In particu-
lar, the latest version of the HMDB currently contains 6,696,000 accurately pre-
dicted RI values for 26,880 parent compounds (and 2.1 million TMS and TBDMS 
derivatives of those parent compounds) and 2,282,000 predicted and experimental 
EI-MS spectra. These spectra and RI data can be readily searched, separately or 
together. However, it is important to note that the quality of most predicted EI-MS 
spectra is not yet sufficiently high to achieve 100% identification accuracy. 
Therefore, identifications made using predicted EI-MS data or predicted RI data 
should always be viewed as putative identifications (Level 2).

2.3 � Bioinformatic Tools for Metabolite Identification 
Via LC-MS

Over the past three decades, LC-MS has become the most popular analytical plat-
form for clinical chemistry and clinical metabolomics [2, 24]. Indeed, most new-
born screening activities in the developed world are done using triple quadrupole 
(QQQ) tandem mass (MS/MS) spectrometers [2]. Relative to NMR or GC-MS, 
LC-MS methods offer much greater sensitivity, more comprehensive compound 
detection, and generally higher throughput. These advantages largely explain its 
growing popularity. Most LC-MS methods adopted in clinical chemistry laborato-
ries employ targeted approaches that use authentic, isotopically labelled standards 
to simultaneously identify and quantify a small (15–25) number of high-priority 
metabolites. Most of these targeted LC-MS methods use defined tables of specific 
metabolite retention times (for their given liquid chromatography system), 
metabolite-specific multiple reaction monitoring (MRM) or single reaction moni-
toring (SRM) peak lists, and multipoint calibration curves for metabolite identifica-
tion and quantification. A number of different software packages from various 
LC-MS vendors are available to facilitate targeted LC-MS analysis. These include 
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Analyst (from Sciex), MassHunter (from Agilent), Progenesis QI (from Waters), 
and TraceFinder/LCQUAN (from Thermo Fisher). In addition to these vendor-
specific packages, Biocrates Life Sciences provides a vendor-independent software 
package, called MetIDQ with its targeted metabolomic kits to perform semiauto-
mated MRM-based metabolite identification and quantification. Modern, targeted 
LC-MS-based metabolomic software and methods typically allow the identification 
and quantification of up to 700 metabolites in a given sample in less than 30 min.

Untargeted LC-MS-based metabolomics is normally reserved for biomarker dis-
covery as opposed to biomarker testing. A typical LC-MS spectrum from an untar-
geted metabolomic study will consist of many sharp peaks (corresponding to ion 
counts) covering an elution time of about 10–35 min. Each peak may consist of one 
or more ESI (electrospray ionization) m/z values arising from one or more com-
pounds. As a result, untargeted LC-MS metabolomic studies can easily generate a 
huge number of spectral features or putative compounds (>10,000). This is many 
times more than what is seen by NMR or GC-MS. Many of these LC-MS features 
turn out to be noise peaks, column contaminants, insource fragments, adducts, and 
isotopic variants. As a result, untargeted LC-MS data typically requires a consider-
able amount of post-processing and peak consolidation to reduce the number of 
peaks to a reliable, countable number (preferably <2000 putative compounds).

Untargeted LC-MS data is often further complicated by the fact that liquid chro-
matographic data is substantially more variable from run to run than NMR or 
GC-MS data. As a result, metabolomic data acquired via untargeted LC-MS tech-
niques typically requires additional de-noising, spectral alignment, and spectral 
averaging to ensure that the correct peaks are being picked and compared. This kind 
of spectral processing requires sophisticated software that either comes bundled 
with the LC-MS instrument or which is designed, written, and distributed by highly 
specialized MS laboratories. Examples of some of the instrument-specific tools 
include Mass Frontier (Thermo Fisher), MassHunter (Agilent), XCMS-Plus (Sciex), 
Profile Analysis (Bruker), and Progenesis (Waters). There are also a number of 
platform-independent freeware systems including XCMS [25], MS-DIAL [26], and 
MzMine2 [27]. All of these software packages support chromatographic and MS 
spectral alignment, peak finding, multivariate statistics (for data reduction), parent 
ion mass matching, molecular formula calculation, and MS/MS spectral matching.

Metabolite identification via accurate parent ion mass (or more correctly the 
mass-to-charge, m/z) measurement requires the use of very high-resolution MS 
instruments such as quadrupole time-of-flight (QTOFs), Orbitraps, or Fourier-
Transform Ion Cyclotron Resonance (FT-ICR) spectrometers. If a parent ion mass 
is measured to 4–5 decimal places, which corresponds to a mass accuracy of 
<5 ppm, it is usually possible to determine the ion’s molecular formula and its puta-
tive identity (Level 3 identification) through a chemical formula calculator. Several 
commercial MS chemical formula calculators exist such as SigmaFit (Bruker), 
Formula Predictor (Shimadzu), and MassHunter (Agilent) as well as a number of 
freeware packages including 7-Golden-Rules [28] and SIRIUS [29]. By including 
restrictions on the types of elements typically found in metabolites as well as 
requirements on hydrogen/carbon ratios and isotopic abundances, it is often 
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possible to reduce the number of feasible chemical formulas even further [30]. 
Unfortunately, even with these improvements, parent ion-based metabolite identifi-
cation is still very risky as there are often many masses or molecular formulae that 
can still match dozens of metabolites in existing compound databases.

The preferred route of metabolite identification for most untargeted LC-MS 
metabolomic studies is to use both parent ion (or formula) matching and MS/MS 
spectral matching. MS/MS spectra, with their characteristic fragmentation patterns, 
provide very useful structural information about molecules. Successful LC-MS/MS 
spectral matching is critically dependent on having instrument-specific or condition-
specific MS/MS product ion fragment libraries. Many of these libraries are bundled 
with the instrument-specific software packages mentioned earlier. On the other 
hand, commercial MS/MS databases, such as the NIST20 database and METLIN 
[31], as well as public MS/MS databases such as MassBank of North America 
(MoNA), [32], and HMDB [10] are normally used by the freeware packages 
(XCMS, MS-DIAL, and MzMine) to perform MS/MS spectral matching. Table 1 
provides list of MS/MS databases with experimentally acquired (and predicted) 
MS/MS spectral data and their relative size.

The challenge with using experimentally acquired MS/MS spectra from these 
MS databases is that each compound is often represented by dozens of different 
MS/MS spectra collected on different MS instruments under different ionization 
conditions or at different collision energies. So, while the number of experimentally 
collected MS spectra is large, the actual number of unique (parent) compounds 
represented by this diverse collection is quite small. Indeed, it is thought that the 
current experimental MS/MS spectral collection represents <20% of known or 
expected human metabolites. Given the striking shortage of experimentally col-
lected MS/MS spectra, a number of investigators have started to use computational 
tools to predict MS/MS spectra for individual compounds where no experimental 
MS/MS spectra exist [33, 34]. Many of these in silico predicted MS/MS spectral 
libraries are now available through the HMDB [10] and the CFM-ID database [34]. 
These data resources support direct MS/MS spectral searches (to find specific com-
pounds) as well as neutral loss searches (to find related compounds). Other 

Table 1  A list of MS/MS spectral databases with the reported numbers of compounds and MS/
MS spectra

Database name
Number of 
compounds Number of MS/MS spectra

Metlin 870,000 2,510,000 (experimental)
CFM-ID 216,890 1,771,460 (predicted and 

experimental)
MassBank of North America 
(MoNA)

223,614 658,790 (experimental and 
predicted)

NIST20 MS/MS 31,808 1,300,000 (experimental)
MassBankEU 15,055 89,769 (experimental)
GNPS 11,947 584,567 (experimental)
mzCloud 11,495 3,243,574 (experimental)
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computational MS/MS spectral interpretation tools, including CSI:FingerID [35] 
and SIRIUS4 [36], allow users to input an experimental MS/MS spectrum and will 
generate a structure match or a structure class match without the need to match 
against any predicted MS/MS spectra. These programs use a technique called chem-
ical or spectral fingerprint analysis rather than spectral prediction [34].

Even with the best MS/MS spectral databases (experimentally acquired or com-
putationally predicted) and the best chemical/spectral fingerprint analysis tools, it is 
still quite difficult to confidently identify (MSI Level 2) more than 400–500 metab-
olites via untargeted LC-MS-based metabolomics. While the instrumental times for 
most untargeted metabolomic LC-MS assays are relatively quick (15–20 min per 
sample), the data analysis times are often quite slow. Indeed, they often run for sev-
eral hours per sample as most workflows require considerable manual inspection 
and manual intervention.

3 � Bioinformatic Tools for Detecting Metabolite Differences

Regardless of whether targeted or untargeted approaches are used, one of the central 
goals of any clinical metabolomic study is to determine which peaks or which 
metabolites are significantly different for those individuals with a disease or condi-
tion relative to healthy controls. This comparison between healthy concentration 
values versus diseased concentration values is how most known disease biomarkers 
are measured and how new disease biomarkers are discovered. In clinical metabo-
lomics, there are three routes for determining which metabolites are significantly 
different or significantly differentiating. These include (1) reference-based metabo-
lite differentiation, (2) multivariate metabolite differentiation, and (3) multivariate 
peak differentiation.

Reference-based metabolite differentiation involves comparing quantitatively 
measured metabolite concentrations in a given biofluid for a diseased individual 
(measured via targeted metabolomic methods) with healthy, age-specific and sex-
specific reference metabolite concentrations for the same biofluid, as reported in a 
database or a reference textbook. Reference-based metabolite differentiation is 
ideal for diagnosing individuals or for identifying biomarkers in individuals afflicted 
with rare diseases, such as IEMs, or other genetic disorders. This approach is the 
most widely used method for detecting significant metabolite differences in clinical 
metabolomics.

The second approach, called multivariate metabolite differentiation, detects 
metabolite differences by conducting case-versus-control studies using targeted 
metabolomic methods. This involves quantitatively measuring specific “named” 
metabolites from biofluid samples collected from multiple individuals with the dis-
ease of interest and biofluid samples from multiple healthy individuals (age and sex 
matched) without the disease. This approach, which requires the use of multivariate 
statistical techniques, is ideal for discovering multiple metabolite biomarkers for a 
given disease and for creating robust multi-marker profiles or multi-marker models.
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The third approach to detecting metabolite differences is specific to untargeted 
metabolomics. Like the second approach, it uses a case-versus-control experimental 
design and multivariate statistics, but the goal is to use multivariate statistics in 
combination with relative peak intensity differences (as opposed to absolute con-
centrations of fully identified metabolites) to identify which peaks or features in the 
untargeted dataset are differentially abundant. The goal is to reduce the initial list of 
thousands of unidentified features or peaks to a more manageable list of a few dozen 
features that exhibit strong differences between cases and controls. From this 
smaller list of yet-to-be-identified features, it is possible to use various techniques 
(spectral matching, spike-in experiments, etc.) to identify the actual metabolites 
showing the most significant concentration changes. Multivariate peak differentia-
tion is well suited for novel biomarker discovery and early-stage or putative bio-
marker identification. However, these putative markers must ultimately be validated 
using a targeted metabolomic technique that quantitatively measures the presump-
tive metabolites.

3.1 � Bioinformatic Tools for Reference-Based 
Metabolite Differentiation

Reference-based metabolite differentiation requires a large and reliable set of 
human reference metabolite concentrations for different ages, sexes and biofluids. 
Currently the most complete set of healthy metabolite reference values for different 
biofluids for different ages and sexes is the Human Metabolome Database or HMDB 
[10]. The HMDB is widely regarded as the most complete open-access database on 
human metabolites and their disease associations. Currently the HMDB contains 
reference concentration values for 3073 metabolites in serum/plasma, 1757 metabo-
lites in urine, 447 metabolites in cerebrospinal fluid, 883 metabolites in saliva and 
1805 metabolites in feces. These values include the literature sources, age group or 
age range of the measured cohort and sex (if available). In many cases, multiple 
values are provided as different analytical methods can lead to slight differences in 
the reported concentration values. Abnormal concentrations are also reported in the 
HMDB, along with the associated conditions and the corresponding literature 
sources. Currently, the HMDB contains abnormal metabolite concentration data for 
more than 660 IEMs and other genetic disorders. Users can easily query the HMDB 
via its web interface with a specific metabolite name, metabolite structure or metab-
olite InChI identifier to obtain the corresponding biofluid concentrations and explore 
what else is known about the queried metabolite. Likewise, users may also query or 
browse the HMDB by disease or condition names and the results will provide the 
lists of altered metabolites associated with that condition.

Another useful source of reference metabolite concentrations and reference-
based metabolite differentiation is MarkerDB [37]. MarkerDB is the world’s most 
comprehensive open-access biomarker database. It contains more than 26,600 
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genetic, protein, and metabolite biomarkers for 670 human disorders or conditions. 
MarkerDB not only provides metabolite concentration data for healthy individuals 
(with information on age- and sex-specific values), but it also provides data on the 
unhealthy metabolite concentrations (in different biofluids), descriptions of the 
associated disorders, detailed descriptions of the metabolites, and even biomarker 
performance indications, such as biomarker sensitivity and specificity. In this 
regard, the disease and biomarker data in MarkerDB is probably more complete 
than the data in HMDB.

Both HMDB and MarkerDB are primarily designed for querying or browsing a 
small number (<3) of metabolites and assessing their concentration differences rela-
tive to healthy normal values. If multiple (10 or more) metabolites need to be que-
ried to determine if the observed metabolite concentrations are significantly different 
from normal, it is possible to use an online metabolomic web server called 
MetaboAnalyst [38]. In particular, the Single Sample Profiling (SSP) option within 
MetaboAnalyst’s enrichment analysis (EA) module allows users to enter long lists 
of metabolite names and concentrations which are then compared against those val-
ues reported in the HMDB for a wide variety of biofluids. Metabolites that are 
higher (H) or lower (L) than the normal reference values are flagged in the resulting 
output. Hyperlinks to the HMDB compound database entries are also provided. The 
SSP option with MetaboAnalyst provides users a fast and convenient route to per-
form reference-based metabolite differentiation from targeted metabolomic data. It 
also allows important metabolite features (i.e., those marked with H or L) to gener-
ate a biomarker profile for a given disease.

3.2 � Bioinformatic Tools for Multivariate Metabolite/
Peak Differentiation

When conducting biomarker discovery or biomarker validation studies in clinical 
metabolomics, it is standard practice to perform well-powered case-versus-control 
studies. Case-control studies often involve hundreds of subjects, thousands of bio-
fluid samples, and the collection of very large metabolomic datasets. As highlighted 
earlier, any single targeted metabolomic assay can easily generate hundreds of 
named metabolites and metabolite concentrations. Likewise, an untargeted metabo-
lomic assay can easily generate thousands of un-named “features” or peaks along 
with their corresponding relative peak intensities. Because the number of variables 
in these types of clinical studies is so large, special statistical methods must be used 
to help manage the data, differentiate up- or downregulated metabolites, and reduce 
the problems of overlap, false positives, and significance. In particular, the tech-
niques that must be used are called multivariate statistics. In multivariate (short for 
multiple variable) statistics, the variables are called “dimensions.” One of the pri-
mary objectives of multivariate statistics is to reduce the number of variables or 
dimensions so that the problem can be tackled more simply using traditional 
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univariate statistics, such as Student’s t-tests or ANOVA techniques. Multivariate 
statistics uses a class of mathematical techniques called dimensional reduction 
methods to make multivariate data look more like univariate (single variable) data. 
Dimensional reduction allows one to identify the key components in a large multi-
variate dataset that contain the maximum amount of information or maximize the 
differences among groups. As a result, dimensional reduction reduces a long list of 
metabolites to a shorter list of the most significant metabolites. This is the essence 
of multivariate feature/metabolite differentiation. The most common form of dimen-
sional reduction is called principal component analysis or PCA.

3.3 � Principal Component Analysis

Principal component analysis (PCA) is an unsupervised clustering technique. 
Clustering is the process of grouping a set of objects in such a way that objects in 
the same group are more similar to each other than to those in other groups. 
Clustering helps distinguish groups, such as cases and controls, from one another 
based on their metabolic parameters. In a more formal “mathematical” sense, PCA 
determines an optimal linear transformation for a collection of data points such that 
the properties of that set of data points are most clearly displayed along a small 
number of coordinate (or principal) axes. Simply put, PCA allows metabolomic 
researchers to easily plot, visualize, and cluster multiple lists of metabolites and 
their concentrations based on linear combinations of their shared features. PCA is 
most commonly used in clinical metabolomics to determine whether one or more 
samples are different from another. It also allows one to identify which variables or 
metabolites contribute most to this difference and whether those metabolites con-
tribute in the same way (i.e., are correlated) or independently (i.e., uncorrelated) 
from each other. PCA is particularly appealing because it allows one to visually 
detect sample clusters or groupings. In particular, the results of a PCA are usually 
discussed in terms of scores and loadings. The scores represent the original data in 
the new coordinate system, and the loadings are the weights applied to the original 
data during the projection process. Plotting out the data using two sets of scores 
(one for the X axis and one for the Y axis) will produce a “scores” plot. The “weight-
ings” of the individual components correspond to a PCA “loadings” plot. With 
untargeted metabolomic data, the loadings plot can be used to narrow down the list 
of features or peaks to just a few important ones that need to be identified. This 
makes PCA ideal for reducing the number of features in untargeted metabolomic 
data from 1000s to just a few dozen or less. It can also help reduce the list of metab-
olites in targeted metabolomic studies from 100  s to just a dozen or fewer. 
Furthermore, PCA can be used to identify the most important or most informative 
metabolites required to generate a biomarker profile for a given disease.

PCA can be easily conducted using a variety of free or nearly free software pro-
grams such as MatLab or the R project (http://www.r-project.org) using R’s prcomp 
or princomp commands. PCA can also be performed using freely available, 
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downloadable software packages such as XCMS [25], MS-DIAL [26], MAVEN 
[39], and GALAXY-M [40], which are frequently used for processing LC-MS data. 
Freely available web servers are also available that support PCA and other common 
multivariate statistical techniques. The most widely used web server for multivariate 
statistical analysis in metabolomics is MetaboAnalyst [38]. MetaboAnalyst, which 
is freely available, provides an easy-to-use graphical interface that allow users to 
simply point and click to perform complex multivariate statistical operations or to 
generate colorful, interactive graphs or tables. Nearly one-third of all published 
metabolomic papers use MetaboAnalyst in the metabolomic data analysis pipeline.

3.4 � Partial Least Squares Discriminant Analysis

PCA is not the only multivariate statistical approach that can be used to identify 
important metabolites or reduce the number of spectral features. Another type of 
multivariate statistical method that can be used for this purpose is known as super-
vised classification. Supervised classifiers are programs or algorithms that require 
that information about the class identities must be provided in advance of running 
the analysis. In other words, prior knowledge about which samples belong to the 
“cases” and which samples belong to the “controls” is used to label each of the 
samples. Examples of supervised classifiers include SIMCA (soft independent 
modeling by class analogy), PLS-DA (partial least squares discriminant analysis), 
and OPLS-DA (orthogonal projections to latent structures discriminant analysis). 
All of these techniques can be used to help convert extensive NMR, LC-MS/MS, 
and GC-MS metabolite lists (for targeted metabolomics) or their corresponding 
spectral features (for untargeted metabolomics) into much shorter lists of highly 
significant metabolites and/or features.

PLS-DA or partial least squares discriminant analysis is often used when PCA 
techniques do not generate sufficiently distinct clusters or sufficiently distinct 
metabolite sets. In particular, PLS-DA can be used to enhance the separation 
between data points in a PCA “scores” plot by essentially rotating the PCA compo-
nents such that a maximum separation among classes is obtained. This enhanced 
separation allows one to better understand which variables are most responsible for 
separating the observed (or apparent) classes. Care must be taken in using PLS-DA 
methods because these classification techniques can be overtrained. That is, PLS-DA 
can create convincing clusters or classes that have no statistical meaning (i.e., they 
over-fit the data). The best way of avoiding these problems is to use permutation 
(random relabeling) approaches to ensure that the data clusters derived by PLS-DA 
are real and robust. A number of freely available metabolomic software packages 
and web servers, such as MetaboAnalyst, are able to perform these permutation 
tests. Another way of quantitatively assessing a PLS-DA model is to report R2 and/
or Q2 values. Both R2 and Q2 are typically reported by metabolomic web servers and 
software packages such as MetaboAnalyst. R2 is the correlation index and refers to 
the goodness of fit or the explained variation, while Q2 refers to the predicted 
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variation or quality of prediction. A poorly fit model will have an R2 of 0.2 or 0.3, 
while a nicely fit model will have an R2 of 0.7 or 0.8. In practice, Q2 typically tracks 
very closely to R2. However, if the PLS-DA model becomes over-fit, Q2 reaches a 
maximum value and then begins to fall. Generally, a Q2 > 0.5 if considered good, 
while a Q2 of 0.9 is outstanding.

If a robust PLS-DA model can be generated, the set of important metabolites 
(generated via targeted metabolomics) or features (generated via untargeted metab-
olomics) arising from the variable importance plot (VIP) can be more easily inter-
preted than those determined via a PCA loading plot. PLS-DA is generally among 
the most powerful and useful methods for reducing the number of features in untar-
geted metabolomic data from 1000s to just a few dozen or less. PLS-DA is also very 
effective in reducing the list of important or differential metabolites in targeted 
metabolomic studies from 100 s to just a dozen or fewer. Furthermore, PLS-DA can 
be used to identify the most important or most informative metabolites required to 
generate a biomarker profile for a given disease. The utility of PLS-DA in bio-
marker development and discovery is discussed in the next section.

4 � Bioinformatic Tools for Biomarker Discovery

One of the principal goals of clinical metabolomics is to discover and/or measure 
metabolite biomarkers of human disease. Biomarkers are typically defined as objec-
tively measurable biological characteristics that can be used to diagnose, monitor, 
or predict the risk of disease [41]. For example, blood glucose is a standard chemi-
cal biomarker for monitoring diabetes, while serum creatinine is a chemical marker 
for kidney function. Many traditional clinical chemistry biomarkers consist of just a 
single measured entity. However, metabolomics has allowed clinicians to measure 
multiple chemicals at once. This means it is now possible to measure multiple bio-
markers or develop multi-biomarker panels to predict or diagnose diseases with 
greatly improved sensitivity and specificity. Indeed, it has long been common prac-
tice among physicians to combine multiple physiological biomarkers 
(age + BMI + triglyceride level + cholesterol level = cardiac disease risk) to improve 
biomarker sensitivity and specificity. Now, with metabolomics, it is possible to cre-
ate diagnostic or predictive models from multiple metabolites, which can be used to 
classify individuals into specific groups (i.e., healthy vs. diseased) with much 
improved sensitivity and specificity.

Sensitivity and specificity have very formal definitions in biomarker studies and 
the biomarker literature. In standard case vs. control studies, sensitivity (Sn) is 
mathematically defined as Sn = TP/(TP + FN), and specificity (Sp) is mathemati-
cally defined as Sp = TN/(TN + FP), where TP is the number of true positives, TN 
is the number of true negatives, FN is the number of false negatives, and FP is the 
number of false positives. Sensitivity (also known as the true positive rate) can be 
considered as the probability of a positive test result given that a subject has an 
actual positive outcome. Specificity (also known as the true negative rate) can be 
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considered as the probability of a negative test result given that a subject has an 
actual negative outcome. For instance, if a biomarker or biomarker panel has a sen-
sitivity of 0.95 and a specificity of 0.60, this indicates that if a patient has a test score 
that is above the decision boundary there is a 95% chance that the patient is cor-
rectly diagnosed with the disease/condition; but if the test score is below the deci-
sion boundary, then there is only a 60% chance that the patient is correctly classified 
as being healthy. A promising biomarker must have both high sensitivity (i.e., to 
give a positive test result when the disease is actually present) and high specificity 
(i.e., to give a negative test result when the disease is absent).

One of the best ways to observe how a decision boundary affects sensitivity and 
specificity is through a receiver operator characteristic (ROC) curve. A ROC curve 
shows how the sensitivity and specificity change as the classification decision 
boundary is varied across the range of available biomarker scores. Because an ROC 
curve depicts the performance of a biomarker test over the complete range of pos-
sible decision boundaries, it allows the optimal specificity and associated sensitivity 
to be determined by visual inspection. When one evaluates a biomarker using a 
ROC curve, there is no need to be worried about the “data normality” of either the 
predicted positive or negative score distributions nor whether the two distributions 
have equal numbers of subjects or equal variance. As a result, ROC curve analysis 
is widely considered to be the most objective and statistically valid method for bio-
marker performance evaluation [42].

ROC curves are often summarized into a single metric known as the “Area Under 
the Curve” (AUC or AUROC). The AUROC indicates a biomarker model’s ability 
to discriminate between cases (positive examples) and non-cases (negative exam-
ples.). If all positive cases are ranked before negative ones (i.e., a perfect classifier), 
the AUC is 1.0. An AUC of 0.5 is equivalent to randomly classifying subjects as 
either sick or healthy (i.e., the classifier is of no practical utility). A rough guide for 
assessing the utility of a biomarker based on its AUROC is as follows: 0.9–1.0 = excel-
lent; 0.8–0.9 = good; 0.7–0.8 = fair; 0.6–0.7 = poor; and 0.5–0.6 = fail (see Fig. 2).

Currently, the most useful tool for biomarker discovery, biomarker selection, and 
for performing sensitivity/specificity analysis (via ROC curve analysis) with metab-
olomic data is MetaboAnalyst [38]. In particular, the MetaboAnalyst biomarker 
module supports three common ROC-based analysis modes: (1) classical univariate 
ROC curve analysis, (2) multivariate ROC curve exploration, and (3) manual bio-
marker model creation and evaluation. The most popular and useful option is the 
multivariate ROC curve exploration which supports automated multi-biomarker 
selection and optimization using Monte Carlo cross validation (MCCV). This 
allows the biomarker panel’s AUROC to be maximized while minimizing the num-
ber of biomarkers being used. MetaboAnalyst will typically generate several bio-
marker models with different numbers of metabolites and different AUROCs to 
allow users some choice over what biomarker panel matches their biomarker 
requirements or performance expectations.

Four different biomarker modeling options are currently offered with 
MetaboAnalyst’s Biomarker module: (1) partial least squares discriminant analysis 
(PLS-DA), (2) support vector machine (SVM), (3) random forests, and (4) logistic 
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Fig. 2  A depiction of several different ROC curves for different biomarker tests with the area 
under the ROC curves indicated. On the bottom left is an example of a perfect biomarker with a 
perfect ROC curve having an AUROC of 1.0. On the top left is an example of an excellent bio-
marker profile with an AUROC of 0.9. On the top right is an example of a moderately good bio-
marker profile with an AUROC of 0.7. On the bottom left is an example of a random biomarker 
with no predictive or diagnostics capability

regression. The most useful of these four options is the logistic regression model as 
it provides an equation, or set of equations, incorporating metabolite concentrations 
that can be universally used for calculating cutoff thresholds or decision boundaries. 
MetaboAnalyst also generates a number of useful graphs, ROC curves, confidence 
intervals, and charts to help users assess the selected biomarkers and biomarker 
models. The simplicity with which biomarker models can be developed (mostly via 
point-and-click operations) and rich graphical support in MetaboAnalyst within its 
Biomarker module makes it the ideal tool for biomarker discovery in clinical 
metabolomics.

It is important to note that the metabolomic data being uploaded into 
MetaboAnalyst’s Biomarker module should be absolutely quantitative. As with 
most analytical methods supported by MetaboAnalyst, the metabolite data uploaded 
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into the biomarker module must be properly normalized, scaled, and transformed so 
that metabolite values are comparable and therefore more robustly analyzable.

5 � Bioinformatic Tools for Biomedical Interpretation 
and Data Integration

Biomarker identification is usually limited to disease diagnosis or disease prediction 
[37]. Biomarkers are not necessarily intended to help uncover the underlying cause 
of the disease or explain specific disease mechanisms. Of course, metabolic bio-
markers may be strongly associated with disease mechanisms, but without some 
kind of biological interpretation or some kind of biomedical context, association 
does not imply causation, nor does it lead to mechanistic insights. To properly deter-
mine disease causes or disease mechanisms from clinical metabolomic data, it is 
often necessary to turn to metabolic pathways or to integrate both genomic and 
metabolomic data together. Metabolite interpretation via pathway analysis often 
involves determining whether the identified metabolites belong to a single pathway 
or a smaller set of related pathways. In many cases, this requires searching or read-
ing carefully through various online metabolic pathway databases.

Metabolic pathway databases provide a centralized collection of schematic path-
ways that depict the current state of the knowledge regarding metabolic (catabolic, 
anabolic, or signaling) processes that occur within a cell, tissue, or organism. 
Pathway databases combine large collections of carefully curated metabolite data, 
with large amounts of carefully collected protein and/or genetic data through a 
series of illustrated enzyme-mediated reactions, receptor-mediated signaling pro-
cesses, or protein-aided transport activities. These represent the key molecular and 
cellular activities that underlie all physiological processes. Because pathway data-
bases combine multi-omic (metabolomic, proteomic, genomic) data together along 
with general information about physiological or biological consequences, these 
databases can play a key role in the biological analysis or biomedical interpretation 
of metabolomic data.

Some of the most popular small molecule pathway databases include KEGG 
[43], the Reactome database [44], the “Cyc” databases [45], WikiPathways [46], the 
Small Molecule Pathway Database or SMPDB [47], and PathBank [48]. A number 
of commercial pathway databases also exist such as BioCarta, TransPath (from 
BioBase Inc.), and Ingenuity Pathway Analysis (from Ingenuity Systems Inc.). The 
most useful pathway database for clinical metabolomics is SMPDB as it offers that 
largest number and most diverse pathways specific to human biology and human 
diseases. In particular, SMPDB contains 150 signaling pathways, 20,250 disease 
pathways (covering many IEMs and genetic disorders), 468 drug pathways, and 
27,800 metabolic (catabolic/anabolic) pathways.

Most pathway databases support interactive image mapping with hyperlinked 
information content that allows users to view chemical information (if a compound 
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is clicked) or brief summaries of genes and/or proteins (if a protein or enzyme is 
clicked). Almost all pathway databases support some kind of limited text search, 
and a few, such as Reactome, SMPDB, and the “Cyc” databases, support the map-
ping of gene, protein, and/or metabolite expression data onto pathway diagrams. 
Only a few pathway databases, such as SMPDB, provide their pathway data in com-
mon, machine-readable data exchange formats such as BioPAX [49], SBML 
[Systems Biology Markup Language] [50], or SBGN-ML [Systems Biology 
Graphical Notation Markup Language] [51].

Nearly all of the major pathway databases used in metabolomics today (KEGG, 
the Reactome database, the “Cyc” databases, WikiPathways, and SMPDB) permit 
users to upload metabolite data and generate highlighted pathway plots indicating 
the location of key metabolites in a given pathway. Unfortunately, most metabolite/
metabolism databases (such as KEGG, the Cyc databases, WikiPathways, Reactome) 
only contain anabolic or catabolic pathways associated with endogenous metabo-
lites. Almost no information is provided on metabolite signaling pathways, disease 
pathways, metabolic diseases (such as phenylketonuria), or drug action pathways 
(how aspirin works). As a result, many metabolomic pathway analyses are limited 
to interpreting complex metabolite data in only the simplest of terms. An important 
exception to this is SMPDB. SMPDB resource contains hundreds of human-specific 
pathways including dozens of signaling pathways as well as hundreds of disease 
and drug pathways. Currently, SMPDB is the only open-access database that covers 
such a broad diversity of human disease or disease mechanism pathways – espe-
cially for small molecules. This makes SMPDB one of the most popular tools for 
interpreting and integrating clinical metabolomic data.

While pathway visualization can provide some important qualitative insight into 
the biological roles for metabolites detected in a clinical metabolomic study, it is 
also important to remember that more quantitative tools for pathway analysis also 
exist. In particular, pathway enrichment and pathway topological analysis are two 
quantitative methods that can be quite helpful. MetaboAnalyst offers several 
advanced pathway enrichment analysis procedures along with pathway topological 
analysis to help identify the most relevant metabolic pathways involved in a given 
clinical metabolomic study. The pathway analysis module in MetaboAnalyst uses 
simple point and click operations to support three types of analyses: (1) pathway 
enrichment analysis, (2) pathway topological analysis, and (3) pathway impact 
analysis. Pathway enrichment analysis can be done using either overrepresentation 
analysis or via metabolite set enrichment analysis using Fishers’ exact test, the 
hypergeometric test, and GlobalAncova [52]. Pathway topological analysis is based 
on the centrality measures of a metabolite in a given metabolic network. Centrality 
is a quantitative measure of the position of a metabolite relative to the other metabo-
lites in a pathway. Centrality can be used to estimate a metabolite’s relative impor-
tance or role in a pathway or network diagram. MetaboAnalyst uses relative 
“betweenness” centrality and “out-degree” centrality to calculate the relative impor-
tance of a metabolite. Centrality means that metabolites located on the periphery of 
a pathway or those that are involved in side reactions have little consequence and 
are not particularly “central.” On the other hand, metabolites that are in pathway 
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bottlenecks or those that serve as hubs or precursors for many reactions are more 
“central.” By calculating the topological importance of different metabolites in a 
given pathway, as well as the enrichment of certain metabolites in a pathway, it is 
possible to calculate a pathway impact score.

By plotting the pathway impact score against the number of significant metabo-
lites appearing that pathway, it is possible to generate a plot that illustrates the most 
important pathways detected from a set of significantly altered metabolites in a 
given metabolomic experiment (Fig. 3).

In this example, the X-axis displays the pathway impact score, while the Y-axis 
displays the level of enrichment. The size of the colored circles represents the num-
ber of metabolites in the illustrated pathway, and the color of the circle indicates its 
overall significance (with red being most significant and pale yellow being least 
significant). By clicking on the colored circles, it is possible to see more details 
about the pathway name, the pathway components, and their topological relation-
ships. Within MetaboAnalyst, each detected metabolite is also “clickable” so that a 
box-and-whisker plot can be generated that illustrates the metabolite concentrations 
and range between the “case” and “control” samples.

In addition to pathway analysis, there are also a number of other approaches that 
can be used to interpret, visualize, or explore clinical metabolomic data. One par-
ticularly useful approach involves using a technique called metabolite set 

Fig. 3  An example of a pathway impact diagram from MetaboAnalyst. For the graph on the left 
side of the image, the X-axis displays the pathway impact score, while the Y-axis displays the level 
of enrichment. The size of the colored circles represents the number of metabolites in the illus-
trated pathway, and the color of the circle indicates its overall significance (with red being most 
significant and pale yellow being least significant). By clicking on the colored circles, it is possible 
to see more details about the pathway name, the pathway components, and their topological rela-
tionships. This expanded view is shown on the right side of the image with the pathway diagram 
being taken from KEGG and the individual metabolites being identified with KEGG identifiers
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enrichment or MSEA [53]. MSEA is a form of functional enrichment analysis simi-
lar to gene set enrichment analysis (GSEA). For metabolite set enrichment to be 
effective, one usually needs a comprehensive database of metabolic pathways, a 
database of healthy/diseased metabolite concentrations, or a database with associa-
tions between metabolites and SNPs or metabolites and gene expression levels. 
Ideally, a good MSEA system should have all of these databases and support all of 
these functional analyses. In this regard, the MSEA module in MetaboAnalyst actu-
ally has all of these databases and functional tools, making it particularly useful for 
clinical interpretation. Another approach to interpreting clinical metabolomic data 
is to combine it with gene expression or protein expression data [54]. There are a 
number of bioinformatic tools that support this kind of integration. One example is 
MetScape [55]. MetScape is a plugin for the widely used open-source network anal-
ysis and visualization tool called Cytoscape. MetScape supports the interactive, 
network-based exploration and visualization of both metabolite and gene expres-
sion data by integrating both the KEGG and EHMN (Edinburgh human metabolic 
network) databases. MetScape allows users to identify enriched pathways from 
gene/metabolite expression profiling data, build and analyze gene/metabolite net-
works, and interactively visualize changes in gene/metabolite data. Another inte-
grated “omics” approach that offers similar capabilities is called Integrated 
Metabolomic and Expression Analysis or INMEX [54]. This web-based tool is now 
available through MetaboAnalyst. Like MetScape, INMEX makes use of the KEGG 
pathway database as well as a number of pathways from SMPDB.

How these software tools and resources are used and how the data is eventually 
interpreted depends somewhat on the knowledge of the user. Naïve analyses per-
formed by a naïve individual will lead to naïve interpretation. Taking the time to 
read the literature and to discover what else is known (genetically or metabolically) 
about a given disease or condition will allow for a much more efficient use of the 
software and a much more intelligent interpretation of the data. In this regard, it is 
always important to remember that bioinformatics should always be used as an aid 
to support and extend one’s own biochemical and biological knowledge.

6 � Summary

This chapter has provided a high-level overview of the bioinformatic resources 
needed to analyze clinical metabolomic data. As highlighted at the beginning of this 
chapter, the main bioinformatic challenges in clinical metabolomics are (1) metabo-
lite identification, (2) determining metabolite significance, (3) biomarker discovery, 
and (4) finding disease mechanisms or causes. To address these challenges, we 
introduced and discussed a number of software tools, data resources, and data stan-
dards for facilitating compound identification, for detecting which compounds are 
significantly altered in abundance, for identifying and assessing metabolite bio-
markers or biomarker panels, and for understanding biological and genetic context 
of the observed metabolite changes. In particular, we discussed the Metabolomics 
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Standards Initiative (MSI) for compound identification and introduced software 
tools for metabolite identification and quantification for NMR, GC-MS, and LC-MS/
MS (such as AMIX, Bayesil, AMDIS, and XCMS). We also discussed data resources 
for metabolite annotation such as the Human Metabolome Database (HMDB) and 
MarkerDB, as well as data analysis and biomarker discovery tools such as 
MetaboAnalyst. Finally, we closed the chapter with a discussion on different bioin-
formatic resources for interpreting or characterizing disease mechanisms, such as 
the Small Molecule Pathway Database (SMPDB).

The field of clinical metabolomics has grown considerably over the past 10 years, 
and detailed descriptions of all the bioinformatic tools and resources that have been 
developed for clinical metabolomics could easily fill several books. This chapter is 
only intended to serve as an introduction so that individuals who are interested in 
pursuing clinical metabolomics and using bioinformatic tools for clinical metabolo-
mics can better appreciate what is available, what is possible, and what still needs to 
be done.

References

1.	Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, 
et  al. HMDB: the human metabolome database. Nucleic Acids Res. 2007;35(Database 
issue):D521–6.

2.	Levy PA. An overview of newborn screening. J Dev Behav Pediatr. 2010;31:622–31.
3.	Bassini A, Cameron LC. Sportomics: building a new concept in metabolic studies and exercise 

science. Biochem Biophys Res Commun. 2014;445:708–16.
4.	Brown SA. Circadian metabolism: from mechanisms to metabolomics and medicine. Trends 

Endocrinol Metab. 2016;27:415–26.
5.	Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TWM, Fiehn O, et al. 

Proposed minimum reporting standards for chemical analysis. Metabolomics. 2007;3:211–21.
6.	Moolenaar SH, Engelke UF, Wevers RA.  Proton nuclear magnetic resonance spectroscopy 

of body fluids in the field of inborn errors of metabolism. Ann Clin Biochem. 2003;40(Pt 
1):16–24.

7.	Verrips A, Hoefsloot LH, Steenbergen GC, Theelen JP, Wevers RA, Gabreëls FJ, van Engelen 
BG, van den Heuvel LP. Clinical and molecular genetic characteristics of patients with cere-
brotendinous xanthomatosis. Brain. 2000;123(Pt 5):908–19.

8.	Otvos JD, Jeyarajah EJ, Bennett DW, Krauss RM. Development of a proton nuclear magnetic 
resonance spectroscopic method for determining plasma lipoprotein concentrations and sub-
species distributions from a single, rapid measurement. Clin Chem. 1992;38(9):1632–8.

9.	Soininen P, Kangas AJ, Würtz P, Suna T, Ala-Korpela M. Quantitative serum nuclear magnetic 
resonance metabolomics in cardiovascular epidemiology and genetics. Circ Cardiovasc Genet. 
2015;8:192–206.

10.	Wishart DS, Guo A, Oler E, Wang F, Anjum A, Peters H, Dizon R, Sayeeda Z, Tian S, 
Lee BL, et  al. HMDB 5.0: the human metabolome database for 2022. Nucleic Acids Res. 
2022a;50(D1):D622–31.

11.	Wishart DS, Sayeeda Z, Budinski Z, Guo A, Lee BL, Berjanskii M, Rout M, Peters H, Dizon 
R, Mah R, et al. NP-MRD: the natural products magnetic resonance database. Nucleic Acids 
Res. 2022b;50(D1):D665–77.

Bioinformatic Tools for Clinical Metabolomics



94

12.	Markley JL, Ulrich EL, Berman HM, Henrick K, Nakamura H, Akutsu H. BioMagResBank 
(BMRB) as a partner in the worldwide protein data Bank (wwPDB): new policies affecting 
biomolecular NMR depositions. J Biomol NMR. 2008;40:153–5.

13.	Hao J, Liebeke M, Astle W, De Lorio M, Bundy JG, Ebbels TMD. Bayesian deconvolution 
and quantification of metabolites in complex 1D NMR spectra using BATMAN. Nat Protoc. 
2014;9:1416–27.

14.	Röhnisch HE, Eriksson J, Mullner E, Agback P, Sandstrom C, Moazzami AA. AQuA: an auto-
mated quantification algorithm for high-throughput NMR-based metabolomics and its applica-
tion in human plasma. Anal Chem. 2018;90:2095–102.

15.	Lefort G, Liaubet L, Marty-Gasset N, Canlet C, Vialaneix N, Servien R.  Joint automatic 
metabolite identification and quantification of a set of (1)H NMR spectra. Anal Chem. 
2021;93:2861–70.

16.	Cañueto D, Gómez J, Salek RM, Correig X, Cañellas N. rDolphin: a GUI R package for 
proficient automatic profiling of 1D (1)H-NMR spectra of study datasets. Metabolomics. 
2018;14:24.

17.	Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A. NMRPipe: a multidimensional 
spectral processing system based on UNIX pipes. J Biomol NMR. 1995;6:277.

18.	Norris M, Fetler B, Marchant J, Johnson BA. NMRFx processor: a cross-platform NMR data 
processing program. J Biomol NMR. 2016;65:205–16.

19.	Ravanbakhsh S, Liu P, Bjorndahl TC, Mandal R, Grant JR, Wilson M, Eisner R, Sinelnikov I, 
Hu X, Luchinat C, Greiner R, Wishart DS. Accurate, fully-automated NMR spectral profiling 
for metabolomics. PloS One. 2015;10:e0124219.

20.	Foroutan A, Fitzsimmons C, Mandal R, Berjanskii MV, Wishart DS.  Serum metabolite 
biomarkers for predicting residual feed intake (RFI) of Young Angus bulls. Metabolites. 
2020;10:491.

21.	Jellum E, Stokke O, Eldjarn L. Combined use of gas chromatography, mass spectrometry, and 
computer in diagnosis and studies of metabolic disorders. Clin Chem. 1972;18:800–9.

22.	Stein SE. An integrated method for spectrum extraction and compound identification from gas 
chromatography/mass spectrometry data. J Am Soc Mass Spectrom. 1999;10:770–81.

23.	Lu H, Liang Y, Dunn WB, Shen H, Kell DB. Comparative evaluation of software for decon-
volution of metabolomics data based on GC-TOF-MS. Trends Anal Chem. 2008;27:215–27.

24.	 Ismail IT, Showalter MR, Fiehn O. Inborn errors of metabolism in the era of untargeted metab-
olomics and lipidomics. Metabolites. 2019;9:242.

25.	Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrom-
etry data for metabolite profiling using nonlinear peak alignment, matching, and identification. 
Anal Chem. 2006;78:779–87.

26.	Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, VanderGheynst J, Fiehn 
O, Arita M. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabo-
lome analysis. Nat Methods. 2015;12:523–6.

27.	Pluskal T, Castillo S, Villar-Briones A, Oresic M. MZmine 2: modular framework for pro-
cessing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC 
Bioinformatics. 2010;11:395.

28.	Kind T, Fiehn O. Seven Golden rules for heuristic filtering of molecular formulas obtained by 
accurate mass spectrometry. BMC Bioinformatics. 2007;8:105.

29.	Dührkop K, Scheubert K, Böcker S.  Molecular Formula Identification with 
SIRIUS. Metabolites. 2013;3:506–16.

30.	Kind T, Fiehn O. Advances in structure elucidation of small molecules using mass spectrom-
etry. Bioanal Rev. 2010;2:23–60.

31.	Tautenhahn R, Cho K, Uritboonthai W, Zhu Z, Patti GJ, Siuzdak G. An accelerated workflow 
for untargeted metabolomics using the METLIN database. Nat Biotechnol. 2012;30:826–8.

32.	Kind T, Tsugawa H, Cajka T, Ma Y, Lai Z, Mehta SS, Wohlgemuth G, Barupal DK, Showalter 
MR, Arita M, Fiehn O. Identification of small molecules using accurate mass MS/MS search. 
Mass Spectrom Rev. 2017;37(4):513–32.

D. S. Wishart



95

33.	Allen F, Greiner R, Wishart DS. Competitive fragmentation modeling of ESI-MS/MS spectra 
for putative metabolite identification. Metabolomics. 2015;11:98–110.

34.	Wang F, Liigand J, Tian S, Arndt D, Greiner R, Wishart DS.  CFM-ID 4.0: more accurate 
ESI-MS/MS spectral prediction and compound identification. Anal Chem. 2021;93:11692–700.

35.	Dührkop K, Shen H, Meusel M, Rousu J, Böcker S. Searching molecular structure databases 
with tandem mass spectra using CSI:FingerID. Proc Natl Acad Sci U S A. 2015;112:12580–5.

36.	Dührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, Dorrestein PC, 
Rousu J, Böcker S. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite 
structure information. Nat Methods. 2019;16:299–302.

37.	Wishart DS, Bartok B, Oler E, Liang KYH, Budinski Z, Berjanskii M, Guo A, Cao X, 
Wilson M.  MarkerDB: an online database of molecular biomarkers. Nucleic Acids Res. 
2021;49(D1):D1259–67.

38.	Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, Wishart DS, Xia J.  MetaboAnalyst 
4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 
2018;46(W1):W486–94.

39.	Melamud E, Vastag L, Rabinowitz JD.  Metabolomic analysis and visualization engine for 
LC-MS data. Anal Chem. 2010;82:9818–26.

40.	Davidson RL, Weber RJ, Liu H, Sharma-Oates A, Viant MR. Galaxy-M: a Galaxy workflow 
for processing and analyzing direct infusion and liquid chromatography mass spectrometry-
based metabolomics data. Gigascience. 2016;5:10.

41.	Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred defini-
tions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95.

42.	Soreide K. Receiver-operating characteristic curve analysis in diagnostic, prognostic and pre-
dictive biomarker research. J Clin Pathol. 2009;62:1–5.

43.	Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M.  Data, information, 
knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014;42(Database 
issue):D199–205.

44.	Croft D, O'Kelly G, Wu G, Haw R, Gillespie M, Matthews L, Caudy M, Garapati P, Gopinath 
G, Jassal B, et  al. Reactome: a database of reactions, pathways and biological processes. 
Nucleic Acids Res. 2011;39:D691–7.

45.	Karp PD, Riley M, Saier M, Paulsen IT, Paley SM, Pellegrini-Toole A.  The EcoCyc and 
MetaCyc databases. Nucleic Acids Res. 2000;28:56–9.

46.	Kelder T, van Iersel MP, Hanspers K, Kutmon M, Conklin BR, Evelo CT, Pico 
AR.  WikiPathways: building research communities on biological pathways. Nucleic Acids 
Res. 2012;40(Database issue):D1301–7.

47.	Jewison T, Su Y, Disfany FM, Liang Y, Knox C, Maciejewski A, Poelzer J, Huynh J, Zhou 
Y, Arndt D, et al. SMPDB 2.0: big improvements to the small molecule pathway database. 
Nucleic Acids Res. 2014;42(Database issue):D478–84.

48.	Wishart DS, Li C, Marcu A, Badran H, Pon A, Budinski Z, Patron J, Lipton D, Cao X, Oler E, 
et al. PathBank: a comprehensive pathway database for model organisms. Nucleic Acids Res. 
2020;48(D1):D470–8.

49.	Strömbäck L, Lambrix P. Representations of molecular pathways: an evaluation of SBML, PSI 
MI and BioPAX. Bioinformatics. 2005;21:4401–7.

50.	Gillespie CS, Wilkinson DJ, Proctor CJ, Shanley DP, Boys RJ, Kirkwood TB. Tools for the 
SBML community. Bioinformatics. 2006;22:628–9.

51.	van Iersel MP, Villéger AC, Czauderna T, Boyd SE, Bergmann FT, Luna A, Demir E, Sorokin 
A, Dogrusoz U, Matsuoka Y, et  al. Software support for SBGN maps: SBGN-ML and 
LibSBGN. Bioinformatics. 2012;28:2016–21.

52.	Xia J, Wishart DS. MetPA: a web-based metabolomics tool for pathway analysis and visualiza-
tion. Bioinformatics. 2010a;26:2342–4.

53.	Xia J, Wishart DS. MSEA: a web-based tool to identify biologically meaningful patterns in 
quantitative metabolomic data. Nucleic Acids Res. 2010b;38(Web Server issue):W71–7.

Bioinformatic Tools for Clinical Metabolomics



96

54.	Xia J, Fjell CD, Mayer ML, Pena OM, Wishart DS, Hancock RE. INMEX--a web-based tool 
for integrative meta-analysis of expression data. Nucleic Acids Res. 2013;41(Web Server 
issue):W63–70.

55.	Karnovsky A, Weymouth T, Hull T, Tarcea VG, Scardoni G, Laudanna C, Sartor MA, 
Stringer KA, Jagadish HV, Burant C, Athey B, Omenn GS. Metscape 2 bioinformatics tool 
for the analysis and visualization of metabolomics and gene expression data. Bioinformatics. 
2012;28:373–80.

D. S. Wishart



97

Untargeted Metabolomics in Newborn 
Screening

Joshua Manor and Sarah H. Elsea

Abstract  Since its inception six decades ago, newborn screening has been lauded 
as a highly successful and cost-effective public health program by identifying disor-
ders at the presymptomatic stage, enabling early disease-modifying intervention 
that otherwise invariably leads to death or permanent damage if treated at the symp-
tomatic stage. The advent of multiplex high-throughput assays involving chroma-
tography coupled with mass spectroscopy enabled the analysis of multiple disorders 
in a single run, vastly increasing the repertoire of screened disorders while keeping 
the cost nearly the same. Industrialized countries provide unified screening for more 
than 50 conditions, compared to about a dozen, a mere decade ago. Inevitably, we 
now screen, in essence, more than we know how to treat. Nonetheless, as a constant 
flow of new therapies breaks ground, providing accurate diagnostic data is vital for 
patient outcomes. Breaking the diagnostic barrier can mean new research, new 
drugs, and ultimately increased survival. In this chapter, we overview the concept of 
untargeted metabolomics as applied to newborn screening, how it fares compared to 
the well-standardized tests of the targeted screening, and its ability to screen for 
more disorders that are currently “unscreenable.”

Keywords  Untargeted metabolomics · Inborn error of metabolism (IEM) · Mass 
spectrometry (MS) · Dried blood spot (DBS) · Newborn screening (NBS) · 
Biomarker discovery

J. Manor 
Metabolic Disease Unit, Haim Sheba Medical Center, Edmond and Lily Safra Children’s 
Hospital, Sheba Medical Center, Tel Hashomer, Israel 

S. H. Elsea (*) 
Department of Molecular and Human Genetics, Baylor College of Medicine,  
Houston, TX, USA
e-mail: Sarah.Elsea@bcm.edu

© The Author(s), under exclusive license to Springer Nature Singapore Pte 
Ltd. 2023
A. M. Abdel Rahman (ed.), Clinical Metabolomics Applications in Genetic 
Diseases, https://doi.org/10.1007/978-981-99-5162-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-5162-8_5&domain=pdf
mailto:Sarah.Elsea@bcm.edu
https://doi.org/10.1007/978-981-99-5162-8_5


98

1 � Population-Wide Untargeted Screening

Variant reclassification, as demonstrated in Chap. 3, is not only important for 
accurate genetic counseling but also to guide management in treatable hereditary 
disorders, which is best exemplified in IEMs. IEMs constitute a large group of 
disorders of inherited defects in metabolic pathways and, if left untreated, can 
lead to significant morbidity and mortality [1]. In a global effort to reduce the 
IEM morbidity burden and to improve patients’ outcomes, a more than half-
century-long effort of newborn screening bore fruition in many countries. What 
started in the 1960s as a single disorder screening assay has evolved into an 
extended 50+ IEM screening machinery for each newborn [2]. This expansion 
was made possible primarily with the advent of MS-based targeted metabolomics 
(TM), allowing multiplexed screening in a single sample and facilitating the 
overall screening process. This is in contrast to the ad hoc methodology—each 
for a single disorder per test—e.g., electrophoresis isoelectric focusing for hemo-
globinopathies and enzyme-linked immunosorbent assay (ELISA) for thyroxine 
(T4) quantification. The multiplexed assays have also altered the traditional view 
of NBS. From screening for disorders that (a) are occurring at significant fre-
quency, (b) can be screened inexpensively, (c) include effective treatment that can 
avert significant morbidity, and (d) cannot be screened based on other signs and 
symptoms presented at birth [2], screening is concentrating now on only the sec-
ond principal, and many disorders (some are exceedingly rare) are also caught in 
the wider net, despite having inadequate treatment options. One can conceive an 
“expanded” NBS not simply as a longer list of disorders that are screened at birth 
but actually as a screening procedure for disorders that are now screened for pre-
symptomatically, merely because technology allows it. With the rapid growth of 
precision medicine, improved drug delivery, improved blood-brain barrier pene-
tration, and the constant deluge of clinical trials, the need for expanded screening 
may prove beneficial quicker than previously imagined. To that end, a NBS 
expansion can mean moving forward from TM to untargeted metabolomics (UM).

So, our next question is how does a qualitative UM compared with quantitative 
TM when it comes to disease screening?

UM, by probing for not only a relevant subset of predefined metabolites (e.g., 
tyrosine levels in tyrosinemia patients), can identify up to 1000s [3] to 10,000s [4, 
5] unique metabolites in each sample. Coupled with high-throughput separation 
techniques like high-resolution liquid chromatography (HPLC) or gas chromatogra-
phy (GC), successful identification of disease-defining metabolites is made by dem-
onstrating a statistically significant alteration (elevations or reductions), exceeding 
a −2 ≤ log2 ≥ 2 ratio, meaning a four-fold change from the normal range.
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2 � Screening for IEM Using UM

Miller et al. employed both GC and LC coupled to single-quadruple MS on 120 
patients diagnosed with 21 different IEMs and positively identified 20 IEMs in 112 
patients by showing perturbation of 2–20 metabolites in relevant pathways for each 
IEM [6]. Coene et al. applied a HPLC in tandem to quadrupole time-of-flight MS as 
a single platform on a cohort of 46 IEMs, identifying the key metabolites in 42 [4]. 
Bonte et al. utilized pentafluorophenylpropyl phase-based HPLC with Orbitrap MS 
in a cohort of 33 IEMs, identifying successfully 31 [5]. Haijes et al. applied direct 
infusion MS without chromatography-based separation, circumventing the need to 
create an experimental library for analytes’ retention times [7]. Screens were per-
formed on both dried blood spots (DBS) and plasma. Two additional cohorts were 
constructed for urine samples [8, 9] with biomarkers from 41 IEMs successfully 
detected using liquid chromatography coupled to either quadruple time-of-flight 
(QTOF) or high-resolution MS. Correct identification was reported for 90–95% of 
the IEMs. Results are detailed together in Table 1.

Importantly, UM is performed well on the “can’t miss” diagnoses. Propionic 
acidemia (MIM 606054), an autosomal recessive inborn error of metabolism of 
propionic acid (PA), is due to a defective propionyl-CoA carboxylase. It results in 
the toxic accumulation of PA derived from the catabolism of methionine, valine, 
isoleucine, threonine, and odd-chain fatty acids. NBS reveals elevated propionylcar-
nitine (also referred to as C3), and confirmatory testing will show elevations of 
2-methylcitrate and 3-OH-propionate. When utilizing UM, researchers found eleva-
tions in both primary and secondary metabolites while noticing a decrease in 
2-methylmalonyl carnitine, an analyte associated with the product of propionyl-
CoA carboxylase. Similar picture was obtained for the other two main organic aci-
demias, methylmalonic aciduria (MIM 251000) and isovaleric aciduria (MIM 
243500). For the aminoacidopathy, maple syrup urine disease (MSUD), in which 
the keto acids of deaminated leucine, isoleucine, and valine cannot be further catab-
olized resulting in a severe encephalopathic disorder of hyperleucinosis, plasma 
was assessed from seven individuals. In these patients, isoleucine, the disease-
pathognomonic biomarker alloisoleucine, and the corresponding analytes of the 
keto acids were found to be elevated, while downstream products were decreased: 
3-hydroxyisobutyrate (valine catabolite), isovalerylcarnitine (isoleucine catabolite), 
and hydroxyisovalerylcarnitine (leucine catabolite), demonstrating a diagnostic bio-
chemical profile for this disorder (a more complete profile that cannot be obtained 
by TM alone). For another can’t miss diagnosis, medium-chain acyl-CoA dehydro-
genase deficiency (MCADD, MIM 201450), an autosomal recessive disorder of 
β-oxidation of medium-chain fatty acids, not all known analytes were discovered, 
but a near pathognomonic picture with elevations of hexanoylcarnitine (C6) and 
octanoylcarnitine (C8) and the dicarboxylic acid suberic and sebacic acid was 
obtained, pointing out the diagnosis rather easily. The same was true for phenylke-
tonuria, tyrosinemia type 1 (MIM 276700), and histidinemia (MIM 235800), while 
the finding of elevated tetradecenoylcarnitine was detected in four cases of very 
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Table 2  Examples of diagnostic metabolites detected by untargeted metabolomics leading to non-
benign IEMs that are not routinely screened by NBS

Metabolite(s) Condition(s) MIM Specimen

N-acetylalanine, 
N-acetylglutamate, 
N-acetylmethionine, 
N-acetylleucine

Aminoacylase I deficiency 609924 Plasma, 
urine

N-acetylaspartate Canavan disease 271900 Plasma
Orotic acid Uridine monophosphate synthase 

deficiency (primary), urea cycle 
defects (secondary)

613891 
(primary)

Plasma, 
urine

Mevalonate Mevalonic aciduria 610377 Urine
Homocysteine thiolactone/
homocysteinea

Methylenetetrahydrofolate reductase 
deficiency, cobalamin-related 
disorders

236250
236270
250940
277380
277400
277410
309541

Plasma, 
DBS

Xanthine, S-sulfocysteine Molybdenum cofactor deficiency 
types A, B and C, isolated sulfite 
oxidase deficiency

252150 
252160 
615501 
272300

Plasma

Succinyladenosine Adenylosuccinate lyase deficiency 103050 Plasma
3-methoxytyrosine 
(3-O-methyldopa)

Aromatic l-amino acid 
decarboxylase deficiency

608643 Plasma, 
urine

Guanidinoacetate↑, 
+/− ↓creatine

Guanidinoacetate methyltransferase 
deficiency

612736 Plasma, 
DBS

Proline and ornithine Ornithine aminotransferase 
deficiencyb

258870 Plasma, 
DBS

↓Lysine, ↓ornithine, 
↓arginine

Lysinuric protein intolerance 222700 Plasma

Glycine Nonketotic hyperglycinemia 605899 Plasma, 
DBS

Sedoheptulose Transaldolase deficiency, rare cases 
of cystinosis

606003 Plasma

↓Serine, ↓glycine Phosphoglycerate dehydrogenase 
deficiencyc

256520 
601815

Plasma

Cholestane-3,7,12,25,25-
pentol

Cerebrotendinous xanthomatosis 213700 Plasma

Di- and tri-hydroxy-5b-
cholestan-26-oic acidsd

α-Methylacyl-CoA racemase 
deficiency

614307 Plasma

N-acetyl-d-mannosamine N-acetylneuraminic acid phosphate 
synthase deficiency

610442 Plasma

Phytanic acide Peroxisomal biogenesis defects, 
Refsum disease

266500 
(Refsum)

Plasma

Fumaric acid Fumarate hydratase deficiency 606812 Urine

Untargeted Metabolomics in Newborn Screening
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Table 2  (continued)

Metabolite(s) Condition(s) MIM Specimen

4-Hydroxy-6-methyl-2-
pyroned

3-hydroxy-3-methylglutaryl-CoA 
synthase 2 deficiency

605911 Urine

2-Pyrrolidinone, succinamic 
acid

GABA transaminase deficiency 613163 Plasma

UM untargeted metabolomics, IEM inborn error of metabolism, NBS newborn screening, ↓ reduc-
tion in metabolite; otherwise, alteration is elevation
aWith normal levels of methionine. Reported only by some laboratories as the detection of homo-
cysteine requires special preparatory steps
bElevations of proline and ornithine may not be seen in ornithine aminotransferase deficiency dur-
ing the neonatal period due to substrate stoichiometry
cSimilar metabolomics picture can be seen in phosphoserine aminotransferase 1 deficiency 
(PSAT1D, MIM 616038), which can present similarly to phosphoglycerate dehydrogenase 
deficiency
dNot routinely reported by all laboratories
eAlterations may also include the elevation of pipecolic acid

long-chain acyl-CoA dehydrogenase deficiency (VLCADD, MIM 201475) in one 
study [4], although undetected in two cases from another study [6]. Homocysteine 
and homocysteine thiolactone are both accumulating in cystathionine β-synthase 
deficiency (homocystinuria, MIM 236200) and 5,10-methylenetetrahydrofolate 
reductase deficiency (MTHFR, MIM 607093) [1, 10]. These two disorders were 
successfully diagnosed in DBS by demonstration of significant elevation in one of 
the two analytes in conjunction with elevation of methionine (a “can’t miss” diag-
nosis) in the former but not the latter. Homocysteine was only elevated in DBS, as 
in plasma metabolomics homocysteine is not detected using high-throughput meth-
odology for sample prep, which does not allow for the pretreatment required for 
proper analysis.

Patients with β-ketothiolase deficiency (T2 deficiency, MIM 203750), a disorder 
of isoleucine breakdown and ketone utilization deficiency, were found to have ele-
vation of tiglylglycine and 2-methyl-3-hydroxybutyric acid with no elevation of 
2-methylacetoacetic acid, making this metabolic profile indistinguishable from 
2-methyl-3-hydroxybutyryl-CoA dehydrogenase  deficiency (HSD17B10 defi-
ciency, MIM 300438). Contrarily, for the single patient with 2-methyl-3-
hydroxybutyric deficiency in the cohorts, tiglylglycine was elevated, but 
2-methyl-3-hydroxybutyric was not. This suggests that tiglylglycine is a sensitive 
marker for both of these two distal isoleucine breakdown disorders; however, spe-
cific biomarkers for either disorder are lacking.

An important group of disorders that are only partially screened for in NBS are 
urea cycle defects. Most notably is the severe ornithine transcarbamylase deficiency, 
an X-linked urea cycle defect (OTCD, MIM 300461) for which early detection is 
crucial for improved outcomes, yet this condition is difficult to detect due to limita-
tion on measuring low quantities (of citrulline in the case of OTCD) and extraction 
of orotic acids in high-throughput methods. In one case of OTCD, significant eleva-
tions of uridine were found, which is a secondary disease biomarker. The elevation 
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in uridine stems from shunting of carbamoyl phosphate from the urea cycle into the 
pyrimidine biosynthesis pathway via the orotic acid intermediate; however, orotic 
acid was not elevated in the two patients with OTCD. For citrin deficiency (citrul-
linemia type 2, MIM 603471 and 605814), citrulline was elevated along with amino 
acid markers of liver injury (tyrosine and its degradation products 
4-hydroxyphenyllactic acid 4-hydroxyphenylpruvic acid, lysine, arginine, and 
5′-S-methyl-5′-thioadenosine), a common finding in neonatal presentation of this 
disorder. In a patient with hyperornithinemia-hyperammonemia-homocitrullinuria 
syndrome (HHH, MIM 238970), a secondary UCD caused by mitochondrial orni-
thine transporter defect, only general markers for urea cycle dysfunction were iden-
tified (elevations in uracil and orotic acid), yet this finding should merit a focused 
investigation for UCDs. Homocitrulline and ornithine were both elevated in plasma 
UM of a 30-year-old patient with HHH, [11], while it failed to detect elevations in 
citrulline in a patient with citrin deficiency in another study [12]. For OTCD, DBS 
samples showed orotic acid elevation in one of two cases; however, no significant 
elevations in uridine or uracil were found, in contrast to plasma, where both were 
elevated. Nonetheless, these results are somewhat encouraging giving hope for 
expanded DBS screening for the most common urea cycle defect [2], with severe 
presentation in males and no current screening protocols.

A few important examples demonstrate the increased diagnostic repertoire of 
UM (see Table 2). Lysinuric protein intolerance (LPI, 222700) is a disorder caused 
by defective cationic amino acid (CAA) transport at the basolateral membrane of 
epithelial cells in the kidney and intestine leading to increased renal excretion of 
CAA leading to the depletion of mainly lysine, arginine, and ornithine, the latter 
leading to secondary urea cycle defect (UCD) which can result in hyperammone-
mia. UM in two patients identified excess glutamine, a marker for compensated 
hyperammonemia and reduction of plasma CAA (although mild in one study). In 
urine, low glutarylcarnitine and N6-trimethyllysine were recorded, with mildly ele-
vated N6-acetyllysine [9]; the latter two are products of lysine catabolism. Urine 
levels of CAA did not differ significantly from the control.

Successful identifications of four severe nucleotide degradation IEMs have been 
reported, two pyrimidine degradation disorders, β-ureidopropionase deficiency 
(MIM 606673), in plasma, and dihydropyrimidine dehydrogenase deficiency (MIM 
274270), in urine, and two purine metabolism syndromes: X-linked hypoxanthine-
guanine phosphoribosyltransferase deficiency (causing either Lesch-Nyhan syn-
drome (MIM 300322) or HPRT-related hyperuricemia (MIM 300323)) in two 
patients (one each in plasma and in urine) and adenylosuccinate lyase deficiency 
(MIM 608222) in the other two (also one each in plasma and in urine). These results 
are promising, as currently purine and pyrimidine metabolism defects can cause a 
severe neurological phenotype which may be amenable for treatment but currently 
are not routinely screened among presymptomatic newborns. Moreover, elevation 
of xanthine and xanthosine (purine catabolites) and low uric acid (the degradation 
product of xanthine) were found in five patients, three with molybdenum cofactor 
deficiency (MoCD, MIM 252150) and two with xanthinuria type 2 (MIM 603592). 
The former disorder is a severe, rapidly progressive encephalopathy due to 
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deficiency in the molybdenum and biopterin cofactors, the latter a benign disorder 
of accumulation of xanthine due to defect in xanthine oxidase and aldehyde oxidase 
(AO, affecting mainly N1-methylnicotinamide degradation). Of note, elevations in 
the specific MoCD marker S-sulfocysteine was seen in only one sample, while thio-
sulfate and taurine were not detected. On DBS, increased levels of α-amino adipic 
semialdehyde (AASA) were also seen, which are also observed in sulfite oxidase 
deficiency (MIM 272300) and AASA deficiency (antiquitin deficiency, also called 
pyridoxine-dependent epilepsy, MIM 266100) [13], both are disorders bearing 
importance of early screening. For the MoCD samples without elevated 
S-sulfocysteine, both patients were under treatment; however, a profile containing 
elevations in xanthine and xanthosine and reduction of uric acid is expected to 
include sulfa-containing analytes, as well. Identification of these metabolites can 
facilitate the diagnosis of MoCD, which for its most common genetic cause a thera-
peutic option is available, and avoidance of permanent damage can be achieved if 
therapy is initiated within days after birth [14]. 3-phosphoglycerate dehydrogenase 
(3-PGDH) deficiency (Neu-Laxova syndrome, MIM 606879), a severe neurodevel-
opmental due to serine biosynthesis defect, is characterized by low plasma levels of 
serine and glycine, and while this profile was correctly captured in the plasma, it 
was not observed in DBS, presumably due to treatment.

Cerebrotendinous xanthomatosis (CTX, MIM 213700), an autosomal recessive 
bile acid synthesis disorder resulting in a neurodegeneration and premature athero-
sclerosis due to diffuse xanthomata, was successfully identified in five patients due 
to elevations in cholestane-3,7,12,24,25-pentol, a specific marker for CTX [15]. 
These results would allow early treatment with chenodeoxycholic acid early in the 
course of the disease and can prevent neurodegeneration in a disorder otherwise 
diagnosed well into the development of systemic symptoms. Elevations of phytanic 
acids were seen in one patient with adult Refsum disease (MIM 266500), a disease 
of defective α-oxidation of phytanoyl esters into pristanic esters, resulting in vision 
decline, hearing loss, polyneuropathy, ichthyosis, and cardiac conduction defects. 
Early recognition can initiate low phytanic acid diet can improve significantly the 
overall prognosis of this disorder that is usually diagnosed after the appearance of 
symptoms [1].

Unlike organic acidemias, amino acidopathies, and urea cycle disorders, the 
screening for organelle-based diseases, such as storage diseases, lags behind with 
currently only two types of mucopolysaccharidoses being screened [16]. UM offers 
hope as a highly sensitive screening tool for additional metabolites that can indicate 
abnormal intra-organelle catabolism, which are pathognomonic for certain disor-
ders. For lysosomes, β-mannosidosis, a neurodegenerative lysosomal storage disor-
der (LSD) due to a defect in removal of β-d-mannose from glycoproteins (MIM 
248510), was successfully identified by elevation of the pathognomonic mannosyl-
β1,4-N-acetylglucosamine (GlcNAc-Man). In the mitochondria, mitochondrial 
neurogastrointestinal encephalopathy (MNGIE, MIM 603041) is a multisystem dis-
order of mitochondrial DNA depletion causing severe gastrointestinal (GI) dys-
motility with peripheral neuropathy, hearing and vision impairment, and early death 
in the fourth decade [17]. On average, diagnosis is delayed by 12 years [18] due to 
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the initial nonspecific GI symptoms due to deficiency of thymidine phosphorylase. 
Here, UM screening assists in early diagnosis, with elevations of thymidine and 
deoxyuridine, and, thus, can reduce morbidity with the emergence of new thera-
pies [17].

In the cohorts of urine samples [8, 9], two patients with aromatic l-amino acid 
decarboxylase deficiency (AADCD, MIM 608643), a monoamine neurotransmitter 
synthesis defect, had significant elevations of vanillactic acid, which is expected to 
increase with the accumulation of l-DOPA, a substrate of AADC.  In addition, 
4-hydroxybutyric acid was elevated in two patients with succinic semialdehyde 
dehydrogenase deficiency (SSADHD, MIM 271980), a γ-aminobutyric acid 
(GABA) catabolism defect. Both conditions are severe and are not typically 
screened, with emerging gene therapy options for the former [19, 20]. Additionally, 
adenosine deaminase deficiency, a purine degradation disorder that is the fourth 
most common etiology for severe combined immunodeficiency (SCID, MIM 
102700) [21], was successfully screened by the identification of 2-deoxyadenosine 
and 2-deoxyinosine [9].

Few notable limitations of UM are worth mentioning. For GAMT deficiency, 
which converts guanidinoacetate (GAA) and S-adenosylmethionine (SAM) into 
creatine and S-adenosylhomocysteine (SAH), only one study out of the three suc-
cessfully identified GAA accumulation and reduction of creatine in plasma. 
However, more recently, an increased sensitivity to GAA is reported by laborato-
ries, which may lead to improved identification of GAMT deficiency. In plasma, 
homogentisic acid was not detected in the case of alkaptonuria, a tyrosine break-
down disorder causing a degenerative joint and cartilage disorder (MIM 203500), 
and similarly, mevalonic acid was not detected for mevalonic aciduria, a heteroge-
neous multisystemic disorder of cholesterol synthesis (MIM 610377 and 260920). 
In urine samples, however, both homogentisic acid and mevalonic acid were 
detected readily [8]. For LPI, not all cohorts detected low levels of CAA, leaving the 
nonspecific hyperglutaminemia in plasma the only consistent finding in these cases. 
In urine, alteration of lysine metabolites was noted (low N6-trimethyllysine and high 
N6-acetyllysine), as mentioned above.

Importantly, despite all methods grouped under “UM,” different preparation 
techniques yielded different metabolic profiles and detection rates of the IEMs. 
Examples are LPI, VLCADD, GAMT deficiency, and alkaptonuria, in which the 
primary metabolites CAA, C14:1, GAA, and homogentisic acid were found only in 
some studies but not in others. Additionally, while UM detected up to 10,000 ana-
lytes per sample [4], only about 300–400 analytes were matched to known library 
of reference and analyzed for perturbations to create metabolic profiling [4, 5]. 
Large population screening, such as newborn screening, must maintain consistency 
in the selection of derivatives to be detected; the same small group of representative 
molecules must be detected in each and every sample. To be effectively used for 
large population screening, steps for streamlining sample collection and preparation 
must be undertaken, as well efforts to reduce unreliable peak integration in the anal-
ysis process, supporting semiautomated result interpretation [22]. One approach is 
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the implementation of automated interpretation pipeline [23] or utilization of 
machine learning to more clearly define biochemical phenotypes [24, 25].

Glossary

Dried blood spot (DBS)  A method of whole blood sample collection, in which a 
small amount of fresh blood is blotted onto an absorbent filter paper, followed by 
drying. This method provides a convenient storage and shipment platform and 
is widely used for newborn screening. Typically, a small punch from the DBS 
paper is eluted with phosphate-buffered saline, availing the sample for testing.

Multiplex assay  An assay measuring simultaneously multiple analytes in a single 
testing. These tests are becoming more popular in the metabolic sciences where 
several similar analytes are tested for alterations from the normal range, e.g., 
urine polyols for evaluation of the pentose phosphate pathway, urine glycosami-
noglycans for the diagnosis of mucopolysaccharidoses, or carbohydrate moieties 
for congenital disorders of glycosylation.
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Untargeted Metabolomics, Targeted Care: 
The Clinical Utilities of Bedside 
Metabolomics

Joshua Manor and Sarah H. Elsea

Abstract  The second decade of the twenty-first century saw a quiet revolution in 
the field of inborn errors of metabolism. Decades of extensive research into meta-
bolic pathways of physiologically active cells and tissues, along with an improved 
resolution of high-throughput screening capabilities, brought forth the clinical 
metabolome. Clinicians can now take a metabolic snapshot while assessing their 
patients and receive invaluable information on pathological processes, rule in or 
rule out a proposed diagnosis, highlight early signs of decompensation, assess 
response to treatment, explore new disease biomarkers, and even suggest novel 
treatment options. In this chapter, we review the major strengths of clinical metabo-
lomics as a diagnostic aid and its capabilities in promoting novel biomarker discov-
ery. We also provide an outlook for how next-gen interpretation modalities (such as 
machine learning) are expected to revolutionize this field further to benefit patients 
worldwide.
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1 � Introduction

In recent years, clinical practice has seen a dramatic increase in the utilization of 
targeted and untargeted metabolomics (TM and UM, respectively) [1, 2]. 
Metabolomics has been termed “the stethoscope of the twenty-first century” with 
broad applications in many fields of medicine: In oncology, it is utilized for bio-
markers; in neurology, for severity stratification of neurodegenerative disorders; in 
endocrinology for diabetes modulators; in rheumatology and cardiology where cer-
tain metabolites may improve prognostication of chronic diseases (e.g., osteoarthri-
tis and atherosclerosis); and in gastroenterology, where metabolomics may assist in 
differentiating between Crohn’s disease and ulcerative colitis [3]. UM has been used 
in multifactorial disorders to assist in risk assessment and early diagnosis, such as 
the observation that increased plasma levels in three out of five aromatic and 
branched-chain amino acids (isoleucine, leucine, valine, tyrosine, and phenylala-
nine) confers a fivefold increased likelihood for developing type 2 diabetes [4] or 
that increased plasma levels of glycocholate, taurocholate, and glycochenodeoxy-
cholate are associated with nonalcoholic fatty liver disease (NAFLD). In contrast, 
decreased plasma levels of free carnitine, butyrylcarnitine, methyl-butyryl carnitine, 
and cysteine-glutathione are seen in nonalcoholic steatohepatitis (NASH) [5]. 
Similarly, breast cancer showed a pattern of increased total choline-containing sub-
stances and decreased glycerophosphocholine in the plasma [6], correlating malig-
nancy to a glycerophosphocholine-to-phosphocholine ratio switch [7].

Naturally, UM can highlight alterations in complex “metabolic disorders” and 
refine our understanding of metabolic flux in health and disease. The untargeted 
global assessment can further provide a high-resolution cellular homeostasis map 
and multivariant perturbation metrics that can assist in prognostication, the need for 
intervention, and the effect of a therapeutic modality. From a clinical perspective, a 
rare disease is a primary focus, and areas of influence for untargeted metabolomics 
include improving diagnostic rates, allowing affordable high-throughput disease 
screening, and identifying novel disease biomarkers that can be translated to the 
clinic. UM can contribute significantly toward a facilitated diagnosis and direct tar-
geted treatment, thus enabling a reduction of the traditionally high morbidity and 
mortality associated with the under-recognition and undertreatment of metabolic 
disorders.

2 � Metabolomics Joins the Diagnostic Front Seat

Clinicians justifiably consider exome sequencing (ES) to be the panacea of all diag-
nostic dilemmas, particularly when routine laboratory studies and tissue biopsies 
fail to establish a diagnosis. Indeed, ES has ushered in a new diagnostic era. Thanks 
to the reduced cost of sequencing, massive utilization of ES is now widely available, 
turning it into first-tier clinical testing for diagnostic evaluation of developmental 

J. Manor and S. H. Elsea



119

delay and other congenital anomalies [8–10]. ES is perhaps most heavily relied 
upon in the neonatal intensive care unit (ICU), in which a third of admitted patients 
are due to genetic causes [11]. ES is also heavily relied upon for primary mitochon-
drial disorders (PMD) [12], for which there is a notorious lack of biomarkers with 
adequate specificity [13]. This is further exemplified by the staggering finding of 
normal muscle respiratory chain enzymes in 10–20% of cases with mitochondrial 
myopathy undergoing invasive diagnostic procedures [14].

Nonetheless, as intriguing as it may appear, a diagnosis relying solely on ES 
without additional laboratory results lowers the test’s pretest probability and 
increases the likelihood of false-positive results [15]. The American College of 
Medical Genetics and Genomics (ACMG) recommends that effort should be made 
to avoid using the pathogenicity of a variant as the sole evidence of a Mendelian 
disease but rather should be used in conjunction with other clinical information 
[16]. Perhaps, the best demonstration of the chasm between the diagnostic promise 
of ES and reality is variants of uncertain significance (VUS) [17], perceived as a 
“challenge” in ~1/3 of the articles reporting ES results [18]. With inconclusive 
molecular data, generating a snapshot of metabolites during illness creates a func-
tional bioassay for candidate metabolic pathways. It provides an independent tool 
for ruling in or ruling out suspected diagnoses. Following the ACMG variant inter-
pretation algorithm [16], metabolomic data fall into the functional data category by 
providing “well-established functional studies to show deleterious [or non-
deleterious] effect,” which is considered strong supportive information for the 
pathogenic or benign nature of a variant. Metabolomic data, therefore, can push the 
needle from the neutral zone (a VUS) to the actionable zone [19, 20]. It is, neverthe-
less, of utmost importance to report only significant variations in metabolites to 
avoid reporting fluctuations stemming merely from dietary changes, environmental 
factors, drug exposure, and normal daily changes in metabolism. However, the defi-
nition of significance is still laboratory dependent [21]. It is also of equal impor-
tance to provide detailed clinical information and the nutritional and therapeutic 
status of the patient to the performing laboratory to optimize the data analysis. 
Given that a VUS is a common finding in ES, estimated to occur in 30–80% of clini-
cally indicated ES tests [22, 23], and comprises ~30% of variants found by targeted 
sequencing for suspected inborn errors of metabolism (IEMs) [24], a variant valida-
tion and classification tool alongside molecular diagnostics is critical. UM serves as 
a valuable biochemical, functional validation instrument that can be integrated into 
clinical care.

2.1 � Monoamine Synthesis

The utilization of UM for VUS reclassification was demonstrated by Atwal et al. in 
a diagnostic odyssey of an 11-month-old boy presenting with intellectual disability 
and hypotonia with episodes of generalized stiffening [25]. Initially diagnosed with 
cerebral palsy, exome sequencing showed two missense VUS in DCC, which 
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encodes aromatic-l-amino acid decarboxylase (AADC), a key enzyme in mono-
amine synthesis. AADC deficiency (AADCD) results in a severe neurometabolic 
disorder due to the combined deficiency of serotonin, dopamine, norepinephrine, 
and epinephrine. The onset of the disease is typically in the first months of life. 
However, the phenotypic spectrum of disease is broad and includes hypotonia, ocu-
logyric crises, ptosis, dystonia, hypokinesia, developmental delays, and autonomic 
dysfunction [26]. Diagnosis is typically made by abnormal monoamine metabolites 
in CSF, followed by molecular confirmation or enzyme analysis in plasma. Elevation 
of 3-O-methyldopa (3-OMD), also termed 3-methoxytyrosine (3-MT), a catabolite 
of dihydroxyphenylalanine (l-DOPA), indicating a blockage in the conversion of 
l-DOPA into dopamine. For the patient described in Atwal et al., UM showed a 
plasma level of 3-MT 69 times higher than the control population.

Further confirmation of the UM findings was achieved by demonstrating abso-
lute levels of 3-MT in CSF > three-fold the upper limit of normal, along with unde-
tectable levels of the dopamine and serotonin derivatives, homovanillic acid (HVA), 
and 5-hydroxy indoleacetic acid (5-HIAA), respectively. Neurotransmitter analysis 
in CSF has been considered the gold standard for diagnosing AADC deficiency. Yet, 
this work presents that UM can attain similar results in plasma without requiring an 
invasive procedure. At times of atypical presentation and a wide differential diagno-
sis, UM can cast a wide net in a single test and may render specific diagnostic tests 
and procedures, each for a single suspected disease, inessential. The presentation 
can be atypical for the late-onset subgroup of patients with AADCD, including 
milder symptoms of hypotonia, dystonia, and fatigue [27]. As symptoms of AADC 
uniformly present in the first years of life [28, 29], a differential diagnosis may 
include “dopa-responsive dystonia,” with a trial of l-DOPA initiated as part of the 
diagnostic workup [30]. In light of this treatment approach [31], an additional work 
examined the ability of UM to differentiate an AADCD metabolic profile from other 
l-DOPA-treated conditions, as 3-MT will be elevated in both cases [32]. Two 
patients with AADCD before initiation of l-DOPA showed similar elevations of 
3-MT as five patients with non-AADCD pathology (Z-scores of +5.88 and +7.65, 
respectively). However, reduced levels of dopamine 3-O-sulfate (D3OS) and vanil-
lylmandelic acid (VMA) downstream of the AADC enzyme were seen in AADCD 
patients. In contrast, non-AADCD patients had elevated levels of D3OS and 
3-methoxytyramine sulfate (3-MTS), showing a surplus of dopamine  following 
treatment with L-DOPA. As these results were obtained from plasma and not from 
CSF, these data again demonstrate the robustness of the metabolic profile of AADCD 
obtained noninvasively.

2.2 � Ornithine Metabolism

Diagnosis by variant reclassification was also made in a 7-year-old male with global 
developmental delay (GDD), ADHD, epilepsy, and ectodermal abnormalities [33]. 
The boy was found to have a novel, presumed splice-site VUS in ODC1. This gene 
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encodes ornithine decarboxylase, converting ornithine into putrescine, the first step 
of the spermidine pathway. UM showed excessive N-acetylputrescine, a metabolite 
of putrescine, confirming a gain-of-function variant in this gene, consistent with a 
diagnosis of Bachmann-Bupp syndrome (MIM 619075), an autosomal dominant 
disorder of neurodevelopment characterized by GDD, macrocephaly, white matter 
and callosal abnormalities, spasticity, seizures, and ectodermal defects (alopecia, 
cutaneous vascular malformations) [34, 35].

2.3 � NAD(P)HX Repair System

VUS reclassification can also direct treatment for metabolic disorders amenable to 
the intervention. The NAD(P)HX repair system is a highly conserved two-enzyme 
system that restores damaged NAD(P)H [36]. In an acidic and hyperthermic envi-
ronment, NADH and NADPH can both undergo hydration into NAD(P)HX nonen-
zymatically [37]. Without the repair system, the inactive NAD(P)HX accumulates 
and depletes the NAD+ pool under cellular stress. Biallelic pathogenic variants in 
either of the genes coding for the two enzymes, NAXD and NAXE, cause a rapidly 
progressive neurometabolic disorder triggered by inflammatory stress (mostly 
febrile illness), bearing high mortality in the first decade of life (MIM 618321 and 
617186, respectively) [38–40]. A case of a fever-triggered encephalomyopathy cri-
sis in a 16-year-old adolescent demonstrated a small deletion encompassing the first 
two exons of NAXD, in trans to a missense VUS in the exon 1-intron 1 splice donor, 
suspected to alter both splicing and the mitochondrial localization of NAXD, which 
contains the mitochondrial targeting sequence in its first exon [41]. Plasma UM dur-
ing metabolic crisis demonstrated NAD+ depletion and led the medical team to initi-
ate niacin therapy. Under therapy, clinical status improved, and baseline 
metabolomics demonstrated repletion of NAD+. Not only did UM biochemically 
support the pathogenicity of the variant, but it also provided monitoring data for the 
targeted treatment. These results were further validated in a case of NAXE defi-
ciency, for which evidence of depletion of NAD+ derivatives was presented during a 
crisis. Niacin treatment appeared to prevent metabolic decompensation during a 
subsequent febrile illness while on niacin supplementation (Fig. 1).

2.4 � Riboflavin Metabolism

Diagnosis and treatment guidelines were also provided in a case of a 2-year-old 
male diagnosed with hypoplastic macrocytic anemia (hemoglobin of 5.5 g/dL and 
mean corpuscular volume of 107.1 fL, range 10.5–14.0 g/dL and 76–90 fL, respec-
tively) who later developed ataxia and nystagmus in the context of respiratory syn-
cytial virus (RSV) infection [42]. Brain magnetic resonance imaging (MRI) showed 
enhancement of cranial nerves III and V, diffuse intramedullary T2 hyperintensity of 
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Fig. 1  NAD(P)HX repair system deficiency and plasma untargeted metabolomics. Top: NAD+ 
utilization (red) and repletion by biosynthesis (green) pathways are shown. When the repair system 
is defective (left, black), correction of spontaneously converted NADH to NADHX back to NADH 
(blue) is impaired, lowering available NAD+ and, thus, lowering utilization products while increas-
ing upstream biosynthesis markers (quinolinate). Bottom: Plasma metabolomic profiles of defi-
ciency in the NAD(P)HX repair system when patients are under inflammatory stress. Two patient 
profiles are shown, one for each repair system enzyme (NAXD, NAXE), with the effect of NAD+ 
depletion on selected analytes (red bars) and after supplementation with niacin (green bars). Taken 
together, in both NAXD and NAXE deficiencies, these results point to NAD+ depletion during 
inflammatory stress that is amenable to correction with substrate repletion. Bottom: Left panel—
At the time of acute inflammatory stress, the red bars show the metabolomic profile from a patient 
with NAD(P)HX dehydratase deficiency (NAXD, EC 4.2.1.93), demonstrating the absence of 
1-methylnicotinamide, marked deficiency in N1-methyl-2-pyridine-5-carboxamide, and increased 
quinolinate (red bars). At 11  months’ post-crisis, the patient underwent another UM profiling 
(green bars), showing a reversal of these alterations while under niacin treatment. Bottom: Right 
panel—Shown are the same key molecules in plasma from a patient with NAD(P)HX epimerase 
deficiency (NAXE, EC 5.1.99.6) demonstrating similar trends during an acute inflammatory crisis 
(red bars). Repeat UM profiling at 9 months’ post-crisis while on niacin supplementation showed 
a reversal of these alterations (green bars)

the entire cord, and cauda equina nerve root thickening and enhancement. ES 
showed a pathogenic variant and a novel VUS predicted to cause an in-frame single 
amino acid deletion (p.Phe153del) in SLC52A2, an intestinal basolateral and a 
blood-brain barrier riboflavin transporter (MIM 607882). UM showed elevated C6 
(hexanoylcarnitine), C8 (octanoylcarnitine), C10 (decanoylcarnitine), and C10:1 
(decenoylcarnitine), supporting the pathogenicity of the in-frame deletion variant, 
in addition to elevations in 2-hydroxyglutarate, methyl succinate, and ethylmalo-
nate, common secondary alterations in short- and medium-chain fatty acid oxida-
tion defects. These perturbations can also be detected on TM, yet the value of UM 
was nicely demonstrated by showing additional perturbations in metabolic path-
ways that are related to riboflavin deficiency. Riboflavin is the precursor of flavin 
adenine dinucleotide (FAD), a necessary cofactor for kynurenine-3-monooxygenase, 
the de novo NAD+ biosynthesis pathway member; in the patient, the proximal kyn-
urenine was increased, and the distal picolinate was decreased. Reduction of 
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5,10-methylene tetrahydrofolate into 5-methyltetrahydrofolate is also dependent on 
FAD, leading to inhibition of the one-carbon cycle and recycling of sulfur-containing 
amino acid, ultimately resulting in elevations in sarcosine, dimethylglycine, methio-
nine, and glycine. These values normalized upon initiation of high-dose riboflavin 
(70 mg/kg/day), with a resolution of the anemia and nystagmus and improvement in 
ataxia. While ataxia and nystagmus are common findings, the highly suggestive 
upper body proximal muscle weakness with prominent neck flexion and the early 
symptom of dysphagia were not seen; however, macrocytic anemia is a rare finding 
[43], making a diagnosis based on clinical suspicion very difficult. Indeed, SLC52A2 
deficiency, also called Brown-Vialetto-Van Laere syndrome 2 (MIM 614707), is a 
difficult diagnosis to make, with an average time to diagnosis of more than 2 years, 
a significant delay for a disorder manifesting in the first decade of life [43]. For 
example, normocytic anemia was misdiagnosed in a toddler as pure red cell aplasia 
overlooking an insidious weakness and areflexia and delaying the diagnosis of 
SLC52A2 deficiency for 3 years [44].

2.5 � Histidine Metabolism

Not only for VUS can interpretation by UM assist in diagnostic dilemmas. 
Deficiency of urocanase (also called urocanate hydratase), an enzyme participating 
in the histidine deamination breakdown pathway, was previously considered to be 
associated with intellectual disability [45, 46]. Intellectual disability (ID) is a rela-
tively common clinical finding, with a 0.8–3.7% prevalence in the pediatric popula-
tion [47, 48]. Common disorders can manifest independently in rare diseases. A 
connection can be falsely established due to (a) small cohorts (an inherent problem 
of rare disorders), (b) consanguinity increasing independently the prevalence of 
IEM [49, 50] and ID [51, 52], and (c) publication bias, resulting from a top-down 
sequencing of patients presenting with a multitude of symptoms. In a recent work, 
plasma and urine UM showed a significant increase in both cis- and trans-urocanate 
and imidazole propionate in two asymptomatic patients with biallelic pathogenic 
variants in UROC1 and normal intellect and with no other significant metabolic 
alterations [53] (Fig. 2). UM helped expand our understanding of the benign nature 
of urocanase deficiency (MIM 276880) and the need to pursue a genetic diagnosis 
for ID in patients with urocanase deficiency, per standard guidelines [10].

2.6 � The Diagnostic Rate Among Inborn Error of Metabolism

A direct comparison of TM (plasma amino acids [PAA], acylcarnitine profile [ACP], 
and urine organic acids [UOA]) to UM showed that the latter has an overall ~sixfold 
higher diagnostic rate for IEM (7.1% vs. 1.3%) [19]. That result may not be unex-
pected, yet the power of UM was demonstrated by the variety of diagnoses it allows 
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a

b

Fig. 2  Metabolomic map of the histidine catabolism pathway in a patient with urocanate hydra-
tase (EC 4.2.1.49, urocanase) deficiency in (a) plasma and (b) urine. The affected arm of the 
pathway, highlighted in green arrows in both plasma and urine, shows the accumulation of analytes 
immediately upstream to the enzymatic block, trans-urocanate and cis-urocanate. These accumula-
tions then result in the subsequent accumulation of imidazole propionate (in equilibrium with 
trans-urocanate) and, to a lesser degree, 1-methylhistidine. In urine, the deficiency of the down-
stream analytes, hydantoin-5-propionate and glutamate, are also shown (blue circles). The color, 
diameter, and shading of each circle are proportional to the Z-score. Red circles indicate analytes 
in excess (Z-score  >  +2); blue circles represent deficient analytes (Z-score  < −2); pink circles 
indicate analyte excess with a Z-score  >  +1.5  <  +2. Black circles indicate analytes within 
−1.5 ≤ Z-score ≤ +1.5. Gray circles indicate analytes that are not measured in this assay. (Adapted 
from Glinton et al., 2018. Urocanate hydratase (urocanase) is indicated by the black “no entry” sign)

over TM. Diagnoses included disorders of synthesis of neurotransmitters, choles-
terol, and peroxisomal biogenesis. γ-aminobutyric acid-(GABA)-transaminase defi-
ciency (MIM 613163). This early infantile epileptic encephalopathy with a 
movement disorder and hypersomnolence due to GABA catabolism defect, was 
diagnosed in a 1-year-old patient with hypotonia and movement disorder and com-
pound heterozygous VUS in ABAT, which encodes GABA-transaminase. UM 
showed 2-pyrrolidinone, succinamic acid, and succinimide elevations that were not 
seen on UOA. These three metabolites are reliably detected in both CSF and plasma, 
in contrast to CSF GABA alone, the gold standard for diagnosis but prone to false-
negative results if not handled appropriately [27]. Specifically, 2-pyrrolidinone is a 
butyrolactam spontaneously converted from GABA when the latter is not broken 
down to succinic semialdehyde (SSA) by GABA-transaminase. 2-pyrrolidinone is 
converted to succinimide and succinamic acid [54], making these three metabolites 
alternative biomarkers. The same metabolic profile was seen in a 6-year-old with 
global developmental delay (GDD) and movement disorder who was also homozy-
gous for a VUS and two other patients presenting with encephalopathy, seizures, 
cortical blindness, motor developmental delay, hypotonia, strabismus, ataxia, and 
intellectual disability [19, 54].
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A diagnosis of Smith-Lemli-Opitz (MIM 270400), a disorder of cholesterol bio-
synthesis, was made in a typically presenting 10-year-old male with microcephaly, 
hypotonia, developmental delays, and a congenital cardiac defect. In that patient, 
7-dehydrocholesterol was elevated, while cholesterol was decreased. Initially, a 
diagnosis could be ascertained by comparing this profile to the near identical profile 
of a molecularly confirmed 3-year-old boy [19] and later confirmed molecularly. In 
a different study, such a diagnosis was excluded in a 28-year-old patient with devel-
opmental delays by demonstrating normal 8-dehydrocholesterol and 
7-dehydrocholesterol, downgrading a VUS to likely benign [55].

The latter study presented 16 cases of either homozygous or compound hetero-
zygous VUS in which metabolomics assisted in variant reclassification after ES was 
nondiagnostic. Noteworthy in this study are (1) a case of a patient presenting with 
early-onset recurrent nephrolithiasis, urosepsis, and transfusion-dependent anemia, 
showing an excess of orotic acid in the urine (a metabolite not easily detected in 
UOA); thus, the two missense VUS were reclassified to pathogenic and likely 
pathogenic, and treatment with uridine monophosphate was initiated; and (2) a case 
of psychomotor retardation and retinitis pigmentosa with increased urinary 
5-oxoproline excretion, and despite negative ES, the finding that prompted targeted 
sequencing of the GSS gene, demonstrating homozygosity for a deep intronic vari-
ant for this highly heterogeneous condition, 5-oxoprolinase deficiency (MIM 
260005).

UM performed on plasma from a 17-year-old with agenesis of the corpus callo-
sum, autism spectrum disorder, lactic acidosis, hyperammonemia, and electrolyte 
abnormalities revealed reduced pantothenate, carnitine, and carnitine derivatives 
due to SLC5A6 deficiency, confirmed by biallelic VUS identified by subsequent 
exome sequencing [19]. SLC5A6 is a cellular cotransporter of pantothenate, biotin, 
and α-lipoic acid in the intestine and blood-brain barrier [56]. SLC5A6 deficiency 
leads to early-onset neurodegenerative disorder and also includes failure to thrive, 
acquired microcephaly, movement disorder, immunodeficiency, gastrointestinal 
dysfunction, and osteopenia. Early treatment with high-dose pantothenate, biotin, 
and α-lipoic acid seems to improve outcomes [57, 58]. UM also confirmed the diag-
nosis of medium-chain acyl-CoA dehydrogenase deficiency, argininemia, and 
X-linked glycerol kinase deficiency (GKD, MIM 307030), in which molecular 
diagnoses were inconclusive or missing, among other conditions [19].

To directly analyze the contribution of UM to the interpretation of variants iden-
tified in ES, Alaimo et al. examined clinical samples with both ES and UM testing 
that were sent for diagnostic purposes in a cohort of 170 patients [20]. This cohort 
was similarly primarily pediatric, with>90% presenting with neurological symp-
toms. The researchers identified 145 variants in 74 patients in their cohort in 73 
genes associated with an IEM. Based on the metabolomic data, the 12.3% diagnos-
tic rate in this cohort facilitated the reclassification of 27 variants (19%). Of the 
reclassified variants, 24 VUS were reclassified as either likely pathogenic (n = 15) 
or likely benign (n  =  9), while an additional three variants were upgraded from 
likely pathogenic to pathogenic. Classifications were done according to the ACMG 
guidelines [16]. For 17 additional pathogenic variants, the study presented 
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confirmatory metabolic perturbations. One case upgraded a homozygous VUS to a 
likely pathogenic variant, making the diagnosis of guanidinoacetate methyltransfer-
ase (GAMT) deficiency likely in the patient and allowing the clinician to focus on 
the treatment for this disorder of cerebral creatine deficiency. Moreover, for autoso-
mal recessive conditions in which sequencing revealed only heterozygous variants, 
UM ruled out the suspected condition in ~60% of cases by showing a normal metab-
olite profile for the metabolic pathway in question, thus excluding the possibility of 
a biochemically symptomatic carrier possessing a second disease-causing allele not 
detected due to the constraints of ES.

2.7 � Automation of Data Interpretation

Similarly to ES diagnostic capabilities, no discussion of UM clinical diagnostic 
capabilities will be complete without discussing the interpretation of the (untar-
geted) data. The ability to correctly diagnose a condition based on UM heavily 
depends on the art of data interpretation. Rather than the convoluted manual analy-
sis of metabolomic data (with or without genomic information), automated bioin-
formatic tools provide means for pattern recognition and thus hold a great promise 
of an improved matching between datasets and a particular disease or pathway. One 
approach applies the clique problem in a metabolomic graph. A clique is defined as 
an interconnected group of metabolites (nodes), and small highly connected cliques 
are extracted based on computational analysis bounding cliques’ p values [59]. 
Across 539 plasma samples, this connect-the-dots (CTD) approach reproduced 
accurate diagnosis of 16 different IEMs [60]. The top-down bioinformatic approach 
seeks to identify causative genes by providing a likelihood scoring system based on 
heuristic algorithms predicting the effects they expect to exert on the -omic dataset. 
Several metrics achieved prioritization of candidate genes based on UM. In cross-
omics, a metabolomic study performed using dried blood spots (DBS) [61], candi-
date genes were prioritized based on their distance from the perturbed metabolite 
(where each reaction accounts for 1 step), with a narrowing process of including 
metabolites that participate in only limited amount of reactions (“uniqueness”) and 
limiting metabolites to only those with a significant Z-score (“significance”) to gen-
erate gene-specific metabolite sets. Successful prioritization was achieved by con-
sidering metabolites up to four reactions away from the primary reaction, uniqueness 
of up to 15 reactions, and significance of >+3 or <−3. In metPropagate [62], each 
protein is assigned a rank based on its associated metabolite enrichment, and 
dynamic ranking is propagated with the protein’s functional linkage network. This 
approach successfully prioritized causative genes (within the top 20th centile) in 
20% of IEMs in the study group and 82% (9/11) in the test group of neurometabolic 
disorders. This algorithm outperformed Exomiser [63], a causative variant 
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prioritization tool based on human phenotype ontology data and standard pathoge-
nicity prediction (variant prevalence, conservation, and information from model 
organisms and inheritance patterns). In another approach, Reafect [64] assigned a 
score based on cumulative pathway perturbations, including metabolites with sub-
significant Z-scores, correctly predicting the causative gene in the top fifth centile in 
80% of the 76 patients harboring 36 different IEMs. When combined with the del-
eteriousness predictive score, Combined Annotation Dependent Depletion (CADD) 
[65], specificity further increased. Another promising approach is the implementa-
tion of a siamese neural network, weighing in the tandem computational metabolic 
network (for predicting metabolite flux) and machine learning (ML, for matching 
metabolic networks to diseases) trained by the ML algorithm [66]. The model used 
a single simulated profile for each disease with real data points from only 2% of the 
diseases to outperform a generic algorithm that prioritizes causative genes based on 
distance from real data profiles (using the L1 Manhattan metrics). Limitations to 
ML include the quality of the training set and the generalizability of metabolic pro-
files to novel diseases. Nonetheless, implementing predictive ML-based algorithms 
promises to reduce the number of patient-derived samples required for disease dis-
covery (smaller cohorts), a vital prerequisite in the world of rare diseases such as 
IEMs [59].

3 � Metabolomic Fingerprinting: Identifying Diseases’ 
Biometrics and Finding New Disease Biomarkers

Biomarkers are crucial for the effective screening, designation, and diagnostic con-
firmation or exclusion of diseases by UM. Biomarkers are also critical in monitor-
ing an affected patient’s metabolic status and treatment efficacy. Clinical biomarkers 
for IEMs are abundant [67], although most are derived from TM. Many biomarkers 
are assessed by routine biochemical tests, such as ammonia, lactate, uric acid, and 
cholesterol, or from TM, such as UOA (e.g., trimethylamine in fish odor syndrome) 
or PAA (high phenylalanine in PKU). To increase specificity, either identification of 
disease-specific biomarkers can assist in the diagnosis (or ruling out) of a disease, 
such as allo-isoleucine in MSUD or argininosuccinic acid in argininosuccinate 
lyase (ASL) deficiency, or the identification of several non-pathognomonic metabo-
lites, such as low levels of lysine, ornithine, and arginine in plasma amino acids 
suggestive of LPI, or the elevation of propionylcarnitine on ACP, methylmalonic 
acid in UOA, low methionine on PAA, and homocysteine in the blood, indicative of 
an intracellular cobalamin utilization defect. UM can instigate both strategies. By 
its untargeted nature, UM has the potential to uncover biomarkers that were not 
known to be associated with an IEM or not visible by targeted testing.
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3.1 � Peroxisome Biogenesis

Peroxisome biogenesis disorders in the Zellweger spectrum (PBD-ZSD) are a het-
erogeneous group of genetic disorders caused by mutations in genes responsible for 
normal peroxisome assembly and functions [68]. The majority of cases are due to 
biallelic pathogenic variants in PEX1 (61%), followed by PEX6 (15%) and PEX12 
(8%), with additional contribution from at least another 10 PEX genes [69], an 
important group of proteins essential for the assembly of peroxisomes and the rec-
ognition and transport of cytoplasmic proteins that contain peroxisomal targeting 
sequence [70]. The severe end of PBD-ZSD includes neuronal migration defects 
with leukodystrophy, neonatal onset seizures, hypotonia, failure to thrive, liver dys-
function, bony stippling respiratory insufficiency, cataracts, sensorineural hearing 
loss, and renal cortical microcysts; the mild end of the spectrum includes develop-
mental delays and intellectual disability that can be mild and slowly progressive 
retinopathy and sensorineural hearing loss [68, 69, 71]. Severe cases can be screened 
by elevation of the very-long-chain fatty acid (VLCFA), C26:0-
lysophosphatidylcholine (DBS, plasma), phytanic and pristanic acids (plasma); 
reduction in plasmalogens (plasma, erythrocyte membranes); increase in pipecolic 
acid (plasma, urine); and increase in the bile acids, dihydroxycholestanoate, and 
trihydroxycholestanoate (plasma, urine) [69]. Intermediate and mild cases may 
show only subtle alterations, and in combination with subtle clinical symptoms, 
screening for PBD-ZSD may not be performed. In a cohort of 19 mild to intermedi-
ate PBD-ZSD pediatric patients, Wangler et al. showed a distinct PBD-ZSD plasma 
metabolome (Fig. 3), with elevated levels of long-chain dicarboxylic acids, pipe-
colic acid, and the bile acid derivative 7α-hydroxy-3-oxo-4-cholestenoic acid and 
with reductions in phosphatidylcholines, phosphatidylethanolamines, and plasmal-
ogens [71]. Pipecolic acid and the lysophospholipid 1-lignoceroyl-GPC (24:0) were 
most strikingly elevated with a Z-score of +3.7. Less anticipated changes included 
dicarboxylic acids of 16–22 carbons. UM also proposed novel biomarkers, with a 
reduction in nine sphingomyelin species. Reduction of several sphingomyelins in 
the clinical UM database, excluding PBD-ZSD, was observed in only 2% (interest-
ingly, one of which was diagnosed with bifunctional protein deficiency, which can 
mimic PBD-ZSD). Moreover, the plasma elevations in pipecolic acid and reduc-
tions in the sphingomyelins attenuated with age, an expected finding correlating 
milder phenotypes among older surviving patients.

3.2 � Urea Cycle

The urea cycle is the principal mechanism for the clearance of waste nitrogen 
resulting from protein turnover, the sole source of endogenous production of argi-
nine, ornithine, and citrulline, and a principal component of the nitric oxide (NO) 
production pathway [72]. The urea cycle is also connected with TCA anaplerosis 
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Fig. 3  Plasma metabolomic footprint of peroxisome biogenesis disorder-Zellweger spectrum dis-
order (PBD-ZSD). Top: Left panel. Early diagnosis (age <10 years) of PBD-ZSD shows a more 
significant metabolic phenotype, with enrichment of lysoplasmalogens, plasmalogens, sphingo-
lipid metabolism, and phosphatidylcholines, reaching statistical significance (colored bars) for 
patients when compared to control population. Top: Right panel. The relative deficiencies of most 
of these lipids in PBD-ZSD in children under the age of 10 years are represented by the blue circles 
in the metabolomic tree of lipid analytes (lipidomics). Bottom: Left panel. Later diagnosis of 
PBD-ZSD (age >10 years) exhibits a more subtle metabolic phenotype. Bottom: Right panel. The 
metabolomic fingerprint of PBD-ZSD in individuals >10 years of age showed mild perturbations 
in which reductions of the plasmalogens and lysoplasmalogens did not reach statistical signifi-
cance. The lipidomic tree shows considerably fewer perturbations when compared to plasma 
obtained from a younger patient. Trees were rendered using Cytoscape (https://www.cytoscape.
org). (Figure adapted from Wangler et al. 2018)

via the alternative synthesis of fumarate. UCDs include eight different IEMs 
resulting from defects in any one of the six enzymes or two transporters involved 
in the hepatic removal of ammonia as waste nitrogen by its conversion to urea and 
excretion by the kidneys [73]. Mortality and morbidity primarily contribute to 
neurological damage resulting from hyperammonemia (HA) and the elevation of 
other neurotoxic intermediates of metabolism [74]. A typical presentation of a 
UCD includes neonatal hyperammonemic crisis; however, nontypical presenta-
tions of later-onset HA, acute liver dysfunction, intellectual disability, or insidious 
pyramidal signs of the lower extremities with minimal HA crises (in arginase 
deficiency) have been described [27]. It has been suggested that arginase defi-
ciency, with its unique presentation compared to other UCDs, exerts a neurotoxic 
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effect by the guanylation of glycine, with the excess arginine serving as a guani-
dine donor rather than acute HA crises [75]. In a cohort of 13 patients with arginin-
emia, Burrage et al. demonstrated an increase in additional guanidine compounds, 
namely, N-acetylarginine, homoarginine, argininate, and 2-oxoarginine, to a 
greater degree than guanidinoacetate (GA) [76]. Guanidine compound (GC) tox-
icity is believed to be derived from the observed in vitro neurotoxicity: diminished 
response to the inhibitory GABA and glycine neurotransmitters [77], promotion 
of non-apoptotic cell death and axonal hypersprouting [78], and inhibition of Na+/
K+-ATPase activity and glutamate uptake, and decrease in antioxidant defense in 
the rat brain [79]. Other toxic effects of GC include ethanol-induced liver injury, 
stimulated osteoclastogenesis, generation of reactive oxygen species (ROS), and 
modulation of cerebral cortex potentials [79]. In GAMT deficiency, GA is the 
main GC accumulating and phenotypically exerting a greater degree of intellec-
tual disability, refractory epilepsy, and dystonia. At the same time, pyramidal 
signs are less dominant as compared to arginase deficiency. While these results 
may indicate an important role of GA in the developing brain, another important 
modifier between the two disorders is the creatine level, which is normal in argi-
nase deficiency and low in GAMT deficiency [80]. Peripheral administration of 
polyethylene glycol amalgamated to (PEGylated) arginase, now in advanced 
stages of development, will help elucidate further pathomechanistic insights by 
the peripheral reduction of arginine excess without restoring urea cycle function 
in the liver.

The same study by Burrage and colleagues also examined a UM profile of OTC 
deficiency, a severe X-linked disorder bearing high morbidity and mortality among 
males and affected females. In this UCD, morbidity is attributed to HA crises, and 
biomarkers are scarce, making this disorder “unscreenable.” In this study, 83% of 
patients (10/12) with a history of hyperammonemia (excluding females with no 
such history) showed a significant elevation (Z-score >+2) of either orotate or uri-
dine. Other biomarkers of increased pyrimidine metabolism (due to the shunting 
of the cabamoylphosphate from the dysfunctional urea cycle), β-ureidopropionate, 
and uracil were not significantly elevated. For screening purposes, the sensitivity 
of these markers is ~60% (10/17), and the specificity is also low, given shared 
pathway perturbation with other UCD and pyrimidine metabolism defects; how-
ever, these results point to an important consideration for biochemical testing, 
indicating such abnormalities in cases of uncertain diagnosis given the sensitive 
nature of this disorder. The authors are aware of a case of a 1.5-year-old female 
presenting with fulminant liver failure and nonspecific liver biopsy for which only 
uracil was elevated in urine on traditional metabolic screening. Based on that 
result, a presumptive diagnosis of OTC deficiency was made, and targeted treat-
ment was promptly provided; molecular testing later confirmed the suspected 
diagnosis. Both citrullinemia and ASL deficiency did not show unique metabolic 
fingerprints beyond the accumulation of citrulline and argininosuccinic acid, 
respectively [76 ].
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3.3 � Pyruvate Kinase

Pyruvate kinase deficiency (PKD, MIM 266200) is the most common form of inher-
ited anemia due to glycolytic defects. It results in a spectrum of hemolytic anemia 
that can result in infantile-onset transfusion-dependent anemia or a milder form of 
compensated anemia [81]. A diagnostic gap exists for PKD due to the unsatisfactory 
performance of activity assays, a genetic composition complicating molecular diag-
nosis (variants in regulatory elements or effector genes such as KLF1), and the 
confounding effect of frequent blood transfusion on these methods [82]. In a cohort 
of 16 patients with PKD (against 32 controls), van Dooijeweert et al. showed three 
groups of metabolites in DBS that differed between the two cohorts: glycolytic 
products phosphoenolpyruvate and 2- and 3-phosphoglycerate, as one might expect, 
along with polyamines, such as spermine, spermidine, N1-acetylspermidine, and 
putrescine, which are associated with red blood cell (RBC) membrane integrity, and 
acylcarnitines such as methylmalonylcarnitine and propionylcarnitine which are 
involved in turnover and repair of the RBC membrane [83]. Principal core analysis 
showed a separation of metabolic profiles between the two groups. Interestingly, the 
mildly affected patients with no history of transfusion dependence or splenectomy 
more closely resembled the control group, followed by transfusion dependence 
(severe phenotype), probably due to the frequent retrieval of donor RBC, and the 
splenectomized patients (moderate phenotype) were furthest away from control. 
Based on these findings, a machine learning algorithm trained on a subset of the 
cohort could predict the disease in 94% of cases.

3.4 � Glucose Transporter 1

UM can also reveal a metabolic fingerprinting of disease-modifying treatments, 
aiding the monitoring of both therapeutic efficacy and disease progression. The 
brain glucose transporter GLUT1 facilitates the diffusion of glucose to brain tissue 
to compensate for insufficient passive diffusion, given the elevated requirement for 
glucogenic energy production by that tissue. Heterozygous pathogenic variants in 
SLC2A1, which encodes GLUT1, result in a brain energy failure syndrome 
(GLUT1DS) caused by impaired glucose transport and result in a spectrum of phe-
notypes including epileptic encephalopathy, intellectual disability, acquired micro-
cephaly, ataxia, action limb dystonia, chorea, and tremor in its severe form and 
paroxysmal ataxia in its mild end. Diagnosis is made by demonstrating a low CSF 
concentration of glucose in the presence of plasma normoglycemia and/or identifi-
cation of a pathogenic variant in SLC2A1 [84]. Aside from probable energy deple-
tion, it was suggested that depletion of glycolysis intermediates might play a role 
in the disorder’s pathogenesis; however, it is unknown to what extent, as in vitro 
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models include near-complete abrogation of the transporter [85]. The sole thera-
peutic option available is a classic ketogenic diet (CKD). By altering the brain 
energy fuel into mainly ketone bodies, this therapy dramatically affects seizures 
and can improve cognitive outcomes. However, diet discontinuation was reported 
in up to 10% of patients due to side effects [86], and low compliance led experts to 
recommend alternative low carbohydrate diets (such as the modified Atkins diet) 
for adolescents and adults [87] and even exploring amylopectin-based diet of the 
low glycemic index [88]. Monitoring CKD is based on serum β-hydroxybutyrate 
levels, as measuring urine ketones—a convenient and qualitative measure of aceto-
acetate—has a limited role in diet monitoring [87]. A more comprehensive picture 
created by UM performed on six treated patients with GLUT1DS [89] showed 
elevations in β-hydroxybutyrate, β-hydroxybutyrylcarnitine, β-methyladipate, and 
N-acetylglycine. Other elevated derivatives were α-ketobutyrate, β-hydroxylaurate, 
10-nonadecenoate, margarate, 15-methylpalmitate, and α-aminoheptanoate. 
Furthermore, pathway analysis using Kruskal-Wallis analysis (comparing pathway 
metabolite perturbations vs. non-pathway metabolite perturbations) showed 
involvement of long-chain fatty acids, phospholipids, acylcarnitines, and, to a 
lesser degree, sphingolipids, mono-hydroxy fatty acids, and polyunsaturated fatty 
acids. In accordance with fatty acid utilization, free carnitine levels were low, while 
carnitine-bound metabolites were elevated. CSF UM of three patients prior to CKD 
onset revealed low levels of glycerol 3-phosphate, an intermediary metabolite in 
lipid metabolism, and an increased level of isocitrate, which can indicate a TCA 
dysfunction [89]. These results supply a CKD metabolic profile with a more com-
plete ketosis map, which can assist in diet fine-tuning, e.g., increasing the fat-to-
carbohydrate ratio to increase overall ketosis or examining the effect of decreasing 
the ratio in reduced diet tolerability. The results can also guide the need for supple-
mental carnitine due to increased secondary excretion in ketosis, which, although 
it is considered a benign supplementary agent, can also exacerbate GI-related 
symptoms in patients under this GI-unfriendly diet and can also independently 
elevate plasma trimethylamine N-oxide (TMAO) levels, an atherosclerotic agent 
[90, 91].

3.5 � Serine Metabolism

Serine biosynthesis defects occur due to deficiency in either of the three enzymes 
converting 3-phosphoglycerate into serine, phosphoglycerate dehydrogenase 
(PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase 
(PSP), and result in a severe neurometabolic disorder including severe intellectual 
disability, ataxia, nystagmus, epilepsy, hypertonia/spasticity, microcephaly, and 
poor growth. Deficiencies in enzymes of the serine de novo biosynthesis pathway 
result in low plasma and CSF levels of serine. Low serine impedes the synthesis of 
sphingolipids (from serine and palmitoyl-CoA), phosphatidylserine, d-serine (an 
agonist to the ionotropic glutamate receptor N-methyl-d-aspartate (NMDA)), and 
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5,10-methylenetetrahydrofolate (by converting serine to glycine) [92]. This multi-
pathway effect could explain neurodevelopmental abnormalities associated with 
this disorder; however, a more direct association has not been clinically demon-
strated. In four children with two serine biosynthesis defects, PGDH deficiency 
(three children) and PSAT deficiency (one child), Glinton et al. demonstrated an 
abnormal phospholipid profile at the time of diagnosis and, upon treatment, normal-
ization thereof. Before initiation of treatment, serine and glycine were both 
decreased in all patients, and multiple phospholipids were reduced, including spe-
cies of the mono- and di-unsaturated 18-carbon phosphatidylcholine and phospha-
tidylethanolamine in three or four of the patients [93]. Multiple sphingolipid species 
were reduced in two patients, most notably sphingomyelin. Except for phospholip-
ids, no other compounds were found to be altered (either reduced or elevated) con-
sistently in all patients evaluated [93]. The majority of these abnormalities 
normalized under supplementation. These results emphasize the need for early 
treatment. De novo synthesis of phosphatidylcholine (PC) and phosphatidylethanol-
amine (PE) from choline, ATP, cytidine triphosphate (CTP), and diacylglycerol by 
choline kinase, phosphocholine cytidylyltransferase, and choline transferase (also 
referred to as the Kennedy pathway) may, in fact, be inadequate at the time of rapid 
growth or neuronal differentiation in utero and require supplementation of PE and 
PC from phosphatidylserine pool (by mitochondrial phosphatidylserine decarbox-
ylase). Another possibility is serine palmitoyltransferase (SPT) substrate promiscu-
ity, leading to the condensation of alanine and palmitoyl-CoA into 
1-deoxy-sphinganine (instead of 1-dehydro-sphinganine when serine is sufficient). 
Indeed, decreased sphingomyelin and increased 1-deoxy-sphingomyelin have been 
reported in targeted metabolomics applied for primary serine biosynthesis defects 
and secondary serine deficiency due to mitochondrial disorders [94]. Interestingly, 
a DBS sample from one patient at 38 hours of life showed markedly reduced serine, 
which could have served as abnormal NBS, as discussed above [93].

3.6 � Pentose Phosphate Pathway and Polyol Metabolism

The pentose phosphate pathway is an important cytosolic pathway that converts 
glucose into ribulose-5-phosphate and produces reduced nicotinamide adenine 
dinucleotide phosphate (NADPH) for restoration of the antioxidant glutathione. Its 
oxidation product, ribulose-5-phosphate, can serve as a nucleotide building block or 
be further converted into phosphorylated mono-sugars that can serve as glycolytic 
intermediates [95]. The nonoxidative portion includes four enzymes, ribulose 
5-phosphate isomerase and reductase, transaldolase (TALDO), and transketolase 
(TKT). Common features of TALDO deficiency (MIM 606003) are hepatospleno-
megaly, anemia, thrombocytopenia, renal tubulopathy, heart abnormalities, and 
cholestatic liver dysfunction that can develop into cirrhosis [96]. For TKT defi-
ciency (MIM 617044), manifestations include short stature, developmental delays, 
and congenital heart defects [27]. These manifestations are nonspecific; further, 
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considering the potential reversibility of these two disorders (despite no currently 
available treatment), high-yield screening can facilitate diagnosis and improve out-
comes. While TALDO deficiency was indicated by UM screening by identification 
of sedoheptulose, a single polyol that can point out an abnormality within the non-
oxidative portion of PPP, Shayota et al. successfully demonstrated high-specificity 
multiple polyol alterations in plasma and urine metabolomics for the diagnosis of 
these two enzyme deficiencies (see Table 1) [97]. Two novel biomarkers were shown 
for both disorders (erythronate and ribonate). Secondary alterations in purine and 
pyrimidine metabolites, as seen in this work, are most probably due to defect in 
ribulose-5-phosphate processing.

Table 1  TM versus UM findings in two disorders of the nonoxidative portion of the pentose 
phosphate pathway [97]

Metabolic 
pathway

Targeted metabolomics Untargeted metabolomics
Plasma Urine Plasma Urine

TALDO 
deficiency

Polyol Arabitol
Erythritol
Ribitol
Xylitol
Sedoheptulose

Arabitol
Sedoheptulose

Arabitol/xylitola 
Ribitol
Erythritol
Sedoheptulose
Erythronate
Ribonate

Arabitol/xylitola

Ribitol
Erythronate
Ribonate

Tryptophan – – Kynurenate
Xanthurenate

Quinolinate
Xanthurenate

Purine – – Xanthosine
Pyrimidine N-carbamoylaspartate
TCA – – α-Ketoglutarate Succinate

Fumarate
Malate

TKT 
deficiency

Polyol Arabitol
Erythritol
Ribitol
Xylitol
Sedoheptulose

None Arabitol/xylitol
Ribitol
Erythritol
Ribose
Erythronate
Ribonate

Arabitol/xylitol
Ribitol
Erythritol
Erythronate
Ribonate

Tryptophan – – Kynurenine
Xanthurenate
Quinolinate
Indolelactate

Kynurenine
3-hydroxykynurenine

Purine – – Inosine Xanthosine
Guanosine

Pyrimidine N-carbamoylaspartate

Underline—a newly discovered disease biomarker
aArabitol could not be easily distinguished from xylitol or arabonate from xylonate by this UM 
platform, given the similar structure and molecular weight
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3.7 � Metabolomics of Muscular Diseases

The muscular disease has a broad differential diagnosis and multiple pathological 
mechanisms. An important etiological group is the mitochondrial myopathies, with 
can have early- or late-onset and acute or subacute course and are progressive in 
nature [14]. Buzkova et  al. compared the metabolomic profiles of mitochondrial 
myopathies and ataxias (lumping the sporadic inflammatory disorder inclusion 
body myositis, which also affects mitochondrial functioning) in comparison to non-
mitochondrial neuromuscular diseases [98]. This study utilized TM of 94 metabo-
lites but is included herein, given its broad application and interest in disease 
fingerprinting. The first group demonstrated alterations in the transsulfuration path-
way, including elevated cystathionine (1.9–4.1-fold increase) and a less consistent 
reduction in taurine. In contrast, the second group was characterized by normal 
levels of cystathionine, depletion of nicotinamide (−1.7-fold change), and increased 
creatine (2.1-fold change). Alterations were also found in carbohydrate metabolism 
leading the authors to propose a quad-biomarker set of elevations in sorbitol, ala-
nine, myoinositol, and cystathionine, producing an area under the curve similar to 
fibroblast growth factor-21 (FGF-21), lactate, and pyruvate, to distinguish the mito-
chondrial origin of myopathy (with an overall 76% sensitivity, 95% specificity). A 
particular mitochondrial myopathy, mitochondrial encephalomyopathy, lactic aci-
dosis, and stroke-like episodes (MELAS, MIM 540000) showed elevations in car-
bohydrate derivatives (sorbitol, glucuronate, myoinositol, and sucrose), decreased 
arginine, and an increase in transsulfuration intermediates (cystathionine, 
γ-glutamyl-cysteine S-adenosylmethionine, and glutamate) with a decrease in ade-
nosine, guanidinoacetate, and betaine. In another UM study of MELAS patients, 
Sharma et al. demonstrated novel amino acid, acylcarnitine, and fatty acid biomark-
ers [99]: N-lactoyl attached to the branched-chain amino acids leucine, isoleucine, 
or valine or to the aromatic amino acids phenylalanine and tyrosine; β-hydroxy 
acylcarnitines of even-length C10:0 to C16:0 (C10:0, C12:0, C14:0, C16:0); and 
β-hydroxy fatty acids of even-length C8:0 to C14:0. These biomarkers were associ-
ated with the degree of diseased severity (per Karnofsky performance score). 
Interestingly, β-OH-C16:0 carnitine showed a severity correlation similar to the 
well-accepted growth/differentiation factor-15 (GDF-15) [100], while β-hydroxy 
acylcarnitines and β-hydroxy fatty acids correlated with ventricular lactate levels, 
and the N-lactoyl-amino acids correlated with urine heteroplasmy. Table 2 summa-
rizes selected metabolic pathways in which more than 10% of metabolites are sig-
nificantly altered in the individual disorders (two-sample t-test for significance).
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4 � Future Perspectives

We shall end our discussion of bedside UM with a futuristic perspective of UM in 
the service of autism spectrum disorder (ASD). The autism spectrum is a range of 
neurodevelopmental conditions exhibiting persistent deficits in reciprocal social 
interaction and restricted, repetitive patterns of behavior, interests, or activities. 
Historically, ASD gained an independent psychiatric status from schizophrenia only 
in the second half of the twentieth century (the word autism was initially coined to 
describe severe schizophrenia) [101] and became a spectrum only at the end of that 
century. We now appreciate a 60–80% heritability of ASD [102, 103], with an esti-
mated genetic or genomic etiology in 30–40% of cases [104]. Within the group of 
ASD, due to a known genetic variant, an estimated 3–5% are due to an IEM [105]. 
Examples include [106] amino acidopathies (PKU, homocystinuria, 
S-adenosylhomocysteine hydrolase deficiency, MSUD, UCD), organic acidurias 
(PA, L-2-hydroxyglutaric aciduria), cholesterol biosynthesis defects (Smith-Lemli-
Opitz syndrome), disorders of neurotransmitter synthesis or degradation (SSA defi-
ciency; SSADH deficiency), disorders of purine metabolism (ADSLD, Lesch-Nyhan 
syndrome), cerebral creatine deficiency syndromes (GAMT deficiency, creatine 
transporter defect), disorders of folate transport and metabolism (cerebral folate 
deficiency, MTHFR deficiency), lysosomal storage disorders (mucopolysaccharido-
sis type III, neuronal ceroid lipofuscinoses (NCL), Niemann-Pick disease type C), 
CTX, MELAS, Wilson disease, and several types of neurodegeneration with brain 
iron accumulation, among others. Moreover, multiple lines of evidence have sug-
gested biochemical alterations in children with ASD compared to peers. Alterations 
can derive from the large intestine microbiome, showing differential fecal content 
for isopropanol, p-cresol, and short-chain fatty acids. Mitochondrial dysfunction 
can result in complex I, IV, or V deficiencies in children with ASD (up to 7%). 
Alterations were also demonstrated in some cases of glutathione reduction in the 
CNS [107]. While attempts to find unifying markers of autism demonstrated inter-
esting candidates, they failed to show consistency across multiple UM platforms 
and ASD cohorts. Glutaric acid, arginine, histidine (and its catabolites), taurine, 
β-alanine, and succinic acid were most consistently elevated, along with a reduction 
of creatine and creatinine [107]. In a cohort of 52 pregnant women whose children 
developed ASD, compared to 62 control pregnant women in an NMR-based UM, 
differences were found in glycosphingolipid metabolism, N-glycan and pyrimidine 
metabolism, bile acid pathways, and C21-steroid hormone biosynthesis but with 
only a mild perturbation in each metabolite [108]. The latter two candidates are of 
interest due to the involvement of cholesterol metabolism, as ASD is highly preva-
lent among patients with Smith-Lemli-Opitz syndrome, a disorder of cholesterol 
synthesis. Abnormal bile acid synthesis can cause perturbations in taurine, and 
pyrimidine synthesis defects can alter β-alanine. However, a lesson learned from 
these works is that ASD may represent shared neurodevelopmental outcomes of 
quite different neurometabolic processes, complicating the search for biomarkers, 
as the case separation from control may be shadowed by intragroup variability 
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[109]. Instead, a machine learning approach to recognize a pattern of altered seem-
ingly unrelated metabolites in a study group could allow the discovery of heteroge-
neous biomarkers, indicating a high-risk status for ASD, Alzheimer’s disease, 
Parkinson’s disease, or other conditions, and, once defined, may also be then tar-
geted for treatment and/or monitoring. Such a learning process was performed on 
UM data from a cohort of 500 children with ASD (against 200 controls) [110]. The 
group was halved into study and discovery groups. The study group yielded 34 
groups sharing metabolic phenotypes with a specificity of ≥95%. Those groups 
were then clustered into six metabolic groups, each with an abnormal ratio of either 
α-ketoglutarate, 4-hydroxyproline, glycine, lactate/pyruvate, ornithine, or succinic 
acid compared to other metabolites. These clusters were then validated in the dis-
covery group. When screening for the clusters together, this assay had 53% sensitiv-
ity and 91% specificity for indicating “high risk” for ASD.  These outcomes 
demonstrate the potential for a higher level of complexity in data interpretation. 
Identification of such abnormalities by the physician ordering an “ASD risk stratifi-
cation” test may be a difficult task. Still, computer-assisted data analysis could flag 
such abnormal results and promote a revolution in the field of developmental 
neuroscience.

While UM offers an opportunity for discovery both inside and outside clinical 
settings, its use in the clinical lab supports broad screening for inborn errors of 
metabolism well beyond the newborn screen, supports the development of meta-
bolic profiles for a disease that may be monitored during treatment, and, when inte-
grated with genomics, provides a precision medicine approach to the diagnosis of 
rare disease.

Glossary

Dried blood spot (DBS)  A method of whole blood sample collection in which a 
small amount of fresh blood is blotted onto an absorbent filter paper, followed by 
drying. This method provides a convenient storage and shipment platform and 
is widely used for newborn screening. Typically, a small punch from the DBS 
paper is eluted with phosphate-buffered saline, availing the sample for testing.

Elevation/reduction (of a metabolite)  In the context of this chapter, a metabolite 
is considered reduced (insufficient) or elevated (in excess) when UM reveals a 
Z-score ≥+2 or ≤−2. The Z-score is the number of standard deviations that a data 
point differs from the population means, representing the relative level of a given 
metabolite. Raw values for individual metabolites are log2-transformed, and the 
relative Z-score is calculated compared to a lab-specific reference population 
[91, 111–113].

Inborn error of metabolism (IEM)  A heterogeneous group of mostly inherited 
disorders involving a failure of the certain metabolic pathway(s) to break down 
or store biomolecules (typically carbohydrates, lipids, or amino acids) in the cell. 
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Although any given inborn error of metabolism is rare, taken as a group, inborn 
errors of metabolism occur in 1 in 2000 births [114].

Molecular confirmation  A suspected diagnosis, as suggested by biochemical test-
ing such as UM, is said to be molecularly confirmed when genomic sequenc-
ing reveals pathogenic variants, either monoallelic for autosomal dominant or 
X-linked disorders or biallelic for recessive disorders in the gene associated with 
the metabolic abnormality. Sequencing can be targeted for the specific gene(s) or 
untargeted as exome or genome sequencing. In the latter case, further confirma-
tion by Sanger sequencing may be performed to validate the variants identified.

Reference population  A lab-specific reference population created by performing 
UM on samples received in the clinical laboratory, with careful inclusion and 
exclusion of clinical samples to ensure pathways and analytes are covered for 
comprehensive clinical assessment. Raw data for each metabolite are median 
scaled, log2 transformed, extreme outliers removed, and Z-scores generated based 
on the mean and standard deviation in this reference population [91, 111–113].

Traditional screening methods  Screening tools for certain common abnormalities 
indicative of diseases. While there is no definition per se for traditional screen-
ing methods, they usually include organic acids measured in urine (urine organic 
acids, UOA); measurements of standard amino acids in plasma (PAA); and car-
nitine conjugates of fatty acids (acylcarnitine profile, ACP). ACP and PAA are 
examples of TM where predefined biochemicals are quantitatively measured 
compared to known standards. UOA is a semiquantitative, untargeted analysis 
in which analytes are qualitatively compared against a few laboratory-specific 
internal standards. UOA and PAA are typically performed by liquid chromatog-
raphy (LC) and/or gas chromatography (GC) coupled with mass spectrometry 
(MS). In contrast, ACP is performed by tandem MS/MS, where indicators are 
aimed at detecting carnitine daughter ions.
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Metabolomics in the Study of Human 
Mitochondrial Diseases
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and Anas M. Abdel Rahman

Abstract  Mitochondria are dynamic cellular organelles playing many biological 
roles that are fundamentally required for cellular functions. The primary role of 
mitochondria is ATP production through oxidative phosphorylation (OXPHOS). 
Mitochondria are found in nearly all cell types, and their number within cells varies 
in a tissue−/organ-dependent manner. Tissues/organs characterized by high-energy 
demands contain abundant mitochondria, and these tissues/organs are most fre-
quently affected when their mitochondria are dysfunctional. The resulting patholo-
gies can be generally referred to as mitochondrial diseases (MDs). MDs can be 
caused by nuclear or mitochondrial DNA mutations in genes encoding mitochon-
drial proteins, including OXPHOS proteins. Also, MDs can be developed through 
nongenetic mechanisms such as those involving environmental factors, mitotoxicity 
drugs, oxidative stress, and aging. MDs can appear over the entire life span. Patients 
with particular MDs present a wide range of heterogeneous phenotypes with differ-
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ent levels of disease severity. The wide variety of leading causes and heterogenous 
phenotypes of MDs make diagnosing MDs notoriously challenging. Despite these 
challenges, multiple diagnostic examinations and tools, including family history, 
phenotypic examinations, neurological imaging, biochemical tests, and genetic 
analyses, have collectively enhanced the diagnosis of MDs. As a result of the diag-
nostic limitations and drawbacks, there have been demands for developing new 
diagnostic approaches capable of detecting metabolic perturbations of MDs used as 
metabolic biosignatures. For that reason, the metabolomic approach, the study of 
small metabolites ≤1500 daltons, has recently garnered attention. While metabolo-
mics offers significant advances, it is recommended that data sets be integrated with 
other diagnostic approaches. This chapter reviews the application of metabolomic 
analyses in studying human MDs.

Keywords  Mitochondria · Mitochondrial diseases · Mass spectrometry · Nuclear 
Magnetic Resonance (NMR) Spectroscopy · Untargeted metabolomics · Targeted 
metabolomics · Metabolic biosignatures

Abbreviations
ANT	 Adenine nucleotide translocase
ATP	 Adenosine triphosphate
BAT	 Brown adipose tissue
CAT	 Catalase
CE-MS	 Capillary electrophoresis-coupled mass spectrometry
CIL	 Chemical isotope labeling
CPEO	 Chronic progressive external ophthalmoplegia
DRP1	 Dynamin-related protein-1
ETF	 Electron transfer flavoprotein
FIS1	 Fission protein-1
GC-MS	 Gas chromatography-coupled mass spectrometry
GPxs	 Glutathione peroxidases
GSH	 Glutathione
IMM	 Inner mitochondrial membrane
IMS	 Intermembrane space
KSS	 Kearns-Sayre syndrome
LC-MS	 Liquid chromatography-coupled mass spectrometry
LHON	 Leber hereditary optic neuropathy
MDs	 Mitochondrial diseases
MELAS	 Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like 

episodes
MERRF	 Myoclonic epilepsy with ragged-red fibers
MFF	 Mitochondrial fission factor
MFN1	 Mitofusins-1
MFN2	 Mitofusins-2
MiD49	 Mitochondrial dynamic proteins of 49 kDa
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MiD51	 Mitochondrial dynamic proteins of 51 kDa
MNGIE	 Mitochondrial neurogastrointestinal encephalopathy
MS	 Mass spectrometry
mtDNA	 Mitochondrial DNA
NAC	 N-acetylcysteine
NARP	 Neuropathy, ataxia, and retinitis pigmentosa
nDNA	 Nuclear DNA
NMR	 Nuclear magnetic resonance
OMM	 Outer mitochondrial membrane
OPA1	 Optic atrophy-1
OXPHOS	 Oxidative phosphorylation
PMF	 Proton motive force
PMS	 Pearson marrow pancreas syndrome
ROS	 Reactive oxygen species
rRNA	 Ribosomal RNA
SOD	 Superoxide dismutase
SPG7	 Hereditary spastic paraplegia 7
TCA	 Tricarboxylic acid cycle
TFAM	 Transcription factor A of mitochondria
TFB2M	 Mitochondrial transcription factor B2
tRNA	 Transfer RNA
Trx	 Thioredoxin
UCP1	 Uncoupling protein-1
VUS	 Variants of uncertain significance
WES	 Whole exome sequencing
WGS	 Whole genome sequencing

1 � Introduction

Mitochondria are organelles most commonly referred to as the powerhouses of cells 
due to their fundamental function of ATP production to fuel the energy-demanding 
process in cells. Mitochondria transduce energy substrates into adenosine triphos-
phate (ATP) in key metabolic tissues [1]. Mitochondria are found in nearly all cell 
types, although their numbers vary in a tissue−/organ-dependent manner. Tissues 
characterized by high energy demands have many mitochondria, but those with less 
energy demand have fewer mitochondria to match their cellular energy require-
ments [2]. Despite the variations in mitochondrial content across different tissues, 
certain factors can increase or decrease the mitochondrial number in adaptive pro-
cesses when cells undergo physiological changes such as exercise, dietary energy 
surfeit or deficit, tissue growth or atrophy, and aging [3, 4]. The role of mitochon-
dria in energy transduction is widely understood. However, mitochondria are also 
involved in other vital biological functions, including reactive oxygen species 
(ROS) production, redox signaling, Ca+2 hemostasis, and cellular apoptosis [5, 6]. 
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Moreover, mitochondrial functions are influenced by certain properties such as 
mitochondrial morphology, ultrastructure, and dynamics [7, 8].

Depending on cell type and physiological and energetic status, mitochondria 
present diverse lengths from 0.5 to 10 μm and shapes, but they share the main struc-
tural components [9]. Mitochondria have five main compartments, including the 
outer mitochondrial membrane (OMM), inner mitochondrial membrane (IMM), 
intermembrane space (IMS), cristae, and matrix. The OMM and IMM are mainly 
composed of phospholipids and proteins to support the function of these mem-
branes, with the IMM having a far greater membrane protein density than the 
OMM. The specific compositions of phospholipids and proteins in the OMM and 
IMM determine the degree of the integrity and permeability of these membranes. 
The OMM is relatively permeable, transporting low molecular metabolites, solutes, 
and ions from the cytoplasm into the IMS. The IMM is highly selectively imperme-
able to most solutes and metabolites as this structural feature of the IMM is impor-
tant to allow OXPHOS to occur.

Furthermore, the IMM is associated with a wide range of transporters and protein 
shuttles to support the many mitochondrial metabolic and bioenergetic pathways [10, 
11]. Aqueous regions defined by the membranes are the IMS and matrix. While IMS 
is present between OMM and IMM, the matrix is defined and enveloped by the 
IMM. Both the IMS and matrix are important for metabolic events and pathways. The 
matrix contains many enzymes involved in metabolic pathways such as the tricarbox-
ylic acid cycle, fatty acid β-oxidation, ketogenesis, amino acid metabolism, urea 
cycle, hormone synthesis, etc. Also, the matrix houses the circular mitochondrial 
DNA (mtDNA), which exclusively encodes mitochondrial components and its genetic 
machinery elements such as ribosomes and RNA (more details mentioned below). 
The fifth mitochondrial compartment is the cristae, defined as the folds of IMM into 
the matrix to increase the surface area of IMM for enhancing mitochondrial metabolic 
activity and ATP production and to allow important protein-protein interactions [12]. 
The mitochondrial structure is illustrated in (Fig. 1).

Concerning mitochondrial morphology, mitochondria exist in many morpholo-
gies, such as short oval or spherical tubules, long elongated tubules, or reticular 
networks. Mitochondrial morphology is distinctively different across cell/tissue 
types. Moreover, multiple morphologies of mitochondria can be seen with one cell 

Fig. 1  Mitochondrial 
structure consists of outer 
mitochondrial membrane 
(OMM), inner 
mitochondrial membrane 
(IMM), intermembrane 
space (IMS), matrix, 
cristae, and circular 
mitochondrial genome 
(mtDNA)
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type [13–15]. Under various physiological and pathological conditions, mitochon-
dria continuously remodel their morphology to allow the cells to adapt [16, 17].

Mitochondria are highly dynamic and continuously undergo events of fission and 
fusion. Mitochondrial dynamics maintain mitochondrial health, morphology, size, 
and numbers [18, 19]. The morphological changes are induced when cells are trig-
gered by certain stressors or undergo energetic changes and are required during 
cellular adaptation [9, 19]. Mitochondrial dynamics is under the control of GTPase 
proteins that mediate the events of fission and fusion. Mitochondrial fission is the 
fragmentation of one mitochondrion into two or more mitochondria. It requires the 
recruitment of a cytosolic protein called dynamin-related protein-1 (DRP1) through 
the action of dynamic proteins, including mitochondrial fission protein-1 (FIS1), 
mitochondrial fission factor (MFF), and mitochondrial dynamic proteins of 49 and 
51 kDa (MiD49 and MiD51). Mitochondrial fission is important for quality control 
as the fragmented, damaged mitochondria are removed. This is referred to as 
mitophagy, the selective removal of damaged mitochondria by autophagy [20–22]. 
In contrast to mitochondrial fission, mitochondrial fusion promotes the joining of 
two separate mitochondria by merging OMM, IMM, and matrix to make one elon-
gated organelle. Mitochondrial fusion needs the action of several GTPase proteins, 
including mitofusin (MFN1) and mitofusin-2 (MFN2), to promote OMM fusion 
and optic atrophy-1 (OPA1) protein for IMM fusion [23, 24]. Fission and fusion 
should be balanced to maintain a healthy mitochondrial reticulum in cells; other-
wise, mitochondrial dysfunction occurs and contributes to the development of mito-
chondrial diseases (MDs).

From the genetic aspect, mitochondria have the exceptional feature of being the 
only cellular organelle possessing DNA beyond that found in the nucleus. mtDNA 
is maternally inherited since paternal sperm mitochondria are targeted and destroyed 
after egg fertilization during embryogenesis. mtDNA is circular, and there are 
100–10,000 copies per cell. mtDNA contains 37 genes encoding only 13 mitochon-
drial protein subunits involved in OXPHOS, 2 ribosomal RNA (rRNA), and 22 
transfer RNA (tRNA) for intra-mitochondrial protein synthesis [25, 26]. In contrast, 
approximately 1500 mitochondrial proteins are encoded by nuclear DNA (nDNA), 
translated into the cytoplasm, and imported to the mitochondria [27]. As mitochon-
dria have their transcriptional machinery, mtDNA is colocalized with transcriptional 
factors, which are nuclear-encoded, such as transcription factor A of mitochondria 
(TFAM) and mitochondrial transcription factor B2 (TFB2M), to initiate and regu-
late mtDNA transcription and eventually synthesize OXPHOS subunits [28]. 
mtDNA is particularly susceptible to mutations compared to nDNA due to the lim-
ited repair mechanisms and the high exposure to ROS emission in mitochondria. 
Mutations in mitochondrial protein-encoding genes lead to dysfunctional mitochon-
dria and various MDs (mentioned below).
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2 � Mitochondrial Metabolic Pathways

Mitochondria are hubs of cellular metabolism. They are involved in many crucial 
metabolic pathways, including the tricarboxylic acid cycle (TCA), fatty acid 
β-oxidation, acyl-carnitine metabolism, urea cycle, amino acid degradation, keto-
genesis/ketolysis, steroidogenesis, and OXPHOS as shown in (Fig. 2). These path-
ways produce small molecular weight intermediate molecules called metabolites, 
which are also important for cellular proliferation, signaling, survival, and function. 
Defects in mitochondrial metabolism are associated with alterations in the level of 
metabolites, which can directly or indirectly affect the physiology of tissues/organs 
in the body [12, 29].

The OXPHOS system in the IMM consists of NADH dehydrogenase (complex 
I), succinate dehydrogenase (complex II), cytochrome c reductase (complex III), 
cytochrome c oxidase (complex IV), and ATP synthase (complex V) [30]. In detail, 
in the presence of oxygen, mitochondria convert chemical energy stored in energy 
substrates, such as pyruvate, acyl-CoA, ketone bodies, etc., into ATP through cou-
pled OXPHOS systems mediated via complex V.  These energetic metabolites 
undergo oxidative reactions producing reducing agents such as nicotinamide ade-
nine dinucleotide hydrogen (NADH + H) and flavin adenine dinucleotide dihydro-
gen (FADH2). These reduced coenzymes then provide electrons either to certain 
OXPHOS complexes, including complex I and complex II or other IMM-bounded 

Fig. 2  Simplified illustration of various metabolic pathways taking place in mitochondria
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proteins in conjunction with OXPHOS, such as electron transfer flavoprotein (ETF). 
When electrons are accepted by complex I, complex II, or ETF, they are subse-
quently passed to coenzyme Q, a mobile fat-soluble electron carrier found in the 
IMM.  Then, coenzyme Q transfers the electrons to complex III, which are then 
transferred to complex IV through cytochrome C. Ultimately, the electrons reduce 
oxygen to produce water. While electron flow happens along complexes I–IV, pro-
tons are pumped from the matrix to IMS through complex I, complex III, and com-
plex IV, contributing to the generation of an electrochemical gradient called proton 
motive force (PMF) located across the IMM. Subsequently, free energy stored in 
PMF drives protons back to the mitochondria matrix through complex V, resulting 
in the production of ATP, as shown in (Fig. 3) [30–33].

The coupling of electron flow (and oxygen consumption) from ATP production 
is far from perfect. A certain amount of uncoupling occurs through proton leaks in 
all cell types [34]. However, one highly metabolic tissue called brown adipose tissue 
(BAT) that uncoupled OXPHOS has the physiological function of heat production 
(thermogenesis) instead of ATP production. BAT has low levels of ATP synthase but 
high amounts of uncoupling protein 1 (UCP1). UCP1 belongs to a gene family of 
UCPs, and in BAT, it mediates proton leak for thermoregulatory functions. When 
UCP1 is activated, oxidative reactions upstream of UCP1 support a high influx of 
reducing equivalents (i.e., electrons) into the electron transfer system in complexes 
I–IV. This thereby results in proton pumping from the matrix into IMS, causing the 
formation of PMF, which is rapidly dissipated through UCP1-mediated proton leak 

Fig. 3  Mitochondrial-coupled OXPHOS pathways
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activity. Thermogenesis results from the upstream oxidative reactions [35]. This is 
depicted in (Fig. 4). Interestingly, there are other uncoupling proteins named UCP2 
and UCP3, which protect against oxidative damage and facilitate fatty acid oxida-
tion in the tissues/cells [36]. UCP2 is found in most tissue types, while UCP3 is 
predominantly found in the skeletal muscle and BAT, but their levels of expression 
are approximately two orders of magnitude lower than the expression of UCP1 in 
BAT [37, 38]. Adenine nucleotide translocase (ANT), which normally exchanges 
cytosolic ADP for mitochondrial ATP, has been shown to cause proton leak across 
the IMM and thereby possibly protect against oxidative damage [38–42].

During coupled or uncoupled OXPHOS pathways, ROS, which are byproducts 
of aerobic metabolism, can be formed. ROS include superoxide anion (O2

−), hydro-
gen peroxide (H2O2), and hydroxyl radicals (OH·). The last are reactive molecules 
and free radicals derived from molecular oxygen produced in mitochondria. 
Although they are needed at certain physiological levels to support cellular signal-
ing and transduction, increased and uncontrolled levels of ROS are detrimental, 
causing pathological effects on cells/tissues such as proteins, lipids, and DNA [43–
45]. Therefore, cells/tissues have antioxidant systems that neutralize excessive 
amounts of ROS.  The antioxidant systems can be enzymatic and nonenzymatic 
based. The enzymatic antioxidant system contains several enzymes, including 
superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPxs), and 

Fig. 4  Mitochondrial uncoupled OXPHOS pathways
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thioredoxin (Trx). Nonenzymatic-based antioxidant systems include reduced gluta-
thione (GSH), GSH precursors and reducers, such as N-acetylcysteine (NAC), and 
vitamins such as vitamins C, A, and E and their derivatives. Accordingly, the anti-
oxidant systems are fundamental as a protective cellular mechanism against oxida-
tive damage. Thus, impairments in the antioxidant mechanisms can lead to oxidative 
stress due to the imbalance between ROS and antioxidant systems. Oxidative stress 
can lead to pathological conditions, including MDs [46–49].

3 � Mitochondrial Diseases

As described above, MDs can be developed because of defects in mitochondrial 
properties, including mitochondrial genome, metabolism, structure, and dynamics. 
MDs are heterogeneous and complex diseases sharing the common feature of mito-
chondrial dysfunction. MDs are mainly caused directly by inherited mutations in 
genes encoding mitochondrial OXPHOS proteins, regardless of whether genes in 
nDNA or mtDNA encode the proteins. MDs can also develop because of inherited 
alterations in non-OXPHOS mitochondrial proteins, which are essentially required 
for mitochondrial function. In addition, nongenetic factors such as environmental 
stressors, myotoxicity drugs, oxidative stress, and aging can progressively cause 
dysfunctional mitochondria leading to eventually MDs during a lifetime [50].

Examples of MDs developed by either genetic or nongenetic causes are mito-
chondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), 
chronic progressive external ophthalmoplegia (CPEO), neuropathy, ataxia, and reti-
nitis pigmentosa (NARP), myoclonic epilepsy with ragged-red fibers (MERRF), 
Leber hereditary optic neuropathy (LHON), Kern-Sayre syndrome (KSS), Pearson 
marrow pancreas syndrome (PMS), mitochondrial neurogastrointestinal encepha-
lopathy (MNGIE), Leigh syndrome, Alpers-Huttenlocher Syndrome, Barth 
Syndrome, Parkinson’s disease, Alzheimer’s disease, autism, Huntington’s disease, 
amyotrophic lateral sclerosis, Wilson’s disease, Charcot-Marie-Tooth type 2  K, 
hereditary spastic paraplegia 7 (SPG7), Friedreich’s ataxia, schizophrenia, sepsis, 
cardiovascular diseases, cancers, diabetes, and metabolic syndromes [51–55]. 
Expectedly, new MDs are about to develop and continue to be discovered. The prev-
alence of MDs is not accurately recorded. It has been challenging to precisely deter-
mine the prevalence of MDs due to the following reasons: First, the identification of 
MDs accounted only for diagnostic patients who have undergone molecular testing 
for the monogenic MDs, which does not account for other unidentified and/or sus-
pected individuals of MDs, especially for those who had mitochondrial defect with-
out developing obvious symptoms of MD during their lifetimes. Second, one 
particular MD can show heterogenous phenotypes and symptoms in different 
patients, which makes the symptoms of that particular MD not firm. Third, MDs can 
develop from different factors, including genetic and nongenetic factors, and for 
nongenetic factors, there is a possibility that new factors might arise with time.
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Thus, the current prevalence of MDs is probably underestimated. A better esti-
mate of the true prevalence of MDs will lead to increased efforts to diagnose and 
effectively treat the diseases accurately. To do so, there have been increasing global 
efforts from the research and clinical community to develop clinical approaches for 
diagnosing patients with MDs, contributing to the correction of underestimated MD 
prevalence.

Currently, studies have reported that MDs observed in children account for 
approximately 5 individuals per 100,000 population [56]. Another study reported 
that the prevalence of MDs in adults is estimated to be one individual per 5000 [57]. 
MDs are currently more common than previously thought, requiring an early diag-
nosis to enhance the health outcomes of patients at an early stage and provide them 
with proper therapeutic interventions.

4 � Diagnostic Tools for MDs

Various clinical approaches are utilized for diagnosing MDs, ranging from simple 
to sophisticated methods. Suspected MD patients undergo a series of examinations 
and tests. Examinations are extensive and include investigations of a patient’s fam-
ily medical history, clinical phenotypes, biochemical parameters, molecular genetic 
tests, tissue biopsies, and neurological abnormalities. All these examinations have 
usually been considered in diagnosing MDs because they give a comprehensive 
picture of pathological status at distinct levels. Consensus-based recommendations 
written by the Mitochondrial Medicine Society mention the optimal diagnostic 
tools that can be used for MDs involving biochemical tests, genetic analyses, tissue 
biopsy examinations, and neuroimaging as they explained the purposes of each 
approach to verify the diagnosis of MDs [58].

Following the initial investigation of the medical family history and clinical phe-
notypes of the suspected MD patients, biochemical tests are usually performed on 
biological fluids such as blood, urine, and CFS samples to measure the levels of 
certain metabolites commonly disrupted in MDs, including pyruvate, lactate, acyl-
carnitines, ketone bodies, amino acids, and organic acids [58]. Lactate levels and the 
ratio of lactate/pyruvate are commonly increased when mitochondria are defective 
as pyruvate utilization by the mitochondria decreases. Moreover, ketone bodies are 
often perturbed in MD patients. In addition, there are alterations in the level of 
amino acids and organic acids in MD patients acting as an indication of mitochon-
dria dysfunction [59]. All the biochemical analyses mentioned above are not spe-
cific and exclusive to MDs because these alterations are a common feature in most 
MDs and also could be seen in non-MDs.

Thus, supportive and specific analyses are needed to perform in addition to the 
biochemical tests to improve the diagnostic investigation of MDs, involving neuro-
logical imaging of the central nervous system and collecting tissue biopsies from 
MD patients for enzymatic analyses of OXPHOS and other mitochondrial proteins. 
These methods show their great ability to inform about alterations in mitochondria 
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in MDs cases; however, these methods have certain pitfalls as neurological imaging 
detect abnormalities in the brain and nerve system developed only in particular, but 
not all, MD patients [58]. In addition, enzymatic assays provide valuable functional 
analyses of mitochondria, although they require an invasive tissue biopsy procedure.

In addition, genetic testing has been extensively included in the diagnostic 
criteria of MDs since most MDs are inherited diseases. Genetic testing discovers 
the genetic mutations leading to MDs. The implication of genetic testing has been 
done for MDs through testing for common pathogenic variants in nDNA or 
mtDNA genes associated with MDs by sequencing the whole mtDNA or nDNA 
via whole genome sequencing (WGS) and/or whole exome sequencing (WES). 
MDs that were identified by multiple genetic testing approaches include those 
MDs developed by various pathogenic variants in genes coding for the following 
proteins, NADH dehydrogenase, pyruvate dehydrogenase complex component X 
(PDHX), ethylmalonic encephalopathy 1 protein (ETHE1), mitochondrial inner 
membrane protein (MPV17), mitochondrial carnitine/acylcarnitine carrier protein 
(SLC25A20), mitochondrial fission factor (MFF), F-Box and leucine-rich repeat 
protein 4 (FBXL4), elaC ribonuclease Z 2 (ELAC2), protein PET100 (PET100), 
iron-sulfur cluster assembly 2 (ISCA2), mitochondrial-processing peptidase sub-
unit alpha (PMPCA), metal cation symporter ZIP8 (SLC39A8), mitochondrial 
coenzyme A transporter (SLC25A42), ATP-dependent zinc metalloprotease 
(YME1L1), mitochondrial intermediate peptidase (MIPEP), mitochondrial cal-
cium uptake protein 2 (MICU2), cytochrome c oxidase subunit 5A (COX5A), 
ubiquinone biosynthesis methyltransferase COQ5 (COQ5), and nundid hydrolase 
2 (NUDT2) [60–74].

Regardless of the substantial implications of genetic approaches in identifying 
MDs, the genetic approaches have certain diagnostic downsides. Specifically, these 
genetic tests require reading out an unlimited number of genes, and the roles of 
many genes are still not fully understood. Finding mutations in metabolism-related 
genes that are functionally unknown, called variants of uncertain significance 
(VUS), could be misleading in the context of MDs because it is not fully understood 
if these unknown mutations affect health. Furthermore, mutations identified by 
genetic tests might be secondary findings of other diseases not discovered or devel-
oped yet and unrelated to MDs of interest, which is considered a false-positive dis-
covery. In addition, genetic testing cannot be used for those MDs that are developed 
by nongenetic factors over a patient’s lifetime [75, 76].

Consequently, based on the previous issues associated with the genetic 
approaches, there is still a definitive need to perform alternative functional analyses 
of suspected VUS found in metabolism-related genes to ensure whether these 
genetic mutations truly cause MDs. Also, these alternative functional analyses could 
help examine the pathogenic effects of nongenetic factors leading to MDs. Since 
mitochondria work as a hub of metabolism and as metabolite producers, metabolo-
mics, which detect small metabolites ≤1500 Daltons through high-throughput mass 
spectrometry, can predict mitochondrial status in health and disease. Metabolomics 
has recently gained great attention because of its high potential to be used as a diag-
nostic tool for all types of MDs, either genetic or nongenetic MDs. The strengths of 
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using metabolomics as a diagnostic tool are as follows: First, metabolomics mea-
sures intermediates or products of ongoing metabolic pathways, and their measure-
ments directly reflect the snapshot readouts of physiological conditions, which 
make metabolomics more real functional analyses of metabolism compared to other 
omic approaches. Thus, if there are any metabolic perturbations, as seen in MDs, 
they could be detected by the metabolomic approach. Second, metabolomics shows 
high sensitivity with extraordinary capabilities for identifying distinct metabolic 
biosignatures/profiles of MDs, reflecting the disrupted metabolic pathways in MD 
conditions. Third, metabolomic data analysis is easier than other omic data because 
of the limited number of metabolites that currently can be accurately measured 
compared to the huge numbers of genes or proteins that can be accurately measured. 
Fourth, compared to other approaches, metabolomics is not expensive, requires 
relatively little time, and provides comprehensive biological measurements. All 
these reasons encourage researchers and scientists to focus on applying metabolo-
mics to MDs.

5 � Metabolomics of MDs

Several metabolomic studies have been conducted to ultimately identify diagnostic 
biomarkers/biosignatures of MDs using different biological samples with various 
mass spectrometry (MS) machines. Herein, we mentioned examples of these metab-
olomic studies conducted for MDs (Table 1). For instance, a study performed gas 
chromatography-coupled mass spectrometry (GC-MS)-based metabolomic analy-
ses on plasma samples and skeletal muscle fibers collected from patients diagnosed 
with mitochondrial myopathy/progressive external ophthalmoplegia disease show-
ing elevated levels of certain metabolites such as cystathionine, glutamic acid, ser-
ine, and arachidyl carnitine compared to the samples collected from the controls 
[77]. Also, GC-MS-based metabolomic analyses of urine samples collected from 
children diagnosed with deficiencies in OXPHOS proteins revealed increased levels 
of organic acids, including fumaric acid, glutaric acid, lactic acid, malic acid, and 
others, compared to the control children [78]. Another study used a metabolomic 
approach as a pre-screening tool to identify metabolic biosignatures of MD patients 
who need to undergo tissue biopsies. In this way, MD patients who do not need a 
tissue biopsy do not need to undergo the invasive procedure [79]. Their study would 
help to select the proper MD patient who needs to undergo tissue biopsies. Smuts 
et al. identified biosignatures in urine samples collected from patients with deficient 
OXPHOS to be used as indicators before the tissue biopsies. They performed untar-
geted nuclear magnetic resonance (NMR). They targeted GC-MS on OXPHOS-
deficient patients’ urine samples. They found six organic acids (lactic, succinic, 
2-hydroxybutyric, 3-hydroxybutyric, 3-hydroxyisovaleric, and 3-hydroxy-3-
methylglutaric acids), six amino acids (alanine, glycine, glutamic acid, serine, tyro-
sine, and α-aminoadipic acid), and creatine as biosignatures of these patients that 
need to undergo tissue biopsies for the validation of MDs [79].
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Table 1  Examples of metabolomic studies done to screen metabolomic biosignatures of MDs by 
using various biological samples and metabolomic approaches

MD name
Biological 
specimen Major findings Technique Ref.

Mitochondrial 
myopathy/
progressive 
external 
ophthalmoplegia 
disease

Plasma 
samples 
and 
skeletal 
muscle 
fibers

Elevated levels of certain 
metabolites such as 
cystathionine, glutamic acid, 
serine, and 
arachidoyl-carnitine

GC-MS Nikkanen 
et al. [77]

Deficiencies in 
OXPHOS 
proteins

Urine 
samples

Increased levels of organic 
acids, including fumaric acid, 
glutaric acid, lactic acid, malic 
acid, and others

GC-MS Reinecke 
et al. [78]

Deficient 
OXPHOS in 
muscles

Urine 
samples

Altered six organic acids 
(lactic, succinic, 
2-hydroxybutyric, 
3-hydroxyisobutyric, 
3-hydroxyisovaleric and 
3-hydroxy-3-methylglutaric 
acids), six amino acids 
(alanine, glycine, glutamic 
acid, serine, tyrosine, and 
α-aminoadipic acid), and 
creatine

Untargeted 
NMR and 
targeted GC-MS

Smuts et al. 
[79]

French-Canadian 
Leigh syndrome

Urine and 
plasma 
samples

Altered 45 metabolite markers, 
including alanine, asparagine, 
ketones, acylcarnitines, 
succinate, kynurenine, lactate, 
and pyruvates

Targeted 
GC-MS and 
LC-MS

Thompson 
Legault 
et al. [80]

MELAS Plasma 
samples

Elevated levels of pyruvate, 
lactate, malate, alanine, 
α-hydroxybutyrate, N-lactoyl-
amino acids, β-hydroxy 
acylcarnitines, and β-hydroxy 
fatty acids

Targeted and 
untargeted MS

Sharma 
et al. [81]

MELAS and 
MIDD with renal 
dysfunction

Urine 
samples

Lower levels of 4-cresyl 
sulfate, S-methyl-cysteine-
sulfoxide, 
N-methylnicotinamide, and 
hippuric acid

NMR 
spectroscopy

Hall et al. 
[82]

LHON Fibroblasts Decreases in amino acids, 
spermidine, putrescine, 
isovaleryl-carnitine, propionyl-
carnitine, and five 
sphingomyelin species but 
increases in ten 
phosphatidylcholine species

Targeted LC-MS Chao de la 
Barca et al. 
[83]

(continued)
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Table 1  (continued)

MD name
Biological 
specimen Major findings Technique Ref.

Barth syndrome Plasma 
samples

Perturbations in creatinine, 
fatty acids, methionine, and 
proline

NMR 
spectroscopy

Sandlers 
et al. [84]

Alterations in acylcarnitines, 
bigeneric amines, PC/lysoPC, 
and amino acids

Targeted LC-MS

KSS Urine 
samples

Increased levels of pyruvate, 
fumarate, and 
3-hydroxybutyrate

Targeted 
GC-MS

Semeraro 
et al. [85]

PMS Urine 
samples

Increased levels of lactate, 
3-hydroxybutyrate, 
3-hydroxyisobutyrate, 
fumarate, pyruvate, 
2-hydroxybutyrate, 2-methyl-
2,3-dihydroxybutyrate, 
3-methylglutarate, 2-ethyl-3-
hydroxypropionate, 
3-methylglutaconate, malate, 
and tiglylglycine

MELAS Urine 
samples

Increases in caproic/caprylic 
acid, 2-hydroxyglutaric acid, 
butyric/valeric/2-
hydroxybutyric/3-methyl-2-
oxovaleric acid, 4-pentenoic 
acid, acetylcarnitine, 
propionylcarnitine, taurine, 
acetic acid but decreased 
metabolites pyruvic acid, 
glycerol, carbamate, 
2,5-furandicarboxylic acid, 
fumaric acid, pseudouridine, 
glycolic acid, and arabinose

Targeted 
LC-MS/MS and 
untargeted 
GC–MS and 
NMR 
spectroscopy

Esterhuizen 
et al. [86]

MIDD Urine 
samples

Increases in myoinositol, 
2-hydroxyglutaric acid, 
4-pentenoic acid, glucuronic 
acid, 2-hydroxyisovaleric acid, 
glucose, 2-ethylhydracrylic 
acid, and 3-hydroxyisobutyric 
acid. Metabolites’ decrease 
includes glycolic acid, 
sarcosine, 1,2-ethandiol, 
3-methylphenol, 
2,5-furandicarboxylic acid, 
homocysteine, arabinose, and 
pseudouridine

Myopathy Urine 
samples

Increases in 2-hydroxyglutaric 
acid, 4-pentenoic acid, 
3-methylphenol, 
2-ethylhydracrylic acid, and 
creatine but decreased glycolic 
acid
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Table 1  (continued)

MD name
Biological 
specimen Major findings Technique Ref.

Parkinson’s 
disease

Plasma and 
CSF 
samples

Altered pattern of metabolites 
involved in the metabolism of 
glycerophospholipid, 
sphingolipid, acylcarnitine, 
and amino acids

Untargeted 
LC-MS and MS/
MS

Stoessel 
et al. [87]

Parkinson’s 
disease

Urine 
samples

Altered metabolites related to 
tryptophan and tyrosine 
metabolism

Untargeted 
LC-MS

Luan et al. 
[88]

Alzheimer’s 
disease

CSF 
samples

Altered patterns of choline, 
dimethylarginine, arginine, 
valine, proline, serine, 
histidine, creatine, carnitine, 
and suberylglycine

Untargeted 
capillary 
electrophoresis 
mass 
spectrometry 
(CE-MS)

Ibáñez et al. 
[89]

Medium-chain 
acyl-coenzyme A 
dehydrogenase 
deficiency 
disease

Dried 
blood spots

Altered levels of certain amino 
acids and acylcarnitines

Targeted LC-MS Scolamiero 
et al. [90]

Long-chain 
acyl-coenzyme A 
dehydrogenase 
deficiency 
disease

Dried 
blood spots 
and serum 
samples

Decreases in lysine, valine, 
glycerol, and niacinamide but 
increases in glutamine succinic 
acid and guanosine

Targeted 
LC-MS/MS

Jacob et al. 
[91]

Type 2 diabetes 
(T2D)

Urine 
samples

Decreases in 
t3-hydroxyundecanoyl-
carnitine

Targeted LC-MS Salihovic 
et al. [92]

Insulin resistance Serum 
samples

Insulin resistance altered 
amino acids such as amino 
acids (Asn, Gln, and his), 
methionine (met) sulfoxide, 
2-methyl-3-hydroxy-5-
formylpyridine-4-carboxylate, 
serotonin, L-2-amino-3-
oxobutanoic acid, and 
4,6-dihydroxyquinoline

Chemical isotope 
labeling (CIL) 
liquid 
chromatography-
mass 
spectrometry 
(LC-MS)

Gu et al. 
[93]

Type 2 diabetes Distinct amino acids, amino 
acid metabolites, and 
dipeptides for T2D
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A cohort of French-Canadian Leigh syndrome patients with mutations in the 
LRPPRC gene causing defects in one of the OXPHOS proteins was involved in a 
metabolomic study. Urine and plasma samples were collected from the Leigh syn-
drome patients and were analyzed using targeted GC-MS and liquid chromatography-
coupled mass spectrometry (LC-MS). As a result, they found 45 outstanding 
metabolic biomarkers, including alanine, asparagine, ketones, acylcarnitines, suc-
cinate, kynurenine, lactate, and pyruvates, altered compared to controls (Thompson 
[80]). Additionally, another research group recruited mitochondrial encephalomy-
opathy lactic acidosis and stroke-like episode (MELAS) syndrome and maternally 
inherited diabetes and deafness (MIDD) patients with renal dysfunction for identi-
fication of urinary metabolic markers via NMR spectroscopy-based metabolomics 
and found that these patients distinguished from controls by having lower levels of 
4-cresyl sulfate, S-methyl-cysteine-sulfoxide, N-methylnicotinamide, and hippuric 
acid [82]. Recently, Sharma et al. performed metabolomic analyses on plasma sam-
ples collected from MELAS and controls by using targeted and untargeted MS, 
revealing that elevated levels of pyruvate, lactate, malate, alanine, α-hydroxybutyrate, 
N-lactoyl-amino acids, β-hydroxy acylcarnitines, and β-hydroxy fatty acids [81]. 
Another example of metabolomic study is those conducted for Barth syndrome. 
They identified dysregulated metabolic markers and pathways underlying Barth 
syndrome using human plasma samples showing perturbations in creatinine, fatty 
acids, methionine, and proline detected by NMR. At the same time, LC-MS revealed 
metabolic alterations found in acylcarnitines, bigeneric amines, PC/lysoPC, and 
amino acids in patients compared to controls [84].

Furthermore, a targeted LC-MS-based metabolomic approach was applied to 
fibroblasts taken from LHON patients to uncover metabolites affected in this dis-
ease used as biomarkers, including decreases in amino acids, spermidine, putres-
cine, isovaleryl-carnitine, propionyl-carnitine, and five sphingomyelin species but 
increases in ten phosphatidylcholine species [83]. Also, metabolomic studies of 
PMS and KSS were performed recently using a targeted GC-MS approach on urine 
samples collected from PMS and KSS patients. Semeraro et al.’s study revealed that 
abnormal alterations in urinary organic acids were detected in both PMS and 
KSS. Still, the alterations are more pronounced in PMS patients than in KSS. They 
found that urine samples from KSS had increased levels of pyruvate, fumarate, and 
3-hydroxybutyrate, while urinary metabolites detected in PMS patients indicated 
elevated levels in lactate, 3-hydroxybutyrate, 3-hydroxyisobutyrate, fumarate, pyru-
vate, 2-hydroxybutyrate, 2-methyl-2,3-dihydroxybutyrate, 3-methylglutarate, 
2-ethyl-3-hydroxypropionate, 3-methylglutaconate, malate, and tiglylglycine [85].

Very recently, Esterhuizen et al. attempted to clinically distinguish between three 
types of MDs, including MELAS, MIDD, and myopathy, by identifying disease-
specific metabolic profiles. They used combined multi-metabolomic approaches of 
targeted LC-MS/MS, untargeted GC-MS, and NMR spectroscopy to comprehen-
sively investigate metabolites in urine samples collected from MELAS, MIDD, and 
myopathy patients compared to individual disease-matched controls. Although they 
found some metabolic similarities in identified metabolites shared in the three dis-
eases, their metabolomic data shows that each of the three diseases has certain 
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unique metabolites compared to their controls. Compared to controls, MELAS 
patients showed increased caproic/caprylic acid, 2-hydroxyglutaric acid, butyric/
valeric/2-hydroxybutyric/3-methyl-2-oxovaleric acid, 4-pentenoic acid, acetylcar-
nitine, propionylcarnitine, taurine, and acetic acid but decreased metabolites pyru-
vic acid, glycerol, carbamate, 2,5-furandicarboxylic acid, fumaric acid, 
pseudouridine, glycolic acid, and arabinose. Furthermore, MIDD patients showed 
increased myoinositol, 2-hydroxyglutaric acid, 4-pentenoic acid, glucuronic acid, 
2-hydroxyisovaleric acid, glucose, 2-ethylhydracrylic acid, 3-hydroxyisobutyric 
acid although decreased metabolites were shown including glycolic acid, sarcosine, 
1,2-ethandiol, 3-methylphenol, 2,5-furandicarboxylic acid, homocysteine, arabi-
nose, pseudouridine. Lastly, they showed that myopathy patients revealed increased 
2-hydroxyglutaric acid, 4-pentenoic acid, 3-methylphenol, 2-ethylhydracrylic acid, 
and creatine but decreased glycolic acid [86].

In addition to the previous studies, Stoessel et  al. focused on the metabolic 
changes in Parkinson’s disease, in which they performed untargeted LC/MS and 
MS/MS analysis to profile metabolic changes in plasma and CSF samples collected 
from Parkinson’s disease patients. They uncovered a perturbed pattern of metabo-
lites involved in the metabolism of glycerophospholipid, sphingolipid, acylcarni-
tine, and amino acids as Parkinson’s disease biosignatures [87]. In concordance 
with the previous Parkinson’s disease study, another research group studied 
Parkinson’s disease and discovered alterations in metabolites related to tryptophan 
and tyrosine metabolism and other pathways using untargeted LC-MS approaches 
applied to urine samples from Parkinson’s disease patients [88]. Moreover, Ibáñez 
et  al. used untargeted metabolomic profiling based on capillary electrophoresis-
coupled mass spectrometry (CE-MS) to identify Alzheimer’s disease biosignatures 
in CSF samples collected from Alzheimer’s disease patients for the prediction of the 
disease and its progression at distinct stages. They found choline, dimethylarginine, 
arginine, valine, proline, serine, histidine, creatine, carnitine, and suberylglycine as 
potential Alzheimer’s disease progression markers [89]. Also, Scolamiero et al. ana-
lyzed dried blood spots (DBS) from patients diagnosed with medium chain acyl-
coenzyme A dehydrogenase deficiency disease via targeted LC-MS to identify 
metabolic profiling associated with the disease condition. Their results showed that 
the level of certain acylcarnitine (C2, C6, C8, and C10) was perturbed distinctively 
in these affected patients compared to the controls, potentially used as diagnostic 
markers [90]. In addition, another research group performed a metabolomic study 
on patients diagnosed with long-chain acyl-coenzyme A dehydrogenase deficiency 
disease by performing targeted LC-MS analyses on dried blood spots and serum 
samples collected from the patients showing that there were alterations in metabo-
lites in patients’ samples compared to the controls. Examples of altered metabolites 
are decreases in lysine, valine, glycerol, and niacinamide but increases in glutamine 
succinic acid and guanosine [91].

Furthermore, diabetes was extensively studied in different biological samples 
with different MS approaches; thus, example studies are mentioned. A recent study 
conducted nontargeted LC-MS-based metabolomics to profile urine metabolites in 
patients diagnosed with type 2 diabetes (T2D), resulting in the discovery of a 
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promising biomarker t3-hydroxyundecanoyl-carnitine, which was decreased with 
T2D [92]. In addition, another study done by another research group revealed 
metabolite biosignatures related to insulin resistance and T2D. This study collected 
serum samples from normal, obese T2D participants for metabolic profiling using 
chemical isotope labeling (CIL) and LC-MS. Their results showed that certain bio-
markers associated with insulin resistance, such as amino acids (asparagine, gluta-
mine, histidine), methionine sulfoxide, 
2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate, serotonin, L-2-amino-3-
oxobutanoic acid, and 4,6-dihydroxyquinoline and other biomarkers for T2D, 
including amino acids, amino acid metabolites, and dipeptides [93].

Last but not least, there is a growing body of recent studies demonstrating the 
application of metabolomic technologies in sepsis [94–96], cardiovascular diseases 
[97, 98], and cancers [99–102].

6 � Conclusion

The application of metabolomics can be promising for the diagnosis and prognosis 
of MDs in humans. However, it has been reported that metabolomic analyses have 
certain challenges and limitations that need to be considered. For instance, metabo-
lomic analyses can be conducted by multiple mass spectrometry approaches, includ-
ing NMR, GC-MS, and LC-MS. All of them are used for various purposes due to 
their different functionalities, metabolite coverage, and experimental design. Each 
approach has advantages and disadvantages. For example, NMR is suitable for sig-
nificant volume samples, is nondestructive to samples, does not require sample 
preparations, and gives reproducible data. However, NMR is not as sensitive as 
other techniques, such as GC-MS and LC-MS, which can detect a large range of 
metabolites with very tiny amounts of sample. GC-MS and LC-MS function based 
on the polarity of metabolites, as GC-MS is mainly used more for nonpolar metabo-
lites. Thus LC-MS is the preferable approach for polar metabolites.

Nevertheless, MS approaches have certain drawbacks, such as lower reproduc-
ibility, higher-cost expensive techniques, and time-consuming sample preparation 
steps. Thus, no single approach can comprehensively detect all metabolites with 
various chemical and physical properties in biological samples within one analyti-
cal run. Other limitations are related to metabolomic data preprocessing and spec-
tral library databases. Examples of issues during metabolomic data processing 
missing data can be seen, and that is due to several reasons, such as the concentra-
tion of metabolites being either lower or higher than the detection limit of the 
machine. Another limitation of metabolomics is the availability of metabolite spec-
tral libraries for data analyses and interpretation. NMR and LC-MS approaches 
have limited libraries compared to GC-MS libraries.

Many of the challenges associated with metabolomics can be overcome by com-
bining various approaches to detect and cover a comprehensive range of metabo-
lites. Furthermore, metabolomics shows the powerful capability and potential in 

R. Sebaa et al.



165

diagnosing MDs as it represents real perturbations associated with MDs. 
Nonetheless, it is best to integrate metabolomic diagnostic data with other diagnos-
tic approaches (i.e., patient and family histories, physical examinations, clinical bio-
chemical and histological tests, and enzymatic assays). Finally, research in this area 
and the corresponding field development will improve with the involvement of 
larger patient cohorts. Increased global collaborations between many clinical com-
munities will strengthen and validate the finding of metabolic biosignatures of 
human MDs and improve diagnostic platforms.
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Abstract  Endocrine diseases and disorders are influenced by individual genetic 
and environmental factors that directly influence metabolite levels revealing unique 
metabolomic disease profiles. In the last few years, metabolomic-derived biomark-
ers and quantitative traits have helped identify the underlying mechanisms for many 
rare endocrine diseases and demonstrated a high potential for use in precision medi-
cine. Using the metabolomic platform has also provided disease-specific biomark-
ers for diagnosis and monitoring treatment beyond the use of conventional 
biochemical immunoassays. Although the development of metabolomic profiling in 
pituitary disorders is at an early stage, recent advances have shown it to be a promis-
ing approach for identifying specific disease biomarkers in cases of growth hor-
mone disorders (acromegaly, short stature) and Cushing’s syndrome. Implementing 
high-performance metabolomic analysis techniques in pituitary disease will be a 
helpful clinical tool for significantly improving diagnosis and, potentially, the thera-
peutic approach by identifying highly specific disease biomarkers and novel molec-
ular pathogenic mechanisms.
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Abbreviations

CS	 Cushing’s syndrome
DMA	 Dimethylamine
GH	 Growth hormone
GPR101	 G protein-coupled receptor 101
GWAS	 Genome-wide association
IR	 Insulin resistance
LC-MS	 Liquid chromatography-mass spectrometry
NMR	 Nuclear magnetic resonance
PA	 Pituitary adenomas
rhGH	 Recombinant human growth hormone
UPLC Q-TOF	 Ultra-performance liquid chromatography quadrupole time 

of flight

1 � Introduction

Endocrinology is a branch of medicine that deals with studying the endocrine sys-
tem. The endocrine system comprises a system of specialized ductless glands 
responsible for synthesizing, storing, and releasing their secretions, that is, hor-
mones, directly into circulation. Classically, hormone action occurs at different 
peripheral target tissues having receptors for the specific hormones. In addition to 
the classical endocrine signaling, hormones also act on neighboring cells (paracrine 
effect), on the cell secreting the hormone itself (autocrine effect), or locally within 
the cell without actually getting released from it (intracranial effect).

Hormonal action can be broadly described as important in controlling and coordi-
nating whole-body metabolism and maintaining body homeostasis. Hormones are 
responsible for maintaining energy balance, regulating metabolic pathways, repro-
duction, growth and development, and response to injury, stress, and environmental 
factors. The hormonal synthesis, production, and secretion are tightly regulated pro-
cesses, broadly, through complex regulatory feedback control loops or axes between 
different endocrine glands. The feedback mechanisms control the circulating concen-
trations of the hormones within a tight physiological range necessary for optimal hor-
mone action at the cellular level. The most well known among these are those under 
hypothalamic-pituitary control, such as the hypothalamo-pituitary-thyroid axis and 
hypothalamo-pituitary-adrenal axis that control and regulate thyroid and adrenal hor-
mone action via the regulatory and organ-stimulating hormones. Endocrine dysfunc-
tion arises as a result of either subnormal (e.g., hypothyroid) or excess production 
(e.g., hyperthyroid) of hormones or due to peripheral resistance to hormone action 
(e.g., insulin resistance (IR)), which leads to different disease states.

Clinical evaluation of endocrine dysfunction is generally based on measuring 
single effector hormones using immunoassays in the clinical laboratory. Although 
these methods are well established and widely used in different hospital laborato-
ries, single hormone measurements, as commonly perceived, do not completely 
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represent disease or hormonal defects [1]. The complexity in endocrine disease 
diagnosis arises as virtually all complex processes are regulated at any point with 
one hormone whose functions are closely intertwined. Therefore, measurement of 
single hormone levels may not be sufficient in identifying disease. The immunoas-
says are further limited in their detection capabilities due to their narrow specificity, 
sensitivity, and a high coefficient of variation between the different immunoassays 
for the same hormone [2, 3]. With the advent of deeper genome sequencing, an 
increasing number of endocrine diseases are grouped as a single disease with a het-
erogeneous presentation but are now identified as distinct disorders based on their 
genetic makeup. In the present chapter, we will look at the metabolomics of diseases 
of the pituitary gland.

2 � Endocrine Diseases and Genetics

Although the paradigm of studying hormonal action and related diseases focused on 
the concept of one anatomical gland and its associated hormone, this view is chang-
ing with many interrelated complex interactions being identified between the differ-
ent hormones. Hormones do not act in isolation; a single hormone affects multiple 
organs and functions, and several hormones control each function. Identification of 
various genetic polymorphisms conveying an increased risk of developing endo-
crine disease has been identified through genome-wide association (GWAS) stud-
ies. These studies have greatly improved knowledge and genetic testing, becoming 
a significantly important component for the thorough clinical diagnostic workflow 
in endocrine diagnostics and the routinely performed biochemical laboratory analy-
sis [4, 5].

Recent studies using GWAS have identified many genetic mutations (such as 
single nucleotide polymorphisms, allelic loss or gene amplification, and epigenetic 
changes, usually by promoter methylation chromosomal defects) and their variants 
that are known to lead to endocrine disorders and pathogenic or benign neoplastic 
endocrine disease conditions [5–9]. This has been facilitated through clinical genetic 
studies in patients carrying mutations with well-characterized presentations and 
manifestations. These genetic mutations have been identified in genes involved in 
regulating the cell cycle, growth factors, signaling pathways, and hormone recep-
tors. The genetic mutations may either result in gain of function or loss of function 
of the specific genes and their downstream protein products. These defects in pro-
teins translate into biochemical enzymatic defects resulting in alterations in the hor-
monal levels due to disorders of hormone synthesis or receptor uptake, to name a 
few, resulting in endocrine disease [9–13].

Additionally, advances in cellular biology and transcriptomic studies have shown 
the significant role that hormones play in regulating gene expression. Mutations in 
the germline result in familial diseases, while somatic mutations may present with 
expression only within specific tissues. Evaluation of rare endocrine genes besides 
the characterization of the hormonal defects requires a comprehensive genetic 
workup [4, 5].
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Genetic diagnostic testing in rare endocrine conditions has become important for 
achieving an early molecular diagnosis and identifying presymptomatic individuals. 
Although significant, genetic evaluation is not without disadvantages as it is highly 
specialized and not easily available routinely. Recent advances in OMIC technolo-
gies, specifically in metabolomics, have shown that changes in the metabolite pat-
tern reflect the associated disease conditions [14]. The disease is often seen to 
exceed the influence of clinical factors. The variations in many metabolites have 
been heritable and linked to distinct loci identified by GWAS [15]. Genetic variants, 
particularly of the enzyme coding genes, are associated with changes in the proteins 
regulating the homeostasis of key lipids, carbohydrates, or amino acid metabolisms 
and metabolites.

Over the last decade, the understanding of physiological and pathological pro-
cesses underpinning endocrine and endocrine-related disease has significantly 
expanded, aided by advances in mass spectrometry (MS) approaches and novel 
molecular biological and computational tools. The metabolic compound dysregula-
tion is associated with changes in physiology which are consequences of a unique 
expression of the genes. A small variation in protein expression can significantly 
affect the metabolic pathway activity with alterations in concentrations of metabo-
lites related to the relevant proteins. Thus, compared to both the proteome and tran-
scriptome, metabolomic profile is far more sensitive. The development of the 
high-throughput omic platforms has helped identify the specific metabolites altered 
with endocrine diseases and more so in the cases of rare genetic, endocrine diseases. 
Determining metabolomic features as causes of endocrine disorders provides a bet-
ter holistic opportunity to understand the related pathophysiology and develop 
approaches for personalized therapy [16].

3 � Metabolomics of Endocrine Disease

Endocrine diseases deeply impact the human metabolome as hormonal defects 
affect the functions of enzymes, causing alterations in the normal metabolic activity 
of tissues or glands, leading to disease. Metabolomics has contributed significantly 
to endocrinology by providing means to understand better the inner workings of 
individual cells. It also helped to understand the interactions between different 
organ systems and providing insight into physiological and pathological processes. 
The main application of metabolomics in endocrine disease has been clinical 
research dealing with disease metabolomic profiling and biomarker discovery for 
diagnostic purposes. Plasma profiling of the disease and control states has allowed 
the characterization of a comprehensive set of metabolites in biological samples. 
Fluctuations in concentration of these small molecules, in response to different 
stimuli, serve as markers for monitoring of disease. Two principal analytical plat-
forms have been most used to analyze metabolites in body fluids, primarily deriva-
tives of blood (serum, plasma), tissues, and urine. These include nuclear magnetic 
resonance (NMR) spectroscopy and liquid/gas chromatography coupled with mass 
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spectrometry (LC-MS). The analysis of lipid metabolites was enhanced by using 
ultra-performance liquid chromatography quadrupole time-of-flight (UPLC Q-TOF) 
MS and GC-MS. TMS major complementary approaches have been applied. One 
involves the targeted analysis of metabolites, which measures the concentrations of 
known disease-associated metabolites. The second is an untargeted hypothesis-
driven approach that provides a global profile of a large set of metabolites associ-
ated with the disease semiquantitatively.

Alterations in metabolite levels or a specific group of metabolites reflect the 
intricate relationships between genes and their products, as well as the activity of 
related enzymes within metabolic pathways either physiologically or in a disease 
state. In combination with genetics, untargeted metabolomics has provided addi-
tional information to determine the association between genetic variants and dis-
ease. Combining the clinical (phenotype) with the different molecular datasets 
(OMIC technologies) in a bioinformatic-based clinical decision-making system 
also has the advantage of advancing personalized medicine. These advances are in 
understanding the pathophysiology, diagnosis, stratification, management, and 
assessment of treatment efficacy in endocrinology. Metabolomics adds to this 
milieu by including metabolic information, furthering the accuracy of diagnosis in 
individuals and discovering novel metabolites as reported in the human metabolome 
database with the disease. For each metabolic gene, prediction models can then be 
developed for predicting changes in concentrations of metabolites in different bio-
logical fluids (serum, plasma, urine, saliva, etc.) or tissue specimens with various 
genetic mutations (Table 1).

3.1 � Metabolomics of Hypothalamus and Pituitary 
Gland Dysfunction

The hypothalamus along with pituitary gland together constitutes a functional unit 
responsible for secreting regulatory hormones that exert control over the functions 
of nearly all the endocrine glands. The pituitary is the master regulatory gland of the 
body, acting through several hypothalamic-pituitary-target organ regulatory axes. 
Any defects arising within these regulatory systems, synthesis, storage, or release of 
the hormones impact the human body’s overall physiological functions, leading to 
disorders and diseases.

Primary dysfunction of the pituitary gland is uncommon. The majority of the 
cases of hypo-, hyper-, or panhypopituitarism arise secondary to the presence of 
either neoplastic or benign tumors such as adenomas. Pituitary adenomas (PA) are 
benign neoplasms that are highly heterogeneous with varying subtypes and accounts 
for nearly 15% of primary tumors arising in the brain. They are either secretory 
based on the increase or decrease in the hormones secreted by the affected cell types 
or nonsecretory. Inherited genetic mutations, although rare, have been identified by 
GWAS and are known to lead to the development of benign PA, with several genetic 
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mutations identified as single gene mutations. These have been identified for single 
genes encoding for guanine nucleotide-binding protein G(s) subunit alpha (GNAS) 
and G protein-coupled receptor 101 (GPR101), aryl hydrocarbon receptor-
interacting protein (AIP), and deubiquitinase genes: USP8, USP48, and BRAF. PA 
can also occur in familial syndromes, including MEN1, SDHx (mutated in the PA, 
pheochromocytomas, and paragangliomas), von Hippel-Lindau, DICER1, 
PRKAR1A (mutated in Carney complex), succinate dehydrogenase-related familial 
PA, GPR101 (involved in X-linked acrogigantism), neurofibromatosis type 1 (NF1), 
and Lynch syndromes [17]. The phenotype of the secretory PA depends on the 
affected cell types and the hormones secreted; growth hormone (GH)-secreting 
somatotroph adenomas result in acromegaly, corticotroph cell adenomas-secreting 
corticotropin hormone result in Cushing’s disease, lactotroph cell adenomas-
secreting prolactin result in hyperprolactinemia, and thyrotropin-secreting adeno-
mas result in hyperthyroidism. The nonsecreting adenomas, on the other hand, 
manifest as incidental pituitary sellar masses and lead to hypogonadism. The clini-
cal diagnosis of pituitary disease, irrespective of the cell type affected, is challeng-
ing. This is because of the wide range of presenting symptoms, nonspecific changes 
in single-hormone measurements, the need for adopting stimulation or suppression 
testing, and the requirement for imaging studies. Metabolomic approaches using 
GC/LC-MS have profiled pituitary-related diseases and identified biomarkers dif-
ferentiating between patients with PA and healthy controls. Plasma secretory plasma 
metabolomic profiling revealed significant alterations in the metabolism of amino 
acid, specifically in alanine, glutamate (metabolites of the glutamate oxidationcy-
cle), and aspartate (metabolite of the urea cycle involved in gluconeogenesis), and 
increase in homocysteine levels. Increased homocysteine levels in patients with PA 
are considered to be the cause for increased cytotoxicity and oxidative stress [18].

In addition to the findings in plasma, pituitary tissue metabolomic profiling was 
also done on tissue sections removed postoperatively from patients with gonadotro-
pin- and PRL-secreting PA. The metabolomic profile showed differential regulation 
of phosphoethanolamine, glutamate, glutamine, N-acetyl aspartate, aspartate, and 
myoinositol, which are known metabolites involved in the regulation of the central 
nervous system. Levels of these metabolites distinctly differentiated between the 
two adenomas with PRL-secreting PA showing a decrease in levels of phosphoetha-
nolamine, N-acetyl aspartate, and myoinositol while aspartate, glutamate, and glu-
tamine levels were increased. Women with PRL-secreting PA showed higher 
estrogen metabolites and 17-ketosteroids in the urine. The increase in these metabo-
lites was most likely due to reduced enzymatic actions of 3-beta-hydroxysteroid 
dehydrogenase and 5α-reductase enzymes among these patients. These patients also 
showed characteristic increase in the ratios of levels between 5-beta and 5-alpha-
hydrogensteroids and delta 5 and delta 4 steroid ratios which served as novel mark-
ers for disease detection [19, 20].
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3.2 � Growth Hormone Secretion Defects

The primary cause of GH defects is pituitary adenomas that secrete aberrant 
GH. They can appear as single (isolated) tumors or as component of other systemic 
conditions as multiple endocrine neoplasia type 1 or type 4, Carney complex, 
McCune-Albright syndrome, or in association with pheochromocytoma and para-
ganglioma. GH acts via the somatotropic axis consisting of GH, GH receptors, 
insulin-like growth factors (IGF) 1 and 2, their associated carrier proteins, recep-
tors, and releasing factors, which regulate growth and body composition. GH secre-
tion defects can manifest clinically as an increase in its circulating levels leading to 
acromegaly or a decrease that leads to short stature.

3.2.1 � Growth Hormone Excess: Acromegaly

An excess of GH or its chronic hypersecretion results in acromegaly or gigantism, a 
rare endocrine disease that is debilitating and leads to multiple comorbidities with 
reduction in life expectancy. The uncontrolled production of GH stimulates the liver 
to increasingly synthesize and secrete insulin-like growth factor-1 (IGF-1) which in 
turn influences metabolic changes in various organ systems and stimulates somatic 
(internal organs, tissues, bones, and muscles) overgrowth and development of 
comorbidities, including cardiovascular and malignant diseases. In skeletal mus-
cles, GH exerts an anabolic impact that increases amino acid intake and protein 
synthesis and decreases protein oxidation. This action shifts the normal metabolism 
from mainly utilizing glucose and protein substrates to oxidation of lipid oxidation, 
altering the linear body growth and organ growth during childhood. The resulting 
clinical phenotype of these patients presents with growth acceleration, enlarged feet 
and hands, increased appetite, and broadening and coarsening of the facial features.

The primary cause of pituitary gigantism in nearly 50% of individuals is an 
underlying genetic variant or mutation [21, 22]. In 95% of cases, acromegaly occurs 
sporadically because of adenomas of somatotroph cells that are characterized by 
excessive secretion of GH and IGF-1. Fifty percent of these tumors are attributable 
to familial germline mutations in aryl hydrocarbon receptor-interacting protein 
(AIP) and probable G-protein-coupled receptor 101 (GPR101) genes. On the other 
hand, cases with pituitary hyperplasia are a rarity and are usually encountered as 
part of syndromes such as the McCune-Albright syndrome, Carney complex dis-
ease, or X-linked acrogigantism. Besides the mutations seen in AIP, germline muta-
tions have also been documented in other genes such as GPR101, PRKAR1A, 
CDKN1B, GNAS, MAX, SDHx, and MEN1. Somatic mutations have been shown 
to be related to mutations in GNAS gene and account for 40% of tumors [23].

Presently the diagnosis of active acromegaly is made by determining elevations 
in GH levels, after a standard oral glucose tolerance testing, and in levels of IGF-1 
when compared to age and gender matched controls. Confirmation of the diagnosis 
is through radiological MRI evaluation that validates the findings of an adenoma. 
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Biochemical evaluations of GH and IGF-1 levels are sometimes inconsistent, and an 
increase in GH levels is not paralleled with that of IGF-1. The heterogeneous clini-
cal presentation of the disease lacks early warning signs, and the inconsistencies in 
the measurements of GH and IGF-1 levels lead to delay or misdiagnosis. Molecular 
genetic testing using chromosomal microarray analysis or single gene duplication 
studies has helped identify cases with germline or somatic mutations [22].

In addition to genetic testing, metabolomic analysis has aided the diagnosis of 
acromegaly by creating a metabolomic fingerprint of the disease and identifying 
characteristic metabolites that differentiate patients with active disease from con-
trols. Elevations were noted in gluconeogenic substrates (glycerol, lactate, propio-
nate, and glucogenic amino acids such as valine and isoleucine); serine, 
5-aminovaleric acid, dihydrocoumarin, mono-olein, N-acetyl-L-glutamic acid, gly-
ceric acid, L-dithiothreitol, and gluconic acid were observed in the metabolomic 
profile in active acromegaly compared with normal controls. In contrast, serum lev-
els of D-erythronolactone, taurine, carbamoyl-aspartic acid, and mucic acid were 
decreased. Among the different metabolites, glyceric acid and taurine had the high-
est sensitivities to discriminate between patients with acromegaly from normal con-
trols [24, 25].

Patients with active disease having increased GH but normal IGF-1 levels showed 
significantly lower levels of essential branched-chain amino acids (BCAAs) (valine, 
isoleucine), lysine, and lactate, whereas levels of the metabolite dimethylamine 
were higher. The inverse correlation between valine and isoleucine was seen with 
higher GH levels and not with IGF-1 indicating that lower BCAA levels, which 
represent the main metabolic fingerprint of acromegaly, were influenced by GH 
rather than IGF-1 as the primary mediator [26]. Metabolomic analysis in patients 
with acromegaly also highlighted significant alterations in major metabolic path-
ways in these groups of patients. The pathways affected as a result of active disease 
included glycerolipid, glyoxylate, taurine, hypotaurine, dicarboxylate, and pyrimi-
dine pentose phosphate pathway. Dysregulation of these pathways was proposed to 
be the underlying reason that supported hyperplasia of tissues observed in different 
organs, due to excess GH secretion [19]. An increase in gluconeogenic metabolites 
along with decreased BCAA levels detected was suggested to be a result of an 
accelerated consumption of BCAAs. Assessing levels of BCAAs, besides identify-
ing the active disease, were also beneficial in monitoring the response to therapy.

Metabolomic profiling in patients with acromegaly, with associated cardiovascu-
lar dysfunction, identified distinct changes in amino acids and in plasma lipids. 
Specific perturbations were noted in the glycerophospholipid, sphingolipid, and 
metabolites involved in the linoleic acid metabolic pathways. Levels of phosphati-
dyl ethanolamine (PE) (22:6/16:0) positively correlated with changes in left ven-
tricular mass, while lysophosphatidyl choline (LysoPC) (16:0) was positively 
correlated with alterations in fractional shortening and left ventricle ejection frac-
tion [27]. Patients with active acromegaly also present with increased insulin resis-
tance (IR) accompanied with lowered hepatocellular lipids and cholesterol. This is 
in stark contrast to other IR-associated metabolic diseases which are commonly 
seen associated with fatty liver disease. The lower hepatic cholesterol levels reflect 
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the decreased liver fat content, a lower unsaturated-to-saturated lipid ratio, and 
decreased levels of different carnitine species, namely, plasma butyryl carnitine 
hexanoyl carnitine [25]. Among the various FFA species, levels of cholesteryl esters 
(CEs, 18:3) were lower. In contrast, within phosphocholine (PC) lipids, increased 
levels of LPC (18:0), as well as decreased PC (36:5), ether PC (38:6), PC (40:7), 
and PC (42:5), were noted, and in the sphingomyelin class, SM (36:0) was signifi-
cantly lower. The hepatic lipid content decreased from increased hepatic ATP syn-
thesis due to excess GH.

3.2.2 � Growth Hormone Deficiency

Insufficient production of GH leads to GH deficiency or pituitary dwarfism, a rare 
endocrine disease condition. The causes of GHD can be inherited, congenital, or 
acquired. The usual manifestation of the disease is during childhood, with children 
clinically presenting with abnormally short stature but normal body proportions. 
Lately, the importance of GH has also been observed in adult patients, especially 
concerning its effect on lipid profile, body composition, bone mass, and cognition 
[28]. Adult growth hormone deficiency is a well-defined clinical condition that is 
characterized by abnormal body composition, poor quality of life, dyslipidemia, 
and increased risk of cardiovascular disease and death [29]. Genetic analysis by 
whole genome sequencing has identified multiple genes that affect the normal 
development of the pituitary, hypothalamic signaling or influence the actions of GH 
and IGF-1 in target tissues by altering binding to its receptors. Isolated GH defi-
ciency can arise due to mutations or defects in the growth hormone (GH1) gene 
itself or the GH-releasing hormone receptor which lead to either classical GH defi-
ciency or produce physiologically inactive GH. More rarely, growth hormone defi-
ciency can result from mutations in HESX13, SOX3, FGFR3 gene, and 
pregnancy-associated plasma protein (PAPP)-A2 [30].

The diagnosis of GHD is based on laboratory evaluation, through radiological 
imaging examinations and the insulin hypoglycemia test, which is the gold standard 
test in adults. The biochemical evaluation is done through measuring levels of GH, 
IGF-1, and IGFBP-3 (insulin-like growth factor binding protein 3) as indirect mark-
ers of growth hormone action. Although these markers are used routinely, they lack 
sensitivity, and among them, IGF-1 is a least sensitive marker and a poor diagnostic 
indicator of GHD.

Untargeted metabolomic profiling using GC-MS identified numerous metabo-
lites and potential biomarkers for diagnosing GHD and was also used for monitor-
ing recombinant human growth hormone (rhGH) replacement therapy in these 
patients. Levels of 13 metabolites including threonic acid, cystine, cysteine, palmi-
toleic acid, glutamic acid, glyceric acid, aspartic acid, uridine, and hypoxanthine-
like were reported to be significantly dysregulated in adult patients with GHD. On 
the other hand, successful treatment with rhGH showed a reversal in glutamic acid, 
glyceric acid, hexadecanoic acid, and palmitoleic acid to normal control levels [31]. 
The effectiveness of growth hormone treatment was similarly assessed in a patient 
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with a rare pituitary-specific positive transcription factor (PIT-1) genetic defect that 
caused short stature. PIT-1 is responsible for the normal development of the anterior 
pituitary gland. Urine metabolomic profile from this patient using NMR-based 
metabonomics showed that higher levels of creatine, creatinine, lactate, and 
trimethylamine-N-oxide and lower levels of urinary citrate, dimethylamine (DMA), 
and alanine observed before GH treatment were reversed after treatment and 
returned to normal values [32]. It was also possible to determine the metabolic dif-
ferences between children with short stature (SS) and healthy controls, using NMR-
based blood metabolomic analysis, to identify metabolites which can serve as 
potential biomarkers for the diagnosis of SS.  Serum levels of creatinine, citrate, 
phenylalanine, and tyrosine were increased, and levels of inositol, lysine, glycerol, 
glucose, betaine, serine, and glutamine were lower in comparison to normal con-
trols. These dysregulated metabolites were associated with disturbances in meta-
bolic pathways related to carbohydrate and amino acid metabolism [33]. 
Metabolomic profiling was also used to monitor therapy and assess the metabolic 
effects of IGF-1 treatment in PAPPA2-deficient patients. The metabolomic analysis 
highlighted profound changes in lipid and protein metabolism after replacement. An 
increase in BCAA, hydroxyproline, glutamic acid, glutamine, and asparagine was 
noted along with a decrease in levels of glycerol and FFA, palmitate, oleate, arachi-
donate, linoleate, palmitoleate, and stearate [34]. Metabolomics in GHD extends 
beyond identifying metabolites as biomarkers for disease diagnosis as it also helped 
to assess the risk of patients for developing cardiovascular disease. The identified 
metabolites have been linked in adults with untreated GHD to a number of CV risk 
factors, including morphological changes in the heart, metabolic alterations, and 
visceral obesity [26]. More recently, epigenetics and metabolomics have been 
increasingly developed to detect distinctive fingerprints, which could predict an 
increased risk of CVD in patients with GHD.

Because of its anabolic effects on protein metabolism and muscle growth, ath-
letes have used GH to improve their performance. Another aspect of metabolomics 
has been its extension toward analyzing biological fluids, urine, and plasma samples 
for evidence of doping. In the treated groups, application of direct discriminant 
analysis distinguished the treatments and was also used to classify them accord-
ingly [35].

3.3 � Hypercortisolism (Cushing’s Syndrome and Cushing’s 
Disease)

Hypercortisolism is a term that encompasses an increase in cortisol production and 
is a feature of both Cushing’s syndrome (CS) and Cushing’s disease. It can be clas-
sified into three types: ACTH-dependent (due to pathology of the pituitary gland), 
ectopic ACTH secretion, and ACTH-independent (due to adrenal pathology). The 
most common pituitary pathology is adenoma of the pituitary gland affecting the 
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corticotrophic cells resulting in glucocorticoid (cortisol) excess production from the 
adrenal glands. The uncontrolled ACTH secretion from a pituitary adrenocortico-
trophic adenoma is a rare pathology and is termed as endogenous Cushing’s disease.

Clinically cortisol excess manifests by a well-characterized group of signs and 
symptoms that include centripetal obesity, hypertension, muscle weakness, moon 
face, fatigue, diabetes mellitus, cognitive difficulties skin changes, osteoporotic 
fractures, headaches, and changes in mood. In the female patients, menstrual irregu-
larities and hirsutism (female) are also additionally seen [36]. Diagnosis of 
Cushing’s syndrome (CS) (and Cushing’s disease) is a tedious multistep process 
requiring verification of hypercortisolism as the first step, followed by identifying 
the cause of hyperfunctioning of adrenocortical axis. This is further hampered by 
the poor diagnostic utility of the glucocorticoid metabolic pathway indices such as 
plasma cortisol levels, urinary-free cortisol, and other clinically measurable bio-
chemical parameters, such as 11-deoxycortisol. Assessing the cause of hypercorti-
solism is challenging as each factor in the differential diagnosis of the disease needs 
to be ruled out.

Metabolomic evaluation of patients suspected of CS, with clinical features of 
hypercortisolism but indeterminate pituitary imaging, identified many affected met-
abolic pathways. These mainly involved metabolic pathways related to fatty acids, 
amino sugars, carbohydrates (glycolysis/gluconeogenesis), purines, glycated nucle-
otides, amino acids (glutamate, alanine, aspartate, and lysine), vitamin B metabo-
lism, aminoacyl-tRNA biosynthesis, and starch and sucrose metabolism [37]. 
Patients with ACTH-secreting pituitary adenomas showed distinct changes in 
plasma metabolite levels identified using LC-MS/MS compared to the control 
group. These included 2-hydroxybutyric acid, 3-hydroxyphenyl acetic acid, hypo-
xanthine, L-aspartic acid, aminoadipic acid, 4-pyridoxic acid, quinolinic acid, 
deoxycholic acid, xanthine, 3-methyladipate, and sucrose and glucose 6-phosphate. 
Besides the plasma and urine metabolomics, tissue metabolomic analysis from 
ACTH-secreting pituitary adenoma showed increased short-chain fatty acids (hexa-
noic, capric, heptanoic, octanoic, and nonanoic fatty acids) [38]. At the same time, 
glucose-6-phosphate was decreased compared to the control group [19]. Short- and 
medium-chain acylcarnitines, branched-chain and aromatic amino acids, and poly-
amine levels were also lower in patients with hypercortisolism. Independently, the 
severity of hypercortisolism is linked to changes in intermediate metabolism, which 
are consistent with skewed protein synthesis and catabolism and incomplete 
β-oxidation, indicating the presence of metabolic inflexibility exists [19, 39].

Differentiating between the different subtypes of hypercortisolism is also clini-
cally challenging. Using metabolomic approaches through serum and urine steroid 
profiling has helped identify sensitive markers in patients with CS. Steroid metabo-
lite profiling has shown promise for accurately subtyping patients with CS.  The 
profiling revealed that patients with ACTH-dependent CS (caused by ACTH-
secreting pituitary adenomas or ectopic malignancies) have elevated androgens and 
related metabolites, whereas patients with CS having glucocorticoid hypersecretion 
from the adrenals which is autonomous or independent from ACTH have lower 
levels [38, 40]. Targeted metabolomic analysis using a combination panel of ten 
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plasma steroids was shown to provide a sensitive panel of markers for diagnosis of 
CS with a high discriminatory capacity between the three subtypes of CS. The vari-
ous steroids in the panel (11-deoxycortisol, cortisol, cortisone, corticosterone, 
11-deoxycorticosterone, androstenedione, 18-oxocortisol, DHEA, DHEA-SO4, 
and aldosterone) demonstrated significantly distinct profile patterns among patients 
with ACTH-independent and ACTH-dependent forms of CS. From the metabolites 
mentioned earlier, increases in cortisol levels, its precursor 11-deoxycortisol and 
derivative 21-deoxycortisol, cortisone, corticosterone, 11-deoxycorticosterone, and 
decrease in plasma aldosterone and 18-oxocortisol differentiated between patients 
with and without CS. Higher levels of 11-deoxycorticosterone and 11-deoxycortisol 
were higher in patients with pituitary and adrenal CS, while patients with ectopic 
CS disease showed lower plasma levels of 18-oxocortisol and aldosterone. The 
plasma levels of adrenal androgens, androstenedione, DHEA, and DHEAS were 
higher in pituitary and ectopic CS compared to adrenal CS. On the other hand, ecto-
pic CS had highest increase in glucocorticoids.

The urine metabolomic profile was also evaluated in patients with CS and showed 
a higher urinary excretion of DHEA and DHEAS metabolites in pituitary disease 
compared to adrenal CS [19, 37]. The ratio of cortisol to metabolites of cortisone 
was higher, indicating the suppression of activity of the cortisol-inactivating enzyme 
HSD11B2. The unrestricted action of cortisol on the mineralocorticoid receptor 
explains the clinical symptoms of hypertension and hypokalemia commonly seen in 
these patients.

Cushing’s syndrome leads to various metabolic dysfunctions, including cardio-
vascular disease due to a proatherogenic shift in the circulating lipids. Metabolomic 
analysis identified increased urinary ceramides, glycerophospholipids, and sphin-
golipid metabolites, independently associated with higher urinary-free cortisol. In 
the study by Vega-Beyhart, patients with CS showed significant alterations in 93 
metabolites showing an increase in sulfur containing amino acids, ceramides, triac-
ylglycerols, cholesteryl esters, and glycerophospholipids. On the other hand, a 
decrease was seen in essential and nonessential AA, polyunsaturated fatty acids, 
conjugated bile acids, and second messenger glycerolipid concentrations. Twenty-
four-hour urinary-free cortisol was associated with alterations in the concentration 
of many lipids and amino acid metabolites. The identified metabolites comprising 
of ten amino acids and ten lipid metabolites demonstrated an AUC-ROC of 95% and 
served as a metabolic signature for the classification of CS. The identified amino 
acids, acylcarnitines, ceramides, and glycerophospholipid markers were suggested 
as potential biomarkers of cardiovascular risk in patients with CS [41].

4 � Conclusion

Metabolomic profiling of endocrine diseases with its high-power discrimination is 
a powerful tool for the clinical investigation and diagnosis of rare pituitary endo-
crine diseases. The realm of metabolomics, in managing pituitary diseases, will in 
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the future extend beyond identifying metabolites as biomarkers for disease diagno-
sis and towards personalized medicine. This approach will aim to deliver targeted 
individualized therapy that optimizes the effectiveness of treatments and avoid 
unwanted adverse effect reactions or procedures. Establishing disease-specific 
metabolite panels on a chip could further revolutionize the diagnostic industry. 
Achieving this milestone would require further studies with larger populations, 
meta-analysis, and a uniform standardization of analytical and statistical steps to 
yield reproducible results.
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Metabolomics and Genetics of Rare 
Endocrine Disease: Adrenal, Parathyroid 
Glands, and Cystic Fibrosis

Afshan Masood, Abeer Malkawi, Mohamed Siaj, and Anas M. Abdel Rahman

Abstract  Recent advances in metabolomic technologies and methodologies have 
identified significant metabolites related to rare endocrine disease conditions of the 
adrenal gland (hyperaldosteronism, primary adrenal insufficiency), parathyroid 
(hypoparathyroidism), and cystic fibrosis. Metabolomic profiling combined with 
genomics is increasingly being employed for improving understanding, clinical 
diagnosis, and management of these clinically challenging conditions. Advances in 
gas and liquid chromatography combined with tandem mass spectrometry (GC/LC–
MS/MS) techniques have improved the profiling of steroid metabolites. Significant 
alterations in levels of these metabolites demonstrate the potential to serve as spe-
cific markers of disease, help in their stratification, and contribute toward moving to 
personalized medicine.
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Abbreviations

ATP1A1	 ATPase Na+/K + -transporting subunit alpha 1
ATP2B3	 ATPase plasma membrane Ca2+ transporting 3
CACNA1H	 Calcium voltage-gated channel subunit alpha 1 H
CACNA1H	 Calcium voltage-gated channel subunit alpha 1 H
CASR	 G protein-coupled calcium-sensing receptor
CCND1/PRAD1	 Cyclin D1
CDKN1C	 Cyclin-dependent kinase inhibitor 1C
CFTR	 CF transmembrane conductance regulator
CHD7	 Chromodomain helicase DNA binding protein 7
CLCN2	 Chloride voltage-gated channel 2
CSDE1	 Cold shock domain-containing E1
CTNNB1	 Catenin beta 1
CYP11B2	 Cytochrome P450 family 11 subfamily B member 2
DAX-1 (NR0B1) SF-1	 Nuclear receptor subfamily 0 group B member 1
DLST	 Dihydrolipoamide S-succinyltransferase
FH	 Fumarate hydratase
GATA3	 GATA binding protein 3
GCM2	 Glial cells missing transcription factor 2
GNA11	 G protein subunit alpha 11
H3F3A	 H3.3 histone A
HIF2A	 Hypoxia-inducible factor 1 subunit alpha
HRAS	 HRas proto-oncogene, GTPase
IDH	 Isocitrate dehydrogenase (NADP(+)) 1
IRP1	 Iron regulatory protein
KCNJ5	 Potassium inwardly rectifying channel subfamily J 

member 5
MAML3	 Mastermind-like transcriptional coactivator 3
MDH2	 Malate dehydrogenase 2
NF1	 Neurofibromin 1
NR5A1	 Nuclear receptor subfamily 5 group A member 1
P450scc/CYP11A1	 Cytochrome P450 family 11 subfamily A member 1
PHD1	 Prolyl hydroxylase 1
POLE1	 DNA polymerase epsilon, catalytic subunit
PTH	 Parathyroid hormone
RET	 Ret proto-oncogene
SAMD9	 Sterile alpha motif domain containing 9
SDHx	 Succinate dehydrogenase complex iron-sulfur subunit B
SEMA3E	 Semaphorin 3E
SGPL1	 Sphingosine-1-phosphate lyase 1
SLC25A11d	 Solute carrier family 25 member 13
SOX3	 SRY-Box transcription factor 3
TMEM127	 Transmembrane protein 127
VHL/EPAS	 Von Hippel–Lindau tumor suppressor
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1 � Introduction

Over the course of the past 10 years, research based on metabolomics has grown 
significantly and emerged as a promising instrument for clinical diagnostics as well 
as for improving our comprehension of the physiological and pathological pro-
cesses that are the foundation of study for endocrine-related and rare diseases. In 
this chapter, we looked at how metabolomics helped diagnose, treat, and follow up 
rare endocrine disease of the pituitary gland. Beyond the pituitary, metabolomics 
has also been applied in disease stratification and management and in identifying 
biomarkers with applications in disease prediction, diagnosis, prognosis, and 
therapy.

2 � Metabolomics of Adrenal Dysfunction

The adrenal glands play an important role in regulation of body homeostasis. 
Anatomically, they are made up of the cortex and medulla that secrete hormones 
involved in maintaining electrolyte and mineral balance, control metabolic path-
ways, provide response to stress (cortisol production in the adrenal cortex and cat-
echolamines in adrenal medulla), and are crucial for sexual differentiation (through 
producing steroid hormones in the adrenal cortex). Diseases of the adrenal glands 
result in the resistive synthesis of glucocorticoids, sex hormones, and catechol-
amines (epinephrine and norepinephrine). Excessive circulating glucocorticoid 
(cortisol) levels, independent of ACTH, primarily arise from the adrenal gland dis-
ease (CS), while increased secretion of corticotropin (ACTH)-dependent cortisol is 
primarily due to disease of the pituitary and in some cases due to other glands. CS 
accounts for 15% of the cases while a majority is 70% due to CD and other causes 
including ectopic production is 15% [1]. The associated genetic defects and metab-
olite changes related to endogenous and exogenous hypercortisolism were covered 
in the previous chapter. Adrenal gland dysfunction also results in disorders of aldo-
sterone synthesis (hyperaldosteronism or Conn’s syndrome and adrenal insuffi-
ciency or Addison’s disease), steroidogenesis, and the synthesis of sex hormones. 
Rare forms of these conditions arise due to germline mutations resulting in benign 
adrenal tumors or adrenocortical adenomas having an overall incidence in the gen-
eral population of 1–2 cases per million [2]. Clinical evaluation of these disorders 
of adrenal steroidogenesis and disease requires measurement of specific hormonal 
levels, radiological imaging, and histopathology of the biopsy specimens. Advances 
in GC–MS and LC–MS/MS techniques have greatly improved the diagnosis of 
these diseases by metabolomic identification and quantification of the steroid 
metabolome that includes steroid hormones along with metabolic derivatives in 
bodily fluids (e.g., serum, urine) for clinical (diagnostics and treatment monitoring) 
as well as research purposes.
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2.1 � Hyperaldosteronism (Conn’s Syndrome)

Primary aldosteronism (PA) is characterized by inappropriate and excessive secretion 
of the adrenal steroid hormone and aldosterone (hyperaldosteronism), the main min-
eralocorticoid hormone responsible for salt and water reabsorption, as well as 
increased potassium and proton secretion from the kidneys. Among the primary 
causes of PA is aldosterone-producing adenomas that present clinically as secondary 
endocrine hypertension. The nonneoplastic rare causes of PA (5%) are due to familial 
hyperaldosteronism (FH I–IV) and bilateral adrenal hyperplasia (BAH) [3, 4]. The 
advent of next-generation sequencing (NGS) technology and its wider application 
determined a largely genetic basis for the rare (5%) causes of PA through the identifi-
cation of overlapping set of genes carrying numerous disease-causing germline muta-
tions. These genome-wide association studies (GWAS) identified germline variants in 
CACNA1H (encoding a subunit of T-type voltage-gated calcium channel, CaV3.2), 
KCNJ5 (potassium inwardly rectifying channel subfamily J member 5), CYP11B2 
(encoding aldosterone synthase), CACNA1D (calcium channel voltage-dependent 
L-type alpha-1D subunit), and CLCN2 (encoding voltage-gated chloride channel 
ClC-2) [5–8]. Metabolomic approaches and metabolome profiling using gas chroma-
tography–mass spectrometry (GC–MS) and ultra-HPLC–tandem mass spectrometry 
(UHPLC–MS/MS) have comprehensively profiled the steroid metabolite profiling in 
sera and urine of patients and have found applications in the areas of personalized 
medicine for diagnostic purpose and prediction of prognosis. Coupling metabolomics 
together with genomics using GWAS provides a platform for employing integrated 
OMICS toward understanding and identifying the clinical phenotype. These genetic 
variations with their resulting metabolic alterations have created the metabolic pheno-
types termed “genetically determined metabotypes” that is now being considered as a 
diagnostic feature [9]. Clinically, the characteristic presentation of PA is an increase in 
blood pressure, that is, hypertension along with disturbances in the electrolyte levels. 
When compared to patients with primary hypertension, these patients are at a higher 
risk of developing cardiovascular and kidney disease [10, 11], making an early diag-
nosis vital. Aside from these complications, there is also the need to differentiate 
between the different PA subtypes and unilateral or bilateral disease as clinical man-
agement of both conditions differs; the former is managed surgically while the latter 
is managed medically.

A metabolomic approach using liquid chromatography with tandem mass spec-
trometry (LC–MS/MS) successfully quantified adrenal steroids. The multi-steroid 
signatures associated with steroid biosynthesis and metabolism disorders showed a 
high level of diagnostic accuracy to differentiate between PA and adrenal hyperpla-
sia that have similar presentations. Levels of cortisol derivatives (18-hydroxycortisol 
and 18-oxocortisol) were elevated in patients with PAs, carrying KCNJ5 mutations, 
in comparison to those with adrenal hyperplasia. Urinary 18-hydroxycortisol 
showed a high accuracy in distinguishing between the two conditions [12]. On the 
other hand, patients with adrenal hyperplasia showed elevated levels of plasma 
dehydroepiandrosterone (DHEA), DHEA-S, cortisol, and corticosterone [13]. 
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Targeted metabolomic analysis by LC-MS/MS using a 32-metabolite steroid panel 
that included 11-deoxycorticosterone, aldosterone, cortisol, 11-deoxycortisol, 
21-deoxycortisol, corticosterone, progesterone, 17-hydroxyprogesterone, 
18-oxocortisol, 18-hydroxycortisol, cortisone, pregnenolone, androstenedione, 
DHEA, and DHEA-S was also used. Levels of 18-oxocortisol and 18-hydroxycortisol 
were found to have distinctively higher levels in cases of FH I and III compared to 
controls and also showed a high level of correlation with histological features of 
adenoma. In addition, mutations in CTNNB1, coding for β-catenin, have been iden-
tified in 2–5% of cases with aldosterone-producing benign adenoma. A somatic 
mutation in CLCN2, coding for the chloride channel ClC-2 (chloride channel pro-
tein 2) mutated in familial hyperaldosteronism type II (FH-II) and early-onset PA, 
has recently been identified. Previous studies have shown that CYP11B2 can con-
vert 11-deoxycortisol efficiently to 18-hydroxycortisol and 18-oxocortisol, while 
CYP11B1 can synthesize only 18-hydroxycortisol [5, 14, 15] (Table 1).

Hyperaldosteronism is suggested to cause inflammation and metabolic dys-
regulation and contribute to development of cardiovascular disease. Metabolomic 
profiling in patients with Conn’s disease revealed significant alterations in levels 
of triglyceride concentrations, large VLDL particles with urate concentrations, 
and derivatives of the linoleic acid metabolism pathway [16]. Steroid profiling has 
also revealed high production of the “hybrid” cortisol metabolites 18-hydroxycor-
tisol and 18-oxocortisol in patients with rare, familial forms of PA associated with 
specific genetic errors (CYP11B1/CYP11B2 hybrid gene, KCNJ5 mutations) [8, 
17, 18]. The levels of these hybrid metabolites also served as markers to differen-
tiate between PA and BAH. Specifically, the 18-oxocortisol/cortisol ratio in adre-
nal vein samples and urinary 18-hydroxycortisol levels showed sufficient 
diagnostic accuracy to distinguish APAs from BAHs of patients [19, 20]. In addi-
tion to the clear elevation of plasma 18-oxocortisol in PAs, increased levels of 
plasma cortisol, corticosterone, DHEA, and DHEA-S were documented in patients 
with BAH [13]. Differences between the metabolite levels among the varying 
subtypes were also demonstrated using in situ metabolomics and demonstrated 
that levels of 18-oxocortisol and 18-hydroxycortisol negatively correlate with the 
CYP11B1. The steroid profiles were also correlated with their respective geno-
types. The PAs carrying KCNJ5 mutations presented significantly higher levels of 
18-oxocortisol in both adrenal vein and peripheral plasma samples than all other 
PAs, while PAs harboring ATPase mutations displayed the highest peripheral con-
centrations of aldosterone, cortisol, 11-deoxycorticosterone, and corticosterone. 
At the same time, patients with CACNA1D-mutated PAs had lower aldosterone 
and corticosterone concentrations than all other groups [21]. Distinct molecular 
signatures between KCNJ5- and CACNA1D-mutated PAs involving metabolites 
of steroidogenesis as well as purine metabolism KCNJ5 carriers displayed signifi-
cantly higher levels of 18-hydroxycortisol and 18-oxocortisol when compared to 
CACNA1D carriers. Activation of purine metabolism was observed in KCNJ5 
mutant APAs, with a significant increase in adenosine monophosphate and diphos-
phate [14].
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2.2 � Primary Adrenal Insufficiency

Primary adrenal insufficiency (PAI), a deficiency of glucocorticoid and mineralo-
corticoid production, is a relatively rare life-threatening condition due to autoim-
mune disorders and enzymatic defects. The patients clinically present with skin and 
mucous membrane hyperpigmentation, craving for salt, failure to thrive, depression, 
and fatigue. PAI is caused due to pathology within the adrenal glands which results 
in stimulation of the hypothalamo–pituitary axis and the renin–angiotensin–aldoste-
rone system regulatory feedback loop. PAI is typically diagnosed by measuring 
levels of ACTH and proopiomelanocortin peptides, which are elevated in addition 
to inappropriately low cortisol secretion. A delayed diagnosis of PAI is linked with 
an adverse quality of life and raises the patient’s risk of an adrenal crisis that might 
be fatal. Recent studies have implicated several genetic mutations in the pathophysi-
ology of the disease. These include defects in the nuclear receptors DAX-1 (NR0B1), 
steroidogenic factor-1 (SF-1/NR5A1), CDKN1C and SAMD9 or loss of POLE1, 
P450scc/CYP11A1 insufficiency, and sphingosine-1-phosphate lyase-1 (SGPL1) 
defects [22]. Treatment of PAI conventionally is modeled around corticosteroid 
replacement therapy that is conventionally administered three times a day [23].

Metabolomic studies in PAI are limited in the literature. In a study, metabolite 
profiling was carried out in the sera or urine for disease identification and stratifica-
tion and for evaluating optimal replacement therapy. The natural circadian rhythm 
of cortisol cycle cannot be entirely replicated by current glucocorticoid replacement 
regimens, which leads to either over- or under-replacement. The urinary cortisol 
metabolome was assessed to determine optimal cortisol replacement in patients 
with PAI. The metabolic profile of patients using two hydrocortisone replacement 
therapies were compared, namely, the once-a-day dual-release hydrocortisone 
(DHC) and three-times-a-day hydrocortisone (TID-HC) therapy. In the 24-h urine 
samples, total cortisol metabolites decreased after DHC therapy compared to 
TID-HC and were more in line with the usual control levels. 11-β-Hydroxysteroid 
dehydrogenase (11β-HSD) type 1 activity dropped with DHC compared to TID-HC 
therapy, whereas 11-β HSD2 activity fell with TID-HC but returned to normal with 
DR-HC. Moreover, 5α- and 5β-reduced metabolites were decreased with DR-HC 
compared to TID-HC. Patients undergoing traditional TID-HC replacement treat-
ment with enhanced 11β-HSD1 activity exhibits significant alterations in the urine 
cortisol metabolome, which may explain the adverse metabolic profile in patients 
with PAI. Its shift toward normalcy with DHC therapy might serve as an indicator 
for more favorable metabolic outcomes [17, 24]. Aside from providing means for 
optimizing therapeutic dosage, the metabolomic approach was also used to measure 
the effects of glucocorticoid therapy and identify biomarkers related to its action. 
Serum metabolic profiling was also undertaken in PAI patients, using GC–MS and 
LC–MS, during glucocorticoid therapy and after its withdrawal to assess response 
to therapy. The differentially expressed metabolites identified were amino acids 
(tyrosine, tryptophan, asparagine), malic acid, lactic acid, and uracil. The metabo-
lism of tryptophan, which modulates mood and energy homeostasis, is regulated by 
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glucocorticoids through the kynurenine pathway. Metabolomic analysis was able to 
identify that administering high doses of glucocorticoid, especially after a treatment 
of 10-week treatment, resulted in decreased tryptophan levels by influencing the 
kynurenine pathway [25, 26]. Hence, metabolomics assisted in assessing the thera-
peutic effects, allowing for the individualization of approaches and optimization of 
glucocorticoid therapy.

2.3 � Metabolomics of Pheochromocytoma

Pheochromocytomas (PCC) and paragangliomas (PPGLs) are a group of rare het-
erogeneous neuroendocrine tumors that arise from either the adrenal medullary 
chromaffin cells or from outside the adrenal gland in the neural crest cells (sympa-
thetic and parasympathetic paraganglia). Most PPGLs are benign tumors, with an 
incidence of approximately of one per million population per year [27]. The charac-
teristic clinical phenotype of these patients is associated with features of excess 
circulating catecholamine levels due to increased synthesis or release. The present-
ing signs and symptoms classically range from a triad consisting of sweating, head-
aches, and palpitations to nonspecific symptoms such as weight loss, nausea, 
tiredness, or flushing [27, 28]. The diverseness and nonspecificity of the clinical 
manifestations, heterogeneity of these tumors regarding the age of presentation, and 
differences in their location make an early clinical diagnosis of PCC difficult [29]. 
PCC and PPGLs have the highest degree of heritability, where PPGLs carrying a 
germline mutation account for 30–40%. More than 20 susceptibility genes with 
varying mutations have been identified as predisposing factors to this condition, 
placing it among the rare genetic endocrine conditions. The metabolic phenotypes 
in PCC are based on the affected specific gene/protein [30] that determines the 
secretory profile, molecular features, metabolic changes, clinical outcomes, and 
potential for malignancy [31].

PCC and PPGLs have been classified based on their inheritance, multiple endo-
crine neoplasia type 2 (MEN2), familial Von Hippel–Lindau (VHL) syndrome and 
less commonly neurofibromatosis type 1 (NF1)) or sporadic [30], or by molecular 
pathway subtypes, kinase signaling subtype (RET, transmembrane protein 127 
(TMEM127), mutations in the NF1, and HRAS genes), pseudohypoxia (Von 
Hippel–Lindau (VHL/EPAS)-related and tricarboxylic acid cycle (TCA)-related 
mutations, and Wnt-altered subtype (CSDE1 somatic mutations and mastermind-
like transcriptional coactivator 3 (MAML3) fusion genes)). The TCA-related PPGL 
subtype consists of tumors having mutations in the succinate dehydrogenase sub-
units A–D (SDHx), fumarate hydratase (FH), and isocitrate dehydrogenase (IDH). 
In addition, other genetic mutations in the H3F3A, malate dehydrogenase 2 
(MDH2), PHD1, IRP1, SLC25A11, and DLST were identified with a lower fre-
quency and have not yet been included in the Cancer Genome Atlas. PCC and 
PPGLs are also classified into clusters based on their secretory profile as adrenergic 
and noradrenergic clusters. The noradrenergic pseudohypoxic phenotype (secreting 
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norepinephrine and normetanephrine (NMN)) constitutes cluster 1. It includes 
tumors with SDHx mutations, along with VHL, FH, (MDH2), hypoxia-induced fac-
tor (HIF2α), and IDH mutations and the newly identified SLC25A11 [32]. Tumors 
with the adrenergic phenotype (secreting epinephrine and metanephrine (MN)), 
which are associated with abnormal kinase signaling pathways and include muta-
tions in the genes rearranged during transfection (RET), NF1, TMEM127, kinesin 
family member 1B (KIF1B), and MYC-associated factor X (MAX), make up clus-
ter 2. Cluster 3 is associated with the Wnt signaling pathway; it includes somatic 
mutations of cold shock domain-containing E1 (CSDE1) and mastermind-like tran-
scriptional coactivator 3 (MAML3) fusion genes [28, 32].

The gold standard for diagnosis relies on biochemical measurements of urinary 
or plasma products of the catecholamine degradation, noradrenaline (MN), adrena-
line (NMN), and dopamine (methoxytyramine (MTY)) [33]. Measurements of 
plasma-free MN have been proven in several independent investigations to have 
diagnostic sensitivity surpassing 96% and specificity between 85 and 100%. An 
alternate method with a comparable degree of diagnostic sensitivity is provided by 
urinary-fractionated MN [28]. The measurement of plasma and urine MN by LC–
MS/MS is presently widely accepted in the USA and many other laboratories as the 
gold standard approach [28, 34]. In addition to laboratory measurement, all patients 
with documented PCC and PPGLs should have genetic determination of PPGL phe-
notype as part of the diagnostic panel. It is very common to find mixed phenotypes 
of both adrenergic and dopaminergic secreting tumors in comparison to either 
adrenergic or dopaminergic ones. Each of these phenotypes has been linked to 
mutations in different genes. The genetic mutations in TMEM127 gene have been 
associated with only the adrenergic tumors while mutations in the KIF1B, MAX, 
RET, and NF1 genes have been associated with tumors with adrenergic mixed phe-
notype. On the other hand, it is known that extra-adrenal PPGLs having noradrener-
gic and dopaminergic phenotypes have mutations in PHD1/PHD2, HIF2A, SDHx, 
SDHAF2, FH, and IDH genes. The majority of PPGL tumors with HIF2A and 
VHL-mutated are typically noradrenergic while predominantly dopaminergic 
secreting tumors are known to be commonly associated with SDHx mutations [33]. 
Although confirmatory, genetic testing can be complex and, in many cases, unavail-
able at all centers. This potentially leads to delayed or inconclusive diagnosis [30, 
35, 36]. Due to the probable increased risk of metastatic illness in these patients, it 
becomes crucial for an effective clinical management to distinguish early on 
between tumors with underlying germline mutations and those that are sporadic 
[37]. In these instances, quantifying metabolites can help verify functionality and 
identify underlying mechanisms and factors for germline or somatic mutations in 
patients with unresolved genetic testing results.

Metabolomic studies have helped to bridge this gap by identifying metabolites 
that have not only helped in detailing the metabolic pathways affected by the dis-
ease but also to differentiate between the phenotypes, stratify the disease, and pro-
pose metabolites that are amenable to diagnostic applications. The tumor 
metabolomic profile distinguishes these different subtypes of tumors to classify 
patients with PGLs as sporadic or hereditary. Untargeted metabolomic approaches 
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aided in profiling the disease pathology and associating the changes with the differ-
ent variants of genetic mutations. On the other hand, targeted metabolomic 
approaches using the identified metabolites have also been studied to determine 
their impact on metabolism and utilize them as diagnostic markers in clinical labo-
ratories [29] for monitoring therapeutic response potential conversion metastases 
[38]. Surgical resection of the PPGL with normalization of catecholamine levels 
was associated with significant changes in the metabolites. Following surgery levels 
of glycerophospholipids (phosphatidylcholine diacyl (PC aa) 42:0, phosphatidyl-
choline acyl-alkyl (PCae) 42:5, PCae (44:5), and PCae (44:6) and hexoses were 
lower, while levels of amino acids (biogenic amines), namely, histidine and creati-
nine, were demonstrated to be higher [29]. The metabolomic profile in each of the 
different genetic variants of these tumors was also deciphered. Around 15–25% of 
all PCC/PPGLs were linked to defects in the Krebs cycle enzymes, SDH, FH, MDH, 
and IDH, with SDH faults, being the most frequent. The 2-oxoglutarate/malate car-
rier, glutamic-oxaloacetic transaminase 2, and others have more recently been 
linked to hereditary PPGL as regulators of mitochondrial metabolites [36]. The 
PCC/PGLs associated with mutations in the pseudo hypoxic cluster (cluster 1) were 
associated with the hypoxia-inducible factor (HIF) signaling pathway and involved 
mutations in genes encoding the HIF2A, succinate dehydrogenase subunits or their 
assembly factors (SDHx [SDHA, SDHB, SDHC, SDHD]), succinate dehydroge-
nase complex assembly factor 2 (SDHAF2), Von Hippel–Lindau tumor suppressor 
(VHL), and egl-9 prolyl hydroxylases 1 and 2 (EGLN1/EGLN2). The pathogenic 
mutations in these genes lead to an accumulation of their related metabolites, that is, 
succinate, fumarate, or 2-hydroxyglutarate, which in turn were responsible for 
tumor development.

Distinct differences were noted in metabolites and pathways related to oxygen 
sensing, hypermethylation, DNA repair, and overexpression of certain transporters 
and receptors; notably Krebs cycle enzymes have been through the genetic investi-
gations in PCC/PGL tumors [39–41]. Metabolomic profiling identified differential 
regulation of metabolites between the various genetic causes of PCC/
PGL. Metabolomic analysis of PCC/PGL arising from mutations in SDHx revealed 
a decrease in activity of SDH (mitochondrial electron transport chain complex II) 
enzyme and other TCA cycle metabolites, including fumarate glutamate and aspar-
tate with elevated succinate levels [37]. The ratio of two metabolites, succinate to 
fumarate, was determined as a novel metabolic marker to detect paraganglioma with 
underlying SDHB/D mutations [38, 42]. Moreover, in tumors linked to SDHx muta-
tions, glutamate levels and ATP/ADP/AMP values were shown to be lower with 
modest but significant changes in levels of histidine, threonine, and lysoPC (C28:0) 
[32, 42]. Significant correlations were also noted between plasma MN and total 
urine catecholamine levels with the sum of detected hexoses (reflecting glucose) 
which were found [33], along with the increase in levels of glutamine [40]. 
Significant alterations were noted in isocitrate, cis-aconitate, and citrate levels in 
patients with mutations in FH. In contrast, IDHx mutations were characterized by 
higher citrate, isocitrate, and cis-aconitate levels [37]. These differences could serve 
as potential biomarkers for early diagnosis of disease.
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3 � Metabolomics of Parathyroid Dysfunction

The parathyroid glands are four small pea-sized glands behind the thyroid gland 
secreting parathyroid hormone (PTH). The primary endocrine glands maintain cal-
cium and phosphorus homeostasis with other hormones, including vitamin D and 
fibroblast growth factor (FGF23). PTH regulation occurs mainly between three 
organs, the intestine, kidney, and bone. A complex interplay occurs between PTH, 
active vitamin D (1,25(OH)2D), and calcium sensor receptors (CaSRs) that main-
tain serum calcium concentration within a narrow physiological range to maintain 
mineral homeostasis. Dysfunction of the parathyroid glands occurs as a primary 
disease of the gland or secondary to other diseases such as chronic kidney disease. 
Parathyroid dysfunction results in inappropriate parathyroid hormone (PTH) pro-
duction, resulting in abnormal calcium homeostasis. Phenotypically, it can manifest 
as either an increase, hyperparathyroidism, or a decrease, hypoparathyroidism, in 
circulating PTH levels. Primary parathyroid dysfunction is relatively rare compared 
to secondary causes and can be seen as an isolated condition or component of a 
complex endocrine syndrome. Hypocalcemia and hyperphosphatemia are the char-
acteristic hallmarks of primary hypoparathyroidism, which is caused by inadequate 
quantities of circulating parathyroid hormone.

3.1 � Hypoparathyroidism

Incidental hypoparathyroidism is a rare disorder with an estimated prevalence 
of 0.25 per 1000 individuals. Hypoparathyroidism is clinically characterized by 
decreased parathyroid hormone levels resulting in hypocalcemia that directly 
impacts calcium and phosphorus homeostasis and the bone. It can occur as an 
isolated condition or as part of a complex endocrine syndrome. The most com-
mon cause of hypoparathyroidism is transient postsurgical hypoparathyroidism 
resulting from a functional impairment or surgical resection of parathyroid 
glands after acute manipulation during neck surgery. Other causes include 
impairment of PTH action, pseudo-hypoparathyroidism, and genetic causes. 
Numerous somatic or germline mutations have been identified, leading to dys-
genesis of the parathyroid gland or an inability of the parathyroid glands to 
secrete PTH. These include mutation in the PTH gene, GCM2, SOX3, CASR, 
GNA11, TBX1, CHD7, GATA3, and TBCE [43, 44]. Rare genetic defects 
involving the transient receptor potential ion channel (TRMP6) and tight-junc-
tion gene claudins 16 and 19 have been identified, resulting in the abnormal 
homeostasis of magnesium leading to hypoparathyroidism (23). The cause of 
low magnesium levels is attributed to nutritional deficiencies or chronic dis-
eases, including T2DM, hypertension, and renal conditions, which either 
decrease secretion of PTH or increase resistance to the actions of PTH in the 
bone and kidneys. Metabolomic studies evaluating changes in the metabolites 
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within hypoparathyroidism are limited. A single study by Paprocka et  al. in 
children with hypoparathyroidism identified alterations in N-acetyl aspartate by 
1H magnetic resonance spectroscopy [45]. Further metabolomic studies are 
needed to identify the different metabolites altered with hypoparathyroidism.

4 � Exocrine Pancreatic Dysfunction: Metabolomics 
of Cystic Fibrosis

Metabolomics has also been important in studying the pathology of cystic fibrosis, 
which leads to endocrine-related complications of the pancreas. Cystic fibrosis is a 
lethal autosomal recessive disorder arising from mutations in the cystic fibrosis 
transmembrane conductance regulator (CFTR) gene expressed in the apical mem-
branes of various epithelial cells. It is a cAMP-regulated channel that conducts ATP 
and regulates several apical membrane-associated channels, including the sodium, 
chloride, and potassium channel along with regulating release of bicarbonate. The 
disease represents an example of a monogenic defect with over 2000 mutations that 
leads to characteristic multisystemic disease. Besides the characteristic pulmonary 
manifestations, patients with CF show endocrine defects in the pancreas and the 
reproductive system. The most common cause of the pathology is blockage of endo-
crine ducts due to the thickened secretions. CF mutations can be grouped as those 
causing severe or mild disease and are further categorized as one of six classes; 
classes I–III represent severe disease, while mild mutations are classes IV–VI.

Recently, metabolomics has been utilized as an invaluable tool to study the 
changes in the metabolic profiles in CF, understand the pathophysiology, and eluci-
date the different metabolic pathways altered with CF [46, 47]. The gold standard 
for initial newborn screening is a measurement of immunoreactive trypsinogen 
(IRT) in dry blood spots (DBSs), followed by targeted CFTR mutation analysis and 
confirmation with abnormally elevated sweat chloride. Our laboratory identified 
significant differences in 26 metabolites involved in peroxisomal, amino acids, sor-
bitol, glycolysis, and mitochondrial metabolic pathways. A distinct and interesting 
finding was the decrease in the osmolyte sorbitol in adult patients with CF patients 
compared to healthy controls. In order to maintain correct cellular activities and cell 
survival, organic osmolytes are crucial for regulating cell volume and fluid balance. 
The perturbation in the sorbitol pathway was identified as a causative factor for the 
mucoviscidosis [48]. A reduction in the sorbitol levels, and glycerol phosphorylcho-
line, another osmolyte, was noted in an untargeted metabolomic analysis of primary 
human airway epithelial cell culture in CF patients. Additionally, significant altera-
tions were noted in the purine nucleotides, adenosine, inosine, hypoxanthine, and 
guanosine, which may regulate cellular responses via purinergic signaling. 
Reductions were also seen in metabolites related to glutamate, including oxidized 
glutathione levels, in S-lactoylglutathione, S-nitrosoglutathione, and ophthal-
mate [49].
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Metabolomic profiling identified differences in patients with different grades and 
severity of the disease and between the functional classes of CF. Distinct metabo-
lites were identified that related to clinical phenotype and lung function. We identi-
fied specific metabolites between the different CF functional classes using chemical 
isotope-labeled LC–MS-based metabolomics. The metabolomic profile was 
assessed between CF and controls, between the different mutation classes of CF, 
and specifically among classes III and IV. Significant alterations were seen in gluta-
thione, glutamine, glutamate, and arginine metabolism, amino acids, and di- and 
tripeptides. The significant metabolites include gamma-glutamylglutamic acid, 
1-aminopropan-2-ol, cystathionine, ophthalmate, and serotonin. An above-average 
FEV1% level of lung function was associated with decreased glutamic acid and 
increased guanosine levels. Metabolomic profiling, between the three analyses, 
demonstrated alterations in several amino acids and dipeptides governing glutathi-
one metabolism and identified two metabolites in common between the analyses. 
These metabolites, namely, 3,4-dihydroxymandelate-3-O-sulfate and 
5-aminopentanoic acid, could serve as biomarkers for CF [50].

Moreover, serum metabolomics was employed to evaluate CF bacterial lung ill-
ness in the preform post-exacerbation stage and identify which systemically mea-
surably connected pathways were impacted throughout recovery. Bile acids, amino 
acid metabolites generated from microorganisms, increases in the lipid classes of 
glycerophospholipid, glycerolipids, cholesterol, phospholipids, and the class of 
sphingolipids were among the compounds and pathways affected. The resolution of 
the exacerbation was characterized by alterations of the tryptophan–kynurenine 
pathway, decreased polyamines, a reduction in lipid markers such as fatty acids (n6/
n3), and increased in nitric oxide pathway metabolites [51]. On the other hand, 
metabolites altered with acute pulmonary exacerbation in CF patients demonstrated 
lower essential amino acids, L-arginine, and oxoproline levels than healthy controls. 
This decrease was mainly attributed to the skeletal muscle wasting, poor protein 
intake, increased amino acid utilization, and decreased intestinal absorption of pro-
teins leading to an overall protein-deficient state [52, 53].

In addition to the derangements in the amino acids, patients with CF also showed 
abnormal lipid metabolism for most lipid subclasses, with significant plasma eleva-
tions in odd-chain and polyunsaturated fatty acyl lipids and a decrease in the plasma 
levels of several species of lysophosphatidylcholine (18:0, 18:2, 20:3, and 20:5) and 
phosphatidylcholine (36:5, O-38:0, 38:4, 38:5, 38:6, and P-40:1). Plasma phospho-
lipid signatures were found to discriminate between mild and severe forms of CF. In 
contrast, levels of phosphatidic acids and diacylglycerols were particularly affected 
by different genotypic mutation classes. A biomarker panel of five oxidized lipids 
successfully differentiated patients with reduced lung function. Four species of PC 
(36:3, 36:5, 38:5, and 38:6) were consistently downregulated in severe vs. mild 
patients, while sphingolipid SM(d18:0) was significantly increased in all patients 
[54]. The lung function of CF patients is often assessed through forced vital expira-
tory capacity (FEV1) measurements using FEV1% or FEV1/FVC ratio. Lipid 
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fractions of the PUFA (C20:3n-9, C20:5n-3, C22:5n-3, and C22:6n-3) positively 
correlated with FEV1, along with PC (32:2) and PC (36:4), and oleoyl ethanolamide 
was negatively correlated with FEV1 progression. Lower PC(32:2), PC(38:5), and 
C18:3n-3, triacylglycerols higher cholesterol, and cholesterol esters were noted in 
chronically infected patients [55–57].

Metabolomic analysis was also carried out in other body fluids, including spu-
tum, saliva, sweat, urine, bronchoalveolar lavage fluid, and exhaled breath analysis. 
These studies were generally aimed at identifying the differences in metabolite pat-
terns to unravel the underlying pathophysiological mechanisms of CF and evaluate 
the effectiveness of treatment modalities. A recent study identified the changes in 
the lung microbial composition through untargeted metabolomic analysis of the 
sputum and exhaled breath. Patients with homozygous Phe508del genotype usually 
receive treatment with combination therapy lumacaftor and ivacaftor. Lumacaftor 
targets CFTR class II mutations specifically, while Ivacaftor improves the gating 
(class III) or conduction (class IV) defect in the mutant channels.

CFTR modulators improve CFTR function significantly by partly restoring the 
function of the chloride channel and improving transport of epithelial fluid in the 
airways. Besides improving lung function, treatment with CFTR modulators alters 
the pulmonary microbiome by reducing the abundance of the bacteria, for example, 
Pseudomonas aeruginosa. Metabolomic analysis by GC-TOF/MS showed changes 
in concentrations of the metabolite phenyl pyruvate in the sputum. On the other 
hand, the breath metabolome showed alterations in volatile organic compounds 
such as 4-ethylbenzanoic acid 2-pentyl ester, suggesting a strong link between oxi-
dative stress and inflammation [58]. Untargeted metabolomic profiling of sweat 
between carriers and cases showed significant alterations in purine derivatives, 
organic acids, dipeptides, amino acids, and amino acid derivatives, in affected 
patients, and alterations in levels of asparagine and glutamine, in asymptomatic 
patients [59]. Patients with CF also present with lung disease characterized by bron-
chial inflammation due to chronic bacterial infection. The resulting inflammatory 
response is predominantly dominated by neutrophils. Metabolomic studies were 
used to identify and quantify the metabolites in the bronchoalveolar lavage fluid 
samples from these patients. A targeted metabolomic approach identified and quan-
tified metabolites related to proteins, metabolism of purines, polyamines, and nico-
tinamide which correlated strongly with the clinical markers and neutrophil counts 
[60]. In addition to these body fluids, the urine metabolomic profile was also stud-
ied. The urinary metabolome in CF although heterogeneous showed metabolic 
alteration that were distinct when compared to non-CF groups. A targeted metabo-
lomic study in the urine revealed an altered methyl status and oxidative stress in 
children with CF using NMR. Additionally, a subgroup of these children with pan-
creatic insufficiency showed a considerable rise of phthalate chemicals in their urine 
NMR spectra in comparison to children with CF who did not have pancreatic insuf-
ficiency [47, 61, 62].
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5 � Conclusion and Future Perspectives

Metabolomics has slowly made inroads into many aspects of patient care and has 
shown its relevance in understanding disease pathophysiology, diagnosis, and thera-
peutic monitoring. It provides a bridge between knowledge accumulated from basic 
science to clinical research as it considers the individual’s metabolic characteristics. 
Combining the clinical (phenotype) with the metabolomic and genomics data will 
aid the clinical decision-making process by providing more sensitive and specific 
analyte panels for diagnostic testing. The potential of this omic approach is to fur-
ther advance in bringing an era of personalized medicine in endocrinology.
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Metabolomic Role in Personalized 
Medicine: An Update
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Abstract  Metabolomics is a rapidly evolving omic technology in personalized 
medicine and has been extensively valued because it involves prescribing the right 
medicine to the right patient. The breathtaking boost in metabolomic technology 
has paved the huge potential for its application in personalized medicine. Correlating 
the metabolic phenotype of individuals into subgroups that respond differently is 
also becoming a reality through metabolomics. The perception of the metabotype 
has emerged and played a crucial role in developing a personalized healthcare sys-
tem. Metabotypes are groups of individuals defined based on their similarities in 
metabolic profiles. Metabolomics has been utilized in the therapeutic outcomes of 
drugs, thereby mapping the metabolic profiles of the patients with their responses.

In contrast, the efficacy and toxicity of drugs can be predicted in the pharmaco-
metabolomic method to provide the theoretical basis for individualized medical 
treatment. This chapter overviews clinical metabotyping, disease biomarker discov-
ery, and pharmacometabolomics toward personalized medicine, improving drug 
efficacy. These three approaches enhance the understanding of the disease’s patho-
physiological mechanisms and the metabolic side effects of drugs on human bodies.
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Abbreviations

3-OHKY	 3-hydroxykyenurinine
CAR	 Chimeric antigen receptor
CIL-LC/MS	 Chemical isotope labeling liquid mass spectrometry
DBS	 Dried blood spots
DILI	 Idiosyncratic drug-induced liver injury
DIPP	 Diabetes prediction and prevention
DOCK8	 Dedicator of cytokinesis 8
EPA	 Environment Protection Agency
FDA	 Food and Drug Administration
IEM	 Inborn errors of metabolism
LC-MSMS	 Liquid chromatography-tandem mass spectrometry
MSI-CE-MS	 Multisegment injection-capillary electrophoresis-mass 

spectrometry
NGS	 Next-generation sequencing
NMR	 Nuclear magnetic resonance
NUDT15	 Nudix hydrolase 15
PC	 Pancreatic cancer
REIMS	 Rapid evaporative ionization mass spectrometry
SRM	 Selected reaction monitoring
SSRIs	 Selective serotonin reuptake inhibitors
ToF	 Time of flight
TPMT	 Thiopurine methyltransferase

1 � Introduction

The swift growth in metabolomics leads to a recharged enthusiasm for cellular 
metabolism and the role of small molecules in many biological processes. 
Metabolomics’ advanced analysis combined with sophisticated computational tech-
niques is used for molecular characterization and relative expression [1]. 
Metabolome, a collection of small molecules (<15,000 Da), is the most sensitive 
biomolecule as regards to physiological, biological, and environmental changes [2]. 
Integrating metabolomics’ relative expression with the pathway analyses helps 
understand disease pathophysiology and mechanisms. Metabolite expression is 
associated with the genetic blueprint, sequence variation, RNA transcription, and 
protein translational processes interacting with environmental exposure and reflect-
ing genotype, especially for multifactorial diseases. Among genomics and pro-
teomics, metabolomics perhaps is closely linked to the phenotype. Hence, it provides 

M. Jacob and A. M. Abdel Rahman



209

valuable information on healthy and pathophysiological conditions and the response 
to an external stimulus, such as treatment and environmental exposures [2]. The 
metabolomics’ relative expression helps to know the pathophysiology of the disease 
at the molecular level, identify the biomarkers of disease prediction and diagnosis, 
assess disease progression, interpret the influence of the environment and lifestyle, 
and lastly assess the disease toxicity and related adverse reactions [3–5].

The research community accepted using more than one omic technique to read a 
disease phenotype’s complexity functionally. Healthcare systems worldwide are 
shifting from the traditional “one-size-fits-all” approach to proactive medical mod-
els. Such models are becoming predictive, preventive, personalized, and participa-
tory, known as “Proactive P4 Medicine” [6]. However, integrating multiple omic 
datasets is promising in P4 personalized medicine, including developing and tailor-
ing effective therapies for individual patients [7, 8].

Considering multiple layers of biochemical reactions between genotypes and 
phenotypes, different degrees of sensitivity, stability, and physiological and envi-
ronmental influences are unique for each omic molecule. Accordingly, metabolites 
are the most functional biomolecules to use as biomarkers, given that the biological 
connection between the phenotype and genotype has been proven. More than 95% 
of clinical assays in medical laboratories are based on measuring small molecules. 
Integrating multi-omics is an approach that allows small molecules through 
upstream biology to eventually be used for clinical services.

Multiple international projects have invested in their population and genomic 
profiling after developing next-generation sequencing (NGS), for example, the 
Genome Canada, Genome England, and Saudi Human Genome Project. However, 
the widespread use of this advanced technology in routine clinical diagnoses is still 
encumbered by multiple obstacles, including cost and data analysis. Combining 
genomic data with a more functional layer of data, such as epigenomics, transcrip-
tomics, proteomics, and metabolomics, will overcome most of the limitations asso-
ciated with the exclusive use of genomic profiling.

The terms “personalized medicine” and “precision medicine” are used inter-
changeably, and in addition to a comprehensive clinical profile (phenotype), they 
refer to the long-term collection of multiple layers of data in various fields, includ-
ing genomics (genotype), transcriptomics, proteomics, metabolomics, micro-
biomics, and exosomes. This approach can help healthcare providers customize 
care management, decisions, and recommendations based on a highly accurate esti-
mation of individual patients’ risks and potential outcomes. Personalized or strati-
fied medicine enables clinicians to efficiently prescribe the right medicine to the 
right patient at the right time, thereby improving healthcare quality and reducing 
unnecessary diagnostic testing and therapies. Precision medicine can be defined as 
“treatments targeted to the individual patients based on genetic biomarker, pheno-
type or physiological characteristics of a given patient from other patients with 
similar clinical presentations”  [9, 10].
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Irrespective of the diagnoses’ complexities, significant advancements are still 
required for proper diagnosis, prognosis, therapeutic monitoring, and clinical man-
agement. The sensitivity and specificity of the available biomarkers for the particu-
lar disease determine the diagnostic efficiency. Typically, liquid 
chromatography-tandem mass spectrometry (LC-MS/MS) has been used for many 
decades for several inborn errors of metabolism (IEM) diagnosis, where population-
based screening programs usually rely on high-quality biomarkers [11]. However, 
there are no biomarkers with perfect diagnostic performance, so a combination of 
multiple biomarkers (including ratios) is used for disease screening and diagnostic 
purposes. For example, in the newborn screening for phenylketonuria (PKU), both 
phenylalanine (Phe) levels and the ratio of phenylalanine-to-tyrosine (Phe/Tyr) are 
quite remarkable, and using them together reduces the false favorable/negative 
detection rates drastically [12]. Screening for medium-chain acyl Co-A dehydroge-
nase (MCAD) deficiency relies on the combined profile of elevated acylcarnitines 
(C6, C8, C10, C10:1), although they have different weights. Regardless of the natu-
ral expression in different matrices, metabolites vary quantitatively based on the 
tumors’ types and locations, which determines the suitable metabolic biomarker 
particularly. Accordingly, personalized medicine can provide a complete and inte-
grated picture of the most related metabolites to the phenotype.

This chapter discusses the updates on metabolomics’ role in personalized medi-
cine’s main applications: disease metabotyping, biomarker discovery, and 
pharmacometabolomics.

2 � Disease Metabolic Profiling “Metabotyping”

The grouping of individuals based on their metabolic and phenotype characteristics 
into coherent subgroups is referred to as metabolic phenotypes or metabotypes. The 
distinctive metabolic profile of the physiological changes during disease progres-
sion and medical intervention enables an understanding of the connections of 
metabotypes to individual factors. Modifying the metabotypes and responding indi-
vidually under a given intervention is the ultimate goal of developing the personal-
ized diagnostic profile [13, 14]. These physiological-based assays display distinctive 
metabolic profiles associated with the disease’s main cause, clinical manifestation, 
treatment and management, and health outcomes.
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Metabolomics is a rapidly emerging tool that helps analyze these metabotypes 
using the newly developed analytical strategies that pave the way to annotate several 
metabolites. For example, in type I diabetes and many diseases, physiological sys-
tems play a pivotal role in the progression of a disease. The pathogenesis and etiol-
ogy require an integrative system biology approach, which requires intensive data 
acquisition, refinement, and validation of mathematical models that include the con-
tributing factors [15].

The BABYDIAB study in Germany represents metabolic profiles related to age 
at the onset of islet autoimmunity. Islet autoantibodies appear before developing 
type I diabetes in children. Still, those developing before 2 years of age are not the 
same as those developing later in childhood [16]. Metabolic profiling of these two 
subgroups showed significant differences in the profiles relative to age and islet 
autoantibody status. A twofold lower concentration of methionine was observed in 
children who developed autoantibodies by 2 years, compared with those who devel-
oped autoantibodies in their late childhood or those found to be autoantibody nega-
tive. The critical role of methionine is highlighted in the pathways related to the 
development of islet autoantibodies in early infancy [17]. This research was in 
agreement with the Diabetes Prediction and Prevention (DIPP) study [18], where 
most of the children progressed to islet autoimmunity before 2 years of age. In these 
two studies, it would be interesting to know if the early detected metabotypes that 
precede autoimmunity are specific to children who later progress to type I diabetes 
or were mainly found in children who progress to one or more islet autoantibodies. 
Another example was a study on overweight obesity, where obesity could be pre-
dicted in children by studying the urolithin metabotypes, which led to early bio-
markers related to obesity [19].

Metabotype profiling of patients diagnosed with cystic fibrosis (CF) using dried 
blood spot (DBS) samples reported intermediate byproducts associated with 
patients’ genotypes and phenotypes [20, 21]. The identified metabolic profile 
included 26 significantly differentially expressed metabolites involving the amino 
acids, glycolysis, mitochondrial and peroxisomal metabolism, and sorbitol path-
ways. Specifically, the osmolyte (sorbitol) was remarkably downregulated in CF 
patients compared to healthy controls indicating perturbation in the sorbitol path-
way, which may be responsible for the mucoviscidosis seen in patients with CF 
[22]. These findings may be supported by the clinical utility of inhaled mannitol and 
hypertonic saline in patients with CF. A few examples of metabotypes in various 
genetic disorders are described in Table 1.
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3 � Personalized Medicine and Biomarker Discovery

The eventual goal of personalized medicine is to enable clinicians to prescribe the 
right medicine with maximum efficacy and minimal toxicity by predicting disease 
onset among populations, thereby improving healthcare quality and reducing unnec-
essary diagnostic testing and therapies. The well-tested medicine may lead to the 
right treatment at the right time but not necessarily the right one for that individual 
[9]. President Barack Obama introduced a precision medicine initiative in January 
2015 called “All of US” (www.whitehouse.gov/precisionmedicine) that enrolled 
over one million Americans, and they were expected to share the data generated 
over 10 years from sequencing, electronic medical records, personal reported infor-
mation, and digital health technologies.

Biomarker discovery uses a combination of technologies to capture the data, 
which is then translated to select biomarkers that most reliably detect the disease. 
Firstly, a biospecimen has to be analyzed using a robust method ensuring consistent 
performance. The emerging biomarkers need further evaluation and validation 
against a larger sample size to ensure the highest data quality, depending on the 
clinical model. The validated biomarkers should be sensitive and reliable enough to 
distinguish patients from healthy subjects.

A metabolomic biomarker-based device called an intelligent knife (Iknife) was 
introduced recently, which is based on rapid evaporative ionization mass spectrom-
etry (REIMS) technology. Iknife can discriminate cancer from normal tissue in dif-
ferent tumor sites, including the brain, breast, ovaries, and colon [38].

Sensor technology is evolving at a fast rate. It can be well translated into clinical 
biomarker discovery, wherein targeted biomarkers for a condition can be monitored 
or detected by wearable sensors by the end-user and then uploaded the data for the 
researcher to build a model for further prediction and response to the therapeutic 
intervention. An example is the mPower study for Parkinson’s disease [36], wherein 
the aspects were investigated through surveys and frequent sensor-based recordings 
from participants with and without Parkinson’s disease. Similar metabolomic data 
can be streamlined to look at a panel of biomarkers detectable by sensor chips capa-
ble of reporting and interpreting the real-time data. Yet another metabolomic 
approach published by Blasco et al. (2017) characterized plasma levels in phenylke-
tonuria on a multiplatform, where the commonly dysregulated metabolites were 
glutamine, arginine, succinate, and alpha aminobutyric acid, in addition to the 
pathophysiological mechanisms like protein synthesis, energetic metabolism, and 
oxidative stress, thereby confirming specific metabolic signature related to tyrosine 
and phenylalanine concentrations (Table 2) [43].
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Recently, a clinical validation study was reported on 12 disease groups belonging 
to the study of IEM groups which included disorders in the metabolism of amino 
acids, fatty acids, ketones, purines, pyrimidines, carbohydrates, porphyrias, neu-
rotransmitters, vitamins, cofactors, and creatine. Remarkably, even mild metabolite 
patterns are seen in mild multiple acyl-CoA dehydrogenase deficiencies (GA-II), 
and maple syrup urinary disease (MSUD) could be differentiated easily in this 
study [45].

Jacob et al. (2019) identified seven positively identified metabolites, distinguish-
ing DOCK8 deficiency from atopic dermatitis (AD) patients. Aspartic acid and 
3-hydroxy anthranilic acid (3HAA, a tryptophan degradation pathway intermediate) 
were upregulated in DOCK8 deficiency, whereas hypotaurine, leucyl-phenylalanine, 
glycyl-phenylalanine, and guanosine were downregulated. Hypotaurine, 3-hydroxy 
anthranilic acid, and glycyl-phenylalanine were identified as potential biomarkers 
specific to DOCK8 deficiency [26] (Table 2).

Currently, personalized medicine faces a few challenges in obtaining approval 
for routine use from regulatory agencies and healthcare stakeholders before 
using them routinely in clinics. Moreover, tailored or personalized therapies can 
be expensive, such as autologous chimeric antigen receptor (CAR) T cell trans-
plant therapies for certain types of cancer [46] and mutation-specific medicines 
to treat CF patients [47, 48]. Before the biomarkers can be utilized as novel 
therapy, there is a need for rigorous, standardized protocols and pipelines for 
biomarker discovery, analysis, validation, and reporting. The pipeline shows 
that a metabolomic study can be performed either in a targeted or untargeted 
manner, depending on the metabolomic platform. Untargeted analysis covers 
and attempts to identify all detected peaks above the noise threshold using scan 
mode and utilizes both annotated and unannotated peak information for statisti-
cal analysis. The targeted analysis seeks only known metabolites detected by 
selected reaction monitoring (SRM). The identified metabolite biomarkers asso-
ciated with disease development and progression may pave the way for discov-
ering predictive, diagnostic, and prognostic biomarkers and monitoring 
therapeutic outcomes after validation and prototype assay development. These 
results demonstrate that robust metabolomics has the potential as a noninvasive 
strategy and is a promising screening tool to evaluate the potential of these 
metabolites in the early diagnosis of patients and provide new insight into 
pathophysiological mechanisms (Fig. 1).
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Fig. 1  Biomarker development pipeline workflow

4 � Pharmacometabolomics

Pharmacometabolomics was introduced by Clayton et al. in 2006 [49] as an evolv-
ing research field aiming to achieve a tailored therapeutic regime and focuses on 
predicting or evaluating responses to drug treatments based on their metabolic fin-
gerprints. Pharmacometabolomics can be used interchangeably with pharmacome-
tabolomics, which predicts drug effects based on a mathematical model of predose 
metabolite profiles [49] and monitoring drug metabolic pathway alteration. It is 
based on metabolic phenotypes or metabotypes, which are the ultimate result of 
genetic, physiological, chemical, and environmental influences [50]. In 
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pharmacometabolomics, gut microbiome and environment exposures reveal infor-
mation about the metabotypes and treatment outcomes, thereby creating metabolic 
signatures to find potential biomarkers that might inform treatment outcomes. It 
also provides tools for mapping drug effects and revealing pathways contributing to 
drug response phenotypes.

4.1 � Prediction of Treatment Outcomes

New pathways can be identified for therapeutic discovery by comparing the 
metabolomes of patients with different clinical parameters like slow vs. fast pro-
gressors. For example, in the case of depression, comparing metabolic signatures 
of fast-acting drugs like ketamine vs. slow-acting drugs like SSRIs (selective 
serotonin reuptake inhibitors) can define more effective therapies [51]. 
Pharmacometabolomic studies have identified biomarkers associated with drug 
metabolism responders, nonresponders, or patients with adverse drug responses. 
Models can be constructed with baseline samples or treatment samples, as sample 
collection during or after drug exposure is possible. Such treatment samples may 
be useful for finding mechanisms associated with drugs that do not cause a posi-
tive or negative effect for several months after the initial dosing period. For 
instance, increased cardiotoxicity risk is seen for many years after treating cancer 
patients with chemotherapy drugs [52]. Similarly, prolonged latency is observed 
in a few patients who suffer from idiosyncratic drug-induced liver injury 
(DILI) [53].

Sixty-eight thousand chemicals out of a total of 81,000 parent chemicals were 
registered under the Toxic Substances Control Act as per the report from the 
Environment Protection Agency (EPA). Most of these entities are registered without 
including the biotic and abiotic transformation products, estimated to be around a 
million exposure in a lifetime [54]. Although an exogenous biomarker can be mea-
sured using specific and sensitive methods, a comprehensive approach covering 
hundreds to thousands of molecules is quite challenging without using high-
throughput techniques such as metabolomics. The endogenous metabolites, nutri-
ents and lipids, phytochemicals, pharmaceuticals, and environmental exposures 
(xenobiotics) can be covered using exposome-based metabolomics, the only tool to 
explore the environment and genetic integration to understand the disease risk and 
development. The xenobiotics and their transformed products are contributed to the 
host’s phenotype through micro- and macroscale interactions with endogenous pro-
cesses. On the other hand, genetic polymorphisms reflect the xenobiotic clearance 
and bioactivity across the study population, which is worth to be evaluated and 
integrating.
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4.2 � Integrating Drug Metabolism Pathway Alteration

Pharmaceuticals are exogenous molecules that drastically perturb endogenous 
metabolism, instantly reflecting the phenotype. Pharmacometabolomics plays an 
important role in our lives because the response to drugs in humans and animals is 
different in all individuals depending on their predose phenotypes, which are influ-
enced by their genomes, environment, and microbiome. Pharmacometabolomic 
experiments mainly establish a correlation between variations in an individual’s 
predose biofluid metabolite profile and their post-drug dose responses, using differ-
ent matrices like blood, urine, or plasma.

In patients, a drug interaction is expected to return the metabolic profile to a 
healthy state in case of a positive therapeutic response. However, ineffective treat-
ment in patients might shift the metabolomic profile to a toxic response, such as the 
accumulation of thiopurine drugs. These toxic metabolites result from variant detec-
tion on thiopurine methyltransferase (TPMT) and nudix hydrolase 15 (NUDT15) 
genes. Thus, metabolomics significantly can be involved in all the drug discovery 
phases, from identifying the therapeutic target to therapeutic monitoring. The drug 
exposome, including the factors of drug administration route, frequency, formula-
tion, and ADME (absorption, distribution, metabolism, and excretion), is essential 
for data mining in any environmental exposome studies [55].

Numerous patients experience little or no efficacy, or sometimes even toxicity, 
due to their prescribed drugs. As per the study of Lazarou et al., over two million 
people in American hospitals face serious adverse drug reactions requiring hospital-
ization or leading to permanent disability [56]. Gebregiworgis et  al.’s studies 
focused on pancreatic cancer (PC) cells that respond or develop resistance to gem-
citabine treatment. This study compared the wild type and resistant type of PC cell 
lines before and after treatment with gemcitabine, which revealed unique metabolic 
changes differentiating the response or the acquired resistance to the drug. The 
resistant type was combined with stable-isotope labeling experiments using 
13C6-glucose, primarily derived for nucleotide synthesis to compensate for gem-
citabine activity. In the wild type, glucose is directed toward glycolysis after treat-
ment [57].

The first pharmacometabolomic study on patients demonstrated that the predose 
serum levels of lactate, alanine, and percentage body fat could predict weight gain 
in a group of 21 breast cancer patients undergoing 5-fluorouracil, cyclophospha-
mide, or epirubicin-based chemotherapy [58]. Weight gain is the risk factor for 
reoccurrence. Predictive tests could be very useful in these patients. The levels of 
3-hydroxykyenurinine (3-OHKY) could predict the severity of clinical symptoms 
during the early stages in schizophrenic patients [59]. Low predose levels of 
3-OHKY were predictive of greater responsibility in the fourth week with one or 
more antipsychotic drugs.
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In a study by Clayton et al. (2009), a group of volunteers was administered acet-
aminophen and showed increased levels of urinary p-cresol sulphonate acetamino-
phen (a metabolite of acetaminophen) [60]. Before taking the drug, individuals with 
high urine p-cresol sulphonate showed a low concentration of sulfonated acetamin-
ophen in the subsequent urine sample, suggesting that p-cresol sulphonate acts as a 
competitive inhibitor of acetaminophen. This confirms that each individual is 
unique, with certain metabolic pathways involved in the catabolism of the drug, 
hence focusing on the importance of decoding individual metabotypes before the 
first dose.

Pharmacometabolomics can play a pivotal role in improving personalized medi-
cine or stratified healthcare for clinicians to help choose the optimal treatment for 
the subsets of patients. Interestingly, the Critical Path Opportunities Report pub-
lished by the FDA (Food and Drug Administration) considered pharmacometabolo-
mics a fundamental part of the early phases of drug development [61].

Rapidly improving analytical technologies have taken metabolisms to a great 
level, but the clinical use of pharmacometabolomics is quite slow. To better under-
stand or predict individual patient responses to the drug, the combination of phar-
macogenomics and pharmacometabolomics provides genetic, drug metabolite, 
systemic metabolite, and environmental information [51, 62, 63]. 
Pharmacometabolomics has been used to discover provisional and/or safety bio-
markers, which can help in patient selection during clinical trials. In this decade, the 
need of the hour is to understand how environmental factors influence drug 
responses. Pharmacometabolomics is important in providing information on xeno-
biotic, endogenous, and gut-microbe metabolites present in a patient before, during, 
and after drug exposure.

5 � Conclusion

In summary, identifying the metabotypes in a particular state of health will likely 
benefit the patient’s health. Metabotyping helps identify metabolically similar sub-
populations or patient subgroups responding differently to nutritional or drug inter-
ventions, which can help, for example, tailor a dietary recommendation for a 
particular subgroup of the obese population. Since the metabolome is complex, it 
requires complementary analytical methodologies to explain the underlying bio-
logical processes, as global lifestyle and genetic components play a decisive role. 
Metabolomics is expected to revolutionize the pattern of biochemical information 
used to assess health and disease states, as it promises a better prognosis for the 
disease. Metabolomics-based personalized medicine helps detect altered metabolic 
pathways correlated with a given health condition and its progression over time.

Pharmacometabolomics has the potential to accelerate drug development by 
identifying clinical development processes at an early stage, and it is the integrated 
outcome of genomics, proteomics, and environmental influences on the organism 
which help in providing vital information on drug responses not easily expressed by 
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other omics. Early planning and identification of potential metabolic signatures, 
ethics consideration, education, and sample processing are vital inclusions in phar-
macometabolomic principles in clinical development, which can shorten clinical 
development timelines and lower the overall developmental costs. The integrated 
analysis of data obtained from different platforms (metabolomics, genomics, and 
proteomics) can help characterize the treatment effects and benefit the personalized 
medicine field, thereby improving treatment selection for the patients. Further 
in vivo and in vitro studies are required to understand better the biological mecha-
nism underlying metabolic changes that ultimately lead to the discovery of sensitive 
and specific biomarkers. Specimen stability and pre-analytical issues are crucial in 
accomplishing a successful biomarker discovery.

In the near future, significant improvements in imaging technologies and predic-
tion algorithms will provide immense knowledge and differentiate between healthy 
and disease conditions. Medical databases must be developed and populated with 
large-scale metabotyping data for various diseases. Pharmacometabolomics plays a 
crucial role in shortening the clinical development timelines, bringing down the 
overall cost, and benefiting the healthcare system through overall development and 
translational effectiveness. The interplay of pharmacogenomics, metabolomics, and 
pharmacometabolomics is quite fascinating, as the identification of the genetic 
components of the metabolome seems to be the key to the discovery of many bio-
markers. “Pharmacometabolomics-informed pharmacogenomics” is expected to 
give new insight and contribute toward finding the right metabotypes leading to 
personalized medicine.
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Lipidomic Profiling in Clinical Practice 
Using LC-MS

Núria Amigó Grau and Pablo Ortiz Betes

Abstract  The advances in lipidomic profiling techniques in the last two decades 
have significantly improved our understanding of the biological processes involved 
in health and disease. Currently, many lipidomic profiling applications are moving 
from research laboratories to clinical application, as lipidomics has the potential to 
be implemented into the clinical routine, complementing traditional clinical factors 
to improve the diagnosis, to stratify risk post-diagnosis, and to support treatment 
monitoring of both pharmaceutical and lifestyle interventions.

In this chapter, we describe how clinical environment is opening the door to the 
implementation of lipidomic-based applications for predicting and monitoring a 
wide range of metabolic diseases. We present a use case based on LC-MS lipido-
mics already operating in hospital clinical workflows for Non-Alcoholic Fatty Liver 
Disease assessment, exemplifying the potential of precision medicine approaches 
for personalized diagnostics.
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ApoB	 Apoprotein B
AUC	 Area under the curve
AUROC	 Area under the receiver operating characteristic curve
BMI	 Body mass index
CIBERDEM	� Centro de Investigación Biomédicas en Red de Diabe

tes y Enfermedades Metabólicas
CLIA	 Clinical Laboratory Improvement Amendments
CMD	 Cardiometabolic diseases
CVD	 Cardiovascular disease
DAG	 Diacylglycerol
DG	 Diglycerides
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FFAs	 Free fatty acids
HCC	 Hepatocarcinoma
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IISPV	 Institut d’Investigació Sanitària Pere Virgili
IMT	 Intima–media thickness
IVD	 In vitro diagnostics
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LDL	 Low-density lipoprotein
LITMUS	 Liver Investigation Testing Marker Utility in Steatohepatitis
LMWM	 Low-molecular-weight metabolites
NAFLD	 Nonalcoholic fatty liver disease
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NMR	 Nuclear magnetic resonance
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RCT	 Reverse cholesterol transport
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VLDL	 Very-low-density lipoprotein
TAG	 Triacylglycerol
TG	 Triglycerides
US FDA	 US Food and Drug Administration
WHO	 World Health Organization
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1 � Introduction

Metabolomics is an emerging approach in the systems biology field especially in 
clinical trials and is considered the closest biology system to the phenotypes.

Metabolites are the products of complex molecular pathways (including genom-
ics, transcriptomics, and proteomics). Therefore, metabolomic analysis is a promis-
ing strategy for identifying disease-associated biomarkers: metabolites, small 
molecules, and end products produced as a result of interactions between genes and 
environmental factors.

There are two possible approaches for discovering new biomarkers. The first is a 
classic approach, whereby a biomarker is sought that explains the pathophysiology 
of metabolic diseases, such as glucose quantification to determine whether a person 
has diabetes or the quantification of LDL-C for assessing someone’s risk of cardio-
vascular diseases (CVD). The second approach involves searching for metabolic 
patterns that are characteristic of the physiology of a metabolic disease [1]. In this 
second approach, high-performance techniques such as liquid chromatography-
mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) are used to 
carry out metabolomic studies without prior knowledge of the metabolites’ involve-
ment or role in the disease mechanism or physiology [2], since the metabolites are 
the final product of the interactions between gene and protein expression and envi-
ronmental exposure and consequently of the biochemical activity that characterize 
part of the patient’s metabolism.

The metabolomic approach compares the metabolomic profiles of fluids or tis-
sues of a patient with those of a healthy subject to identify which metabolites are 
expressed differently [3].

Metabolomics generally includes all kinds of molecules constituting a biological 
matrix, and lipidomics is the study of specific lipids. In particular, lipidomics 
involves the study of the structure, function, and metabolism of lipids in living 
organisms [4]. Lipidomics is a broad field that encompasses analysis of the com-
plete set of lipids present in a biological sample and the pathways and enzymes 
involved in their synthesis, degradation, and modification.

Various analytical techniques are used in lipidomics, such as mass spectrometry, 
NMR spectroscopy, and chromatography, to identify and quantify the different lipid 
species present in a sample. These techniques allow researchers to obtain a detailed 
picture of the lipid content of a sample and to study the changes in lipid levels in 
response to different conditions or treatments [5].

Lipidomics has a wide range of applications in various fields, including medi-
cine, nutrition, and environmental science. It is used to study the role of lipids in 
health and disease, and the mechanisms through which lipids affect cellular pro-
cesses and signaling pathways, and to identify potential therapeutic targets for treat-
ing lipid-related disorders [6].
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Compared to other omic techniques, such as proteome or genome analysis, the 
lipidome is much more complex because of the enormous structural diversity com-
prising both linear and coupled macromolecules [5]. This diversity increases the 
number of lipid molecules and the complexity of their carriers, lipoproteins. For this 
reason, analyzing the lipidome and lipoproteins is very challenging from a technical 
standpoint. In recent years, LC-MS and NMR have proved to be important analyti-
cal tools for metabolomic studies in biological fluids. Unlike other techniques, 
LC-MS and NMR can quantify many molecular entities simultaneously and effec-
tively [7, 8]. These techniques are widely used in both routine clinical laboratories 
and large epidemiological studies.

This chapter discusses lipidomic platforms for clinical applications using 
LC-MS. It explores their benefits, challenges, difficulties, and future opportunities. 
Application of these technologies in the clinical environment has opened the door to 
their future implementation for predicting and monitoring numerous diseases. The 
technologies analyzed in the present chapter are already being applied in clinics, 
exemplifying the potential of precision medicine approaches for personalized 
diagnostics.

2 � Lipids and Lipoproteins: A Biochemical Approach

2.1 � General Concepts

Lipids are a diverse group of organic molecules that are important for many biologi-
cal functions and essential to life. They include fats, oils, waxes, and other water-
insoluble compounds [9].

Lipids are synthesized by living cells through a process called lipid biosynthesis. 
This process involves condensing fatty acids with glycerol or other alcohols to form 
triglycerides, the primary component of fats. Alternatively, lipids can also be syn-
thesized by modifying existing lipids, such as by adding a phosphate group to form 
a phospholipid or adding a carbohydrate group to form a glycolipid.

The structure of lipids is characterized by their hydrophobic nature, which arises 
from the presence of long, nonpolar hydrocarbon chains. This nonpolarity allows 
lipids to interact with other molecules and form aggregates, such as micelles or lipid 
bilayers, which can serve as structural components of cell membranes [10].

In general, the structure of lipids in plasma is that of a submicroscopic oil droplet 
containing an outer layer of phospholipids, unesterified cholesterol, and proteins, 
with a core of neutral lipids, predominately cholesterol esters and triglycerides, 
named lipoproteins [11]. The lipoprotein classes differ in their lipid composition 
(being either cholesterol [C]-rich or triglyceride [TG]-rich), their protein composi-
tion (apoprotein), and their density (which is proportional to their protein/lipid 
ratio). Based on protein composition, there are two types of lipoproteins, those that 
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contain ApoB and those that contain ApoA. Based on lipid composition, there are 
also two types of lipoproteins, those that are C-rich and those that are TG-rich.

Lipids have many functions in living organisms, from energy reserve to insula-
tion, as well as being a structural component of every cell and tissue. They also play 
important roles in cellular signaling and regulation. This structural diversity is mir-
rored by the enormous variation in their physiological function. The abundance of 
individual lipid molecular species in plasma may indicate the variety of specific 
human diseases.

Around 4500 metabolites have been detected/identified in the human serum 
metabolome to date: half are phospholipids and over a thousand are glycerolipids 
(triglycerides TG, diglycerides DG, and monoacylglycerols) [12]. In other words, 
lipids make up approximately three-quarters of the known human serum metabolome.

To date, thousands of distinct molecular species have been quantified, covering 
the six main mammalian lipid categories: fatty acyls, glycerolipids, glycerophos-
pholipids, sphingolipids, sterol lipids, and prenol lipids. The number of metabolites 
keeps increasing, as each of these types of lipid can exist in multiple forms [13]. In 
addition, lipids can undergo chemical modifications, such as the addition of a phos-
phate group or a carbohydrate group, which can result in the creation of new lipid 
species. This structural diversity is particularly relevant within the sphingolipid and 
glycerophospholipid categories, principally determined by variations in fatty acid 
content and head groups.

2.2 � Lipids Mirror Present and Future Metabolic Health: Two 
Sides of the Same Problem

Abnormal plasma lipids and lipoproteins are important risk factors for metabolic 
and cardiovascular diseases. Metabolic diseases are increasing exponentially world-
wide, and their complications, in cardiovascular and liver diseases, are the leading 
cause of mortality worldwide [14]. They have a common characteristic: their etiol-
ogy is linked to excess fat and associated inflammation. Nonalcoholic fatty liver 
disease (NAFLD), associated with obesity and excess fat in the liver, is increasingly 
common around the world, especially in Western countries, and affects approxi-
mately a quarter of the population in countries such as the USA [15]. Symmetrically, 
arterial health is compromised by excess fat, which accelerates the progression of 
arteriosclerosis, the underlying cause of myocardial infraction or stroke, the leading 
cause of death in all developed countries [14]. Both liver disease and atherosclerosis 
can develop and progress more rapidly when accompanied by several well-known 
risk factors and comorbidities, such as obesity and dyslipidemia.

Lipids circulate in the blood in the form of lipoprotein particles, including chy-
lomicrons, very-low-density lipoproteins (VLDL), low-density lipoproteins (LDL), 
and high-density lipoproteins (HDL). Some parameters, such as cholesterol and 
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triglyceride levels, are assessed routinely, and physicians regularly prescribe lipid-
lowering drugs to patients with dyslipidemia [16].

The duration of exposure to high lipid levels is also a crucial risk factor in car-
diometabolic health, especially for metabolic disorders that start early in childhood. 
Evidence indicates that atherosclerosis begins in childhood with the accumulation 
of lipids in the intima of arteries to form fatty streaks [17]. Nearly all children have 
at least some degree of aortic fatty streaks by 3 years of age [18]. These fatty streaks 
increase after 8 years of age, with atherosclerotic plaques being found in the coro-
nary arteries during adolescence [19]. Clusters of risk factors in childhood predict 
the presence of risk factors in adults [20].

Carotid ultrasonography screening for subclinical arteriosclerosis has been vali-
dated in observational, longitudinal, and randomized clinical studies. Those results 
were significantly correlated with intravascular coronary ultrasonography, coronary 
angiography, and pathologic findings of arterial lesions in healthy and CVD patients, 
and longitudinal studies have demonstrated that increased lipid alterations and 
intima–media thickness in young adults are associated with cardiovascular risk fac-
tors in childhood [21, 22].

The contribution of LDL-associated cholesterol to the development of CVD has 
been well described. While LDL particle accumulation increases the atherosclerotic 
process, HDL helps remove excess cholesterol by reverse cholesterol transport. 
Low levels of HDL are associated with high cardiovascular risk [23].

Conversely, in circulating chylomicrons and VLDL, triglycerides undergo hydro-
lysis to generate a pool of free fatty acids (FFAs), which are used as an energy 
source in tissues. Excess FFAs are stored in adipocytes, favoring the expansion and 
dysfunction of adipose tissue, increasing insulin resistance and diabetes. This pro-
cess is associated with abnormally high plasma levels of saturated FFAs, allowing 
increasing their uptake into hepatocytes to exceed metabolic requirements, which 
leads to hepatic steatosis and inflammation [24].

3 � Clinical Relevance of the Lipidome

Lipids participate in many biological processes, so it is not surprising that defects 
in lipoprotein homeostasis are the direct cause of many diseases and therefore be 
considered markers of the disease. Detailed knowledge of the composition and 
concentration of plasma lipidome is expected to expand our diagnostic capabili-
ties and improve the pharmacological evaluation and efficacy of prescribed ther-
apy. A deep analysis of the lipidome might reflex altered synthesis of specific lipid 
species or identify abnormal underlying pathological lipoprotein patterns. 
Knowledge about the role of lipids and lipoproteins in disease mechanisms is 
constantly growing as more information on lipids and lipoprotein physiology 
becomes clear.
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3.1 � Lipids and NAFLD: Introduction Through LC-MS

Nonalcoholic fatty liver disease (NAFLD) includes a wide spectrum of disorders 
ranging from benign lipid accumulation in the liver (steatosis) to a more compli-
cated clinical stage when fat induces hepatic inflammation and hepatocyte necrosis 
producing a new stage called nonalcoholic steatohepatitis (NASH) also named as 
steatohepatitis and, eventually, when fibrosis progression is added to fat and inflam-
mation (“NASH at risk”) [25]. The final stage of disease progression is cirrhosis 
and/or hepatocarcinoma (HCC) [26]. Interestingly, another potential evolution from 
NASH directly to HCC without any significant fibrosis contribution has also been 
described [27].

The exact cause of NAFLD is not known. Many factors contribute to this condi-
tion, such as excessive food intake, obesity, type 2 diabetes, and dyslipidemia, but 
not all patients develop NAFLD/NASH, and not all patients with NAFLD/nonalco-
holic steatohepatitis (NASH) suffer from these conditions [28].

The pathophysiology of NAFLD is quite complex, and the progression from 
hepatic steatosis to the different stages of this condition is not completely under-
stood. However, lipid metabolic changes, including the production of lipotoxic spe-
cies in the liver, could be responsible for disease progression in NAFLD [27].

LC-MS allows the tracking of more than 400 different lipid species in the liver 
and serum. Changes in many of these metabolites were followed in several trans-
verse cohort studies [29–35], giving robust data about the lipidomic signature of the 
different clinical stages of NAFLD, from liver steatosis to steatohepatitis and 
advanced fibrosis. In the past 20 years, research studies in serum lipidomics have 
successfully identified biomarkers to differentiate the stages of NAFLD [29].

The first attempt to diagnose fatty liver through lipidomics in humans was 
reported by Puri et al. in 2007. They analyzed the hepatic lipid profiles of subjects 
with normal liver histology, steatosis, and NASH [30]. The study showed that there 
was no difference in the FFAs between the three groups. The triacylglycerol (TAG) 
and diacylglycerol (DAG) levels were increased, and the phosphatidylcholine (PC) 
content was decreased in NAFLD, which suggests that PC hydrolysis may contrib-
ute to DAG and TAG accumulation in fatty liver and thereby increased lipogenesis 
in NAFLD.

These findings were confirmed by Kotronen and García-Cañaveras through 
semi-quantification of the full range of lipids using LC-MS [31, 32]. Total lysophos-
pholipids, DAG, and TAG were elevated in NAFLD. The stearic-to-oleic acid ratio 
was decreased in NAFLD, indicative of increased TAG biosynthesis, and NAFLD is 
also characterized by an increase in DAG and a reduction in polyunsaturated fatty 
acids (PUFAs).

An additional pilot study (42 biopsy samples) and a pivotal validation study (467 
biopsy samples) were published by Barr et  al. in 2010 and 2012, respectively, 
whereby LC-MS was used to identify lipidomic signatures associated with NAFLD 
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progression [33]. A variety of lipid biomarkers were identified that correlated with 
NAFLD progression. In the second study, which included 467 biopsy samples with 
normal liver (n = 90) or diagnosed with NAFLD (steatosis, n = 246; NASH, n = 131), 
approximately 540 circulating metabolites were analyzed, including amino acids, 
FFA, DAG, TG, PC, PE, PI, ceramides, SM, cholesteryl esters, and bile acids. 
Analysis of the lipidomic data allowed the definition of a robust BMI-dependent 
lipidomic signature that reliably and accurately differentiated liver steatosis from 
NASH. The area under the curve (AUC) was 0.84 for lean/pre-obese, 0.85 for obese, 
and 0.87 for morbidly obese patients. More recently, using this same cohort of 
patients, a set of 25 BMI-dependent lipid profiles was established that could differ-
entiate between steatosis and NASH with AUC values of 0.99, 0.90, and 0.91 for 
lean/pre-obese, obese, and morbidly obese patients, respectively [34].

Distinguishing between simple steatosis and NASH is relevant for differentiating 
between a generally benign condition and one with increased morbidity and mortal-
ity [35]. Therefore, there is an unmet need for noninvasive biomarkers that are 
robust, reliable, and cost-effective for patients with NAFLD.

Mayo et al. reanalyzed the lipidomic data from Barr’s pivotal trial and a new 
cohort of 192 biopsy samples from NAFLD patients, culminating in the validation 
of a BMI-dependent algorithm with 20 TGs. The area under the receiver operating 
characteristic curve (AUROC) versus biopsy for the discrimination between NASH 
and NAFLD was 0.95 with sensitivity, specificity, positive predictive value, and 
negative predictive value of 0.83, 0.94, 0.89, and 0.90, respectively [34].

Bril et al. evaluated the lipidomic signature in 220 patients with type 2 diabetes 
mellitus to differentiate between steatosis and NASH. They found an AUROC of 
0.79 (95% CI 0.68–0.90) in patients with adequate glycemic control. However, this 
differentiation was quite poor in patients with high insulin resistance or poor glyce-
mic control [36].

Validation of the lipidomic signatures in such important cohorts indicates that 
lipidomic markers play a significant role in elucidating the phenotypic stages of 
NAFLD. Therefore, LC-MS is not just for basic research: it is a very efficient tool 
for providing clinically relevant information for patient management. The contribu-
tion of lipidomics to understand NAFLD complexity was well evaluated in a review 
by Masoodi et al. [29].

4 � Applications of LC-MS-Based Lipidomics 
in Clinical Practice

4.1 � The OWLiver® Test

The one-way liver (OWLiver®) panel is an in  vitro diagnostic test based on the 
serum lipidomic signature of patients with NAFLD.  This panel can stratify this 
condition into four clinically relevant stages: normal liver, steatosis, NASH, and 
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“NASH at risk” (NASH + F2 or more). The panel was developed by OWL metabo-
lomics in Spain as a CE-certified IVD for over 8 years.

The company collects serum samples and biopsies from different cohorts of 
NAFLD patients in Spain, the Czech Republic, Chile, Mexico, Israel, and the USA 
(Florida and New York). Together with the biopsy readings and clinical and analyti-
cal information, they have built up an impressive database consisting of more than 
1200 NAFLD patients.

Furthermore, the panel was selected for the two major international consortia: 
Noninvasive Biomarkers of Metabolic Liver Diseases (NIMBLE) and Liver 
Investigation: Testing Marker Utility in Steatohepatitis (LITMUS) (US and EU con-
sortia created for the validation of noninvasive diagnosis of NAFLD spectrum) [37].

Currently, the OWLiver panel is available to most Spanish hospitals, and its use 
is fully reimbursed for the Health Service of the Basque Country. As the panel 
obtained self-certificate CE marked, it is available for most EU countries. CLIA test 
is expected to be launched in the USA in late 2023.

The panel applies three different algorithms to the lipidomic signatures obtained 
after the injection of a small volume (10 μl) into an LC-MS. All three algorithms are 
BMI-dependent, while two of them are ALT- and AST-dependent. The final output 
of the panel is the classification of the patient into one of the four mentioned diag-
nostic categories.

The first algorithm, based on BMI, ALT, AST, and 12 complex lipids, identifies 
patients with “NASH at risk.” Accuracy in comparison with biopsy results in an 
AUC close to 0.8, which compares very well with the other noninvasive alternatives 
in development. The selection of this group of patients is clinically very relevant 
since they would benefit greatly from early treatment.

The second algorithm, based on BMI, ALT, AST, and 16 complex lipids, identi-
fies patients with NASH, which correlates with an AUC versus biopsy of close to 
0.8. This classification is also clinically important for patients’ prognosis since the 
morbidity–mortality for this category is higher than for patients with normal liver 
and simple steatosis. Only NIS 4 has shown comparable accuracy in diagnosing 
NASH [38]. To date, no other noninvasive procedures with the capability to recog-
nize the inflammatory component of this condition have been reported.

Based on BMI and 11 triglycerides, the third algorithm differentiates NAFLD 
from normal liver with an AUC close to 0.9 versus biopsy [34]. The accuracy is very 
close to that observed with Fibroscan. Although this category is not very clinically 
relevant since a simple echography can provide the same information, it could be 
useful for epidemiological or population studies because it only requires a blood test.

The first results from NIMBLE were published in 2022 after blinded evaluation 
of more than 1000 samples from NAFLD patients and exhibited the same accuracy 
as observed by Mayo et al. [34].

The OWLiver panel, combined with the Fibrosis-4 score (FIB4), is widely in 
hepatology units used to select “NASH at-risk” patients. This combination reduces 
false negatives from FIB 4, identifying most of the patients suffering from NASH 
and fibrosis stage 2 or above [34].
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Endocrinology units are also very interested in identifying “NASH at-risk” and 
NASH patients because the technology allows them to carefully monitor overweight 
type 2 diabetes patients during their potential long-term progression.

Finally, knowing whether these metabolite changes are reversed when patients 
improve or even return to normality is vital. Some longitudinal studies are currently 
being carried out by two major consortia, NIMBLE and LITMUS, to confirm if the 
original lipidomic signature is recovered when patients improve.

In conclusion, the accuracy shown by the different lipidomic signatures in the 
OWLiver panel was very competitive compared with biopsy, and the panel is com-
plementary to the other noninvasive tools developed in parallel for the same pur-
pose, such as NIS 4 (based on microRNA), Fibroscan, and MRI [38].

4.2 � Other Diseases

LC-MS lipidomics has enormous potential for improving the diagnosis and treat-
ment/understanding of complex disease, as was already shown with NAFLD. Several 
other conditions have been explored using LC-MS lipidomics in the last decade 
with promising results. Selected studies are presented in Table 1 to show the hetero-
geneity of the conditions and the potential of the diagnostic tools under development.

Table 1  Potential clinical applications of LC-MS

Biomarkers for disease diagnosis

Idiopathic 
noncirrhotic 
portal 
hypertension

Seijo et al. [39] showed that a subset of five metabolites differentiates patients 
with idiopathic noncirrhotic portal hypertension from patients with liver 
cirrhosis and healthy volunteers (AUROC = 0.8871 [0.838–0.924]). Using 
high and low cut-off values, the model can diagnose or exclude idiopathic 
non-cirrhosis portal hypertension, respectively

Multiple 
sclerosis

Villoslada et al. [40] identified metabolomic signatures for classifying patients 
versus controls with high accuracy, as well as for classifying patients with a 
medium to high disability (EDSS 3.0). Among them, sphingomyelin and 
lysophosphatidylethanolamine were the metabolites that showed a more robust 
pattern in the time series analysis for discriminating between patients and 
controls

Alzheimer’s 
disease

Olarazan et al. [41] developed a panel with seven metabolites that could 
differentiate Alzheimer’s disease patients from those with amnestic mild 
cognitive impairment. The final panel consisted of seven metabolites: Three 
amino acids (glutamic acid, alanine, and aspartic acid), one non-esterified fatty 
acid (22:6n-3, DHA), one bile acid (deoxycholic acid), one 
phosphatidylethanolamine [PE (36:4)], and one sphingomyelin [SM (39:1)]

Colorectal 
cancer

Cubiella et al. [42] evaluated the fecal levels of 105 metabolites and found 18 
that were significantly altered in patients with advanced neoplasia compared to 
controls. The combinations of seven metabolites, ChoE (18:1), ChoE (18:2), 
ChoE (20:4), PE (16:0/18:1), SM (d18:1/23:0), SM (42:3), and TG (54:1), 
discriminated advanced neoplasia patients from healthy controls. These seven 
metabolites were employed to construct a predictive model that provides an 
AUC value of 0.821 for cancer diagnosis

N. Amigó Grau and P. Ortiz Betes



235

5 � Summary and Future Outlook

The advances in lipidomic profiling techniques in the last decades have significantly 
improved our understanding of the biological processes involved in health and dis-
ease. Currently, many lipidomic profiling applications are moving from research 
laboratories to clinical application. However, lipidomics has the potential to widely 
assist in the routine diagnosis of disease, to stratify risk post-diagnosis, and to moni-
tor the efficacy of both pharmaceutical and lifestyle interventions.

The global objective is to implement these precise and personalized technologies 
in an impactful way, to scale and make them accessible and effective to help health-
care providers around the world to be time and cost-effective. After technical devel-
opment and validation, clinical lipidomic platforms will have to be approved by the 
relevant regulatory body in the country of use, as has already been done for the first 
platforms in the EU and USA.

Clinical and Implementation Risks  Lipidomic applications are based on highly 
innovative technologies for bio-screening purposes. Although metabolomics has 
repeatedly been demonstrated to be cost-effective for CVD management, the price 
of the technology surpasses that of the gold standard, which is a significant barrier 
to implementation in stressed healthcare systems.

Moreover, lipidomic applications are primarily focused on cardiometabolic dis-
eases (CMD). Lifestyle interventions can address obesity and concomitant meta-
bolic alterations. Innovative solutions may be addressed after adherence to 
therapeutic improvement and lifestyle interventions, and complementary technolo-
gies can appear before the present solutions are broadly applied. However, personal-
ized systems could still be applied to create patient awareness about personalized 
health status, favoring the adoption of a healthy lifestyle routine.

Regulatory Difficulties  Although regulatory bodies currently include novel tech-
nologies, large amounts of time and resources are required for approval by a notifi-
cation body. Particularly for US FDA certification, if there is no precedent, novel 
technologies may experience serious delays before clinical introduction, even when 
promoted by previous IVD-CE marketing equivalent technology, threatening the 
economic sustainability of the whole technological development. Based on solu-
tions presented in this chapter, lipidomics has already crossed the regulatory barri-
ers under the risk classification ISO 13485:2016, requiring technical file preparation, 
CE declaration, and registry with the European Competent Authority. For future 
lipidomic applications, the previous regulatory strategy might be useful. The techni-
cal documentation must provide evidence of conformance with the essential require-
ments of 98/79/EC and the imminent regulation (EU) 2017/746 on in vitro medical 
devices.

Despite the difficulties, the use of lipidomic technologies as diagnostic, prognos-
tic, and evaluation tools is expected to expand enormously as a result of the develop-
ments in modern medicine.
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Lipidomic-based applications are expected to increase awareness regarding the 
need for diagnostic and prognostic technologies for other diseases. Lipidomics will 
help with the clinical assessment of different pathologies, spread the importance of 
metabolomic-based approaches, and ensure uptake of the already developed appli-
cations by clinicians, hospital decision-makers, and regulators.

The introduction of advanced molecular profiling is aligned with the global strat-
egy to incorporate personalized screening tools to define better monitoring and 
therapeutic strategies that will improve healthcare systems and empower clinicians 
with more detailed information, allowing an early therapeutic response and thus 
reducing the development of life-threatening symptoms.
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Bringing Human Serum Lipidomics 
to the Forefront of Clinical Practice: Two 
Clinical Diagnosis Success Stories

Núria Amigó Grau and Pablo Ortiz Betes

Abstract  The present chapter describes two clinical applications based on LC-MS 
and NMR lipidomics that have already been introduced into clinical workflows to 
better stratify metabolic health, including staging nonalcoholic fatty liver disease 
according to a specific lipid signature for the disease progression and improving the 
cardiovascular disease risk based on advanced lipoprotein profiling.

The chapter includes a list of potential applications based on the same technolo-
gies and details the envisaged risks and limitations.

The implications of developing advanced high-throughput technologies for clini-
cal applications go much further, such as accelerating the deployment of lipidomic-
based assessments in the healthcare system, favoring true disruption through precise 
and personalized medicine based on global bio-screening approaches.

Keywords  Nuclear magnetic resonance (NMR) · Metabolomics · Clinical 
diagnosis · Cardiovascular diseases (CVD) · Lipidomics · Personalized medicine
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Enfermedades Metabólicas
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EAS	 European Atherosclerosis Society
ESC	 European Society of Cardiology
FFA	 Free fatty acids
HCC	 Hepatocellular carcinoma
HDL	 High-density lipoproteins
IDL	 Intermediate-density lipoproteins
IISPV	 Institut d’Investigació Sanitària Pere Virgili
IMT	 Intima-media thickness
IRAS	 Insulin resistance atherosclerosis
IVD	 In vitro diagnostic
LC	 Liquid chromatography-mass
LDL	 Low-density lipoproteins
LITMUS	 Liver Investigation: Testing Marker Utility in Steatohepatitis
LMWM	 Low-molecular-weight metabolites
MAFLD	 Metabolic-associated fatty liver disease
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1 � Introduction

Metabolomics is an omic approach and is closest to phenotypes because metabolites 
are the end products of complex and transverse molecular pathways (including 
genomics, transcriptomics, and proteomics). Therefore, metabolomic analysis is a 
promising strategy for identifying disease-associated biomarkers: metabolites, 
small molecules, and end products of the interaction between genes and environ-
mental factors [1].

In the search for new biomarkers, there are two main possible approaches that 
can be taken. The first is a classic approach based on searching for a biomarker that 
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explains the pathophysiology of metabolic diseases, such as glucose quantification 
to determine whether a person has diabetes or the quantification of LDL-C for 
assessing the risk of cardiovascular diseases (CVDs). The second approach involves 
searching for metabolic patterns that are characteristic of the physiology of a meta-
bolic disease [2]. In this second approach, high-performance analytical techniques, 
especially liquid chromatography-mass spectrometry (LC-MS) or nuclear magnetic 
resonance (NMR), are used to analyze the metabolome without prior knowledge of 
the metabolites’ involvement or role in the disease mechanism or physiology [3]. 
Since the metabolites are the final products of the interactions between the expres-
sion of genes and proteins and environmental exposure, and consequently of the 
biochemical activity that gives rise to the phenotype of the measured sample, they 
thus characterize part of the patient’s metabolism. The metabolomic approach com-
pares the metabolites in fluids or tissues of a patient with those of a healthy subject 
to see which metabolites are expressed differently [4].

Metabolomics generally includes a wide range of molecules within a biological 
matrix. The term “lipidomics” should be adopted when the studied metabolites are 
specifically lipids. In particular, lipidomics is the study of the structure, function, 
and metabolism of lipids in living organisms [5]. It is a broad field that encompasses 
the measurement of all of the lipids present in a biological sample as well as the 
pathways and enzymes involved in their synthesis, degradation, and modification.

Various analytical techniques are applied in lipidomics to identify and quantify 
the different lipid species present in a sample, especially mass spectrometry, NMR 
spectroscopy, and gas or liquid chromatography. These techniques allow research-
ers to get a detailed picture of the lipids that are present in a sample and to study 
changes in lipid levels in response to different conditions or treatments [6].

Applications of lipidomics have been reported in a range of different areas, 
including medicine, nutrition, and environmental science. It is used to study the 
roles of lipids in health and disease, understand the mechanisms through which 
lipids affect cellular processes and signaling pathways, and identify potential thera-
peutic targets for treating lipid-related disorders [7].

Lipidome analysis is much more complex than other omic techniques, such as 
proteome or genome analysis, because of the enormous structural diversity of lipids, 
which can differ in both their linear and coupled macromolecular compositions [6]. 
This diversity increases the number of lipid molecules and the complexity of their 
carriers, lipoproteins. Thus, lipidome and lipoprotein analysis is technically very 
challenging. LC-MS and NMR are indispensable analytical tools for metabolomic 
studies in biological fluids. LC-MS and NMR have the advantage of being able to 
quantify and identify a large number of compounds simultaneously, reproducibly, 
and effectively [8, 9]. These techniques are often used in large epidemiological 
studies and are starting to be applied routinely in clinical laboratories.

This chapter is focused on LC-MS- and 1H-NMR-based lipidomic platforms for 
clinical applications, exploring their benefits, challenges, difficulties, and future 
opportunities. The application of these technologies in the clinical environment has 
opened the doors to the future use of such advanced technologies for predicting and 
monitoring several diseases. The technologies analyzed in the present chapter are 
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already applied in clinics, exemplifying the potential of precision medicine 
approaches for personalized diagnostics.

2 � Lipids and Lipoproteins: A Biochemical Approach

2.1 � General Concepts

Lipids are a diverse group of organic molecules that are essential to life and many 
biological functions. They include fats, oils, waxes, and other water-insoluble com-
pounds [10].

Lipids are synthesized by living cells through a process called lipid biosynthesis. 
This process involves condensing fatty acids with glycerol or other alcohols to form 
triglycerides, the primary component of fats. Lipids can also be synthesized by 
modifying existing lipids, such as by adding a phosphate group to form a phospho-
lipid or adding a carbohydrate group to form a glycolipid [11].

The structure of lipids is characterized by their hydrophobic nature, which arises 
from the presence of long, nonpolar hydrocarbon chains. This nonpolarity allows 
lipids to interact with each other’s molecules and form aggregates, such as micelles 
or lipid bilayers, which can serve as structural components of cell membranes [12].

Lipids are generally found in plasma as lipoproteins, which are macromolecular 
complexes with a hydrophobic core of neutral lipids, mainly cholesterol esters and 
triglycerides, surrounded by a hydrophilic layer of phospholipids, unesterified cho-
lesterol, and proteins [13]. Lipoproteins can be classified based on their density, 
protein composition (apoprotein), or lipid composition (rich in cholesterol or tri-
glycerides). Considering the protein composition, there are two types of lipopro-
teins, ApoA and ApoB.

Lipids have many functions in living organisms: from energy reserve to insula-
tion, as well as being a structural component of every cell and tissue. They are also 
important for cellular signaling and regulation [14]. The diversity of lipid structures 
is reflected by a wide range of physiological functions they perform. The levels of 
particular lipids in plasma can be used to diagnose diseases.

So far, approximately 4500 metabolites have been identified in human serum. 
Around half of these metabolites are phospholipids while over a thousand are glyc-
erolipids (triglycerides [TG], diglycerides [DG], and monoacylglycerols) [15]. 
Thus, lipids make up approximately 75% of the known human serum metabolome.

Analysts have already quantified thousands of distinct species of lipids, includ-
ing fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, and 
prenol lipids, representing the six main categories of lipids found in mammals. 
Moreover, the number is continually increasing as each of these types of lipids can 
exist in multiple forms [16]. In addition, lipids can undergo chemical modifications, 
such as the addition of a phosphate group or a carbohydrate group, which can result 
in the creation of new lipid species. Sphingolipids and glycerophospholipids are 
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particularly diverse in structure, due to variations in fatty acid content and 
head groups.

2.2 � Lipids Mirror Present and Future Metabolic Health: Two 
Sides of the Same Problem

Abnormal levels of lipids and lipoproteins in the blood are major risk factors for 
metabolic and cardiovascular diseases. Metabolic diseases are increasing exponen-
tially worldwide, and their complications, at cardiovascular and liver levels, are the 
leading cause of mortality worldwide [17]. They have a common characteristic: 
their etiology is linked to excess fat and associated inflammation. Nonalcoholic 
fatty liver disease (NAFLD) is associated with obesity and excess fat in the liver, 
and its prevalence is increasing around the world, especially in Western countries, 
currently affecting approximately a quarter of people in countries such as the USA 
[18]. Symmetrically, arterial health is compromised by an excess of fat, which 
accelerates the progression of arteriosclerosis, the underlying disease of heart dis-
ease and stroke and the leading cause of death in all developed countries [17]. Both 
liver disease and atherosclerosis can develop and progress more rapidly when 
accompanied by several well-known risk factors and comorbidities, such as obesity 
and dyslipidemia.

Lipids circulate in the blood in the form of lipoprotein particles, ranging from 
chylomicrons, as the largest lipoprotein, to very-low-density lipoproteins (VLDL), 
low-density lipoproteins (LDL), and high-density lipoproteins (HDL), which are 
the smallest. Health services routinely check cholesterol and triglyceride, and doc-
tors frequently prescribe lipid-lowering drugs to treat patients with dyslipid-
emia [19].

The duration of exposure to high lipid levels is also a crucial risk factor in car-
diometabolic health, dramatically increasing the risk of major cardiovascular events, 
especially for metabolic disorders that start early in childhood. Atherosclerosis typi-
cally begins in childhood [20]. Fatty streaks, buildups of lipids in the intima of 
arteries, are present in nearly all children by 3 years of age [21]. After 8 years of age, 
these fatty streaks increase, and atherosclerotic plaques form the coronary arteries 
during adolescence [22]. Children with clusters of risk factors for cardiovascular 
diseases are likely to have those same risk factors as adults [23].

Carotid ultrasonography screening for subclinical arteriosclerosis has been vali-
dated in observational, longitudinal, and randomized clinical assays. Those results 
were significantly correlated with intravascular coronary ultrasonography, coronary 
angiography, and pathologic findings of arterial lesions in healthy and CVD patients, 
and longitudinal studies have demonstrated that increased lipid alterations and 
intima–media thickness (IMT) in young adults are linked to cardiovascular risk fac-
tors in childhood [24, 25].
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The contribution of LDL-associated cholesterol to the development of CVD has 
been well described. While LDL particle accumulation increases the atherosclerotic 
process, HDL helps eliminate excess cholesterol by reverse cholesterol transport. 
Low levels of HDL are associated with high cardiovascular risk [26].

Conversely, in circulating chylomicrons and VLDL, triglycerides undergo hydro-
lysis, producing a pool of free fatty acids (FFAs), which are used by tissues as an 
energy source. Adipocytes store excess FFAs, favoring the expansion and dysfunc-
tion of adipose tissue, increasing insulin resistance and diabetes. This process is 
associated with excessive levels of saturated FFAs in plasma, increasing their uptake 
in hepatocytes to exceed metabolic requirements, which leads to hepatic steatosis 
and inflammation [27].

3 � Clinical Relevance of the Lipidome

Lipids play important roles in many biological processes, so it is not surprising that 
many diseases can be caused by defects in lipoprotein homeostasis, but it does mean 
that lipids can be used as markers of the disease. Expanding our knowledge of the 
composition and concentration of lipid metabolites in the plasma lipidome will lead 
to improved diagnostic capabilities, as well as enhancing pharmacological evalua-
tion and the efficacy of prescribed treatments [28]. A deep analysis of the lipidome 
might reflex altered synthesis of specific lipid species or identify abnormal underly-
ing pathological lipoprotein patterns. Our understanding of the roles played by lip-
ids and lipoproteins in disease mechanisms is constantly growing as more 
information on lipids and lipoprotein physiology becomes available, further high-
lighting the physiological importance of the lipidome composition and transport, 
which is strictly regulated and interrelated to cellular response.

3.1 � Lipids and NAFLD: Introduction to LC-MS

Nonalcoholic fatty liver disease (NAFLD) covers a wide range of disorders, from 
benign lipid accumulation in the liver (steatosis) to a more complicated clinical 
stage when fat induces hepatic inflammation and hepatocyte necrosis producing a 
new stage called nonalcoholic steatohepatitis (NASH) also named as steatohepati-
tis, when fibrosis progression is added to fat and inflammation. The final stage of 
disease progression is cirrhosis and/or hepatocarcinoma (HCC) [29]. Interestingly 
another potential evolution from NASH directly to HCC without any significant 
fibrosis contribution has also been described [30].

The exact cause of NAFLD is not known. Many factors contribute to this condi-
tion, such as excessive food intake, obesity, type 2 diabetes, and dyslipidemia, but 
not all patients develop NAFLD/NASH, and not all patients with NAFLD/NASH 
suffer from one of these conditions [30, 31].

N. Amigó Grau and P. Ortiz Betes



245

The pathophysiology of NAFLD is quite complex, and the progression from 
hepatic steatosis to the different stages of this condition is not completely under-
stood. However, lipid metabolic changes, including the production of lipotoxic spe-
cies in the liver, could be responsible for disease progression in NAFLD [30].

LC-MS allows the tracking of more than 400 different lipid species in the liver 
and serum. Changes in many of these metabolites were followed in several trans-
verse cohorts giving robust data about the lipidomic signature of the different clini-
cal stages of NAFLD, from liver steatosis to steatohepatitis and advanced fibrosis.

Lipids are highly likely to be involved in both the origin and the progression of 
the disease, so serum lipidomics has, in the last 20 years, been one of the most suc-
cessful research lines in identifying markers to differentiate different stages of 
NAFLD [32].

The first attempt to diagnose NAFLD in humans using lipidomics was reported 
by Puri et al. in 2007 [33]. The researchers analyzed the lipid levels in the livers of 
people with normal liver tissue, fatty liver disease, and nonalcoholic steatohepatitis 
(NASH) and found no differences in the FFA contents in the three groups. However, 
in NAFLD both the TG and DG levels were higher, while the PC level was decreased, 
which suggests that PC hydrolysis may contribute to DG and TG accumulation in 
the fatty liver. The SFA-to-MUFA ratio generally decreased across multiple classes 
of lipids, providing evidence for increased lipogenesis in NAFLD.

These findings were confirmed in two small series by Kotronen and García-
Cañaveras through semiquantitative analysis of the full range of lipids by LC-MS 
[34, 35]. Total lysophospholipids, DG, and TG were found to be elevated in NAFLD, 
while the stearic-to-oleic acid ratio was lower, indicating increased TG biosynthe-
sis. Increased DG and reduced PUFA are also characteristic of NAFLD.

An additional pilot study (42 biopsied patients) and a pivotal validation one (467 
biopsied patients) were published by Barr et al. in 2010 and 2012, respectively, that 
clearly identified lipidomic signatures associated with NAFLD progression using 
LC-MS [36, 37].

Especially relevant is Barr’s 2012 study that included 467 biopsied individuals, 
comprising 90 with normal liver and 377 diagnosed with NAFLD (steatosis, 
n = 246; NASH, n = 131). In this study, they analyzed 540 circulating metabolites, 
including amino acids, FA, DG, TG, PC, PE, PI, ceramides, SM, cholesteryl esters, 
and bile acids. After analyzing the lipidomic data, the authors established a robust 
“body mass index-dependent lipidomic signature” for reliably and accurately dis-
tinguishing liver steatosis from NASH. The areas under the curve (AUC) for lean/
pre-obese, obese, and morbidly obese patients were 0.84, 0.85, and 0.87, respec-
tively. Subsequently, a set of 25 BMI-dependent lipids was established using this 
same cohort of patients, allowing differentiation between steatosis and NASH with 
AUC of 0.99, 0.90, and 0.91 for lean/pre-obese, obese, and morbidly obese patients, 
respectively [38].

It is important to distinguish between simple steatosis and NASH because simple 
steatosis is a generally benign condition, while NASH is a more serious condition 
that can lead to increased morbidity and mortality [39].
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Mayo et al. reanalyzed the lipidomic data from the cohort from Barr’s pivotal 
trial [36] and a new cohort of 192 biopsied NAFLD patients, which allowed them to 
establish and validate a BMI-dependent algorithm with 20 TGs. The algorithm was 
able to distinguish between NASH and NAFLD with a high degree of accuracy, 
with an AUROC of 0.95 versus biopsy. The sensitivity, specificity, positive predic-
tive value, and negative predictive value of the test were 0.83, 0.94, 0.89, and 0.90, 
respectively [38].

Using the lipidomic signature in 220 patients with type 2 diabetes mellitus, Bril 
et al. found an AUROC of 0.79 (95% CI 0.68–0.90) in patients with adequate gly-
cemic control for discrimination between steatosis and NASH. However, the dis-
crimination ability was poor in patients with high insulin resistance or poor glycemic 
control [40].

Validation of the lipidomic signatures in such important cohorts indicates that 
lipidomic markers will have a major impact in elucidating the phenotypic stages of 
NAFLD. Therefore, LC-MS is not just for use in basic research: it has also become 
a very efficient tool for providing clinically relevant information for patient man-
agement. The review by Masoodi et al. gives an in-depth discussion of the contribu-
tion of LC-MS to lipidomics and the complexity of NAFLD [32].

3.2 � Lipoproteins and CVD: Introduction to NMR

According to data from the World Health Organization (WHO), CVDs are the lead-
ing cause of mortality and morbidity in developed countries. They are a major bur-
den on society, leading to a significant reduction in the quality of life and health, as 
well as healthcare costs [17]. These diseases can be present for many years before 
becoming clinically apparent, making clinical management difficult. Thus, early 
CVD risk identification is important to delay and prevent its onset.

Traditionally, CVDs have been diagnosed based on the analysis of risk factors 
such as smoking, high (total and LDL) cholesterol, high blood pressure, obesity, 
sedentary lifestyles, or type 2 diabetes. However, it has not been possible to accu-
rately identify all individuals at risk for cerebrovascular accidents or complications 
using such risk factors. Unfortunately, unexpected acute ischemic events still occur 
at high rates, both in patients known to have arteriosclerosis and subjects thought to 
be healthy [41].

LDL cholesterol (LDL-C) is the most important lipid factor for assessing an 
individual’s cardiovascular risk. However, many individuals with CVD have 
normal LDL-C levels [42]. LDL-C concentrations are often normal or only 
slightly elevated in people with metabolic disorders such as diabetes, obesity, or 
metabolic syndrome. At the same time, the level of LDL particles (LDL-P) is 
raised owing to the presence of smaller particles, lower cholesterol levels, and 
higher atherogenicity, so they are able to access the arterial wall easily. Among 
the LDL particles, the smallest and densest can easily infiltrate the arterial wall 
and stick to the extracellular matrix proteoglycans [43]. Small LDL-P 
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significantly increase the risk of CVD but are not considered by the traditional 
risk estimation methods.

Beyond LDL-P, lipoproteins rich in triglycerides, including VLDL, intermediate-
density lipoproteins (IDL), and cholesterol remnants, favor the development of ath-
erosclerosis as a complementary source of cholesterol and promote inflammation. 
In particular, lipoproteins below 70 nm in diameter can cross the vascular endothe-
lial barrier and interact with macrophages exacerbating inflammatory mechanisms 
[44]. Remnant cholesterol transported by triglyceride-rich particles shows a CVD 
predictive value even higher than that of LDL cholesterol (LDL-C) [45].

The basic and generally used lipid panel for CV risk assessment does not offer 
an approach to the real protagonists of atherogenicity, the lipoprotein particles [46]. 
The proatherogenic particle concentration can be indirectly characterized by deter-
mining the plasma apolipoprotein B (ApoB) levels [47]. ApoB-100 is the major 
apolipoprotein of atherogenic lipoproteins. Each lipoprotein particle has only one 
ApoB molecule, from chylomicrons and VLDL to LDL. For the same amount of 
LDL-C, a higher concentration of ApoB in plasma ApoB indicates the presence of 
more atherogenic particles and smaller lipoproteins [48]. The latest guidelines on 
dyslipidemia and cardiovascular prevention from the European Society of 
Cardiology (ESC) and the European Atherosclerosis Society (EAS) recognize that 
the LDL-C level is a surrogate for the level of atherogenic particles and that lipid-
lowering drugs achieve their beneficial effects by reducing the number of athero-
genic particles [49]. These guidelines propose the determination of the ApoB level 
as a surrogate marker for CVD closer to the number of LDL particles and set out 
certain concentrations of ApoB as secondary therapeutic goals. Despite this, the 
concentration of ApoB does not distinguish between triglyceride-rich particles and 
LDL particles.

For this reason, advanced lipoprotein testing is being developed into a new diag-
nostic system, helping health specialists improve the control of cardiovascular risk, 
providing an accurate picture of the complete lipid profile, and establishing person-
alized therapy for patients [50].

Advanced lipoprotein profiling using NMR allows the determination in one 
NMR run of the basic lipid profile, including total cholesterol, LDL, HDL, non-
HDL, and triglycerides, as well as a more advanced lipoprotein profile that includes 
the lipid composition, particle size, and concentration of the main lipoprotein 
classes (VLDL, LDL, and HDL). The complete characterization of the blood lipo-
protein profile contributes to personalized preventive and therapeutic decisions in 
estimating and addressing the CVD risk [51]. This comprehensive characterization 
of the lipoprotein profile facilitates the detection of individuals with an increased 
CVD risk [52].

The NMR technique for lipoprotein profiling was set in 1992 and has repeatedly 
proved helpful measuring a wide spectrum of cardiovascular risk factors in a high-
throughput operational mode [53]. NMR allows us to obtain advanced metabolic 
profiling that includes the detailed lipoprotein profile and a complementary set of 
information related to the cardiometabolic status (glycoprotein profile and the con-
centrations of low-molecular-weight metabolites [LMWM], among others).
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In particular, NMR biomarker profiling has repeatedly demonstrated cost-
effectiveness and high performance and has been used for both preclinical screening 
and in vitro diagnostics (IVD)-by-NMR discovery and validation [54, 55]. Except 
for some applications, NMR is broadly considered a research use only (RUO) 
device. However, the development of the technology over the last decade has facili-
tated the implementation of NMR metabolomics as an IVD system in the clinical 
workflow. The specific application of NMR lipoprotein profiling for cardiovascular 
risk assessment has recently been introduced in advanced lipid units in some coun-
tries, favoring true disruption to a preventive, predictive, and precise medicine 
approach to help with diagnosis and the development of effective, safe medications 
and doses that are tailored to patients’ individual lipidomic profiles [42].

4 � Measurement Techniques for Characterization of Lipid 
Species and Lipoproteins

4.1 � Main Techniques Used to Measure Lipid Species 
for Cardiometabolic Health Assessment

Various MS-based methods can be used to analyze plasma lipids: LC-MS, direct 
flow injection, and direct-infusion/shotgun MS (DIMS) are the most common 
approaches. LC-MS/MS is typically applied for the targeted analysis of very low 
abundancy (nanomoles per liter range) lipid mediators (e.g., eicosanoids, special-
ized pro-resolving mediators, oxysterols). Meanwhile, DIMS as well as LC-MS and 
LC-MS/MS can be used for analyzing lipid classes with higher abundancy, in the 
high micromoles per liter to millimoles per liter range (e.g., glycerolipids, glycero-
phospholipids, cholesterol esters, and ceramides).

As mentioned, in plasma, lipids are often found bound to soluble carrier proteins 
(e.g., albumin) or associated with multiprotein assemblies (lipoproteins). Therefore, 
a single lipid recovery protocol is unlikely to be effective for all analytical 
approaches. This is because different lipid families require different extraction and 
analysis protocols. For example, some lipids are more stable than others and can be 
extracted using milder methods. Additionally, different lipids require different ana-
lytical techniques. Furthermore, some analytical approaches require that the lipids 
be kept in their native state, which means that they cannot be disrupted by the 
extraction or analysis process. This is important because the structure of the lipids 
can provide important information about their function.

Therefore, truly comprehensive lipidome analysis requires multiple analytical 
platforms (each suited for a subset of lipid classes) to be applied in parallel, particu-
lar sample preparation techniques and non-destructive approaches for lipoprotein 
structure profiling [56]. Frequently, plasma lipidome analysis only includes lipid 
classes that can be determined in one run using the only mass spectrometer that the 
researchers have available and supplemented by structural lipoprotein analysis 
using NMR spectroscopy [57].
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It is important, however, to achieve cost-effectiveness through high-throughput 
approaches. MS is applied for more detailed characterization of the lipid family. MS 
characterization is based on mass difference, while NMR characterization of lipids 
is based on the spectroscopically different response of the lipids to an external mag-
netic field according to the size of the lipoprotein particle carrying them.

In this section, we will report two novel clinical applications based on MS and 
NMR methods for quantifying circulating lipids and lipoproteins as robust and reli-
able tools for biomedical diagnosis of liver and cardiometabolic diseases.

The two analytical techniques included in the present chapter for performing high-
throughput lipid analysis in cardiometabolic health assessment are liquid 
chromatography-mass spectrometry (LC-MS) and NMR spectroscopy [58]. Both 
techniques have advantages and disadvantages [59]. MS can resolve more compounds 
than NMR, has a higher sensitivity, and requires a smaller sample volume [60]. 
However, MS requires standards and quality control samples for absolute quantifica-
tion and reproducibility. NMR is highly reproducible and intrinsically quantitative 
and can be scaled for use in different laboratories [61, 62]. NMR can immediately 
provide qualitative and quantitative information, including lipoproteins.

Historically, it has been challenging to perform wide-scale lipid profiling. This is 
because lipid metabolites have a variety of physical properties, which require the 
use of different purification systems and complex technical procedures. However, 
the evolution of lipidomics has led to the development of new analytical platforms, 
particularly in mass spectrometry. These new platforms have streamlined the proce-
dures involved in lipid profiling, allowing for the analysis of many more lipid mol-
ecules in greater detail.

4.2 � The Complementarity of Serum/Plasma LC/MS and NMR 
for Lipoprotein Analysis

Mass spectrometry coupled with chromatography (LC-MS) is the most common 
technique used for analyzing the lipidome due to its sensitivity and selectivity. 
When LC is combined with a high-resolution accurate mass instrument (e.g., 
Orbitrap or time-of-flight instruments), large numbers of analytes can be analyzed 
at the same time. Typically, reversed-phase chromatography is used to separate the 
analytes before reaching the mass spectrometer, which determines their structure 
and concentration. Various chromatographic columns are available for separating 
lipids depending on their chemical structure, such as their lipid class (e.g., phospha-
tidylcholine or phosphatidylethanolamine head groups) and fatty acyl composition 
(e.g., chain length and degree of unsaturation) [58, 63–66].

On the other side, NMR is an excellent technique for profiling biofluids under physi-
ological temperature conditions and is especially adept at characterizing complex solu-
tions. Minimal sample preparation is required for profiling serum/plasma samples by 
NMR. Large numbers of plasma/serum samples can be collected from patients at a high 
frequency in a standard clinical routine, allowing the detailed characterization of 
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Table 1  Strengths and 
weaknesses of LC-MS and 
NMR for lipidomic analysis

LC-MS NMR

High throughput + +++
Sensitivity +++ +
Equipment cost + ++
Implementation level + ++
Versatility ++ +
Robustness + +
Scalability + ++
Absolute concentration +a +++
Labor intensity + +++
Specific application field NAFLD CVD

aOnly when the standard is available

dynamic metabolic events. One of the advantages of NMR metabolomics is that it can 
be used to generate quantitative profiles of solute-state fluids with minimal sample prep-
aration. This allows for a naturalistic, largely unbiased view of their composition that 
closely represents the in vivo state. In metabolic research, NMR spectroscopy allows 
comprehensive metabolic profiling associated with different metabolic conditions and 
inflammation: from small molecules (known as the aqueous metabolome) to large mac-
romolecular complexes (advanced lipoprotein testing based on NMR technology and 
NMR glycoprotein profiling) from intact plasma or serum, as well as the characteriza-
tion of different lipid species from lipid plasma or serum extracts.

The clinically relevant information that can be found in 1H NMR spectra of 
blood plasma goes far beyond standard lipid panels, including a set of parameters 
associated with lipoprotein profiling for cardiometabolic health (size, composition, 
and particle concentration) and other parameters, including glycoproteins, LMWM, 
and some lipid species. Since the vascular wall releases molecules into the blood-
stream that reflect the patient pathological processes, the concentrations of these 
molecules participating in pathological processes could be potential biomarkers for 
the future appearance of diseases with which to establish predictive mathematical 
models that can be used in clinics.

As mentioned in the previous section, measuring lipids and lipoproteins using 
LC-MS and NMR can be complementary, presenting different strengths and weak-
nesses (Table 1).

The sensitivity of LC-MS exceeds that of NMR by an order or magnitude and 
hence the higher number of visible metabolites and potential versatility. However, 
lipoprotein profiling should be performed using NMR. Moreover, NMR exhibits 
low experimental variability between laboratories. The main source of variability in 
NMR is intra-operator and intra-day. NMR can measure a quantitative lipoprotein 
profile over time for individual longitudinal studies.

4.3 � LC-MS Lipidomics and 1H NMR Lipoprotein Profiling 
Technical Aspects (Table 2)
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Table 2  LC-MS Lipidomics and 1H NMR Lipoprotein Profiling Specifications

LC-MS NMR

Sample 
handling

Serum and plasma samples derived 
from blood should be frozen at the 
LC-MS lab and immediately 
aliquoted following a platform-
specific protocol depending on the 
lipid class(es) that will be analyzed

Different biochemical protocols are applied to 
serum and plasma fractions derived from blood 
samples after collection
The coagulation factors (i.e., fibrinogen) and 
blood cells are removed from serum by 
centrifugation
Plasma is typically obtained from blood 
samples that have had an anticoagulant agent 
added (i.e., heparin or EDTA), which produce 
high-intensity peaks (EDTA) or overlapping 
signals (heparin) in the NMR spectra, so serum 
can be preferable to plasma for some NMR 
applications

Storage Samples should be stored at −20 °C 
for less than 10 days or −70 °C or 
−80 °C if stored for longer periods 
[67]

Storage must be considered when analyzing 
lipoproteins and other plasma/serum 
metabolites by NMR
Samples can be stored at 2–4 °C for up to 
7 days or at −20 °C for up to 1–2 months
However, as some enzymes, for example, 
plasma esterase, are still active at −20 °C, 
samples should be stored at −70 °C or −80 °C 
for longer periods. Good lipoprotein stability 
in frozen samples stored for more than 
10 years has been reported in some cases [68]

5 � LC-MS Lipidomics and 1H NMR Lipoprotein Analysis 
in Clinical Practice

5.1 � Clinical Application of LC-MS: The OWLiver® Test

The OWLiver® panel is an in vitro diagnostic test based on the serum lipidomic 
signature of patients with NAFLD. This panel can stratify this condition into four 
clinically relevant stages: normal liver, steatosis, NASH, and “NASH at risk” 
(NASH + F2 or more). The panel was developed by OWL metabolomics in Spain 
and has been applied as a CE-certified IVD for over 8 years.

The company collects serum samples and biopsies from different cohorts of 
NAFLD patients in Spain, the Czech Republic, Chile, Mexico, Israel, and the USA 
(Florida and New York). Combining the biopsy readings with the clinical and ana-
lytical data, they have established an impressive database including data for more 
than 1200 NAFLD patients.

Furthermore, the panel was selected for the two major international consortia: 
Non-invasive Biomarker of Metabolic Liver Diseases (NIMBLE) and Liver 
Investigation Testing Marker Utility in Steatohepatitis (LITMUS) [69] (US and EU 
consortia created for the validation of noninvasive diagnostic of NAFLD stages).

Currently, the OWLiver panel is available to most Spanish hospitals and its use 
is fully reimbursed for the Health Service of the Basque Country. A CLIA lab test is 
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also available for most EU countries interested in the panel, and the CLIA test is 
expected to launch in the USA in 2023.

The panel applies three different algorithms to the lipidomic signatures obtained 
after the injection into an LC-MS of a very low amount of serum (~10 μl). All three 
algorithms are BMI-dependent, and two of them also need the patient’s alanine 
amino transferase (ALT) and aspartate amino transferase (AST). The final output of 
the panel is the classification of the patient into one of the four mentioned diagnostic 
categories.

The first algorithm, based on BMI, ALT, AST, and 12 complex lipids, identified 
patients suffering from “NASH at risk.” Accuracy in comparison with biopsy results 
in an AUC close to 0.8, which compares very well with the other noninvasive alter-
natives in development. The diagnosis of this group of patients is clinically very 
relevant since they are the ones that would benefit the most from earlier treatment.

The second algorithm, based on BMI, ALT, AST, and 16 complex lipids, identi-
fies patients with NASH, with an AUC versus biopsy of close to 0.8. This classifica-
tion is also clinically important for the patients’ prognosis since the 
morbidity–mortality of this category is higher than for patients with normal liver 
and simple steatosis. Only NIS 4 has shown comparable accuracy in diagnosing 
NASH [70]. To date, no other noninvasive procedure has been able to recognize the 
inflammatory component of this condition.

Based on BMI and 11 triglycerides, the third algorithm differentiates NAFLD 
from normal liver patients with an AUC close to 0.9 versus biopsy [38]. The accu-
racy is very close to that observed with Fibroscan. Although this category is not very 
clinically relevant since a simple echography can provide the same information, it 
could be useful for epidemiological or population studies because it only requires a 
blood test.

The first results from NIMBLE were published in 2022 after evaluation in blind 
more than 1000 samples from NAFLD patients and exhibited the same accuracy as 
observed by Mayo et al. [38, 70].

The main use of the OWLiver panel in hepatology units is in combination with 
FIB4 to select “NASH at-risk” patients. This combination reduces false negatives 
from FIB 4, identifying most of the patients suffering from NASH and fibrosis stage 
2 or more [38, 71].

Endocrinology units are also very interested in identifying “NASH at-risk” and 
NASH patients because the technology allows them to carefully monitor overweight 
type 2 diabetes patients during their potential long-term progression.

Finally, knowing if these metabolite changes are reversed when patients improve 
or even return to normality is vital. Some longitudinal studies are currently being 
carried out by two major consortia, NIMBLE and LITMUS, to confirm if the origi-
nal lipidomic signature is recovered once the patient recovers.

In conclusion, the accuracy shown by the different lipidomic signatures in the 
OWLiver panel was very competitive compared with biopsy, and the panel is com-
plementary to the other noninvasive tools developed in parallel with the same pur-
pose, such as NIS 4 (based on microRNA, Fibroscan, and MRI) [70].
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5.2 � Clinical Application of 1H NMR: The Liposcale Test

Although lipoprotein particle size and number of particles are not routinely mea-
sured in clinical practice, they can be efficiently and simultaneously assessed using 
NMR spectroscopy. Lipoprotein profiling by using NMR was set two decades 
before and has proved helpful concerning a wide spectrum of metabolic risk fac-
tors [72].

Lipoprotein determination by NMR has been established for some years, in both 
basic research and using commercially available tests; most approaches (one-
dimensional approaches) are limited to analysis of lipids and lipoproteins using 
empirical models based on correlations between the raw NMR data and laboratory 
biochemical measurements.

The analysis of lipoproteins by 1D 1H NMR spectroscopy is based on particle 
size. The lipid methyl groups that are transported within the lipoproteins resonate at 
slightly different frequencies depending on the lipoprotein that transports them, 
with smaller particles resonating at lower frequencies. Therefore, it is possible to 
quantify lipoproteins by decomposing the NMR signal of the methyl group of the 
lipids in individual signals. This method, commercialized by Liposcience (recently 
acquired by LabCorp), provides the concentrations of particles of the major lipopro-
tein classes and subclasses from indirectly estimated size, as it is based on a library 
of one-dimensional NMR spectra of previously isolated lipoprotein classes and an 
algorithm, which adjusts the NMR signal depending on samples being analyzed.

Therefore, an advanced lipoprotein profile based on NMR allows for the deter-
mination of both the basic lipid profile, including total cholesterol, LDL, HDL, 
non-HDL, and triglycerides, as well as a more advanced lipoprotein profile, which 
includes lipid composition, particle size, and concentration of the main lipoprotein 
classes (VLDL, LDL, and HDL) and the concentrations of nine subclasses of lipid 
particles. The complete characterization of the blood lipoprotein profile contributes 
to personalized preventive and therapeutic decisions in estimating and addressing 
the CVD risk. This comprehensive characterization of the lipoprotein profile facili-
tates the identification of individuals with an increased CVD risk.

The application of an advanced lipoprotein profile to identify the situations 
described in the following section is particularly relevant.

5.2.1 � Individuals with Discordant Levels of LDL-C and LDL-P

LDL particles are highly heterogeneous in size and lipid content. This heterogeneity 
has led to the definition of two phenotypes or patterns associated with a greater or 
lesser risk of CVD, depending on the relationship between the levels of LDL-C 
and LDL-P:

LDL-C > LDL-P or those individuals with particularly large LDL particles with 
a higher cholesterol content and lower CVD risk.
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Fig. 1  Incidence of 
cardiovascular events 
according to the 
stratification of the MESA 
study population 
concerning LDL-C/LDL-P 
levels. (Adapted from 
Otvos et al. [73])

LDL-C < LDL-P or those individuals with especially small LDL particles with a 
lower cholesterol content and increased risk.

A relevant report by Otvos and colleagues published in the Journal of Clinical 
Lipidology, including approximately 6000 individuals from the prospective Multi-
Ethnic Study for Atherosclerosis (MESA), showed that the number of cardiovascu-
lar and cerebrovascular accidents accumulated over the years is significantly 
associated with the level of LDL-P but not with the level of LDL-C if these two 
magnitudes show discrepancies [73]. As shown in Fig. 1, the incidence of CVD in 
individuals with especially large LDL particles (and therefore levels of 
LDL-C > LDL-P) was observed to be significantly lower than in the group of indi-
viduals with small particles.

For individuals with a low LDL-P concentration, the CVD risk is overestimated 
if the traditional LDL-C factor is used. In contrast, for individuals with high LDL-P 
concentrations but normal LDL-C levels, the CVD risk is underestimated [73].

5.2.2 � Lipoprotein Profiles Associated with the Future Development 
of Type 2 Diabetes and Insulin Resistance

Type 2 diabetes mellitus has been classified as the epidemic of the twenty-first cen-
tury both for its growing magnitude and its impact on CVD. Determining the factors 
associated with the onset of diabetes before it starts (prediabetic signs) is a chal-
lenge representing a breakthrough in CVD prevention.

In this sense, Dr. Samia Mora [74] and Dr. Rafael Carmena [75] argue that 
advanced lipoprotein characterization helps to identify individuals at higher risk of 
developing cardiometabolic diseases by allowing the identification of a characteris-
tic lipoprotein profile years before the onset of clinical manifestations.

This concept has been reinforced in other relevant works, such as the report pub-
lished in Circulation of the IRAS (Insulin Resistance Atherosclerosis Study) [76]. 
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The study showed that NMR can be used to identify lipoprotein profiles that are 
associated with an increased risk of developing cardiometabolic diseases, such as 
type 2 diabetes and insulin resistance. These profiles show high concentrations of 
large VDL particles and small HDL particles. This abnormal distribution between 
lipoprotein subclasses is reflected in an increased VLDL size and a decreased size 
of HDL.  Early detection of these particular patterns can help prevent the future 
development of chronic hyperglycemia.

In any case, the measurement of lipoprotein profiles is of great interest to those 
patients who are exhibiting [77]:

•	 Family history of atherosclerotic cardiovascular risk
•	 Elevated triglycerides
•	 Low levels of HDL-C
•	 Metabolic syndrome
•	 Diabetes mellitus
•	 Secondary prevention: recurrent events due to atherosclerotic cardiovascular risk 

despite intervention in lifestyle changes and/or administration of lipid-
lowering therapy

A recent study by Puig-Jove et  al. [78] in the journal Revista Española de 
Cardiología provides a clinical overview of the use of 1H NMR serum lipidomics 
to directly assess the number, composition, and size of the different lipoprotein 
particles in other areas of cardiovascular research, such as premature cardiovascular 
disease (CVD) or heart failure.

Several methodological approaches have been commercially developed to quan-
tify blood lipoproteins from NMR spectra. The first commercially available was 
based on a deconvolution method (LipoProfile, LabCorp Inc., USA) and includes 
decomposition of the NMR signal into individual signals obtained from a library of 
NMR spectra for isolated lipoproteins. Another alternative based on linear regres-
sion modeling for lipid prediction was developed by Mika Ala-Korpela and is cur-
rently commercialized by the Nightingale Health Ltd., Finland [79, 80]. These 
approaches do not allow direct quantification of the particle size and provide an 
indirect measurement of the concentration of particles and estimation of the size.

As an alternative to the abovementioned one-dimensional 1H NMR methods, 
two-dimensional 1H NMR appears as a second-generation approach for lipoprotein 
characterization. Diffusion Ordered Nuclear Magnetic Resonance Spectroscopy 
(DOSY-NMR) is a type of NMR experiment that can be used to measure the hydro-
dynamic characteristics of molecules. This includes the diffusion coefficient, which 
is a measure of how fast the molecules move through a solution. The diffusion coef-
ficient of each subclass of lipoprotein can be measured using DOSY-NMR. The 
sizes of the different lipoprotein subclasses can then be calculated directly from the 
diffusion coefficients using the Stokes-Einstein equation. However, it is important 
to directly measure the size of the lipoprotein particles since this is used to calculate 
the number of lipoprotein particles.

Therefore, the two-dimensional 1H NMR approach allows direct calculation of 
the sizes and gives more precise particle concentrations than can be obtained using 
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one-dimensional NMR methods by showing better correlations between [1] the 
LDL-P and ApoB content of isolated LDL fractions, [2] the VLDL-P and ApoB 
content of isolated VLDL fractions, and [3] the HDL-P and ApoA-I content of HDL 
fractions [81].

This methodology was developed recently (Liposcale®, CE marked) and is cur-
rently commercialized in Spain (Biosferteslab.com). The technology is also avail-
able as a CLIA lab test for most EU countries. The launch in the USA is also 
expected for 2023. This advanced lipoprotein profiling method determines the num-
ber of lipoprotein particles from each of the three main classes of lipoproteins 
(VLDL, LDL, and HDL) and their three subclasses (large, medium, and small). The 
size of each lipoprotein class is also determined, as well as the cholesterol and tri-
glyceride content in each fraction, including remnant cholesterol.

5.2.3 � Other Diseases and Applications

LC-MS-based and NMR lipidomics has enormous potential to contribute to improv-
ing the treatment, understanding and diagnosis of complex disease, as was already 
shown for NAFLD. Several other conditions have been explored in the last decade 
with promising results. A short selection of studies is discussed now to show the 
heterogeneity of the conditions and the potential of the diagnostic tools under devel-
opment (Table 3).

The earlier examples show the diversity and dimension of the lipidomic and 
metabolomic fields for clinical applications. Still, they need to follow a long path-
way to clinical use. As shown in the section discussing the OWLiver panel, these 
candidates should be validated in big cohorts from a wide range of patients, and 
“revalidation” in independent cohorts will be required for international 
recognition.

The field of potential applications for NMR metabolomics is certainly broad: 
beyond advanced lipoprotein profiling, 1H NMR technology is capable of simulta-
neously detecting the presence of a set of blood metabolites (and/or combinations 
thereof), such as glycoproteins, LMWM (amino acids, sugars), and lipid species 
that are associated with chronic inflammatory processes and the risk of development 
of other metabolic diseases and that can therefore be used as early biomarkers in 
different diseases complementing lipoprotein profiling.

Protein Glycation  A change in the protein glycosylation pattern has been identi-
fied as a major event that occurs during the transition from healthy to diseased tis-
sue, with significant changes being observed during chronic inflammatory processes, 
such as obesity, metabolic syndrome, polycystic ovaries syndrome, or rheumatoid 
arthritis [72, 84–86].

Recently, glyc-A, an NMR-derived biomarker, has been shown to be an indepen-
dent risk factor for CVD inflammatory diseases, as well as being linked with the 
residual risk of CVD and death in patients treated with low LDL cholesterol levels 
[87–90].
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Table 3  Potential clinical applications of LC-MS

Biomarkers for disease diagnosis

Idiopathic 
noncirrhotic 
portal 
hypertension

Seijo et al. showed that a subset of five metabolites can differentiate patients 
with idiopathic noncirrhotic portal hypertension from patients with liver 
cirrhosis and healthy volunteers (AUROC = 0.8871 [0.838–0.924]). The model 
can diagnose or exclude idiopathic non-cirrhosis portal hypertension using 
high or low cut-off values, respectively

Multiple 
sclerosis

Villoslada et al. [82] identified metabolomic signatures for distinguishing 
patients from controls with high accuracy and for classifying patients with a 
medium to high disability (EDSS 3.0). From their time series analysis, 
sphingomyelin and lysophosphatidylethanolamine were reported to be the 
most robust metabolites for discriminating between patients and controls

Alzheimer’s 
disease

Olarazan et al. developed a panel with seven metabolites that could 
differentiate Alzheimer’s disease patients from those with amnestic mild 
cognitive impairment. Seven metabolites were used in the final panel: Three 
amino acids (glutamic acid, alanine, and aspartic acid), one non-esterified fatty 
acid (22:6n-3, DHA), one bile acid (deoxycholic acid), one 
phosphatidylethanolamine [PE (36:4)], and one sphingomyelin [SM (39:1)]

Colorectal 
cancer

Cubiella et al. [83] measured the levels of 105 metabolites in feces, and found 
that 18 were significantly different in patients with advanced neoplasia 
compared to controls. Seven metabolites, namely, ChoE (18:1), ChoE (18:2), 
ChoE (20:4), PE (16:0/18:1), SM (d18:1/23:0), SM (42:3), and TG (54:1), 
could be used to discriminate advanced neoplasia patients from healthy 
controls. A predictive model establishing using these metabolites exhibited an 
AUC value of 0.821 for cancer diagnosis

Alcoholic 
hepatitis

In a study with 90 patients with alcoholic hepatitis and alcoholic cirrhosis, 
Michelena et al. were able to build an algorithm using only 4 metabolites to 
diagnose alcoholic hepatitis with an AUC value of 0.932. With another four 
metabolites, it was possible to select alcoholic hepatitis patients with poor 
prognosis

LMWM and Specific Lipid Families  Dysregulated lipid metabolism is an impor-
tant and well-known risk factor in cardiovascular diseases. Understanding the whole 
lipidome signature in vascular pathophysiology is a current challenge in CVD 
research [91]. On the other hand, aqueous metabolites, including branched-chain 
and aromatic amino acids, FFAs, and some low-molecular-weight metabolite prod-
ucts of energetic and nitrogenate metabolism, like glycerol, are predictors of insulin 
resistance and the development of hyperglycemia and type 2 diabetes. It was 
reported that insulin resistance is linked to higher plasma glutamate levels but lower 
plasma glutamine levels and glutamine/glutamate ratios. The study also found that 
an excess of glutamine in blood relative to glutamate was associated with a reduced 
risk of incidence for T2DM [92].

The clinical development of high-throughput NMR for biomedical screening has 
recently experienced a significant expansion. Now, it is possible to obtain advanced 
metabolic profiling that includes the detailed lipoprotein profile and a complemen-
tary set of information related to the cardiometabolic status and inflammation, 
including a systemic glycoprotein profile and the concentrations of LMWM simul-
taneously. The whole analysis is compatible with the clinical requirements 
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regarding time, reproducibility, and scalability. It is expected to open a new horizon 
in evaluating metabolism and position lipidomics toward precision medicine.

In that sense, the present and future of NMR clinical applications—complement-
ing the CE-IVD Liposcale® test for lipoprotein profiling—seems to be a winning 
strategy shortly approaching affordable refined bioscreening tools to the patients 
(Table 4).

Table 4  Potential clinical applications of NMR

Biomarkers for disease events and risk prediction

CVD Phenylalanine and MUFAs are predictive for a high risk of CVD events. 
Omega-6 fatty acids and docosahexaenoic acid levels are inversely 
associated with the risk of a CVD event [93]

The 5-year risk of 
death

Glycoprotein acetylation, albumin, and VLDL particle size [94]

DM2 Eight amino acids with glycemia, branched-chained and aromatic amino 
acids, alanine, and glutamine were predictive of diabetes risk. Ketones 
acetoacetate and β-hydroxybutyrate, lipids, and lipoprotein subclass 
measures are associated with glycemia and type 2 diabetes risk [95–97]

Inborn errors NMR-based screening of newborn urine is currently the optimum method 
for detecting inherited errors of metabolism [98, 99]

Prognosis for HIV 
patients

A baseline NMR serum metabolomic signature is associated with 
immunological CD4(+) T-cell recovery in HIV-infected patients [100]

Chronic kidney 
disease

Lipoprotein alterations [101, 102]

Clinical oncology 
and cancer research

Branched-chain amino acids, lipoprotein alterations, and glycoprotein 
profile alteration [103–105]

Parkinson’s 
cognitive 
impairment

Glycoprotein alterations and HDL composition [106, 107]

Drug interventions
Statin therapy Lower levels of small VLDL particles and remnant cholesterol, in addition 

to the LDL-lowering effects [108]
Hormone therapy Changes in many fatty acids and amino acids [109]
PPAR-α/PPAR-γ 
agonist for 
treatment of 
NAFLD

Lower proatherogenic profile and remnant cholesterol, in addition to the 
TG-lowering effects and inflammatory GlycA markers profile [110]

Metabolic risk factor characterization
Adiposity Causal effects on numerous metabolic measures: Branched-chain and 

aromatic amino acids, omega-6 fatty acids, and glycoprotein acetylation, 
as well as multiple sizes and lipid classes of lipoprotein [111]

Insulin resistance Lipoprotein subclass profiling [112]
Birth weight Metabolic signature as the metabolite association pattern with higher 

adiposity or future cardiometabolic risk [113–115]
Menopause/aging Glutamine, tyrosine, and isoleucine, in addition to the atherogenic 

lipoprotein pattern [116]
Alcohol 
consumption

Biomarkers for alcohol intake beyond routine lipids, including adverse 
associations with omega-6 fatty acids, MUFAs, glutamine, and citrate 
[117]

Vitamin D Large VLDL and small LDL subclasses and related measures, for 
example, serum triglycerides [118]
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6 � Concluding Remarks and Future Perspective

The advances in lipidomic profiling techniques in the last two decades have opened 
up a new era of research into the role of lipids in health and disease, significantly 
improving our understanding of the underlying biological processes involved. More 
recently, the related technologies in specific fields, such as NMR lipoprotein profil-
ing and LC-MS liver health evaluation, reached the clinical environment after high-
throughput sample preparation, and screening became feasible. These technologies 
have been shown to have clinical utility in several applications and applied to the 
analysis of large cohort clinical trials and are cost-effective in the diagnosis of sub-
clinical CVD and metabolic-related conditions, such as metabolic-associated fatty 
liver disease (MAFLD) evaluation and stratification.

Currently, many lipidomic profiling applications are crossing the barrier from 
research to clinical application. The technology is now being applied in some 
advanced clinical settings, and it has the potential to be widely used in the future 
to diagnose diseases, stratify risk, and monitor the efficacy of all kinds of treat-
ments. Although the technology and techniques are still under development, lipi-
domic profiling has the potential to revolutionize the way we diagnose and treat 
diseases. For example, it could be used to identify biomarkers for diseases that are 
currently difficult to diagnose, such as cancer and Alzheimer’s disease. It could 
also be used to stratify risk for diseases, so that we can better target treatments to 
those who are most likely to benefit. Additionally, it could be used to monitor the 
efficacy of treatments, so that clinicians can check that they are working and that 
patients are not experiencing any adverse side effects. The widespread use of this 
technology has the potential to improve the health of millions of people around 
the world.

The global objective is to implement NMR and LC-MS lipidomics as precise and 
personalized technologies in an impactful way, to scale and make them accessible 
and effective to help improve the time-efficiency and cost-effectiveness of health-
care providers around the world. Once clinical lipidomic platforms have been devel-
oped and validated, they will need to be approved by the relevant regulatory body in 
the country where they will be used, as has already been done for the first platforms 
in the EU and USA. This is an important procedure, and it helps to ensure that the 
platforms are safe and effective.

Specific applications based on MS and NMR are already accessible around the 
world. However, the cost of the equipment is high, and the potential of the technol-
ogy is greater than the currently developed applications. The next step is to integrate 
lipidomic and lipoprotein profiling into clinical practice. For this to be achieved, the 
standardization of sample preparation is essential to ensure the accuracy and repro-
ducibility of results. Moreover, the streamlining of analytical procedures will make 
lipidomic profiling more accessible to a wider range of laboratories, and the estab-
lishment of metabolite databases will allow for the rapid identification of lipids and 
the comparison of results between different laboratories.
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6.1 � Envisaged Risks and Limitations of Clinical Lipidomics

Despite the technological advances, the implementation of new technologies into 
the clinical routine is not high-throughput. We have identified the principal risks for 
introducing lipidomics into clinical workflows into either clinical and implementa-
tion risks related to the adoption of current LC-MS and NMR approaches and tech-
nical and regulatory risks.

Clinical and Implementation Risks  Lipidomic applications are based on highly 
innovative technologies for bioscreening purposes. Although lipidomics has repeat-
edly been demonstrated to be cost-effective for CVD management, the price of the 
technology surpasses that of the gold standard, which is a significant barrier in 
stressed healthcare systems.

Moreover, lipidomic applications are primarily focused on cardiometabolic dis-
eases (CMD). However, lifestyle interventions and lifestyle changes can easily 
address obesity and concomitant metabolic alterations; the more expensive applica-
tions are unlikely to be easily implemented. Innovative solutions may be addressed 
after adherence to therapeutic improvement and lifestyle interventions, and comple-
mentary technologies can appear before the present solutions are broadly applied. 
However, personalized systems could still be applied to create patient awareness 
about personalized health status, favoring the adoption of a healthy lifestyle.

Technological Risks  Molecular signatures based on LC-MS-NMR are not suffi-
cient to explain the variability associated with cardiometabolic diseases and fail to 
identify individuals at higher risk of cardiometabolic risk (CMR). Alternatively, 
developments may produce faster diagnostic tests based on other technologies. 
However, based on previous evidence-based literature, lipidomic approaches have 
demonstrated discriminatory capacity among several diseases. They can be used for 
advanced lipoprotein testing (relevant for CVD events), which has already been 
recommended in the clinical guidelines for risk management in specific patients in 
countries such as the USA, Canada, and Spain. Moreover, these technologies could 
still be applied to future metabolomic profiling in pharmacological interventions, 
clinical trials, or other clinical cost-effective applications (CVD, inborn errors).

Regulatory Difficulties  Although regulatory bodies currently encourage novel 
technologies, large amounts of time and resources are required for approval by a 
regulatory body. Particularly for USFDA certification, if there is no precedent, novel 
technologies may experience serious delays before clinical introduction, even when 
promoted by previous IVD-CE marketing equivalent technology, threatening the 
economic sustainability of the whole technological development. Based on solu-
tions presented in this chapter, lipidomics has already crossed the regulatory barri-
ers under the risk classification ISO 13485:2016, requiring technical file preparation, 
CE declaration, and registry with the European Competent Authority. For future 
lipidomic applications, the established regulatory strategy might be useful. The 
technical documentation must provide evidence of conformance with the essential 
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requirements of 98/79/EC and the imminent regulation (EU) 2017/746 on in vitro 
diagnostic medical devices.

Despite the difficulties, the use of lipidomic technologies as diagnostic, prognos-
tic, and evaluation tools is expected to expand enormously as a result of the develop-
ment of modern medicine.

Lipidomic-based applications are expected to increase awareness regarding the 
need for diagnostic and prognostic technologies for other diseases. Lipidomics will 
help clinical assessment of different pathologies, spread the importance of 
metabolomic-based approaches, and ensure uptake of the already developed appli-
cations by clinicians, hospital decision-makers, and regulators.

The introduction of advanced molecular profiling is aligned with the global strat-
egy to incorporate personalized screening tools to define better monitoring and 
treatment strategies that will improve healthcare systems and empower clinicians 
with more detailed information, allowing an early therapeutic response and thus 
reducing the development of life-threatening symptoms.

The presented lipidomic-based technologies for liver disease and lipoprotein 
characterization exemplify the possibility of deploying advanced molecular screen-
ing tools in the clinical workflow. Beyond these two examples, using “omic” 
approaches to unravel the complexity of diseases will accelerate the understanding 
of diseases, help identify altered mechanisms that have not been described previ-
ously, discover prognostic biomarkers, monitor health status, and select better treat-
ments and therapies facilitating the healthcare transformation toward personalized 
medicine.
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LC-MS-Based Population Metabolomics: 
A Mini-Review of Recent Studies 
and Challenges from Sample Collection 
to Data Processing

Myriam Mireault and Lekha Sleno

Abstract  Metabolomics aims to identify and quantify metabolites in biological 
samples to understand better biological changes resulting from lifestyle, environ-
ment, or disease. This is challenging due to the structural diversity of the metabo-
lites and the complexity of samples of interest, such as blood and urine, useful in 
population studies to study biological changes in large cohorts. The limited number 
of commercially available standards and incomplete metabolite spectral databases 
impedes the identification of many metabolites. Furthermore, the need for more 
standardization in sample preparation, analysis, and interpretation of data is an 
important issue that can influence results in large cohort studies. Variations or errors 
occurring during the pre-analytical stage can highly affect levels of metabolites. In 
this mini-review, we outline the challenges associated with population metabolomic 
studies and show an overview of current practices in the field with some case studies.

Keywords  Population studies · Metabolomics · Sample collection · Analytical 
considerations · Data processing · Mini-review · Liquid chromatography · Mass 
spectrometry
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DNA	 Deoxyribonucleic acid
EDIH	 Empirical dietary index of hyperinsulinemia
EDTA	 Ethylenediaminetetraacetic acid
EI	 Electron ionization (electron impact)
ESI	 Electrospray ionization
FDR	 False discovery rate
GC-MS	 Gas chromatography-mass spectrometry
HDL	 High-density lipoprotein
HMDB	 Human metabolome database
IS	 Internal standard
LC-MS	 Liquid chromatography-mass spectrometry
LOD	 Limit of detection
LTR	 Long-term reference
MALDI	 Matrix-assisted laser desorption/ionization
MAR	 Missing at random
MCAR	 Missing completely at random
MNAR	 Missing not at random
MS	 Mass spectrometry
NIST	 National Institute of Standards and Technology
NMR	 Nuclear magnetic resonance
OPLS-DA	 Orthogonal partial least-squares discriminant analysis
PBS	 Phosphate-buffered saline
PCA	 Principal component analysis
QA	 Quality assurance
QC	 Quality control
QqQ	 Triple quadrupole
QqTOF	 Quadrupole time of flight
QRILC	 Quantile regression imputation of left-censored data
RNA	 Ribonucleic acid
ROC	 Receiver operating characteristic curve
SRM	 Standard reference material
VLDL	 Very-low-density lipoprotein
WGCNA	 Weighted gene co-expression network analysis

1 � Introduction

Metabolomics is one of the most recent branches of “omic” science, studying the 
molecules involved in the structure, function, or dynamics of a cell, tissue, or organ-
ism [1, 2]. It encompasses the qualitative and quantitative analysis of metabolites 
present in a biological sample to interrogate metabolic pathways. It is possible with 
metabolomics to investigate potential therapeutic targets and identify biomarkers 
for a disease’s early detection and progression [3, 4]. Small molecule metabolites 
(less than 1500 Da) are intermediates or end products of metabolism and comprise 
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a large variety of chemical structures [2, 5]. They are also considered to correlate 
more with the phenotype of a tissue or organism than proteins and genes, thereby 
allowing fast detection of biological changes [5].

The metabolome’s structural diversity increases the analyses’ complexity com-
pared to the proteome, genome, and transcriptome (Fig. 1). Proteins are combina-
tions of 20 amino acids, while DNA and RNA are each composed of 4 nucleotides. 
Metabolites are formed from different endogenous or exogenous compounds and do 
not have predefined structures [6]. Isomeric metabolites have different structures 
but identical exact mass, increasing the difficulty of metabolomic analyses [5].

The choice of a biological system can influence the metabolome. Urine and 
blood are commonly used in metabolomics because of their wide range of metabo-
lites and their accessibility, as well as having the ability to represent an overall pic-
ture of metabolism from different organs and tissues [7]. Measuring polar metabolites 
in urine can inform on the major elimination pathways from food, drugs, and envi-
ronmental contaminants [8]. Blood is composed of polar and non-polar molecules, 
excreted or secreted by tissues [9]. Thus, these two biofluids offer a global view of 
a person’s exposure and health status [7].

In metabolomics, two approaches can be employed; targeted, and untargeted 
analysis. The targeted approach quantifies a limited number of known metabolites 
in a sample. However, the small number of known metabolites and commercially 
available pure reference standards limits this approach in epidemiological studies. 
The untargeted analysis provides a more comprehensive view by identifying known 
and unknown metabolites. It requires a nonselective and reproducible preparation to 

Fig. 1  The complexity of the different omic sciences, showing structural diversity involved in 
metabolomic studies
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avoid any change in the metabolic profile [10]. Due to a lack of standardization of 
protocols, several pre-analytical, analytical, and post-analytical approaches may 
influence the results of such studies. Common practices and challenges related to 
epidemiological studies using urine and blood will be discussed in this chapter.

2 � Pre-Analytical Factors

The pre-analytical steps (Figs. 2 and 3) greatly impact the results, corresponding to 
60–80% of laboratory errors [11, 12]. Due to the presence of enzymes, metabolism 
continues even after biological samples are collected unless properly quenched, 
resulting in varying levels of some compounds [7]. Sample degradation is also an 
important factor to consider when analyzing metabolites with limited stability. 
Therefore, sample collection, preparation, and storage must be considered crucial 
steps in metabolomic studies [13].

Fig. 2  Pre-analytical steps involved in metabolomic analyses of blood samples

Fig. 3  Pre-analytical steps to consider for urine sample
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2.1 � Blood Samples

Whole blood, plasma, or serum is usually prepared for metabolomic studies. When 
plasma samples are collected, anticoagulants, such as ethylenediaminetetraacetic 
acid (EDTA), sodium citrate, and heparin, are added to inhibit the coagulation cas-
cade [7, 14]. EDTA and sodium citrate are chelators of calcium which acts as a 
cofactor in the cascade, while heparin activates antithrombin [14]. The choice of 
one anticoagulant over another does not appear to significantly affect the levels of 
metabolites [13]. Nevertheless, citrate and EDTA can be detected by mass spec-
trometry and interfere with the analysis of metabolites of interest. Citrate can also 
alter the sample pH and reduce the yield of metabolite extraction. Unlike the other 
two anticoagulants, heparin is not detectable with MS, but it is often added as lith-
ium or sodium salts that can form adducts during electrospray ionization [7].

Special precautions must be taken when collecting blood samples to avoid hemo-
lysis. Erythrocytes can release intracellular components, including hemoglobin, and 
alter the metabolic profile of plasma and serum [7]. Other pre-analytical factors 
influencing metabolite levels include sample collection time, delays, and ambient 
temperature [7, 13].

Samples are often stored for a long period of time in an epidemiological study. 
However, storage for over 5 years at −80 °C can significantly change metabolite 
concentrations. It is preferable to store samples in liquid nitrogen as aliquots to 
avoid repeated freeze-thaw cycles that can alter the metabolic profile [7, 13].

2.2 � Urine Samples

Urine differs from other biofluids in that it is easily collected in large quantities [7, 
8]. However, collection at different times of the day and with or without fasting may 
interfere with the urinary metabolic profile [7, 13]. Metabolites from the diet are 
also more likely to be detected in urine than in other biofluids [15]. Therefore, it is 
preferable to standardize the time of collection and obtain samples after fasting [13].

Bacteria can also alter urinary metabolite levels in samples, which grow rapidly 
even after samples are collected [7]. Centrifugation and filtration can remove bacte-
ria and cellular debris. However, high-speed pre-centrifugation can break the cells 
and cause the release of cellular components, which can alter the metabolic profile. 
Mild centrifugation at 1000–3000 g is preferred to remove contaminants without 
damaging cells. Filtration can sometimes also lead to a loss of metabolites [16]. 
Storing samples at 4 °C or lower immediately after sample collection inhibits bacte-
rial growth [7]. In the long term, it is preferable to store samples in liquid nitrogen 
or at −80  °C and in smaller aliquots to limit freeze/thaw cycles and reduce the 
potential for metabolite degradation [7, 13].

The concentration of metabolites in urine can also vary significantly between 
samples depending on hydration status and other variables [17]. Creatinine concen-
trations or osmolarity can be used to normalize urine samples. However, creatinine 
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levels can vary depending on different factors, including age, gender, ethnicity, diet, 
muscle mass, exercise level, time of day, and disease states. Osmolarity would pro-
vide better separation of biological groups compared with creatinine but is less 
available in practice. Specific gravity, generally used as an alternative to osmolarity, 
corresponds to the ratio between the density of urine and water measured at constant 
temperature by refractometry [17]. Pre-acquisition normalization has been shown to 
provide better results than post-acquisition normalization, with a combination of 
both being even better [13], for instance, normalizing urine dilution steps during 
sample preparation based on creatinine concentration followed by a second normal-
ization of raw data using either endogenous signals in the urine or average ion inten-
sity for the chromatographic run.

3 � Quality Assurance and Quality Control

Like many aspects of metabolomics, quality standards are not well defined. Poor 
data quality management leads to biased results, wasted resources, and can damage 
the credibility of this field of study [18]. Quality assurance (QA) establishes the 
prerequisites (equipment maintenance, personnel training, etc.) to ensure the quality 
and reproducibility of results, while quality control (QC) is important to make sure 
that no bias occurs during sample preparation and analysis [18–20]. The QC proce-
dure includes using several control samples, including blanks, pooled QC or intra-
study QC samples, long-term reference (LTR) or intra-laboratory QC samples, and 
standard reference material (SRM)/interlaboratory QC samples. Internal standards, 
technical replicates, and random sample analysis are also often used [18]. However, 
each laboratory uses different methods, which makes it difficult to harmonize results 
[18, 20]. Long et al. developed a list of recommendations for good laboratory prac-
tices (QA and QC) to ensure quality results [19]. They are classified into five steps 
(pre-pre-analytical, pre-analytical, analytical, post-analytical, and post-post-
analytical), and each is accompanied by commonly made errors.

During collection, the most common errors are due to the misidentification of 
samples or improper collection, resulting in sample hemolysis [12]. Centrifugation 
conditions (time and speed), handling (sorting, pipetting/aliquoting), storage, and 
inappropriate transport of samples are also errors often observed in the medical 
environment and can have an impact on the metabolic profile [11, 12, 19]. Although 
less frequent, analytical errors can also occur [12]. They are caused by equipment 
malfunction, interference from an endogenous or exogenous compound, or a failure 
not detected by quality control. Therefore, it is important to perform regular main-
tenance on the equipment and use various QC samples to ensure the quality of the 
data generated [19]. Following data acquisition, there may also be erroneous valida-
tion, incorrect data entry, or misinterpretation of results [19]. Thus, errors can occur 
at different stages of the analysis process. However, many of them are human errors, 
and it is important to prioritize staff training to avoid them.
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4 � Identification of Metabolites

4.1 � Confidence Levels

Confidence levels ensure the quality of metabolite identification. They classify from 
0 to 4, with 0 being the highest confidence level. This level requires determining the 
three-dimensioanl structure and the complete stereochemistry of the metabolites of 
interest. Level 1 uses a reference standard to identify metabolites from two orthogo-
nal techniques, such as MS/MS spectrum and retention time. Level 2 allows a pos-
sible identification of metabolites by comparing information from two orthogonal 
techniques with the literature or a database. Level 3 determines a possible class of 
metabolites based on at least one technique. Finally, level 4 does not allow the iden-
tification, but the compound remains present in the sample after extraction and can 
be quantified [19, 21].

To ensure the identification of metabolites present in samples, it is always prefer-
able to use reference standards (level 1) [5, 21]. However, obtaining a complete set 
of metabolite standards can be an arduous and expensive task. Initiatives for creat-
ing metabolite standard mixes are an interesting concept to reduce the cost of indi-
vidual standards. A comparison of MS/MS spectra and retention times to those 
present in databases allows, at best, a level 2 confidence [22].

4.2 � Databases for Metabolite Identification

Several databases, such as Metlin, HMDB, MassBank, and NIST, are available to 
support metabolite identification. These can contain endogenous metabolites, exog-
enous compounds, and transformation products from food, microbiome, drugs, 
plants, and pollutants [23]. Nevertheless, metabolite identification remains com-
plex, and it is estimated that less than 25% of MS/MS spectra can be identified due 
to a low number of metabolites listed in these databases and the limited number of 
commercially available pure reference standards [5, 23].

Some isomeric metabolites have a distinct structure but identical molecular for-
mulae and, therefore, the same exact mass. The presence of these isomers can lead 
to false discovery rates (FDRs) due to the similarity between many MS/MS spectra 
present in databases [5]. A low FDR allows reliable annotation of a small number of 
metabolites, while a high FDR allows annotation of a larger number of metabolites 
whose quality may be poor [24]. Thus, FDRs are generally higher in large databases 
because they have many MS/MS spectra for the same compound. Each device pro-
vides a different spectrum, and the diversity of the methods used leads to many 
redundancies [5]. It is generally accepted that the best scenario would be to compare 
spectra obtained under the exact conditions as the metabolomic data was acquired. 
Different platforms can show variable fragmentation, especially if the collision 
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energies, for instance, are not the same. Another important concept would be the 
difference between instruments having varying mass resolutions. A low-resolution 
system, such as a triple quadrupole, allows only unit resolution to be achieved; 
therefore, molecular formulae of fragment ions detected cannot be confirmed. 
MassBank and NIST contain MS/MS spectra from different instruments (QqTOF, 
Orbitrap, QqQ, ion-trap) and different ionization techniques (ESI, EI, CI, APCI, and 
MALDI) [23]. HMDB also contains spectra from different devices but uses only 
electrospray ionization (ESI) [25]. Metlin is a database whose spectra are acquired 
on the electrospray-quadrupole-time-of-flight (QqTOF) platform from the Agilent 
Technologies. The spectra have been generated in positive and negative modes at 
three distinct collision energies (10, 20, and 40 V) [23, 26].

4.3 � Data Processing Tools

Data processing is an essential and usually very time-consuming step in untargeted 
metabolomics. For this purpose, many tools are available, both commercially or 
freely online, using script platforms (such as R and python) [24, 27]. XCMS, 
MZmine, and MS-DIAL are commonly used in metabolomics. They allow filtering, 
feature detection, alignment, annotation, and identification of metabolites [28–30]. 
XCMS and MZmine also include statistical tests, while only XCMS allows the 
analysis of metabolic pathways and data integration with proteomics and genomics 
[22, 28, 29]. Other metabolomic analysis tools are available and have been dis-
cussed in various reviews [21, 22, 24]. However, all these softwares use different 
algorithms, resulting in a lack of reproducibility and consistency. Studies have 
shown differences in the number of features detected and in statistical analysis 
between tools, resulting in the identification of false-positive biomarkers [31–34]. 
Hohrenk et al. [33] tested four different softwares (MZmine2, enviMass, Compound 
Discoverer, and XCMS online) and found that only 10% of identified features 
were common.

5 � Analytical Challenges

5.1 � Variation of Metabolites

Metabolite variability is an important issue in epidemiological studies. It can arise 
from inter- and intra-subject variability or lack of technical reproducibility [4]. 
Metabolites can vary according to different factors, including age, gender, BMI, 
pregnancy, diet, ethnicity, smoking, environment, and physical activity [15, 35, 36]. 
Therefore, obtaining a large cohort that could correct all these criteria is difficult. 
Several authors report having an insufficient number of participants in the limita-
tions of their study, despite a very large number of participants [37–42].
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5.2 � Missing Values

Missing values are a key factor to consider when analyzing the results. They result 
from metabolite signals in some samples and are absent in others. This may be due 
to biological variation between two groups of samples (control vs. disease) or exter-
nal factors, such as pre-analytical conditions or chemical instability [4]. Missing 
values from technical factors are divided into three classes, missing not at random 
(MNAR) values, missing at random (MAR) values, and missing completely at ran-
dom (MCAR) values, also called abundance-dependent missing values [43, 44]. 
MCAR values result from random errors acquired during data acquisition, such as 
reduced ionization efficiency or ion suppression [43]. MAR values are more general 
and are difficult to distinguish from MCAR, as they are often combined [44]. They 
may result from poor peak detection or deconvolution of two co-eluting peaks [45]. 
Finally, the MNAR values correspond to metabolites with concentrations below the 
limit of detection [43].

In epidemiological studies, missing values are often replaced by half or a fraction 
of the lowest detected value [4]. However, the different types of missing values may 
influence the choice of approach to adopt. Random forest is considered the best 
approach for MCAR/MAR, while quantile regression imputation of left-censored 
data (QRILC) is preferred for MNAR [45]. When the missing value is from a bio-
logical factor, a change may distort the results; therefore, it would be better, in this 
case, to keep these values as null values [4]. Therefore, the choice of method consid-
ers the authors’ opinion on the nature of the missing values, which can be verified 
by comparing the different results obtained using these methods [46].

Following the missing data processing, the metabolites usually undergo a log 
transformation to normalize the results [4]. This method allows us to obtain a 
Gaussian-like distribution in the metabolite variables and to compare the statistical 
analyses [46]. However, this approach cannot be applied to all metabolites, and a 
comparison of the distribution of values must be performed before and after the 
transformation. When there is no change, it is better to keep the initial values [46].

6 � Statistical Analysis

Several statistical analyses are used in epidemiological studies. Nevertheless, some 
tests seem to be used more than others. According to a survey of laboratories partici-
pating in the COnsortium of METabolomics Studies (COMETS), univariate regres-
sion is mostly used in metabolomic analysis [4]. Specifically, it is the linear 
regression that associates a metabolite with an outcome. It is combined with multi-
ple correction tests, such as Benjamini-Hochberg, to determine the false discovery 
rate or Bonferroni correction to control the false positive or type 1 error [4, 46]. 
However, the Bonferroni correction is a conservative approach and can increase the 
risk of false negatives or type 2 error [47]. Multivariable analysis of metabolites 
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with covariates and principal component analysis (PCA) are also widely used [4]. 
Unlike linear regression, PCA does not identify a specific biomarker. However, it 
allows the correlation between a set of metabolites and an outcome [46].

The choice of statistical tests will depend on the objective of the study. Many 
researchers use the area under the Receiver Operating Characteristic Curve (ROC) 
to determine the quality of a biomarker, while partial correlation is the most com-
mon method for analyzing intercorrelations between different metabolites. 
Laboratories that have performed network analysis [4] used the weighted gene co-
expression network analysis (WGCNA) and MetaboAnalyst, for a freely available 
and user-friendly data analysis online platform. Recently, a recent version of 
MetaboAnalyst (5.0) has been released online and provides better support for statis-
tical analysis (univariate and multivariate) and functional analysis (enrichment, 
pathway, and functional meta-analysis) [48, 49].

7 � Selected Case Studies

Since Oliver et al. [50] introduced the metabolome concept in 1998, metabolomic 
studies related to disease and new biomarkers have continued to increase [5]. 
Cancers (breast, colon, lung) [39, 51–55], autism spectrum disorder [56], hyperin-
sulinemia [38], eating disorders [41], chronic kidney disease [57], depression [58], 
osteoporosis [59], metabolic syndrome [60], ovarian reserve dysfunction [61], and 
obesity [62] are few examples of diseases that are the focus of population-based 
metabolomic studies. They perform metabolomic profiling to predict disease inci-
dence or progression. Kelly et al. [56] showed that plasma metabolite levels could 
predict autism in children aged 8 years with good sensitivity and specificity. 
Tryptophan and tyrosine metabolic pathways would be associated with better ages 
and stages questionnaire (ASQ) communication scores. Tabung et al. [38] evaluated 
the correlation between plasma metabolites and the empirical dietary index of 
hyperinsulinemia (EDIH). They showed increased levels of diacylglycerol, triacyl-
glycerols, C10:2 carnitine, and C18:2 sphingomyelins and decreased phospholipid 
levels of trigonelline, and eicosapentaenoate would correlate with elevated EDIH 
[38]. Another study performed metabolic profiling of plasma in 7-year-old children. 
It showed that high levels of VLDL, triglycerides, apolipoprotein-B/apolipoprotein-
A, and monounsaturated fatty acids ratio could decrease the probability of develop-
ing anorexia nervosa at the age of 18, while high levels of HDL, docosahexaenoic 
acid, polyunsaturated fatty acid ratio, and fatty acid unsaturation could increase this 
risk [41].

Other population-based studies focus more on factors leading to metabolite vari-
ability in different biological matrices to characterize them better. Wang et al. per-
formed metabolic profiling in plasma [63] and urine [64] to identify diet-related 
biomarkers. They associated 238 plasma metabolites with 74 food groups and 513 
urinary metabolites with 79 food groups. Darst et al. [65] instead studied the effect 
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of age and sex on the metabolic profile of plasma. They found that 623 metabolites 
were associated with age, of which 29 steroids decreased with age while levels of 
most fatty acids and sphingolipids increased. Furthermore, 695 metabolites were 
associated with sex, 55% of which decreased in women (mainly steroids and 
amino acids).

Nevertheless, for each study, information regarding the pre-analytical procedures 
(collection, preparation, or storage sample) and methods to ensure quality control or 
data processing is often lacking. This increases the difficulty of comparing two 
studies with each other. Thus, the experimental approach used in some metabolomic-
related population studies is summarized in Tables 1, 2 and 3.

7.1 � Pre-Analytical Procedures

For sample collection, it was common for patients to be fasting (2 h overnight). 
Plasma samples were collected in tubes containing EDTA. Only the study by Larkin 
et al. [53] used lithium heparin, whereas three studies did not specify the anticoagu-
lant used. Several studies did not describe the steps involved in the preparation of 
plasma and serum samples. In general, centrifugation parameters, time delays, or 
any other information that could influence the levels of metabolites when obtaining 
either of these two matrices were not specified.

Conversely, some studies shared not only all of this information but also the aver-
age total time required for sample preparation [40, 52, 65, 66], an important factor 
for the variability of blood metabolites. The studies did not use pre-centrifugation 
and filtration for urine samples to remove bacteria. Some of them kept the samples 
at 4 °C and at a lower temperature, or in some cases, it is simply not defined. Two 
of five studies normalized metabolite concentrations to osmolality. Only one per-
formed a creatinine normalization, which was not indicated in the other two studies. 
For all biofluids, samples were generally aliquoted before being stored. In the long 
term, samples were stored at −80 °C to avoid changes in metabolite levels. Some 
studies opted for storage in liquid nitrogen or at −70 °C.

7.2 � Data Acquisition

Liquid chromatography-mass spectrometry (LC-MS) is the most used analytical 
method. Nuclear magnetic resonance (NMR) is also widely used, while only three 
studies used gas chromatography-mass spectrometry (GC-MS). To ensure the qual-
ity of the results, the most common method was to use a pool of samples injected 
several times. The coefficient of variation (CV) was then determined from this pool. 
Duplicates or triplicates were also used to assess inter- or intra-batch variability. 
Lau et al. [66] used several techniques to ensure the quality of their results. Internal 

LC-MS-Based Population Metabolomics: A Mini-Review of Recent Studies…



280

Ta
bl

e 
1 

C
an

ce
r-

re
la

te
d 

m
et

ab
ol

om
ic

 p
op

ul
at

io
n 

st
ud

ie
s

Su
bj

ec
t

Sa
m

pl
e

C
oh

or
t

D
at

a 
pr

e-
ac

qu
is

iti
on

D
at

a 
ac

qu
is

iti
on

D
at

a 
po

st
-a

cq
ui

si
tio

n
St

at
is

tic
al

 a
na

ly
se

s
O

ut
co

m
es

 o
f 

st
ud

y
R

ef
er

en
ce

B
re

as
t 

ca
nc

er
Se

ru
m

17
4 

w
om

en
 

(a
ge

d 
35

–6
4)

– 
�Fa

st
in

g 
bl

oo
d 

sa
m

pl
e

– 
A

liq
uo

te
d

– 
�St

or
ed

 in
 li

qu
id

 
N

2

N
M

R
– 

M
et

ab
oA

na
ly

st
– 

�M
is

si
ng

 v
al

ue
s 

ha
lf

 o
f 

th
e 

L
O

Q
– 

�>
 2

0%
 u

nd
er

 
L

O
Q

 e
xc

lu
de

d

– 
�L

og
-t

ra
ns

fo
rm

at
io

n
– 

�W
ilc

ox
on

 r
an

k-
su

m
 

te
st

s
– 

Fr
eq

ue
nc

ie
s

– 
�Pe

ar
so

n’
s 

ch
i-

sq
ua

re
d 

te
st

s
– 

�C
on

di
tio

na
l l

og
is

tic
 

re
gr

es
si

on
 m

od
el

s
– 

�B
en

ja
m

in
i-

H
oc

hb
er

g
– 

PC
A

– 
O

PL
S-

D
A

– 
�A

la
ni

ne
, l

eu
ci

ne
, t

yr
os

in
e,

 
va

lin
e,

 la
ct

ic
 a

ci
d,

 p
yr

uv
ic

 
ac

id
, t

ri
gl

yc
er

id
es

, l
ip

id
 

m
ai

n 
fr

ac
tio

n,
 a

nd
 1

1 
V

L
D

L
 li

pi
d 

su
bf

ra
ct

io
ns

 
w

er
e 

in
ve

rs
el

y 
as

so
ci

at
ed

 
w

ith
 h

ig
h 

M
B

D
 B

C
 c

as
es

– 
�A

ce
tic

 a
ci

d 
w

as
 d

ir
ec

tly
 

as
so

ci
at

ed
 w

ith
 h

ig
h 

M
B

D
 c

as
es

– 
�Ph

en
yl

al
an

in
e,

 ty
ro

si
ne

, 
an

d 
tr

yp
to

ph
an

 p
at

hw
ay

 
em

er
ge

d 
M

B
D

 B
C

 c
as

es

[5
1]

M. Mireault and L. Sleno



281
Su

bj
ec

t
Sa

m
pl

e
C

oh
or

t
D

at
a 

pr
e-

ac
qu

is
iti

on
D

at
a 

ac
qu

is
iti

on
D

at
a 

po
st

-a
cq

ui
si

tio
n

St
at

is
tic

al
 a

na
ly

se
s

O
ut

co
m

es
 o

f 
st

ud
y

R
ef

er
en

ce

B
re

as
t 

ca
nc

er
Se

ru
m

62
 A

si
an

 
fe

m
al

es
C

ol
le

ct
io

n
– 

�In
cu

ba
te

d 
at

 r.
t. 

fo
r 

30
 m

in
– 

�C
en

tr
if

ug
ed

 a
t 

30
00

 r
/m

in
, 

5 
m

in
– 

�St
or

ed
 a

t 
−

80
 °

C
,

M
et

ab
ol

ite
 

ex
tr

ac
tio

n
– 

�Pr
ot

ei
n 

pr
ec

ip
ita

tio
n 

by
 

M
eO

H
– 

�C
en

tr
if

ug
ed

 a
t 

12
00

0 
rp

m
, 

15
 m

in
 a

t 4
 °

C
– 

�Sa
m

pl
es

 k
ep

t a
t 

4 
°C

 th
ro

ug
ho

ut
 

an
al

ys
is

U
H

PL
C

-Q
T

O
F 

M
S

– 
�L

eu
ci

ne
 

en
ce

ph
al

in
 u

se
d 

as
 lo

ck
 m

as
s 

fo
r 

in
te

rn
al

 m
as

s 
ca

lib
ra

tio
n

– 
�Po

ol
ed

 Q
C

 
sa

m
pl

e 
in

je
ct

ed
 

ev
er

y 
ei

gh
t 

sa
m

pl
es

– 
�A

gi
le

nt
 M

as
s 

Pr
ofi

le
r 

so
ft

w
ar

e
– 

�In
-h

ou
se

 li
br

ar
y,

 
M

E
T

L
IN

 a
nd

 
H

M
D

B
M

et
Sc

ap
e

– 
�C

or
re

la
tio

n-


ba
se

d 
m

et
ab

ol
ic

 
ne

tw
or

ki
ng

 
an

al
ys

is
– 

�M
et

ab
oA

na
ly

st
 

4.
0 

fo
r 

m
et

ab
ol

ic
 

pa
th

w
ay

 
an

al
ys

is
 

(K
E

G
G

)

– 
�L

og
-t

ra
ns

fo
rm

at
io

n
– 

�A
ut

os
ca

lin
g

SI
M

C
A

-P
– 

PC
A

– 
�O

PL
S-

D
A

M
et

ab
oA

na
ly

st
 4

.0
– 

�U
ni

va
ri

at
e 

st
at

is
tic

al
 

an
al

ys
is

M
et

Sc
ap

e
– 

�Pe
ar

so
n’

s 
co

rr
el

at
io

n 
co

ef
fic

ie
nt

– 
�D

eb
ia

se
d 

sq
ua

re
d 

pa
rt

ia
l c

or
re

la
tio

n
SP

SS
– 

R
O

C
 c

ur
ve

– 
�A

ll 
al

te
re

d 
am

in
o 

ac
id

s 
w

er
e 

up
re

gu
la

te
d,

 w
hi

le
 

al
l c

ar
di

ol
ip

in
 (

C
L

) 
sp

ec
ie

s 
ar

e 
do

w
nr

eg
ul

at
ed

 
in

 th
e 

T
N

B
C

 s
am

pl
es

– 
�G

ly
ce

ro
ph

os
ph

ol
ip

id
 

m
et

ab
ol

is
m

, a
m

in
oa

cy
l-


tR

N
A

 b
io

sy
nt

he
si

s,
 a

nd
 

va
lin

e,
 le

uc
in

e,
 a

nd
 

is
ol

eu
ci

ne
 b

io
sy

nt
he

si
s 

w
er

e 
si

gn
ifi

ca
nt

ly
 a

lte
re

d
– 

�dU
M

P,
 

L
-o

ct
an

oy
lc

ar
ni

tin
e,

 
L

-p
ro

lin
e,

 ly
so

PC
 (

22
:1

),
 

PS
 (

22
:0

/0
:0

),
 a

nd
 u

ri
c 

ac
id

 c
or

re
la

te
d 

w
ith

 a
 

fiv
e-

ye
ar

 s
ur

vi
va

l r
at

e 
in

 
T

N
B

C
 p

at
ie

nt
s

[5
4]

(c
on

tin
ue

d)

LC-MS-Based Population Metabolomics: A Mini-Review of Recent Studies…



282

Ta
bl

e 
1 

(c
on

tin
ue

d)

Su
bj

ec
t

Sa
m

pl
e

C
oh

or
t

D
at

a 
pr

e-
ac

qu
is

iti
on

D
at

a 
ac

qu
is

iti
on

D
at

a 
po

st
-a

cq
ui

si
tio

n
St

at
is

tic
al

 a
na

ly
se

s
O

ut
co

m
es

 o
f 

st
ud

y
R

ef
er

en
ce

C
an

ce
r

Pl
as

m
a

29
3 

pa
rt

ic
ip

an
ts

 
(a

ge
 ≥

 4
0)

– 
�Fa

st
in

g 
bl

oo
d 

(2
 h

)
– 

�L
ith

iu
m

-
he

pa
ri

n 
tu

be
s

– 
�L

ef
t t

o 
st

an
d 

at
 

ro
om

 
te

m
pe

ra
tu

re
– 

�C
en

tr
if

ug
at

io
n 

at
 2

20
0 

×
 g

, 
10

 m
in

– 
�St

or
ed

 a
t −

80
 °

 
C

– 
�D

ef
ro

st
ed

 o
n 

ic
e

– 
�M

ix
ed

 w
ith

 
N

M
R

 b
uf

fe
r

– 
�C

en
tr

if
ug

at
io

n 
at

 1
6,

00
0 

×
 g

, 
3 

m
in

N
M

R
– 

Po
ol

ed
 s

am
pl

es
– 

�A
ss

ig
nm

en
ts

 b
y 

re
fe

re
nc

e 
to

 
lit

er
at

ur
e 

va
lu

es
– 

H
M

D
B

R
 p

ac
ka

ge
– 

O
PL

S-
D

A
– 

�Tw
o-

si
de

d 
K

ol
m

og
or

ov
-

Sm
ir

no
v 

te
st

– 
R

O
C

 c
ur

ve
s

– 
�Pe

ar
so

n’
s 

co
rr

el
at

io
n

– 
�O

PL
S-

D
A

 m
od

el
s 

se
pa

ra
te

d 
un

w
el

l p
at

ie
nt

s 
w

ith
 s

ol
id

 tu
m

or
 

di
ag

no
se

s 
fr

om
 th

os
e 

w
ith

 
no

nc
an

ce
r 

di
ag

no
se

s 
w

ith
 

an
 A

U
C

 o
f 

0.
91

, 
se

ns
iti

vi
ty

 o
f 

94
%

, a
nd

 a
 

sp
ec

ifi
ci

ty
 o

f 
82

%
– 

�O
PL

S-
D

A
 m

od
el

s 
al

so
 

se
pa

ra
te

d 
pa

tie
nt

s 
w

ith
 a

 
m

et
as

ta
tic

 c
an

ce
r 

fr
om

 
th

os
e 

w
ith

 n
on

m
et

as
ta

tic
 

ca
nc

er
 w

ith
 a

n 
A

U
C

 o
f 

0.
91

, s
en

si
tiv

ity
 o

f 
94

%
, 

an
d 

sp
ec

ifi
ci

ty
 o

f 
88

%

[5
3]

M. Mireault and L. Sleno



283
Su

bj
ec

t
Sa

m
pl

e
C

oh
or

t
D

at
a 

pr
e-

ac
qu

is
iti

on
D

at
a 

ac
qu

is
iti

on
D

at
a 

po
st

-a
cq

ui
si

tio
n

St
at

is
tic

al
 a

na
ly

se
s

O
ut

co
m

es
 o

f 
st

ud
y

R
ef

er
en

ce

C
ol

or
ec

ta
l 

ca
nc

er
(c

ac
he

xi
a)

U
ri

ne
52

 
pa

rt
ic

ip
an

ts
– 

A
liq

uo
te

d
– 

�St
or

ed
 a

t 
−

80
 °

C

– 
�C

re
at

in
in

e 
no

rm
al

iz
at

io
n

– 
�IS

G
C

-M
S

– 
�Po

ol
ed

 Q
C

 
sa

m
pl

es
 (

ev
er

y 
ba

tc
h)

– 
�K

ov
at

s 
re

te
nt

io
n 

m
ix

tu
re

s 
(e

ve
ry

 
ba

tc
h)

– 
�L

O
E

SS
 f

un
ct

io
n

– 
%

R
SD

– 
�A

na
ly

ze
d 

pa
ir

ed
 

sa
m

pl
es

 in
 s

am
e 

an
al

yt
ic

al
 

ba
tc

he
s

N
M

R
– 

�Q
C

 s
am

pl
es

 
w

er
e 

ru
n 

at
 th

e 
be

gi
nn

in
g 

an
d 

en
d 

of
 e

ac
h 

an
al

yt
ic

al
 b

at
ch

– 
�C

itr
at

e 
w

as
 

m
ea

su
re

d 
in

 
du

pl
et

s

– 
�M

et
ab

oA
na

ly
st

 
so

ft
w

ar
e 

4.
0

G
C

-M
S

– 
M

Z
M

in
e 

2.
0

– 
H

M
D

B
 a

nd
 

Pu
bC

he
m

– 
�A

ut
he

nt
ic

 
re

fe
re

nc
e 

st
an

da
rd

N
M

R
– 

�B
ru

ke
r 

To
pS

pi
n 

so
ft

w
ar

e 
w

ith
 

ze
ro

 fi
lli

ng
– 

�D
at

aC
ho

rd
 

sp
ec

tr
um

 m
in

er
 

so
ft

w
ar

e
– 

�C
he

no
m

x 
lib

ra
ry

/H
M

D
B

– 
�A

ut
he

nt
ic

 
re

fe
re

nc
e 

st
an

da
rd

– 
�L

og
-t

ra
ns

fo
rm

at
io

n
– 

A
ut

os
ca

le
d

– 
�B

en
ja

m
in

i-
H

oc
hb

er
g

– 
�O

ne
-w

ay
 A

N
O

V
A

– 
�Pe

ar
so

n’
s 

ch
i-

sq
ua

re
d 

te
st

– 
�Pe

ar
so

n’
s 

pa
rt

ia
l 

co
rr

el
at

io
n 

co
ef

fic
ie

nt
s

– 
O

PL
S-

D
A

– 
�L

ev
el

s 
of

 a
ce

to
ne

, 
ar

gi
ni

ne
, 2

.3
.-

bu
ta

ne
di

ol
, 

an
d 

2.
3.

- 
di

hy
dr

ox
yb

ut
yr

at
e 

de
cr

ea
se

d 
in

 c
ac

he
ct

ic
 

co
m

pa
re

d 
to

 n
on

-
ca

ch
ec

tic
 p

at
ie

nt
s

– 
�G

ly
ce

ro
l p

ho
sp

ha
te

 
sh

ut
tle

 m
et

ab
ol

is
m

 a
nd

 
gl

yc
in

e,
 k

et
on

e 
bo

dy
 

m
et

ab
ol

is
m

, a
nd

 s
er

in
e 

m
et

ab
ol

is
m

 w
er

e 
th

e 
to

p 
3 

pa
th

w
ay

s

[3
9]

(c
on

tin
ue

d)

LC-MS-Based Population Metabolomics: A Mini-Review of Recent Studies…



284

Ta
bl

e 
1 

(c
on

tin
ue

d)

Su
bj

ec
t

Sa
m

pl
e

C
oh

or
t

D
at

a 
pr

e-
ac

qu
is

iti
on

D
at

a 
ac

qu
is

iti
on

D
at

a 
po

st
-a

cq
ui

si
tio

n
St

at
is

tic
al

 a
na

ly
se

s
O

ut
co

m
es

 o
f 

st
ud

y
R

ef
er

en
ce

L
un

g 
ca

nc
er

U
ri

ne
56

4 
ne

ve
r-

 
sm

ok
in

g 
fe

m
al

es
 (

ag
ed

 
52

–6
6)

– 
�St

er
ili

ze
d 

cu
p 

co
nt

ai
ni

ng
 

as
co

rb
ic

 a
ci

d 
(a

nt
io

xi
da

nt
)

– 
�K

ep
t a

t 0
 °

C
 to

 
−

4 
°C

– 
�Pr

oc
es

se
d 

w
ith

in
 6

 h
– 

�St
or

ag
e 

at
 

−
70

 °
C

L
C

-M
S 

an
d 

N
M

R
– 

�Po
ol

ed
 Q

C
 

sa
m

pl
es

 (
ev

er
y 

fiv
e 

pa
tie

nt
 

sa
m

pl
es

)

L
C

-M
S

– 
�Pr

og
en

es
is

 
(n

on
lin

ea
r 

dy
na

m
ic

s)
– 

�X
C

M
S 

so
ft

w
ar

e
– 

�C
V

 >
30

%
, 

fe
at

ur
es

 w
er

e 
ex

cl
ud

ed
– 

�In
-h

ou
se

 
da

ta
ba

se
s,

 
H

M
D

B
 a

nd
 

M
E

T
L

IN
N

M
R

– 
�M

A
T

L
A

B
 

R
20

12
b

– 
�N

or
m

al
iz

ed
 b

y 
pr

ob
ab

ili
st

ic
 

qu
ot

ie
nt

M
is

si
ng

 d
at

a
– 

�M
et

ab
ol

ite
s 

w
er

e 
ex

cl
ud

ed
 

fr
om

 a
ll 

an
al

ys
es

M
um

m
ic

ho
g 

an
al

ys
is

– 
�Pa

th
w

ay
 

en
ri

ch
m

en
t

R
 p

ac
ka

ge
, S

A
S,

 a
nd

 
SI

M
C

A
-P

+
 s

of
tw

ar
e

– 
�L

og
- 

tr
an

sf
or

m
at

io
n

– 
PC

A
– 

O
PL

S-
D

A
– 

�W
ilc

ox
on

 r
an

k 
su

m
 

te
st

– 
Fi

sh
er

 e
xa

ct
 te

st
– 

�Se
pa

ra
te

 
un

co
nd

iti
on

al
 

lo
gi

st
ic

 r
eg

re
ss

io
n 

m
od

el
s

– 
�M

ul
tiv

ar
ia

bl
e 

lin
ea

r 
re

gr
es

si
on

 m
od

el
– 

�M
ed

ia
tio

n 
an

al
ys

is
– 

�Sp
ea

rm
an

 c
or

re
la

tio
n 

co
ef

fic
ie

nt
s

– 
�B

en
ja

m
in

i-
 

H
oc

hb
er

g

– 
�5-

M
et

hy
l-

2-
fu

ro
ic

 a
ci

d 
w

as
 s

ig
ni

fic
an

tly
 

as
so

ci
at

ed
 w

ith
 lo

w
er

 
lu

ng
 c

an
ce

r 
ri

sk
– 

�25
%

 o
f 

th
e 

as
so

ci
at

io
n 

be
tw

ee
n 

so
y 

co
ns

um
pt

io
n 

an
d 

hi
gh

er
 lu

ng
 c

an
ce

r 
ri

sk
 w

as
 s

ig
ni

fic
an

tly
 

m
ed

ia
te

d 
vi

a 
5-

 m
et

hy
l-

2-
fu

ro
ic

 a
ci

d
– 

�1-
ca

rb
on

 m
et

ab
ol

is
m

, 
nu

cl
eo

tid
e 

m
et

ab
ol

is
m

, 
ox

id
at

iv
e 

st
re

ss
, a

nd
 

in
fla

m
m

at
io

n 
w

er
e 

as
so

ci
at

ed
 w

ith
 lu

ng
 

ca
nc

er
 r

is
k

[5
5]

M. Mireault and L. Sleno



285

Ta
bl

e 
2 

Po
pu

la
tio

n 
m

et
ab

ol
om

ic
 s

tu
di

es
 r

el
at

ed
 to

 o
th

er
 d

is
ea

se
s

Su
bj

ec
t

Sa
m

pl
e

C
oh

or
t

D
at

a 
pr

e-
ac

qu
is

iti
on

D
at

a 
ac

qu
is

iti
on

D
at

a 
po

st
-a

cq
ui

si
tio

n
St

at
is

tic
al

 a
na

ly
si

s
O

ut
co

m
es

 o
f 

st
ud

y
R

ef
er

en
ce

A
ut

is
m

 s
pe

ct
ru

m
 

di
so

rd
er

Pl
as

m
a

80
6 

ch
ild

re
n 

(a
ge

s 
1 

an
d 

3 
ye

ar
s)

– 
Se

pa
ra

te
d

– 
St

or
ed

 a
t –

 8
0 

°C
L

C
-M

S
– 

�Tw
o 

ba
tc

he
s 

se
nt

 6
 

m
on

th
s 

ap
ar

t
– 

�N
or

m
al

iz
ed

 to
 

sa
m

pl
e 

m
as

s

– 
�In

-h
ou

se
 li

br
ar

y
M

is
si

ng
 v

al
ue

– 
�50

%
 o

r 
m

or
e 

m
et

ab
ol

ite
s 

w
er

e 
ex

cl
ud

ed

R
 p

ac
ka

ge
– 

L
og

-t
ra

ns
fo

rm
at

io
n

– 
PC

A
– 

PL
S-

D
A

– 
�B

on
fe

rr
on

i 
co

rr
ec

tio
n

– 
R

O
C

– 
�T

ry
pt

op
ha

n 
an

d 
ty

ro
si

ne
 

m
et

ab
ol

is
m

 w
er

e 
as

so
ci

at
ed

 
w

ith
 b

et
te

r 
co

m
m

un
ic

at
io

n 
sc

or
e

– 
�Pl

as
m

a 
m

et
ab

ol
ite

 le
ve

l 
pr

ov
id

es
 a

 h
ig

h 
se

ns
iti

vi
ty

 
(8

8.
9%

) 
an

d 
sp

ec
ifi

ci
ty

 
(8

4,
5%

) 
fo

r 
pr

ed
ic

tin
g 

au
tis

m

[5
6]

St
oo

l
80

6 
ch

ild
re

n 
(a

ge
 3

 y
ea

rs
)

– 
St

or
ed

 a
t −

80
 °

C
– 

�Pr
ec

ip
ita

tio
n 

w
ith

 M
eO

H
– 

Fi
ve

 a
liq

uo
ts

L
C

-M
S

– 
O

ne
 b

at
ch

– 
�N

or
m

al
iz

ed
 to

 
sa

m
pl

e 
m

as
s

– 
In

-h
ou

se
 li

br
ar

y
M

is
si

ng
 v

al
ue

– 
�S/

N
 <

 1
0 

or
 w

ith
 

m
is

si
ng

 le
ve

ls
 >

10
%

 
w

er
e 

ex
cl

ud
ed

H
yp

er
in

su
lin

em
ia

Pl
as

m
a

19
19

 w
om

en
 

(a
ge

d 
50

–7
9)

– 
�Fa

st
in

g 
bl

oo
d 

sa
m

pl
e 

(1
2 

h)
– 

E
D

TA
 tu

be
– 

St
or

ed
 a

t −
70

 °
C

– 
Sh

ip
m

en
t o

n 
dr

y 
ic

e

L
C

-M
S

– 
�Po

ol
ed

 p
la

sm
a 

re
fe

re
nc

e 
sa

m
pl

es
– 

�R
un

ni
ng

 e
ve

ry
 2

0 
sa

m
pl

es

– 
�A

ut
he

nt
ic

 r
ef

er
en

ce
 

st
an

da
rd

s 
or

 r
ef

er
en

ce
 

sa
m

pl
es

– 
�C

oe
ffi

ci
en

ts
 o

f 
va

ri
at

io
n 

(C
V

s)
M

is
si

ng
 v

al
ue

– 
�Si

gn
al

-t
o-

no
is

e 
ra

tio
 <

 1
0

– 
�H

al
f 

th
e 

lo
w

es
t 

ob
se

rv
ed

 v
al

ue

– 
�M

ul
tiv

ar
ia

bl
e-


ad

ju
st

ed
 li

ne
ar

 
re

gr
es

si
on

 m
od

el
s

– 
�M

ai
nl

y 
ph

os
ph

ol
ip

id
s 

as
 

w
el

l a
s 

tr
ig

on
el

lin
e 

an
d 

ei
co

sa
pe

nt
ae

no
at

e 
de

cr
ea

se
d 

w
ith

 in
cr

ea
si

ng
 

E
D

IH
 s

co
re

s
– 

�M
ai

nl
y 

di
ac

yl
gl

yc
er

ol
 a

nd
 

tr
ia

cy
lg

ly
ce

ro
ls

 a
s 

w
el

l a
s 

C
10

:2
 c

ar
ni

tin
e 

an
d 

C
18

:2
 

sp
hi

ng
om

ye
lin

s 
in

cr
ea

se
d 

w
ith

 E
D

IH
 s

co
re

s

[3
8] (c
on

tin
ue

d)

LC-MS-Based Population Metabolomics: A Mini-Review of Recent Studies…



286

Su
bj

ec
t

Sa
m

pl
e

C
oh

or
t

D
at

a 
pr

e-
ac

qu
is

iti
on

D
at

a 
ac

qu
is

iti
on

D
at

a 
po

st
-a

cq
ui

si
tio

n
St

at
is

tic
al

 a
na

ly
si

s
O

ut
co

m
es

 o
f 

st
ud

y
R

ef
er

en
ce

E
at

in
g 

di
so

rd
er

s
Pl

as
m

a
29

29
 c

hi
ld

re
n 

(7
 y

ea
rs

 o
ld

)
– 

N
on

-f
as

tin
g

– 
E

D
TA

 tu
be

N
M

R
– 

�Sa
m

pl
e 

st
an

da
rd

 
de

vi
at

io
n 

(S
D

)

R
 p

ac
ka

ge
– 

L
og

is
tic

 r
eg

re
ss

io
n

– 
�E

le
va

te
d 

V
L

D
L

, 
tr

ig
ly

ce
ri

de
s,

 A
po

-B
/A

, a
nd

 
m

on
ou

ns
at

ur
at

ed
 f

at
ty

 a
ci

ds
 

ra
tio

 a
t a

ge
 7

 w
er

e 
as

so
ci

at
ed

 w
ith

 lo
w

er
 o

dd
s 

of
 a

no
re

xi
a 

ne
rv

os
a 

at
 

ag
e 

18
– 

�E
le

va
te

d 
H

D
L

, 
do

co
sa

he
xa

en
oi

c 
ac

id
, a

nd
 

fa
tty

 a
ci

d 
un

sa
tu

ra
tio

n 
at

 
ag

e 
7 

w
er

e 
as

so
ci

at
ed

 w
ith

 
hi

gh
er

 r
is

k 
fo

r 
an

or
ex

ia
 

ne
rv

os
a 

at
 1

8 
ye

ar
s

[4
1]

C
hr

on
ic

 k
id

ne
y 

di
se

as
e 

(C
K

D
)

Se
ru

m
 o

r 
pl

as
m

a
45

4 
pa

rt
ic

ip
an

ts
 

(m
ea

n 
ag

e 
68

 ±
 1

2)

T
ra

in
ed

 p
er

so
na

l u
nd

er
 

st
ri

ct
 q

ua
lit

y 
co

nt
ro

l
C

ol
le

ct
io

n
– 

�Fa
st

in
g 

bl
oo

d 
(o

ve
rn

ig
ht

)
– 

Pr
ep

ar
ed

– 
St

or
ed

 in
 li

qu
id

 N
2 

– 
�Se

ru
m

 s
am

pl
es

 th
aw

ed
 o

n 
ic

e 
E

xt
ra

ct
io

n 
pl

as
m

a 
m

et
ab

ol
ite

s 
(d

ia
be

te
s)

– 
So

lv
en

t m
ix

tu
re

– 
Sp

ik
ed

 w
ith

 I
S 

– 
�C

en
tr

if
ug

ed
 a

t 
15

.8
00

 ×
 g

, 1
5 

m
in

 a
t 4

 ̊C

G
C

-M
S

– 
�T

hr
ee

 te
ch

ni
ca

l 
re

pl
ic

at
es

– 
�B

la
nk

: D
ei

on
iz

ed
 

w
at

er
– 

�Q
C

 (
se

ru
m

 p
oo

l)
 

sa
m

pl
es

 e
ve

ry
da

y

– 
�A

gi
le

nt
 F

ie
hn

 G
C

/M
S 

m
et

ab
ol

om
ic

s 
R

T
L

 
lib

ra
ry

– 
N

IS
T

 li
br

ar
y 

11
– 

�A
gi

le
nt

 M
as

sH
un

te
r 

w
or

ks
ta

tio
n 

qu
an

tit
at

iv
e 

an
al

ys
is

A
gi

le
nt

’s
 M

as
sH

un
te

r 
so

ft
w

ar
e

– 
�IS

 d
27

-m
yr

is
tic

 a
ci

d 
us

in
g 

th
e 

R
T

L
 s

ys
te

m
M

et
ab

oA
na

ly
st

– 
Pa

th
w

ay
 a

na
ly

si
s

– 
�K

E
G

G
 h

om
o 

sa
pi

en
s 

lib
ra

ry
M

is
si

ng
 v

al
ue

>
50

%
 b

el
ow

 L
O

D
 w

er
e 

ex
cl

ud
ed

R
 p

ac
ka

ge
 a

nd
 S

PS
S

– 
�C

ox
 r

eg
re

ss
io

n 
m

od
el

s
– 

�M
ul

tiv
ar

ia
bl

e 
m

od
el

s
– 

�U
na

dj
us

te
d 

an
d 

ad
ju

st
ed

 fi
ne

 a
nd

 
gr

ay
 m

od
el

s
– 

R
O

C
 c

ur
ve

s
– 

Pa
rt

ia
l c

or
re

la
tio

ns
M

et
ab

oA
na

ly
st

H
yp

er
ge

om
et

ri
c 

te
st

 
ad

ju
st

ed

– 
�D

-m
al

ic
 a

ci
d,

 
ac

et
oh

yd
ro

xa
m

ic
 a

ci
d,

 a
nd

 
bu

ta
no

ic
 a

ci
d 

w
er

e 
in

de
pe

nd
en

tly
 a

ss
oc

ia
te

d 
w

ith
 d

ea
th

– 
�D

oc
os

ah
ex

ae
no

ic
 a

ci
d 

w
as

 
in

ve
rs

el
y 

as
so

ci
at

ed
 to

 
m

or
ta

lit
y

– 
�L

ac
to

se
 a

nd
 2

-O
-g

ly
ce

ro
l-

α-
D

-g
al

ac
to

py
ra

no
si

de
 

w
er

e 
as

so
ci

at
ed

 to
 e

nd
 

st
ag

e 
re

na
l d

is
ea

se
 (

E
SR

D
) 

ri
sk

– 
�Ty

ro
si

ne
 s

ho
w

in
g 

an
 

in
ve

rs
e 

re
la

tio
ns

hi
p 

w
ith

 
E

SR
D

[5
7]

Ta
bl

e 
2  

(c
on

tin
ue

d)

M. Mireault and L. Sleno



287
Su

bj
ec

t
Sa

m
pl

e
C

oh
or

t
D

at
a 

pr
e-

ac
qu

is
iti

on
D

at
a 

ac
qu

is
iti

on
D

at
a 

po
st

-a
cq

ui
si

tio
n

St
at

is
tic

al
 a

na
ly

si
s

O
ut

co
m

es
 o

f 
st

ud
y

R
ef

er
en

ce

D
ep

re
ss

io
n

Pl
as

m
a

10
,1

45
 

co
nt

ro
l

52
83

 
de

pr
es

se
d 

pe
rs

on
s

– 
Fa

st
in

g 
bl

oo
d 

(o
ve

rn
ig

ht
)

– 
�E

D
TA

 tu
be

s 
C

en
tr

if
ug

at
io

n 
an

d 
st

or
ed

 
at

 −
80

 °
C

   
or C

en
tr

if
ug

at
io

n 
at

 4
 °

C
 a

nd
 

st
or

ed
 a

t −
20

 °
C

N
M

R
– 

�Sa
m

pl
e 

ha
nd

lin
g 

to
 

da
ta

 p
ro

ce
ss

in
g 

is
 

hi
gh

ly
 s

ta
nd

ar
di

ze
d 

an
d 

fu
lly

 a
ut

om
at

ed
– 

�U
na

w
ar

e 
of

 
de

pr
es

si
on

 c
as

es
 v

s.
 

co
nt

ro
l s

ta
tu

s
– 

B
ay

es
ia

n 
m

od
el

in
g

M
is

si
ng

 v
al

ue
s:

M
et

ab
ol

ite
 v

al
ue

s 
in

 
su

bj
ec

ts
 w

ith
 o

ut
ly

in
g 

co
nc

en
tr

at
io

ns
 (

6 
5 

SD
) 

w
er

e 
ad

di
tio

na
lly

 s
et

 a
s 

m
is

si
ng

R
 p

ac
ka

ge
– 

L
og

 tr
an

sf
or

m
at

io
n

– 
�R

an
do

m
 e

ff
ec

ts
 

m
et

a-
an

al
ys

es
– 

I2  w
ith

 9
5%

 
co

nfi
de

nc
e 

in
te

rv
al

s
– 

W
al

d 
te

st
s

– 
FD

R
 m

et
ho

d

– 
�H

ig
he

r 
le

ve
ls

 o
f A

po
 B

, 
V

L
D

L
, t

ri
gl

yc
er

id
es

, 
di

gl
yc

er
id

es
, 

m
on

ou
ns

at
ur

at
ed

 f
at

ty
 

ac
id

s,
 f

at
ty

 a
ci

d 
ch

ai
n 

le
ng

th
, g

ly
co

pr
ot

ei
n 

ac
et

yl
s,

 ty
ro

si
ne

, a
nd

 
is

ol
eu

ci
ne

 w
er

e 
as

so
ci

at
ed

 
w

ith
 in

cr
ea

se
d 

od
ds

 o
f 

de
pr

es
si

on
– 

�L
ow

er
 le

ve
ls

 o
f 

H
D

L
, 

ac
et

at
e,

 a
nd

 A
po

 A
1 

w
er

e 
as

so
ci

at
ed

 w
ith

 in
cr

ea
se

d 
od

ds
 o

f 
de

pr
es

si
on

[5
8]

O
st

eo
po

ro
si

s 
an

d 
bo

ne
 m

in
er

al
 

de
ns

ity
 (

B
M

D
)

Se
ru

m
32

0 
pa

rt
ic

ip
an

ts
– 

Fa
st

in
g 

bl
oo

d
– 

E
D

TA
– 

C
en

tr
if

ug
at

io
n

– 
Fr

oz
en

 a
t −

80
 °

C
– 

A
bs

ol
ut

eI
D

Q
 p

18
0 

ki
t

L
C

-M
S

– 
�B

io
cr

at
es

 p
ro

pr
ie

ta
ry

 
M

et
IQ

 T
M

 s
of

tw
ar

e
– 

�Se
m

i-
 q

ua
nt

ita
tio

n 
w

as
 a

pp
lie

d 
to

 th
e 

lip
id

 q
ua

nt
ita

tio
n 

ba
se

d 
on

 is
ot

op
ic

 li
pi

d 
IS

M
is

si
ng

 v
al

ue
– 

>
20

%
 b

el
ow

 L
O

D
 

w
er

e 
ex

cl
ud

ed

SA
S

– 
L

og
-t

ra
ns

fo
rm

at
io

n
– 

PC
A

– 
PL

S-
D

A
– 

W
ilc

ox
on

 te
st

– 
χ2

 te
st

,
– 

R
an

do
m

 f
or

es
t 

cl
as

si
fie

r 
m

et
ho

d
– 

R
O

C
 c

ur
ve

s

– 
�In

 m
al

es
, g

lu
ta

ry
lc

ar
ni

tin
e,

 
hy

dr
ox

y 
sp

hi
ng

om
ye

lin
 

C
16

:1
, s

ph
in

go
m

ye
lin

 
C

18
:0

, l
ys

in
e,

 a
nd

 s
er

in
e 

w
er

e 
as

so
ci

at
ed

 w
ith

 
os

te
op

or
os

is
– 

�In
 p

os
tm

en
op

au
sa

l f
em

al
es

, 
ac

et
yl

ca
rn

iti
ne

, 
ph

os
ph

at
id

yl
ch

ol
in

e 
di

ac
yl

, 
ph

os
ph

at
id

yl
ch

ol
in

e 
ac

yl
-a

lk
yl

, a
nd

 
hy

dr
ox

yp
ro

lin
e 

w
er

e 
as

so
ci

at
ed

 w
ith

 
os

te
op

or
os

is
– 

�R
O

C
 c

ur
ve

 f
or

 B
T

M
s 

an
d 

se
ru

m
 m

et
ab

ol
ite

s 
in

cr
ea

se
d 

si
gn

ifi
ca

nt
ly

 
co

m
pa

re
d 

to
 B

T
M

s 
on

ly

[5
9] (c
on

tin
ue

d)

LC-MS-Based Population Metabolomics: A Mini-Review of Recent Studies…



288

Su
bj

ec
t

Sa
m

pl
e

C
oh

or
t

D
at

a 
pr

e-
ac

qu
is

iti
on

D
at

a 
ac

qu
is

iti
on

D
at

a 
po

st
-a

cq
ui

si
tio

n
St

at
is

tic
al

 a
na

ly
si

s
O

ut
co

m
es

 o
f 

st
ud

y
R

ef
er

en
ce

M
et

ab
ol

ic
 

sy
nd

ro
m

e
Pl

as
m

a
11

5 
pa

rt
ic

ip
an

ts
– 

Fa
st

in
g 

pl
as

m
a

– 
E

D
TA

M
et

ab
ol

ite
 e

xt
ra

ct
io

n
– 

H
2O

: M
eO

H
 (

1:
9)

– 
In

cu
ba

te
d 

fo
r 

2 
m

in
– 

St
or

ed
 o

n 
ic

e 
fo

r 
2 

h
– 

�C
en

tr
if

ug
ed

 a
t 1

86
20

 
R

C
F,

 1
0 

m
in

 a
t 4

 °
C

L
ip

id
 e

xt
ra

ct
io

n
– 

C
H

C
l 3

: M
eO

H
 (

2:
1)

– 
�St

or
ed

 a
t r

oo
m

 
te

m
pe

ra
tu

re
 f

or
 6

0 
m

in
– 

�C
en

tr
if

ug
ed

 a
t 1

86
20

 
R

C
F,

 3
 m

in
 a

t 4
 °

C

L
C

-M
S/

M
S

R
ef

er
en

ce
 in

te
rf

ac
e

– 
�Pu

ri
ne

 m
/z

 1
21

.0
5 

an
d 

m
/z

 1
19

.0
36

32
– 

�H
P-

09
21

 m
/z

 
92

2.
00

98
 a

nd
 m

/z
 

96
6.

00
07

25
– 

�Po
si

tiv
e 

an
d 

ne
ga

tiv
e 

m
od

es
, 

re
sp

ec
tiv

el
y

G
C

-M
S/

M
S

L
C

-M
S

– 
�Pr

ofi
nd

er
™

 s
of

tw
ar

e 
pa

ck
ag

e
– 

In
-h

ou
se

 li
br

ar
ie

s
– 

�M
et

ab
ol

ite
 a

nd
 li

pi
d 

si
gn

al
s 

w
er

e 
no

rm
al

iz
ed

 to
 th

e 
 

to
ta

l p
ea

k 
ar

ea
G

C
-M

S
– 

M
A

T
L

A
B

– 
In

-h
ou

se
 li

br
ar

y
– 

N
or

m
al

iz
at

io
n 

to
 I

S

SI
M

C
A

 s
of

tw
ar

e
– 

PC
A

– 
O

PL
S

– 
�95

%
 c

on
fid

en
ce

 
in

te
rv

al
 u

si
ng

 th
e 

ja
ck

kn
if

e 
m

et
ho

d
– 

C
V

-A
N

O
V

A
– 

�Pe
rm

ut
at

io
n 

an
al

ys
es

R
 p

ac
ka

ge
– 

�U
ni

va
ri

at
e 

lin
ea

r 
re

gr
es

si
on

– 
L

og
-t

ra
ns

fo
rm

at
io

n

– 
�In

 th
e 

un
iv

ar
ia

te
 a

na
ly

se
s,

 
th

e 
m

et
ab

ol
ic

 s
yn

dr
om

e 
(s

co
re

) 
w

as
 a

ss
oc

ia
te

d 
w

ith
 

m
ul

tip
le

 in
di

vi
du

al
 

m
et

ab
ol

ite
s,

 in
cl

ud
in

g 
va

le
ry

l c
ar

ni
tin

e,
 p

yr
uv

ic
 

ac
id

, l
ac

tic
 a

ci
d,

 a
la

ni
ne

, 
an

d 
lip

id
s 

(d
ig

ly
ce

ri
de

)

[6
0]

Fu
nc

tio
na

l 
ov

ar
ia

n 
re

se
rv

e
Se

ru
m

39
8 

w
om

en
 

(a
ge

s 
18

–4
5)

– 
N

on
-f

as
te

d 
bl

oo
d

– 
C

en
tr

if
ug

ed
– 

Fr
oz

en
 a

t −
80

 °
C

– 
�A

ss
ay

s 
w

ith
in

 1
 y

ea
r 

of
 

st
or

ag
e

– 
N

o 
fr

ee
ze

/th
aw

 c
yc

le
s

N
M

R
– 

�Q
ua

nt
ifi

ca
tio

n 
is

 
ac

hi
ev

ed
 th

ro
ug

h 
th

re
e 

m
ol

ec
ul

ar
 

w
in

do
w

s 
fr

om
 e

ac
h 

sa
m

pl
e

– 
�PE

R
C

H
 N

M
R

 
so

ft
w

ar
e

– 
�Se

ru
m

 e
xt

ra
ct

 
m

et
ab

ol
ite

s 
ar

e 
sc

al
ed

 
vi

a 
th

e 
to

ta
l 

ch
ol

es
te

ro
l

R
 p

ac
ka

ge
– 

�M
ul

tiv
ar

ia
bl

e 
lin

ea
r 

re
gr

es
si

on
– 

�Sc
al

ed
 to

 s
ta

nd
ar

d 
de

vi
at

io
n 

(S
D

) 
un

its
– 

B
on

fe
rr

on
i

– 
�A

nt
i-

M
ül

le
ri

an
 h

or
m

on
e 

(A
M

H
) 

sh
ow

ed
 p

os
iti

ve
 

as
so

ci
at

io
ns

 w
ith

 H
D

L
, 

om
eg

a-
6,

 a
nd

 
po

ly
un

sa
tu

ra
te

d 
fa

tty
 a

ci
ds

 
an

d 
th

e 
am

in
o 

ac
id

s 
is

ol
eu

ci
ne

, l
eu

ci
ne

, a
nd

 
ty

ro
si

ne
 a

nd
 n

eg
at

iv
el

y 
w

ith
 

ac
et

at
e

– 
�A

nt
ra

l f
ol

lic
le

 c
ou

nt
 (

A
FC

) 
w

as
 p

os
iti

ve
ly

 a
ss

oc
ia

te
d 

w
ith

 a
la

ni
ne

, g
lu

ta
m

in
e,

 
an

d 
gl

yc
in

e

[6
1]

Ta
bl

e 
2  

(c
on

tin
ue

d)

M. Mireault and L. Sleno



289
Su

bj
ec

t
Sa

m
pl

e
C

oh
or

t
D

at
a 

pr
e-

ac
qu

is
iti

on
D

at
a 

ac
qu

is
iti

on
D

at
a 

po
st

-a
cq

ui
si

tio
n

St
at

is
tic

al
 a

na
ly

si
s

O
ut

co
m

es
 o

f 
st

ud
y

R
ef

er
en

ce

O
be

si
ty

Pl
as

m
a

10
20

 c
hi

ld
re

n 
(a

ge
s 

5.
5,

 8
, 

an
d 

10
)

C
H

O
P 

st
ud

y
– 

Fa
st

ed
 b

lo
od

– 
C

en
tr

if
ug

at
io

n
– 

Fr
oz

en
 a

t −
70

 °
C

U
B

C
S

– 
Fa

st
ed

 b
lo

od
 (

>
10

 h
)

– 
A

liq
uo

te
d

– 
Fr

oz
en

 a
t −

80
 °

C
G

IN
Ip

lu
s/

L
IS

A
 s

tu
dy

– 
A

liq
uo

te
d

– 
Fr

oz
en

 a
t −

80
 °

C
Fo

r 
al

l, 
se

nt
 o

n 
dr

y 
ic

e 
an

d 
re

-s
to

re
d 

at
 −

80
 °

C
M

et
ab

ol
ite

 e
xt

ra
ct

io
n

– 
�Pr

ot
ei

n 
pr

ec
ip

ita
tio

n 
w

ith
 

M
eO

H
, c

on
ta

in
in

g 
IS

– 
�C

en
tr

if
ug

ed
 a

t 4
00

0 
rp

m
, 

10
 m

in
 a

t r
oo

m
 

te
m

pe
ra

tu
re

L
C

-M
S

C
H

O
P 

st
ud

y 
an

d 
G

IN
Ip

lu
s/

L
IS

A
 s

tu
dy

– 
�6 

Q
C

 s
am

pl
es

 p
er

 
ba

tc
h

– 
�In

tr
a-

ba
tc

h 
C

V
 <

 0
.2

, t
he

 b
at

ch
 

w
as

 in
cl

ud
ed

– 
�Q

C
 >

 5
0%

 o
f 

th
e 

ba
tc

he
s,

 m
et

ab
ol

ite
 

w
as

 in
cl

ud
ed

U
B

C
S

– 
�Si

x 
Q

C
 s

am
pl

es
 

m
ea

su
re

d 
tw

ic
e

– 
�Q

C
 >

 3
5%

 C
V

, 
m

et
ab

ol
ite

s 
w

er
e 

ex
cl

ud
ed

– 
�Q

ua
nt

ifi
ca

tio
n 

of
 S

M
 

32
:2

 w
as

 a
ch

ie
ve

d 
by

 
co

m
pa

ri
so

n 
to

 
co

m
m

er
ci

al
ly

 
av

ai
la

bl
e 

st
an

da
rd

 S
M

 
(d

18
:1

/1
8:

0)
– 

�M
et

ab
ol

ite
 w

er
e 

ex
cl

ud
ed

 if
 >

1.
5 

x 
SD

 
fr

om
 s

ec
on

d 
hi

gh
es

t 
va

lu
e

R
 p

ac
ka

ge
– 

�L
in

ea
r 

m
od

el
s 

re
gr

es
si

ng
– 

�B
iv

ar
ia

te
 li

ne
ar

 
m

od
el

s
– 

�M
ul

tip
le

 li
ne

ar
 

m
od

el
s

– 
Pa

rt
ia

l R
2

– 
C

oc
hr

an
’s

 Q
31

– 
B

on
fe

rr
on

i

– 
�O

nl
y 

SM
 3

2:
2 

w
as

 
si

gn
ifi

ca
nt

ly
 a

ss
oc

ia
te

d 
w

ith
 B

M
I 

z-
sc

or
e 

in
 a

ll 
 

fo
ur

 p
op

ul
at

io
ns

– 
�A

la
ni

ne
 s

ho
w

ed
 th

e 
st

ro
ng

es
t p

os
iti

ve
 

as
so

ci
at

io
n 

w
ith

 H
O

M
A

, 
w

hi
le

 a
cy

lc
ar

ni
tin

es
 a

nd
 

no
ne

st
er

ifi
ed

 f
at

ty
 a

ci
ds

 
w

er
e 

ne
ga

tiv
el

y 
as

so
ci

at
ed

 
w

ith
 H

O
M

A
– 

�SM
 d

18
:2

/1
4:

0 
is

 a
 

po
w

er
fu

l m
ar

ke
r 

fo
r 

m
ol

ec
ul

ar
 c

ha
ng

es
 in

 
ch

ild
ho

od
 o

be
si

ty

[6
2] (c
on

tin
ue

d)

LC-MS-Based Population Metabolomics: A Mini-Review of Recent Studies…



290

Ta
bl

e 
3 

Po
pu

la
tio

n 
m

et
ab

ol
om

ic
 s

tu
di

es
 r

el
at

ed
 to

 a
ge

, s
ex

, B
M

I,
 p

re
gn

an
cy

, a
nd

 li
fe

st
yl

e 
ha

bi
ts

Su
bj

ec
t

Sa
m

pl
e

C
oh

or
t

D
at

a 
pr

e-
ac

qu
is

iti
on

D
at

a 
ac

qu
is

iti
on

D
at

a 
po

st
-a

cq
ui

si
tio

n
St

at
is

tic
al

 a
na

ly
si

s
O

ut
co

m
es

 o
f 

st
ud

y
R

ef
er

en
ce

A
ge

 a
nd

 s
ex

Pl
as

m
a

12
12

 p
ar

tic
ip

an
ts

 
(m

ea
n 

ag
e 

61
)

Pl
as

m
a 

m
et

ab
ol

om
ic

s
– 

Fa
st

in
g 

bl
oo

d 
in

 E
D

TA
 

tu
be

s
– 

�C
en

tr
if

ug
ed

 a
t 

30
00

 r
pm

, 1
5 

m
in

 a
t R

T
– 

�A
liq

uo
te

d 
an

d 
 

fr
oz

en
 −

80
 °

C
, 3

0 
m

in
– 

Sh
ip

pe
d 

on
 d

ry
 ic

e
– 

St
or

ed
 a

t −
80

 °
C

M
et

ab
ol

ite
 e

xt
ra

ct
io

n
– 

R
ec

ov
er

y 
st

an
da

rd
s

– 
�Pr

ot
ei

n 
pr

ec
ip

ita
tio

n 
w

ith
 M

eO
H

– 
C

en
tr

if
ug

at
io

n
– 

St
or

ed
 u

nd
er

 N
2 

G
en

om
ic

s
– 

�D
N

A
 w

as
 e

xt
ra

ct
ed

 
us

in
g 

PU
R

E
G

E
N

E
®

 
D

N
A

 is
ol

at
io

n 
ki

t

L
C

-M
S/

M
S

– 
Po

ol
ed

 m
at

ri
x 

sa
m

pl
e

– 
�B

la
nk

: E
xt

ra
ct

ed
 w

at
er

 
sa

m
pl

es
– 

C
oc

kt
ai

l o
f 

Q
C

– 
�In

st
ru

m
en

t p
er

fo
rm

an
ce

 
m

on
ito

ri
ng

– 
�A

id
ed

 c
hr

om
at

og
ra

ph
ic

 
al

ig
nm

en
t

– 
�M

ed
ia

n 
re

la
tiv

e 
st

an
da

rd
 

de
vi

at
io

n 
(R

SD
)

St
ud

y 
sa

m
pl

es
 w

er
e 

ra
nd

om
iz

ed
Q

C
 s

am
pl

es
 s

pa
ce

d 
ev

en
ly

 
am

on
g 

th
e 

in
je

ct
io

ns

– 
�M

et
ab

ol
on

’s
 h

ar
dw

ar
e 

an
d 

so
ft

w
ar

e
– 

In
-h

ou
se

 li
br

ar
y

– 
�Id

en
tifi

ed
 b

y 
fu

tu
re

 
ac

qu
is

iti
on

 o
f 

a 
m

at
ch

in
g 

pu
ri

fie
d 

st
an

da
rd

 o
r 

by
 c

la
ss

ic
al

 
st

ru
ct

ur
al

 a
na

ly
si

s
– 

�M
et

ab
ol

ite
s 

w
ith

 
in

te
rq

ua
rt

ile
 r

an
ge

 o
f 

ze
ro

 e
xc

lu
de

d 
fr

om
 

an
al

ys
es

M
is

si
ng

 m
et

ab
ol

ite
 

va
lu

es
– 

�Im
pu

te
d 

to
 th

e 
lo

w
es

t 
le

ve
l o

f 
de

te
ct

io
n 

fo
r 

ea
ch

 m
et

ab
ol

ite

M
et

ab
ol

om
ic

s
– 

M
ed

ia
n-

sc
al

ed
– 

L
og

-t
ra

ns
fo

rm
at

io
n

– 
Pe

ar
so

n 
r

SA
S

– 
L

in
ea

r 
m

ix
ed

 e
ff

ec
ts

 
re

gr
es

si
on

 m
od

el
s

– 
� B

en
ja

m
in

i-


H
oc

hb
er

g
G

en
om

ic
s

– 
PC

A
– 

Pe
ar

so
n 

r
G

C
TA

h2
 o

f 
ea

ch
 m

et
ab

ol
ite

– 
�62

3 
w

er
e 

as
so

ci
at

ed
 w

ith
 

ag
e;

 2
9 

st
er

oi
d 

lip
id

s 
si

gn
ifi

ca
nt

ly
 d

ec
re

as
ed

 
w

hi
le

 h
ig

he
r 

le
ve

ls
 o

f 
m

os
t f

at
ty

 a
ci

d,
 

sp
hi

ng
ol

ip
id

s 
an

d 
am

in
o 

ac
id

s 
in

cr
ea

se
d 

w
ith

 a
ge

– 
�69

5 
w

er
e 

as
so

ci
at

ed
 w

ith
 

se
x;

 m
os

t s
te

ro
id

 li
pi

ds
 

an
d 

am
in

o 
ac

id
s 

w
er

e 
in

 
lo

w
er

 le
ve

ls
 w

hi
le

 m
os

t 
fa

tty
 a

ci
ds

 w
er

e 
hi

gh
er

 in
 

w
om

en
– 

�T
he

 h
er

ita
bi

lit
ie

s 
of

 
m

et
ab

ol
ite

s 
ra

ng
ed

 
dr

am
at

ic
al

ly
 

(0
.2

–9
9.

2%
)

[6
5]

M. Mireault and L. Sleno



291
Su

bj
ec

t
Sa

m
pl

e
C

oh
or

t
D

at
a 

pr
e-

ac
qu

is
iti

on
D

at
a 

ac
qu

is
iti

on
D

at
a 

po
st

-a
cq

ui
si

tio
n

St
at

is
tic

al
 a

na
ly

si
s

O
ut

co
m

es
 o

f 
st

ud
y

R
ef

er
en

ce

Se
x-

sp
ec

ifi
c 

as
so

ci
at

io
ns

 o
f 

B
M

I 
an

d 
bo

dy
 

fa
t

U
ri

ne
36

9 
pa

rt
ic

ip
an

ts
 

(a
ge

d 
16

–1
8)

– 
St

or
ed

 a
t −

80
 °

C
– 

�Pr
ot

ei
n 

pr
ec

ip
ita

tio
n 

by
 

M
eO

H

L
C

-M
S/

M
S

– 
�Po

ol
s 

of
 s

am
pl

e 
w

er
e 

us
ed

 a
s 

qu
al

ity
 c

on
tr

ol
s

– 
In

-h
ou

se
 li

br
ar

y
– 

�N
or

m
al

iz
at

io
n 

w
ith

 
bl

oc
k 

co
rr

ec
tio

n
– 

�N
or

m
al

iz
at

io
n 

by
 u

ri
ne

 
os

m
ol

al
ity

M
is

si
ng

 v
al

ue
– 

>
20

%
 b

el
ow

 L
O

D
 

w
er

e 
ex

cl
ud

ed
– 

�R
an

do
m

 f
or

es
t m

et
ho

d 
bu

ilt
 in

to
 “

m
ic

e”
 

pa
ck

ag
e

SA
S 

so
ft

w
ar

e 
an

d 
R

 
so

ft
w

ar
e

– 
L

og
-t

ra
ns

fo
rm

at
io

n
– 

IC
A

– 
�L

in
ea

r 
re

gr
es

si
on

 
m

od
el

– 
en

ja
m

in
i-

H
oc

hb
er

g

– 
Te

n 
m

et
ab

ol
ite

s 
as

so
ci

at
ed

 w
ith

 b
ot

h 
B

M
I 

an
d 

B
F

– 
�E

le
ve

n 
m

et
ab

ol
ite

s 
as

so
ci

at
ed

 w
ith

 o
nl

y 
B

F 
an

d 
ni

ne
 w

ith
 o

nl
y 

B
M

I
– 

�N
on

e 
of

 th
es

e 
as

so
ci

at
io

ns
 w

as
 in

 
fe

m
al

es
– 

�St
ro

ng
 s

ex
ua

l 
di

m
or

ph
is

m
 in

 th
e 

re
la

tio
ns

hi
p 

be
tw

ee
n 

bo
dy

 c
om

po
si

tio
n 

an
d 

th
e 

ur
in

e 
m

et
ab

ol
om

e

[6
7] (c
on

tin
ue

d)

LC-MS-Based Population Metabolomics: A Mini-Review of Recent Studies…



292

Su
bj

ec
t

Sa
m

pl
e

C
oh

or
t

D
at

a 
pr

e-
ac

qu
is

iti
on

D
at

a 
ac

qu
is

iti
on

D
at

a 
po

st
-a

cq
ui

si
tio

n
St

at
is

tic
al

 a
na

ly
si

s
O

ut
co

m
es

 o
f 

st
ud

y
R

ef
er

en
ce

A
ge

, s
ex

, B
M

I 
an

d 
di

et
ar

y 
ha

bi
ts

Se
ru

m
11

92
 c

hi
ld

re
n 

(a
ge

d 
6–

11
)

– 
�C

ol
le

ct
io

n 
in

 s
ili

ca
 

pl
as

tic
 tu

be
s

– 
�In

ve
rt

ed
 g

en
tly

 f
or

 6
–7

 
tim

es
– 

�Sp
un

 a
t 2

50
0 

g,
 1

5 
m

in
 

at
 4

 °
C

– 
�M

ed
ia

n 
pr

oc
es

si
ng

 ti
m

e 
(c

ol
le

ct
io

n 
to

 f
re

ez
in

g)
: 

1.
8 

h
– 

�M
ed

ia
n 

tim
e 

be
tw

ee
n 

la
st

 m
ea

l a
nd

 
co

lle
ct

io
n:

 3
.3

 h

L
C

-M
S/

M
S

– 
�A

bs
ol

ut
eI

D
Q

 p
18

0 
ki

t w
ith

 I
S

– 
�B

la
nk

 P
B

S 
sa

m
pl

es
 

(t
hr

ee
 r

ep
lic

at
es

)
– 

R
an

do
m

iz
ed

 s
am

pl
es

– 
�N

IS
T

 S
R

M
 1

95
0 

pl
as

m
a 

re
fe

re
nc

e 
m

at
er

ia
l (

4 
re

pl
ic

at
es

)
– 

�Q
C

 m
at

er
ia

l (
tw

o 
re

pl
ic

at
es

, S
er

aL
ab

, 
S-

12
3-

M
-2

74
85

)
–� 

Q
C

s 
fr

om
 m

an
uf

ac
tu

re
r 

in
 th

re
e 

co
nc

en
tr

at
io

ns
C

V
s:

 N
IS

T
 S

R
M

 1
95

0

L
C

-M
S/

M
S 

(s
er

um
)

– 
�M

et
ID

Q
T

M
 s

of
tw

ar
e

M
is

si
ng

 v
al

ue
:

– 
C

V
 >

 3
0%

>
 3

0%
 b

el
ow

 L
O

D

R
 p

ac
ka

ge
– 

�L
og

-t
ra

ns
fo

rm
at

io
n

– 
�M

et
ab

ol
om

e-
w

id
e 

as
so

ci
at

io
n 

st
ud

y 
(M

W
A

S)
– 

�M
ul

tip
le

 li
ne

ar
 

re
gr

es
si

on
 m

od
el

s
– 

�B
on

fe
rr

on
i 

co
rr

ec
tio

n
– 

Pa
rt

ia
l R

2 
ap

pr
oa

ch
– 

PC
A

– 
�Pe

ar
so

n’
s 

co
rr

el
at

io
n 

co
ef

fic
ie

nt
s

– 
�C

yt
os

ca
pe

 s
of

tw
ar

e 
an

d 
th

e 
M

et
Sc

ap
e 

pl
ug

in
 a

pp
lic

at
io

n

Se
x:

– 
�U

ri
na

ry
 is

ol
eu

ci
ne

 w
as

 a
t 

lo
w

er
 w

hi
le

 5
-o

xo
pr

ol
in

e 
an

d 
ty

ro
si

ne
 w

er
e 

hi
gh

er
 

in
 m

al
es

– 
�N

eu
ro

tr
an

sm
itt

er
 

se
ro

to
ni

n 
in

 s
er

um
 w

as
 

hi
gh

er
 in

 m
al

es
 w

hi
le

 
se

ri
ne

, l
ys

in
e,

 o
rn

ith
in

e,
 

ac
yl

ca
rn

iti
ne

s,
 a

nd
 th

re
e 

sp
hi

ng
ol

ip
id

s 
w

er
e 

hi
gh

er
 in

 f
em

al
es

A
ge

:
– 

C
re

at
in

in
e

B
M

I 
z-

sc
or

e:
– 

�U
ri

na
ry

 
4-

de
ox

ye
ry

th
ro

ni
c 

ac
id

, 
ur

in
ar

y 
va

lin
e,

 s
er

um
 

ca
rn

iti
ne

, a
cy

lc
ar

ni
tin

es
, 

gl
ut

am
at

e,
 B

C
A

A
 v

al
in

e,
 

ly
so

PC
, a

nd
 

sp
hi

ng
ol

ip
id

s
D

ie
ta

ry
 m

et
ab

ol
ite

:
– 

�U
ri

na
ry

 c
re

at
in

e 
an

d 
se

ru
m

 P
C

 w
ith

 m
ea

t
– 

Se
ru

m
 P

C
 w

ith
 fi

sh
– 

�U
ri

na
ry

 h
ip

pu
ra

te
 w

ith
 

ve
ge

ta
bl

es
 a

nd
 u

ri
na

ry
 

pr
ol

in
e 

be
ta

in
e

– 
H

ip
pu

ra
te

 w
ith

 f
ru

it
Po

pu
la

tio
n-

sp
ec

ifi
c 

va
ri

an
ce

 w
as

 b
et

te
r 

ca
pt

ur
ed

 in
 th

e 
se

ru
m

 th
an

 
in

 th
e 

ur
in

e 
pr

ofi
le

[6
6]

U
ri

ne
– 

�C
ol

le
ct

io
n:

 E
ve

ni
ng

 a
nd

 
m

or
ni

ng
– 

K
ep

t i
n 

fr
id

ge
 o

ve
rn

ig
ht

– 
�T

ra
ns

po
rt

ed
 in

 
te

m
pe

ra
tu

re
-c

on
tr

ol
le

d 
en

vi
ro

nm
en

t
– 

A
liq

uo
te

d 
an

d 
fr

oz
en

 
w

ith
in

 3
 h

– 
�C

en
tr

if
ug

ed
 a

t 
13

,0
00

 g
, 1

0 
m

in
 a

t 
4 

°C

N
M

R
– 

R
an

do
m

is
ed

– 
�Po

ol
ed

 u
ri

ne
 s

am
pl

es
 

fr
om

 2
0 

in
di

vi
du

al
s 

C
V

s:
 P

oo
le

d 
Q

C

– 
M

A
T

L
A

B
– 

�Pr
ob

ab
ili

st
ic

 q
uo

tie
nt

 
no

rm
al

is
at

io
n

– 
H

M
D

B
– 

C
he

no
m

xN
M

R
su

ite
 

7.
1 

pr
ofi

le
r

M
is

si
ng

 v
al

ue
:

– 
C

V
 >

 3
0%

>
 3

0%
 b

el
ow

 L
O

D

Ta
bl

e 
3 

(c
on

tin
ue

d)

M. Mireault and L. Sleno



293
Su

bj
ec

t
Sa

m
pl

e
C

oh
or

t
D

at
a 

pr
e-

ac
qu

is
iti

on
D

at
a 

ac
qu

is
iti

on
D

at
a 

po
st

-a
cq

ui
si

tio
n

St
at

is
tic

al
 a

na
ly

si
s

O
ut

co
m

es
 o

f 
st

ud
y

R
ef

er
en

ce

B
M

I
Se

ru
m

30
4 

po
st

m
en

op
au

sa
l 

w
om

en
 (

ag
ed

 
50

–7
4)

– 
Fa

st
in

g 
bl

oo
d 

(≥
10

 h
)

– 
Pr

oc
es

se
d

– 
�St

or
ed

 a
t −

86
 °

C
 w

ith
in

 
12

 h
 

– 
�Se

ve
ra

l r
ec

ov
er

y 
st

an
da

rd
s

– 
�Pr

ot
ei

n 
pr

ec
ip

ita
tio

n 
by

 
M

eO
H

L
C

-M
S/

M
S

– 
Po

ol
ed

 Q
C

 s
ta

nd
ar

d
– 

�C
V

s 
ca

lc
ul

at
ed

 f
or

 3
8 

sa
m

pl
es

 u
si

ng
 s

in
gl

e 
po

ol
ed

 Q
C

 s
am

pl
e

– 
In

-h
ou

se
 li

br
ar

y
– 

�N
or

m
al

iz
at

io
n 

to
 th

e 
ru

n 
da

y
M

is
si

ng
 v

al
ue

– 
>

90
%

 b
el

ow
 L

O
D

 
w

er
e 

ex
cl

ud
ed

– 
�M

in
im

um
 o

bs
er

ve
d 

va
lu

e 
of

 th
at

 s
pe

ci
fic

 
m

et
ab

ol
ite

– 
L

og
-t

ra
ns

fo
rm

at
io

n
SA

S
– 

�Pa
rt

ia
l P

ea
rs

on
 

co
rr

el
at

io
ns

B
on

fe
rr

on
i c

or
re

ct
io

n

– 
50

 B
M

I-
co

rr
el

at
ed

 
m

et
ab

ol
ite

s
– 

�B
M

I-
re

la
te

d 
m

et
ab

ol
ite

s 
w

er
e 

m
or

e 
st

ro
ng

ly
 

co
rr

el
at

ed
 w

ith
 f

at
 m

as
s 

th
an

 le
an

 m
as

s
– 

�E
ig

ht
 m

et
ab

ol
ite

s 
th

at
 

w
er

e 
co

rr
el

at
ed

 w
ith

 f
at

 
m

as
s 

or
 le

an
 m

as
s 

bu
t 

no
t B

M
I

[6
8]

D
ie

t
U

ri
ne

64
8 

pa
rt

ic
ip

an
ts

 
(m

ea
n 

ag
e 

52
.2

 ±
 9

.4
)

– 
24

 h
 u

ri
ne

 c
ol

le
ct

io
ns

 
– 

�R
ef

ri
ge

ra
te

 o
r 

w
ith

 
co

ol
er

 p
ac

ks
– 

A
liq

uo
te

d
– 

�Fr
oz

en
 a

nd
 s

hi
pp

ed
 o

n 
dr

y 
ic

e
– 

St
or

ag
e 

in
 li

qu
id

 N
2 

– 
�Pr

ec
ip

ita
te

 p
ro

te
in

s 
w

ith
 M

eO
H

L
C

-M
S/

M
S

– 
�T

ri
pl

ic
at

es
 o

f 
44

 
pa

rt
ic

ip
an

t s
am

pl
es

– 
�In

te
rc

la
ss

 c
or

re
la

tio
n 

co
ef

fic
ie

nt
s 

(I
C

C
s)

– 
In

-h
ou

se
 li

br
ar

y
– 

N
or

m
al

iz
at

io
n 

by
 

os
m

ol
al

ity
M

is
si

ng
 v

al
ue

:
– 

�IC
C

 <
 0

.5
 w

er
e 

ex
cl

ud
ed

– 
�>

90
%

 b
el

ow
 L

O
D

 
w

er
e 

ex
cl

ud
ed

–� 
Im

pu
te

d 
w

ith
 th

e 
m

in
im

um

– 
L

og
-t

ra
ns

fo
rm

at
io

n
– 

A
ut

os
ca

le
d

– 
�Pe

ar
so

n’
s 

pa
rt

ia
l 

co
rr

el
at

io
n

– 
B

on
fe

rr
on

i
– 

�R
O

C
 c

ur
ve

 u
si

ng
 R

 
pa

ck
ag

e

– 
�70

8 
di

et
-m

et
ab

ol
ite

 
as

so
ci

at
io

ns
 w

er
e 

id
en

tifi
ed

– 
�51

3 
un

iq
ue

 m
et

ab
ol

ite
s 

co
rr

el
at

ed
 w

ith
 7

9 
fo

od
 

gr
ou

ps
/it

em
s

[6
4]

D
ie

t
Pl

as
m

a
67

1 
pa

rt
ic

ip
an

ts
 

(m
ea

n 
ag

e 
52

.3
 ±

 9
.5

)

– 
Fa

st
in

g 
bl

oo
d 

(8
 h

)
– 

E
D

TA
– 

R
ef

ri
ge

ra
te

d
– 

C
en

tr
if

ug
at

io
n

– 
A

liq
uo

te
d

– 
Sh

ip
pe

d 
on

 d
ry

 ic
e

– 
St

or
ag

e 
in

 li
qu

id
 N

2 
– 

�Pr
ot

ei
n 

pr
ec

ip
ita

tio
n 

by
 

M
eO

H

L
C

-M
S/

M
S

– 
�D

up
lic

at
es

 o
f 

60
 

pa
rt

ic
ip

an
t s

am
pl

es
– 

�In
te

rc
la

ss
 c

or
re

la
tio

n 
co

ef
fic

ie
nt

s 
(I

C
C

s)

– 
In

-h
ou

se
 li

br
ar

y
– 

�E
ac

h 
m

et
ab

ol
ite

 w
as

 
di

vi
de

d 
by

 it
s 

da
ily

 
m

ed
ia

n
– 

�E
xc

lu
de

d 
– 

M
is

si
ng

 
va

lu
es

 w
er

e 
as

si
gn

ed
 

th
e 

m
in

im
um

 d
et

ec
tio

n 
va

lu
e

– 
L

og
-t

ra
ns

fo
rm

at
io

n
– 

A
ut

os
ca

le
d

– 
�Pe

ar
so

n’
s 

pa
rt

ia
l 

co
rr

el
at

io
n

– 
B

on
fe

rr
on

i
– 

�R
O

C
 c

ur
ve

 u
si

ng
 R

 
pa

ck
ag

e

– 
�A

 to
ta

l o
f 

67
7 

di
et

-m
et

ab
ol

ite
 

as
so

ci
at

io
ns

– 
�23

8 
pl

as
m

a 
m

et
ab

ol
ite

s 
w

er
e 

as
so

ci
at

ed
 w

ith
 7

4 
fo

od
 g

ro
up

s/
ite

m
s

[6
3] (c
on

tin
ue

d)

LC-MS-Based Population Metabolomics: A Mini-Review of Recent Studies…



294

Su
bj

ec
t

Sa
m

pl
e

C
oh

or
t

D
at

a 
pr

e-
ac

qu
is

iti
on

D
at

a 
ac

qu
is

iti
on

D
at

a 
po

st
-a

cq
ui

si
tio

n
St

at
is

tic
al

 a
na

ly
si

s
O

ut
co

m
es

 o
f 

st
ud

y
R

ef
er

en
ce

Pr
eg

na
nc

y
Se

ru
m

87
74

 w
om

en
– 

Fa
st

in
g 

se
ru

m
– 

Pr
oc

es
se

d 
w

ith
in

 2
.5

 h
– 

�C
en

tr
if

ug
ed

 a
t 

35
00

 r
pm

, 1
0 

m
in

 a
t 

ro
om

 te
m

pe
ra

tu
re

– 
St

or
ed

 a
t −

80
 °

C

N
M

R
– 

�PE
R

C
H

 N
M

R
 

so
ft

w
ar

e
– 

�R
ep

ea
te

d 
an

al
ys

es
 

in
cl

ud
in

g 
on

ly
 

co
m

pl
et

e 
ca

se
 d

at
a 

to
 

te
st

 w
he

th
er

 a
ny

 
m

is
si

ng
 d

at
a 

w
er

e 
al

te
ri

ng
 th

e 
re

su
lts

R
 p

ac
ka

ge
– 

�M
ul

tiv
ar

ia
bl

e 
lin

ea
r 

re
gr

es
si

on

– 
�W

hi
te

 E
ur

op
ea

n 
w

om
en

 
(W

E
s)

 h
ad

 h
ig

he
r 

le
ve

ls
 

of
 m

os
t l

ip
op

ro
te

in
, 

ch
ol

es
te

ro
l, 

gl
yc

er
id

es
, 

ph
os

ph
ol

ip
id

s,
 

m
on

os
at

ur
at

ed
 f

at
ty

 
ac

id
s,

 p
yr

uv
at

e,
 g

ly
ce

ro
l, 

an
d 

cr
ea

tin
in

e
– 

�So
ut

h 
A

si
an

 w
om

en
 h

ad
 

hi
gh

er
 le

ve
ls

 o
f 

gl
uc

os
e,

 
lin

ol
ei

c 
ac

id
, o

m
eg

a-
6 

an
d 

po
ly

un
sa

tu
ra

te
d 

fa
tty

 
ac

id
s,

 a
nd

 m
os

t a
m

in
o 

ac
id

s
– 

�H
ig

he
r 

B
M

I 
an

d 
ha

vi
ng

 
G

D
 h

ad
 h

ig
he

r 
le

ve
ls

 o
f 

lip
op

ro
te

in
, t

ri
gl

yc
er

id
es

, 
m

os
tly

 w
ith

 s
tr

on
ge

r 
as

so
ci

at
io

ns
 in

 W
E

s

[4
0]

Ta
bl

e 
3 

(c
on

tin
ue

d)

M. Mireault and L. Sleno



295
Su

bj
ec

t
Sa

m
pl

e
C

oh
or

t
D

at
a 

pr
e-

ac
qu

is
iti

on
D

at
a 

ac
qu

is
iti

on
D

at
a 

po
st

-a
cq

ui
si

tio
n

St
at

is
tic

al
 a

na
ly

si
s

O
ut

co
m

es
 o

f 
st

ud
y

R
ef

er
en

ce

B
re

as
t c

an
ce

r 
pr

ev
en

tiv
e 

lif
es

ty
le

 
be

ha
vi

or
s

Pl
as

m
a

13
19

 p
ar

tic
ip

an
ts

 
(a

ge
d 

30
–7

4)
– 

E
D

TA
 tu

be
s

– 
St

or
ed

 a
t 4

 °
C

– 
�C

en
tr

if
ug

ed
 a

t 
13

00
 g

,1
0 

m
in

 a
t 4

 °
C

 
w

ith
 b

ra
ke

 o
n

– 
�St

or
ed

 a
t −

80
 °

C
 

(1
9–

24
 h

 a
ft

er
 b

lo
od

 
co

lle
ct

io
n)

– 
�Fr

ee
 o

f 
he

m
ol

ys
is

 a
nd

 
lip

id
em

ia

N
M

R
M

is
si

ng
 v

al
ue

s:
– 

�H
al

f 
m

in
im

um
 v

al
ue

 o
f 

th
at

 m
et

ab
ol

ic
 m

ea
su

re
 

in
 to

ta
l p

op
ul

at
io

n
– 

�C
V

: D
up

lic
at

e 
sa

m
pl

es
 

(5
%

)

R
 p

ac
ka

ge
 a

nd
 S

ta
ta

– 
L

og
-t

ra
ns

fo
rm

at
io

n
– 

�M
ul

tiv
ar

ia
te

 
im

pu
ta

tio
ns

 b
y 

ch
ai

ne
d 

eq
ua

tio
n 

(M
IC

E
)

– 
L

in
ea

r 
re

gr
es

si
on

– 
�Pe

ar
so

n 
pa

ir
w

is
e 

co
rr

el
at

io
ns

M
et

Sc
ap

e
– 

�C
on

di
tio

na
l 

co
rr

el
at

io
n 

ne
tw

or
ks

Fr
ui

t a
nd

 v
eg

et
ab

le
 

co
ns

um
pt

io
n

– 
�N

eg
at

iv
e 

as
so

ci
at

io
ns

 
be

tw
ee

n 
gl

yc
op

ro
te

in
 

ac
et

yl
s,

 a
n 

in
fla

m
m

at
io

n-
re

la
te

d 
m

et
ab

ol
ite

 w
ith

 
lo

w
er

 B
M

I
– 

�Po
si

tiv
e 

as
so

ci
at

io
n 

be
tw

ee
n 

po
ly

un
sa

tu
ra

te
d 

fa
tty

 a
ci

ds
B

M
I

– 
�Po

si
tiv

e 
as

so
ci

at
io

ns
 

be
tw

ee
n 

H
D

L
 w

ith
 lo

w
er

 
B

M
I

A
lc

oh
ol

 c
on

su
m

pt
io

n
– 

�Po
si

tiv
e 

as
so

ci
at

io
n 

of
 

A
po

A
1

B
M

I 
an

d 
fr

ui
t a

nd
 

ve
ge

ta
bl

e 
co

ns
um

pt
io

n 
w

er
e 

ge
ne

ra
lly

 c
on

si
st

en
t 

bu
t w

er
e 

op
po

si
te

 w
ith

 
al

co
ho

l c
on

su
m

pt
io

n

[5
2]

LC-MS-Based Population Metabolomics: A Mini-Review of Recent Studies…



296

standards (IS), blanks with PBS, different control samples (NIST SRM 1950, com-
mercially available serum QCs and QCs provided by the manufacturer), and ran-
domized batches were used for serum samples.

7.3 � Post-Acquisition Data Processing

Missing values are due to the absence of metabolites in some samples. When a 
metabolite is not detected in several samples (20–90%), it is usually excluded from 
the analysis. In some cases, the missing value is replaced by a fraction of the lowest 
detected value or the minimum value. However, it is not always specified whether 
this is the limit of detection (LOD) or the value detected in a sample set. The study 
by McClain et al. [68] used the random forest method built into the “mice” package 
to handle missing data. Several studies use an in-house library to identify metabo-
lites, which allows for reducing the FDR and obtaining MS/MS spectra specific to 
the method used. Online databases are also used. The most common was HMDB, 
followed by METLIN and NIST.  Studies have combined in-house libraries and 
online databases to increase the number of identified metabolites. Some studies 
confirm with commercially available standards to achieve a level 1 confidence. Prior 
to statistical analyses, most studies perform a log transformation to obtain a Gaussian 
distribution. Subsequently, the most used statistical tests were the principal compo-
nent analysis (PCA), the area under the receiver operating characteristic (ROC) 
curve, and the multivariate linear regression model. Other analyses, such as orthog-
onal partial least-squares discriminant analysis (OPLS-DA), Pearson correlation 
coefficient, and Pearson partial correlation coefficient, were also present in several 
studies. Many studies have performed multiple correction tests, with a slight prefer-
ence for the Bonferroni correction. Thus, despite the diversity of methods used, 
some approaches seem to be more common than others.

8 � Conclusion

Recently, population-based metabolomic studies have increased significantly due to 
their potential to predict, diagnose, and monitor disease progression [5, 69]. 
However, due to the lack of standardization of protocols, these studies use different 
approaches, which may lead to limited reproducibility and consistency between 
results. Therefore, it is essential to establish standards for a specific workflow for 
untargeted metabolic analysis. Furthermore, to get a complete view of the biological 
mechanisms involved, it is preferable to integrate metabolomics with other “omic” 
sciences, such as proteomics, transcriptomics, and exposomics.
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Abstract  Interstitial lung diseases (ILD) are a heterogeneous group of parenchy-
mal pulmonary disorders that result from varying degrees of inflammation or fibro-
sis in the lung interstitium, that is, the septum between alveoli and the blood 
capillaries. The clinical presentation of ILD is complex and the diagnosis is often 
challenging. Therefore, the need to establish disease-specific molecular fingerprints 
to better understand the underlying pathogenesis is well realized. “Omics” is a pow-
erful tool that collectively depicts and quantifies biomolecules, including key 
genomic, transcriptomic, proteomic, and metabolomic signatures, and discloses 
their dynamic interactions within an organism. Metabolomics is a branch of omics 
that identifies numerous small molecules from body fluids or tissues and holds 
immense potential for early diagnosis, therapeutic monitoring, and understanding 
of disease pathophysiology. Another evolving popular omic field is transcriptomics, 
which identifies key genetic regulations and posttranscriptional modifications trig-
gering diseases. The findings of 17 original articles on metabolomics and 63 on 
transcriptomics of ILD reported are discussed. Though each omic dataset provides 
valuable information, integrating these platforms offers an overall snapshot of the 
interplay between the candidate molecules and genes, thereby paving the path for 
highlighting the genotype-to-phenotype relationship and assisting in making more 
effective treatment decisions for complex diseases.
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1 � Introduction

Interstitial lung disease (ILD) is an umbrella term that encompasses about 300 
parenchymal pulmonary disorders, resulting from varying degrees of inflammation 
or fibrosis in the lung interstitium, that is, the septum between alveoli and the blood 
capillaries. A schematic diagram of a healthy vs. ILD lung is shown in Fig. 1.

Numerous studies across the globe have reported the incidence, prevalence, and 
relative frequency of ILD. The annual incidence of ILD varies between 1 and 31.5 
per 100,000 [1]. The incidence and prevalence vary among populations, likely due 
to differences in study design, data collection, and incorrect recognition of the dis-
ease subtypes [2]. ILD is classified based on clinical, radiological, and histopatho-
logical features. The latest classification focuses on recognizing the underlying 
etiology since this often impacts both prognostication and management decisions. 
ILD mainly consists of disorders of known causes [collagen vascular disease, 
hypersensitivity pneumonitis (HP)] as well as disorders of unknown/idiopathic 
causes [idiopathic interstitial pneumonia (IIP), sarcoidosis] [3]. ILD registries com-
prising patients from Western countries suggest that idiopathic pulmonary fibrosis 
(IPF) and sarcoidosis are the most common phenotypes. However, the ILD registry 
of India indicates HP to be the most common, which accounts for nearly 50% of all 
ILD cases [4].

Fig. 1  Healthy lung vs. interstitial lung disease (created using BioRender.com)
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The emerging field of metabolomics, in which many small molecules from body 
fluids or tissues can be identified, holds immense potential for early diagnosis, ther-
apeutic monitoring, and understanding of disease pathophysiology. Over the past 
two decades, nuclear magnetic resonance (NMR) spectroscopy and gas chromatog-
raphy (GC)/liquid chromatography (LC) coupled with mass spectrometry (MS) 
combined with chemometric analysis have emerged as principal analytical tech-
niques for use in metabolomics. Several biofluids including cerebrospinal fluid 
(CSF), bronchoalveolar lavage fluid (BALF), bile, seminal fluid, amniotic fluid, 
synovial fluid, gut aspirate, serum/plasma, saliva, exhaled breath condensate (EBC), 
and urine contain hundreds to thousands of detectable metabolites which have been 
extensively studied so far [5]. More recently, metabolic profiling of intact tissue and 
extracts of lipid and aqueous metabolites are gaining increasing importance for 
detection of biomarkers.

Another branch of popular omic science is transcriptomics, which provides 
detailed information about gene regulation in normal and diseased conditions. Two 
key contemporary techniques commonly used for transcriptomic analysis are 
hybridization-based microarray techniques, which quantify a set of predetermined 
sequences, and next-generation sequencing (NGS), which uses high-throughput 
sequencing to capture all sequences [6]. In the last decade, these two transcriptomic 
approaches have been utilized most widely to understand the underlying disease 
pathogenesis at both molecular and genetic levels and also for molecular diagnosis 
and clinical therapy. Human biofluids including amniotic fluid, aqueous humor, 
ascites, bile, BALF, breast milk, CSF, colostrum, gastric fluid, pancreatic cyst fluid, 
plasma, saliva, seminal fluid, serum, sputum, stool, synovial fluid, sweat, tears, 
urine, and tissues are widely used for transcriptomic studies to identify biomarkers 
of several diseases [7–9].

2 � Types of ILD

ILD, as mentioned earlier, refers to a group of lung diseases ranging from occa-
sional self-limited inflammatory processes to severe debilitating fibrosis of the lung 
parenchyma. There are varied causes of ILD, which generally result from a range of 
environmental, occupational, recreational, or drug-related exposures or could arise 
from the various systemic autoimmune or connective tissue diseases (CTD) [10]. 
Classification of different types of ILD is shown in Fig. 2. A few of the common 
ILD subtypes are described in the present section.
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other ILD

Fig. 2  Classification of different types of interstitial lung disease (Cottin et al. 2018) [3]. ILD 
interstitial lung disease, IIP idiopathic interstitial pneumonia, IPF idiopathic pulmonary fibrosis, 
iNSIP idiopathic nonspecific interstitial pneumonia, RB-ILD respiratory bronchiolitis-associated 
ILD, COP cryptogenic organizing pneumonia, RA-ILD rheumatoid arthritis-associated ILD, SSC-
ILD systemic sclerosis-associated ILD, HP hypersensitivity pneumonitis

2.1 � Idiopathic Interstitial Pneumonia (IIP)

The cause of IIP, comprising of diffuse parenchymal lung diseases, remains 
unknown. IIP is characterized by varying degrees of inflammation and fibrosis in 
the lung interstitium. These characteristics split IIP into eight clinicopathologic 
entities, that is, IPF, nonspecific interstitial pneumonia (NSIP), cryptogenic organiz-
ing pneumonia (COP), acute interstitial pneumonia, respiratory bronchiolitis-
associated interstitial lung disease, desquamative interstitial pneumonia, lymphoid 
interstitial pneumonia, and idiopathic pleuroparenchymal fibroelastosis [11]. 
Among all IIPs, IPF is the most common phenotype characterized by fibroblastic 
foci and the presence of inflammation and honeycombing in the lung parenchyma.
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2.2 � Autoimmune ILD

Autoimmune ILD is caused specifically by autoimmune disorders, which involve 
the body’s immune system attacking the lungs. This ILD group gradually develops 
and emerges over a long period of time. The symptoms of this ILD include difficulty 
in breathing, dry cough, and shortness of breath. Connective tissue disease-related 
ILD (CTD-ILD), rheumatoid arthritis-associated ILD (RA-ILD), and systemic 
sclerosis-associated ILD (SSC-ILD) are the common types of autoimmune ILD 
[12, 13].

2.3 � Hypersensitivity Pneumonitis (HP)

HP, also referred to as extrinsic alveolar alveolitis, is a complex subtype of ILD aris-
ing from repeated exposure to certain antigens, most commonly avian, microbial 
(especially molds), or chemical. HP is the third most prevalent ILD after IPF and 
CTD-ILD. The inhaled antigen triggers type III and type IV hypersensitivity reac-
tions, which causes the damage of alveolar epithelial cells. An impaired repair 
mechanism may result in fibroblast activation, deposition of collagen by the destruc-
tion of extracellular matrix, and parenchymal architecture [14]. The major forms of 
HP are acute, subacute, and chronic. Acute and subacute HP is mainly characterized 
by influenza-like symptoms, such as cough, dyspnea, and fever, developing after 
2–9 h of antigen exposure. The chronic form of HP arises from repetitive, low-level 
exposure to the causative agent. Still, the identity of the causative antigen may 
remain unknown in more than half the cases. Chronic HP patients slowly develop 
fibrosis in the lung interstitium and are associated with a significantly high mortality 
rate [15].

2.4 � Sarcoidosis

Sarcoidosis is a systemic, inflammatory disease resulting from an unknown origin. 
Chronic immune response to an idiopathic antigen may lead to sarcoidosis in genet-
ically susceptible subjects. Almost 90% of sarcoidosis patients have pulmonary 
involvement. Dry cough, chest tightness, chronic dyspnea on exertion, shortness of 
breath, wheezing, hypoxemia, and decline in pulmonary function are the common 
signs and symptoms of sarcoidosis. Near about 20% of sarcoidosis patients develop 
pulmonary fibrosis, that is, stage IV sarcoidosis which is associated with high mor-
tality [16].
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2.5 � Occupational and Environmental Exposure-Related 
Other ILDs

Long-term exposure to occupational or environmental antigens could cause certain 
types of ILD via pulmonary and systemic inflammation and oxidative stress. Many 
different types of mineral dust, such as silica, asbestos, beryllium, coal mine dust, 
metal, and organic dust, including mold spores, can also affect the lung airways, 
either by a direct wound or through reactive oxygen molecules. Common conditions 
include asbestosis, which is associated with asbestos fibers, and silicosis, which is 
caused by free crystalline silicon dioxide or silica particles [17, 18].

3 � Metabolomics: An Emerging Tool in Clinical Research

Metabolomics, one of the newest omics science, is an evolving field in clinical 
research. Metabolomics is the scientific study of metabolic fingerprints that all cel-
lular processes leave behind in a biological sample [19]. It provides a snapshot of 
the metabolic state of an individual at a given point in time. On the other hand, 
“metabonomics,” a term first coined by Jeremy Nicholson, refers to “the quantita-
tive measurement of the dynamic multiparametric metabolic response of living sys-
tems to pathophysiological stimuli or genetic modification” [20, 21]. The terms 
“metabolomics” and “metabonomics” are often used interchangeably. Among the 
different omic approaches, metabolomics is considered to modulate best and depict 
the molecular phenotype of health and disease [22]. Thus, it is increasingly becom-
ing a useful and powerful tool for the investigation of complex diseases with unclear 
etiology, enabling the discovery of novel biomarkers, which, in turn, aid in the pre-
vention and early diagnosis of diseases. Metabolomics can also monitor the effect 
of pharmacotherapy, allowing clinicians to choose the best treatment option for 
patients suffering from potentially devastating disorders. The two analytical tech-
niques popularly used have their own advantages and disadvantages. While mass 
spectrometry can analyze a wider range of metabolites and is more sensitive, it 
results in the destruction of the analyzed sample. NMR spectroscopy, on the other 
hand, is highly reproducible and does not destroy the sample; however, sensitivity 
is limited [23, 24]. Over the years, application of metabolomics in diseases is rap-
idly growing, and recent studies exploring the metabolic profiles of various human 
samples, including but not limited to plasma, serum, urine, BALF, exhaled breath, 
saliva, and tissues, bring this technology closer to the patients’ bedside, thereby 
enhancing its clinical utility. A schematic representation of the metabolomic work-
flow is shown in Fig. 3.
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Fig. 3  Schematic representation of the metabolomic workflow (created using BioRender.com)

3.1 � Metabolomics in ILD

Several attempts have been made to understand the metabolic status of ILD patients 
and identify prospective biomarkers in lung tissues and various body fluids using a 
nontargeted and targeted metabolomic approach. Studies utilizing the metabolomic 
approaches to investigate ILD are summarized in Table 1.

Metabolomics and Transcriptomic Approach to Understand the Pathophysiology…

http://biorender.com


308

Table 1  A summary of studies exploring different types of ILD in humans using metabolomic 
approach

IPF
Biological 
sample Technique Main findings References

Tissue NMR 
(untargeted)

Lactic acid levels significantly elevated in IPF lung 
tissue, suggested to be a key driver of myofibroblast 
differentiation, as well as onset and progression of 
fibrotic disorders

[25]

Tissue MS 
(untargeted)

Alterations in glycolytic, adenosine triphosphate 
degradation, glutathione biosynthesis, and ornithine 
aminotransferase pathways indicated in lung tissues 
of IPF patients

[26]

Tissue MS (targeted) Free fatty acid dysregulation in IPF lungs; stearic 
acid suggested exhibiting antifibrotic effect in IPF

[27]

Tissue MS 
(untargeted)

Dysregulation in sphingolipid metabolic pathway, 
arginine pathway, glycolysis, TCA cycle, and 
mitochondrial β-oxidation; dysregulated haem, bile 
acid, and glutamate/aspartate metabolism suggested 
to play a crucial role in IPF pathogenesis

[28]

Exhaled 
breath

MS 
(untargeted)

Distinct metabolic profile with 58 discriminatory 
metabolites identified in EBC of IPF patients

[29]

Exhaled 
breath

MS (targeted) Significantly increased expression levels of proline, 
4-hydroxyproline, alanine, valine, leucine/isoleucine, 
and allysine were detected in exhaled breath of IPF 
patients

[30]

Plasma MS (targeted) 62 altered lipids, including 24 types of 
glycerophospholipids, 30 types of glycerolipids, 3 
types of sterol lipids, 4 types of sphingolipids, and 1 
type of fatty acid identified in the plasma of IPF 
patients

[31]

Plasma MS 
(untargeted)

Lysophosphatidylcholine (lysoPC) and several fatty 
acids, including palmitoleic acid, oleic acid, and 
linoleic acid, significantly upregulated, whereas 
dihydrotestosterone significantly downregulated in 
IPF patients

[32]

Plasma MS (targeted) Discrimination between stable and progressive IPF 
patients based on differences in plasma levels of 
triglycerides and phosphatidylcholine; this difference 
further confirmed in lung tissue of IPF

[33]

Serum MS 
(untargeted)

LysoPC was found to be significantly dysregulated in 
IPF patients, indicating its potential as a biomarker 
for diagnosis and monitoring of IPF

[34]

HP
Serum, 
EBC, and 
BALF

NMR 
(untargeted)

Three metabolites, including lactate, pyruvate, and 
proline, significantly altered in all three biofluids

[35]
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Table 1  (continued)

IPF
Biological 
sample Technique Main findings References

Sarcoidosis
Serum NMR 

(untargeted)
Three major pathways, including fatty acid 
metabolism, glycolysis/TCA cycle, and 
homocysteine/methylamine, altered in sarcoidosis

[36]

Plasma NMR 
(untargeted) 
and MS 
(targeted)

Distinct metabolomic and metallomic profiles were 
observed in veterans with sarcoidosis as compared to 
civilians, with levels of magnesium, calcium, 
aluminium, titanium, and iron increased in 
sarcoidosis

[37]

RA-ILD
Serum MS 

(untargeted)
Four serum metabolites (mannosamine, alliin, 
kynurenine, and 2-hydroxybutyric acid) exhibit 
better performance in distinguishing types of RA 
patients with acute-onset diffuse ILD (AoDILD) as 
compared to existing AoDILD markers, KL-6 and 
SP-D

[38]

Serum MS 
(untargeted)

Significantly altered expression of decanoic acid, 
glycerol, and morpholine was observed on 
comparing RA-ILD (usual interstitial pneumonia-
associated RA and NSIP-associated RA) and RA 
patients without any chronic lung disease

[39]

Silicosis
Plasma MS 

(untargeted 
and targeted)

L-arginine and kynurenine associated with severity 
of silicosis with a predictive role in disease 
monitoring

[40]

Lymphangioleiomyomatosis
Cell line MS 

(untargeted)
Targeting E2-dependent cellular metabolic pathways 
may have favorable therapeutic effects on 
lymphangioleiomyomatosis patients

[41]

4 � Transcriptomics: A Promising Omic Approach

Transcriptome analysis utilizes high-throughput methods to study the complete set 
of RNA transcripts produced by the genome under specific circumstances. It covers 
all types of transcripts, including mRNAs, miRNAs, and different types of long 
noncoding RNAs (lncRNAs). Transcriptome analysis gives us an overview of all 
genes’ expression levels and enables us to understand the physiology of the cell. 
More precisely, it also discloses key regulations of biological processes triggering 
diseases. While microarrays are generally less complex and easier to use than NGS, 
the latter is associated with greater flexibility, high throughput, and high discovery 
potential. A schematic representation of the transcriptomic workflow is shown 
in Fig. 4.
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Fig. 4  Schematic representation of the transcriptomic workflow (created using BioRender.com)

4.1 � Transcriptomics in ILD

Various studies have been performed to understand the transcriptomic signatures of 
ILD patients and identify prospective biomarkers in lung tissues and various bioflu-
ids using NGS and microarray techniques. Despite increasing interest and effort 
invested by clinicians and scientists during the last decade, the etiology of ILD 
remains elusive and controversial.

As mentioned earlier, IPF is characterized by remodeling or scarring of the air-
way epithelium. The activated extracellular matrix (ECM)-produced myofibroblasts 
play a key role in the process of fibrotic tissue remodeling. Advances in transcrip-
tomic techniques have allowed high-throughput analysis and discovery of gene 
deregulation in IPF.  Several studies using lung tissues have reported that IPF is 
associated with variances in the expression levels of genes such as CCL8 [42], 
CXCL14 [43], CXCL4 and CXCL12 [44], NOTCH2 [45], TGF-β1 and RhoA kinase 
[46], REVERBα [47], IL-1β [48], FLIL33 and POU2AF1 [49], FOXL1 [50], 
COL6A3, and POSTN [51]. Microarray analysis of peripheral blood by Abe et al. 
(2020) has shown dysregulated PDGF B, VEGF B, and FGF 2. The authors con-
firmed their findings using ELISA, western blot, immunofluorescence, and 3H thy-
mine uptake assays. Xia and co-workers (2021) recently utilized weighted gene 
co-expression network analysis (WGCNA) of BALF samples and could associate 
four genes, TLR2, CCR2, HTRA1, and SFN, with disease prognosis.

Pathway enrichment analysis based on dysregulated genes highlights the associ-
ated biological pathways, molecular functions, and cellular components. This 
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method identifies all biological pathways enriched in a gene list more than would be 
expected by chance. The KEGG pathway tool maps the pathways associated with 
dysregulated genes in a specific disease. Pathway enrichment analysis of IPF 
patients revealed that the differentially expressed genes were majorly associated 
with myofibroblast differentiation and massive ECM deposition. The transcriptomic 
signatures of fibroblasts suggest that characterization of lung proteins, specifically 
lung fibrotic ECM, helps determine its composition and define targetable molecules 
for advanced stages of fibrosis. Boesch and his team (2020) isolated fibrosis-specific 
mesenchymal stem cell-like cells from lung tissue of IPF subjects and observed that 
the differentially expressed genes were enriched with hypoxia, fibrosis, and bacte-
rial colonization factors which are the typical hallmarks of pulmonary fibrosis. They 
found that the cells isolated from IPF patients express genes associated with activat-
ing canonical TGF-β, HIPPO/YAP, PI3K/AKT, p53, and WNT signaling cascades, 
which are activated in an integrated network. Another interesting study by Hsu and 
co-authors (2011) suggested that IPF lungs enriched in fibrosis-related genes, 
insulin-like growth factor signaling, and caveolin-mediated endocytosis. This 
microarray analysis also highlighted the common molecular signatures between 
lung tissue and fibroblasts of these patients.

Like IPF, HP is associated with matrix remodeling and formation of fibrosis. 
There exist only two studies where transcriptomics has been used to explore genetic 
alterations in HP. Sarcoidosis, as mentioned earlier, is an immune-mediated multi-
system disease characterized by the formation of non-caseating granuloma. Multiple 
pro-inflammatory signaling pathways, including IFN-γ/STAT-1, IL-6/STAT-3, and 
NF-κB, have been implicated in mediating macrophage activation and granuloma 
formation in sarcoidosis. Utilizing RT-PCR, Christophi et al. (2014) have demon-
strated that IL-6, COX-2, MCP-1, IFN-γ, T-bet, IRF-1, Nox2, IL-33, and eotaxin-1 
hold potential for differential diagnosis between sarcoidosis, suture, and fungal 
granulomas. In another recent study, Lepzien and co-workers (2021) have shown 
that allogeneic T cell proliferation increased after coculture with monocytes and 
dendritic cells of sarcoidosis patients. The authors also found that mainly T-bet and 
RORγt-expressing T cells produce IFN-γ. Monocytes from sarcoidosis patients can 
activate and polarize T cells towards Th1 and Th17.1 cells. In a comparative study 
between sarcoidosis and IPF, cluster analysis of BALF cells showed elevated mRNA 
expression of genes associated with ribosome biogenesis in sarcoidosis patients. 
Clusters formed by genes with altered mRNA expression in patients with IPF could 
be implicated in cell migration and adhesion processes, metalloproteinase expres-
sion, and negative regulation of cell proliferation. Various studies highlighting the 
transcriptome fingerprints and associated pathways in different ILD subtypes are 
summarized in Table 2.
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Table 2  A summary of studies exploring different types of ILD in humans using transcriptomic 
approach

IPF
Biofluid Technique Findings Reference

Plasma, 
BALF,
And tissues

Microarray CCL8 is a key molecule for differential diagnosis 
of IPF and can also predict survival

[42]

Tissue NGS Differentially expressed genes in IPF are 
associated with fibrosis, hypoxia, bacterial 
colonization, and pulmonary fibrosis metabolism

[43]

Tissue Microarray TGF-β1, RhoA kinase, and the TSC2/RHEB axis 
form major signaling clusters associated with 
collagen gene expression in IPF

[44]

Tissue NGS Specific connective tissue-related genes including 
alpha-smooth muscle actin, fibrillin, fibronectin, 
tenascin C, osteopontin, chains of highly 
abundant structural collagens and other collagens, 
multiple matrix metalloproteinases, and Wilms 
tumor protein are elevated in IPF

[45]

Tissue Microarray TGF-β1 increases the risk of developing IPF in 
smokers

[46]

Tissue NGS Notch signaling regulates the maintenance of an 
expanded pool of secretory primed basal cells in 
the distal lung of IPF patients

[47]

Tissue Microarray IPF lungs are enriched with fibrosis-related gene, 
insulin-like growth factor signaling, and 
caveolin-mediated endocytosis

[48]

Tissue Microarray Lower expression of cell migration-inducing and 
hyaluronan-binding protein in pirfenidone-treated 
IPF patients

[49]

Tissue Microarray IPF lungs are enriched with cell adhesion, 
molecule binding, chemical homeostasis, 
surfactant homeostasis, and receptor binding 
genes

[50]

Tissue NGS Elevated expression of numerous immune, 
inflammation, and extracellular matrix-related 
mRNAs observed in IPF

[45]

Tissue NGS Alternative splicing COL6A3 and POSTN may 
be involved in the pathogenesis of IPF

[51]

Tissue Microarray Twist1 as a regulator of noncanonical NF-κB 
signaling through CXCL12 may have a 
profibrotic effect in IPF

[52]

Tissue Microarray CXCL14 and CXCL4 may be involved in the 
activation of fibroblasts within IPF lungs and are 
involved in disease pathogenesis

[53]

Tissue Microarray A significant upregulation of EGFR, both at 
protein and mRNA level, was observed in IPF, 
fibrotic NSIP, and COP compared with controls

[54]

Tissue NGS MMP7 is differentially expressed in IPF patients [55]
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Table 2  (continued)

IPF
Biofluid Technique Findings Reference

Tissue NGS Hypoxia and TGF-β1 synergistically increase 
myofibroblast marker expression in IPF

[56]

Tissue NGS Discrete types of macrophages expressing (1) 
monocyte markers and (2) higher levels of 
FABP4, INHBA, SPP1, and MERTK present in 
IPF lungs

[57]

Tissue NGS FOXL1 can control a wide array of genes that 
potentiate fibroblast function, including TAZ/YAP 
signature genes and PDGF receptor-α in IPF

[58]

Tissue NGS POU2AF1 regulates fibrosis in IPF [59]
Tissue NGS FLIL33 overexpression and stimulation with 

TGF-β differentially regulates the fibroblast 
transcriptome in IPF

[60]

Tissue Microarray Genes associated with cell adhesion, molecule 
binding, chemical homeostasis, surfactant 
homeostasis, and receptor binding are 
dysregulated in lungs of IPF patients

[50]

Tissue Microarray LncRNAs are crucial regulators of proliferation 
and inflammation in human lung fibroblasts, 
suggesting their possible involvement in the 
lower inflammatory response in IPF

[61]

Tissue NGS Increased CD44 is a characteristic of IPF 
mesenchymal progenitor cells

[62]

Tissue NGS Following TGF-β1 stimulation, collagen secretion 
is elevated in IPF patients

[63]

Tissue and 
plasma

NGS The expression of GDF15 is increased in IPF and 
is associated with the progression of the disease

[64]

Tissue NGS Altered basaloid cells that express basal 
epithelial, mesenchymal, senescence, and 
developmental markers are located at the 
myofibroblast foci edge. Ectopically expanded 
cell populations are observed in vascular 
endothelial cells

[65]

Tissue Microarray CXCL12, collagen 3A1, MMP2, and MMP14 are 
upregulated in fibrotic ILD, including IPF, NSIP, 
organizing pneumonia, and alveolar fibroelastosis 
as compared with controls

[66]

Tissue NGS IPF fibroblast transcriptional signatures indicate 
enrichment of WNT, TGF-β, and ECM genes and 
downregulation of miR-29b-3p, miR-138-5p, and 
miR-146b-5p

[67]

Tissue Microarray Pathways associated with vascular proliferation, 
WNT signaling, and apoptosis are dysregulated 
in IPF arterioles

[68]

(continued)
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Table 2  (continued)

IPF
Biofluid Technique Findings Reference

Tissue NGS Alveolar type 1 (AT1), AT2, and conducting 
airway selective markers are frequently 
co-expressed by IPF cells, and aberrant activation 
of canonical signaling via TGF-β, HIPPO/YAP, 
p53, WNT, and AKT/PI3K is predicted via 
pathway analysis

[69]

Tissue Microarray Expression of cilium genes appears to identify 
two unique molecular phenotypes
Of IPF/UIP, which may affect therapeutic 
responsiveness

[70]

BALF Microarray IPF is associated with cell migration, cell 
adhesion, metalloproteinase expression, and 
negative regulation of cell proliferation

[71]

BALF Microarray TLR2, CCR2, HTRA1, and SFN are involved in 
the prognosis of IPF

[72]

Peripheral 
blood

Microarray PDGF B, VEGF B, and FGF 2 genes are 
associated with IPF

[73]

Peripheral 
blood

Microarray YBX3, UTRN, hsa_circ_0001924, and FENDR 
could be potential diagnostic biomarkers of IPF

[74]

Peripheral 
blood

Microarray Increased circulating FUT3 level is associated 
with reduced risk of IPF

[75]

PBMC, 
monocytes, 
and serum

NGS Type I IFN pathway is the key regulator for 
driving chronic inflammation and fibrosis in IPF

[76]

Nasal biopsy NGS Pathways related to immune response and 
inflammatory signaling are elevated in IPF 
patients

[77]

Tissue Fluorescence-
based RNA 
quantitation 
assay

IGF-1 signaling, ERK/MAPK signaling, protein 
ubiquitination, PI13/AKT signaling, cardiac 
b-adrenergic signaling, actin-cytoskeleton 
signaling, integrin signaling, and NRF2-mediated 
oxidative stress response pathways are associated 
with IPF

[78]

HP
Tissue NGS HP is associated with specific genes, including 

CXCL9, an IFN-γ-inducible chemokine, and 
ligand for CXCR3

[79]

Tissue NGS Antigen presentation and extracellular matrix-
associated transcriptomic signatures are present 
in mild HP cases, whereas B cells are 
predominant in fibrotic HP

[80]

Sarcoidosis
Tissue Microarray Multiple pro-inflammatory signaling pathways 

mediate macrophage activation and granuloma 
formation in sarcoidosis

[81]

(continued)
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Table 2  (continued)

IPF
Biofluid Technique Findings Reference

Tissue NGS STAB1, HBEGF, and NOTCH4 genes are 
associated with sarcoidosis pathogenesis

[82]

BALF cells Microarray Increased mRNA gene expression associated with 
ribosome biogenesis and proteasome apparatus 
observed in sarcoidosis patients

[71]

BAL Microarray Cathepsin S is significantly upregulated in 
sarcoidosis

[83]

BAL NGS In four sarcoidosis endotypes (hilar 
lymphadenopathy, extraocular involvement, 
chronic stage, and multiorgan involvement 
condition), elevated acute T-cell response, PI3K 
pathways, increased immune response pathways, 
and increased IL-1 and IL-18 immune and 
inflammatory responses are observed

[84]

Blood and 
BAL

NGS Monocytes of sarcoidosis patients can activate 
and polarize T cells toward Th1 and Th17.1

[85]

Blood and 
BAL

NGS Monocytes/monocyte-derived cells increased in 
blood and BAL of sarcoidosis compared to 
healthy controls

[86]

Blood Microarray Interferon-inducible neutrophil-driven blood 
transcriptional signature observed in sarcoidosis

[87]

PBMC and 
BAL cells

Microarray Alterations in TLR2 signaling pathway and 
downstream of NF-κB apoptosis and proliferation 
evidenced in sarcoidosis

[88]

PBMC NGS Dysfunctional p53, cell death, and TNFR2 
signaling associated with sarcoidosis

[89]

PBMC, 
in vitro 
granuloma, 
and tissue

Microarray Molecular pathways, regulated by IL-13, which 
helps in activated M2 macrophage polarization, is 
associated with the pathogenesis of sarcoidosis

[90]

SSC-ILD
Tissue NGS Mesenchymal cell population including 

SPINT2hi, MFAP5hi, few WIF1hi fibroblasts, 
and a new large myofibroblast population may be 
actively involved in the regulation of disease 
pathogenesis

[91]

Tissue NGS Cellular stress pathways are upregulated in 
SSC-ILD, a population of KRT5-/KRT17+ 
aberrant basaloid cells representing markers of 
epithelial-mesenchymal transition and cellular 
senescence identified in the disease for the first 
time

[92]

Tissue Microarray Increased expression of TGF-β response 
signature is the key regulator of fibrosis 
formation in fibrotic SSC-ILD

[93]

(continued)
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Table 2  (continued)

IPF
Biofluid Technique Findings Reference

Tissue Microarray Targeting IL-6 trans-signaling, IGFBP2, IGFL2, 
and the coagulation cascade represent potential 
therapeutic strategies against the disease

[94]

Skin biopsy Microarray SELP, MMP 3, and CCL2 which are involved in 
the adhesion and extravasation of inflammatory 
cells are associated with SSC-ILD

[95]

Serum Microarray Hepatic fibrosis, granulocyte and agranulocyte 
adhesion, and diapedesis are associated with 
SSC-ILD

[96]

Silicosis
Tissue NGS Several critical genes, including MUC5AC and 

FGF10, serve as potential drug targets in silicosis
[97]

Cell line NGS Transcription factors, EGR2 and BHLHE40, are 
upregulated while TBX2, NR1H3, NR2F1, 
PPAR-γ, and EPAS1 are downregulated, which 
may play a crucial regulatory role in disease 
pathogenesis

[98]

Dermatomyositis-associated ILD
Blood NGS PLAUR may play an important role in disease 

pathogenesis by regulating the neutrophil-
associated immune response

[99]

5 � Integration of Metabolomic 
and Transcriptomic Fingerprints

As mentioned earlier, clinical metabolomics is primarily used to identify low 
molecular weight compounds differentially expressed in a particular disease. In 
contrast, transcriptomics identifies the complete set of dysregulated RNAs associ-
ated with a disease. Integration of metabolomic and transcriptomic signatures has 
emerged as a popular application-driven method for investigating underlying dis-
ease mechanisms, monitoring disease progression, and identifying potential bio-
markers [100–102]. The omic tools highlight alterations in genotype and phenotype 
and provide complementary information about genetic alterations, protein synthe-
sis, metabolism, and cellular function. Pathways and network connections further 
reflect the association between key metabolites and candidate transcripts.

Biological pathway networks reveal hidden patterns in unstructured data by con-
verting them into logically structured and visually evident representations, with 
nodes representing genes and metabolites and edges suggesting relationships 
between nodes and clusters with similar chemical activities. VANTED [103], VisAnt 
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[104], Impala [105], and Metscape2 [106] are some of the network-based visualiza-
tion tools that interface with public databases. In addition, Arena3D allows users to 
envision three-dimensional biological networks [107]. Interactive editing is fre-
quently performed for small biological networks. However, for major networks, 
automated layout web tools, that is, Cytoscape [108], NAViGaTOR [109], and 
Cerebral [110], are more convenient. Alternatively, pathway visualization tools 
highlight the biochemical activities and different interactive pathways in experi-
mental datasets. Pathguide offers an overview of nearly 190 web-usable network 
databases and biological pathways [110]. Arakawa and his team have developed a 
pathway visualization tool for KEGG-based pathways. Users can capture system-
atic features of biological activity by visualizing pathways at the level of different 
omic data representations [111]. Paintomics, another software program, analyzes 
the expression of genes and concentration of metabolite data and displays it on 
KEGG pathway maps [112]. ProMeTra can display dynamic data and accept anno-
tated images in SVG format [113]. In plants, KaPPa-View and MapMan show the 
number of metabolites and transcripts for preset route blocks [114, 115]. Other tools 
like MAYDAY enable viewing expression data in a genomic context with any meta-
data [116], and PaVESy creates personalized pathways using proteins and metabo-
lites provided by the user [117]. A schematic representation of integrated 
metabolomic and transcriptomic workflow is shown in Fig. 5.

In a recent study, our group used NMR coupled with chemometric analysis to 
identify the unique metabolic fingerprints in BALF of HP subjects. A total of six 
metabolites were found to be significantly altered in HP compared to non-HP con-
trols [35]. Next, we considered NGS data of lung tissues from HP patients and 
controls, reported in the NCBI-GEO public database by Furusawa et  al., and 

Fig. 5  Schematic representation of integrated metabolomic and transcriptomi data (created using 
BioRender.com, STITCH database, and Graph pad prism version 7)
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performed bioinformatic analysis. A total of 555 genes were dysregulated (373 
upregulated and 182 downregulated) in HP cases. An interaction network between 
the six candidate metabolites and most significantly altered genes (five upregulated 
and five downregulated) was established utilizing the Search Tool for Interactions of 
Chemicals (STITCH) database. The metabolite-gene interaction by STITCH dem-
onstrated 19 nodes connected via 16 edges. The clustering coefficient of the net-
work was found to be 0.768 (protein-protein interaction enrichment p-value: 
0.0838). Overall pathway overrepresentation analysis was performed by integrating 
the candidate metabolites and transcripts utilizing IMPaLA version 12. Glycolysis 
and phosphatidylinositol 3-kinase-protein kinase B (PI3K-AKT) signaling path-
ways emerged to be most significantly associated with the pathogenesis of HP. These 
findings are encouraging, since association of these pathways in chronic HP is well 
established. Since glycolysis is the key energy driving force for myofibroblast dif-
ferentiation and formation of fibrosis, perturbation of glycolysis seems likely [118]. 
The involvement of PI3K-AKT pathway is also evidenced in bleomycin-induced 
pulmonary fibrosis. It is hypothesized that PI3K-AKT plays a central role in fibrosis 
development [119, 120]. A novel insight into the pathogenesis of HP is envisioned 
by integrating the findings of the two omic platforms.

6 � Challenges and Future Scope

Most of the omic-driven studies conducted on ILD so far have included a small 
number of patients, which is quite understandable considering that ILD is a severe 
condition with a short average life expectancy. Power and sample size estimation, 
however difficult, would be useful because the low sample size is connected with 
statistical errors and risks of overfitting and misleading calculations. Since omic 
output is highly dynamic, clinical variables such as physiological status, age, gen-
der, and treatment may influence the findings. Hence, baseline characteristics of 
recruited ILD subjects need to be closely matched. Lack of a rigorous subject selec-
tion approach could also result in discovering markers that are not exclusive to ILD 
subtypes. It is observed that only a few groups have included healthy controls in 
their omic-driven research on ILD. Also, nonuniformity in including smokers and 
nonsmokers is frequently observed while comparing disease populations with 
healthy controls. This makes unbiased comparisons and conclusions impossible. A 
few groups were also unable to validate ILD candidate markers, which is crucial for 
biomarker identification. In fact, one of the main reasons why most of the omic-
based disease markers identified so far have not made it to clinical practice is due to 
a lack of adequate validation trials. Another observation that warrants attention 
while using omics is that different research groups identify different biomarkers in 
the same biofluid for a particular disease. This is not surprising given the fact that 
factors such as sampling methods, sample collection, handling and preparation, 
instrumentation, and data mining protocols tend to vary from one setup to another. 
To generate robust and reproducible data, the practices and procedures should be 
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standardized and rigorously followed across all clinics and research laboratories. 
Metabolic flux analysis is crucial to obtain insight into dysregulated cellular metab-
olism caused by disease perturbations. It is expected that stratifying ILD patients 
based on disease severity and subtypes will significantly improve metabolome and 
transcriptome coverage. Assessment of sensitivity, specificity, and clinical relevance 
of the differentially expressed molecules is also recommended. For a reliable and 
unbiased diagnosis of this severe pulmonary disease, large-scale, well-designed, 
multicentric clinical studies and recruitment of suitable controls are recommended.

The ultimate focus of metabolomic and transcriptomic data integration is identi-
fying key metabolic and genetic factors that contribute significantly to disease etiol-
ogy. Integrated omics is more than a collection of tools; it is a comprehensive 
paradigm for interpreting multi-omic datasets in a way that can provide new insights 
into basic biology, as well as health and disease. Machine learning approaches for 
multi-omic data analyses is an emerging trend for exploring molecular pathways in 
detail and drawing a holistic representation of a given phenotype using all biologi-
cal and clinical information of an individual. One of the major advantages is incor-
porating biological domain knowledge into the machine learning models as 
inductive biases to reduce data overfitting. Additionally, as omic tools evolve, they 
need to be user-friendly, interoperable, and effective for computationally intensive 
analyses. Machine learning methods offer novel techniques to integrate such omic 
datasets. With the emerging precision medicine initiative, where disease prevention 
and management take into account the variability in genes, environment, and life-
style of each individual in contrast to the conventional one-size-fits-all approach, 
integration of clinical data with the patients’ metabolome and genetic makeup will 
provide an in-depth understanding of disease pathophysiology and facilitate design-
ing of targeted therapies for individuals, thereby revolutionizing precision medicine-
based decision-making in the clinic.
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Transferring Metabolomics to Portable 
Diagnostic Devices: Trending in Biosensors

Shimaa Eissa

Abstract  Metabolic biomarkers are very popular in clinical laboratories, where 
more than 95% of the clinical assays are based on small molecules. Biosensors can 
offer a faster, simpler, and cheaper alternative to conventional analytical assays as 
they can make the metabolic biomarkers more accessible in a high-throughput fash-
ion for point-of-care testing. As research continues in different aspects of the bio-
sensor design, more sensitive and selective biosensors are being developed for 
various metabolic biomarkers for diagnostic applications. In this chapter, we pro-
vide a brief overview of the current biosensor designs and formats for applications 
in metabolomics. Various biorecognition receptors and transducers used in the 
development of biosensors for metabolic biomarkers are discussed. Major advances 
in the biosensors for metabolites such as the use of aptamers as new recognition 
receptors as well as the utilization of nanomaterials as transducers are highlighted. 
The developments of multiplexed array biosensors for the simultaneous detection of 
multiple biomarkers and wearable biosensors are discussed as emerging diagnostic 
tools in metabolomics. The challenges and future perspectives in the use of biosen-
sors in metabolomics are discussed.

Keywords  Biosensing platforms · Metabolic biomarkers · Point-of-care 
biosensors · Metabolomics · Electrochemical biosensors · Optical biosensors · 
Multiplexed array biosensors · Detection
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Abbreviations

Aptasensors	 Aptamer-based biosensors
HQ	 Hydroquinone
MS	 Mass spectrometry
NMR	 High-resolution nuclear magnetic resonance spectroscopy
POCT	 Point-of-care testing
SELEX	 Systematic evolution of ligand by exponential enrichment
TMB/H2O2	 Tetramethylbenzidine/hydrogen peroxide

1 � Introduction

The development of fast, accurate, and reliable diagnostic methods is crucial to 
improving the clinical course of any disease. Metabolomics offers new opportuni-
ties to discover biomarkers associated with complex diseases [1]. Detecting these 
low molecular weight metabolic biomarkers in biological samples can provide use-
ful information about the pathology and the progress of the disease [2]. Moreover, 
it can provide insight into the response of the patients to specific treatment and helps 
to understand the mechanism of the disease. Therefore, metabolomics has become 
a powerful tool in clinical research for discovering biomarkers in disease diagnosis 
[1]. With the recent advancements in the bionanotechnology field, various promis-
ing metabolomic technologies are being developed to identify new therapeutic tar-
gets and improve the disease prognosis and diagnosis [3]. Advances in bioinformatics, 
mass spectrometry (MS), high-resolution nuclear magnetic resonance spectroscopy 
(NMR), and ultra-performance liquid chromatography methods have led to a drastic 
improvement in the reliability and efficiency of metabolic profiling [4]. Moreover, 
the coupling of mass spectrometry with chromatography has enabled more compre-
hensive coverage of metabolic biomarkers [4].

Biosensors are analytical devices that gained significant interest over the last 
decades as it offers a lower cost, simpler, faster, and potentially more versatile alter-
native to traditional analytical techniques. Biosensing devices are of high impor-
tance in metabolomic applications due to their potential to provide simple and 
noninvasive measurements of various biomarkers in biofluids such as saliva, blood, 
sweat, tears, and urine. There are various types of biosensors which can be used for 
different applications. A typical biosensor contains three main units: a biorecogni-
tion receptor such as antibody, enzyme, or aptamer which is responsible for the 
specific binding with the target analyte; a transducer such as optical, electrochemi-
cal, or mass-based detection techniques which can transform the binding event 
between the recognition receptor and the analyte into a measurable signal; and a 
signal detector which reports and displays the biosensor signal. The potential utility 
of biosensors in metabolomics is evident from the rapidly increasing reported bio-
sensing platforms for various metabolic biomarkers for point-of-care testing. In the 
next section, the different recognition receptors and transducers used in the biosen-
sors for metabolites are discussed. Moreover, the integration of microfluidics with 
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array multiplexed biosensors as well as flexible materials for wearable biosensors as 
promising improvements in the biosensors for metabolites is highlighted.

2 � Biorecognition Receptors Used in the Biosensors 
for Metabolic Biomarkers

The selection of the proper bioreceptor is a major element in the biosensor design. 
The choice of the biorecognition receptor used to fabricate the biosensor depends 
mainly on the type of target analyte under investigation. Antibodies are mainly used 
for the detection of proteins, whereas ssDNA can be used for the detection of 
genomic sequences by hybridization. However, some antibodies have been also pro-
duced against some metabolites. Enzymes are widely used as bioreceptors in bio-
sensors for some small molecules where the enzyme is used to catalyze specific 
biochemical reaction. However, since low molecular weight metabolites can have 
various structural and chemical properties, the choice of specific recognition recep-
tors for each individual metabolite can be challenging. Various suitable bioreceptors 
are used for different types of metabolites. Specific enzymes for some metabolites 
like glucose, lactate, and uric acid have been used for the development of biosen-
sors. Antibodies for other metabolites have been also developed and used for the 
fabrication of immunosensors such as hormones. Aptamers have appeared in the 
recent years as potential alternative to antibodies for the biosensor’s development, 
particularly for small molecules. Therefore, aptamers hold considerable promise in 
the metabolomic field because of their low cost, easier in vitro synthesis, and high 
stability. In the next subsections, we will discuss various bioreceptors, which have 
been used for the development of biosensing platforms for the detection of different 
metabolites.

2.1 � Enzyme-Based Biosensors

Enzymes are selective bioreceptors that are mainly used to develop catalytic biosen-
sors for certain target analytes. The enzyme catalyzes a reaction leading to the for-
mation or disappearance of an electroactive product which can be detected using an 
electrochemical technique such as amperometry [5, 6]. Enzyme-based biosensors 
are easy to construct and can provide sensitive and rapid analysis. However, there 
are no available specific enzymes for many target molecules. Moreover, the enzyme 
stability is limited as it gradually loses activity over time, and thus, the shelf lifetime 
of the enzyme-based biosensors is short.

Monitoring blood glucose, one of the most common metabolic biomarkers, was 
the main driving force for the research work to develop enzymatic biosensors for 
medical applications [5, 7, 8]. Blood glucose has been established as a biomarker 
for diagnosis of diabetes. The development of biosensors to detect glucose level has 
started since almost 60 years [8]. Significant effort has been made to improve the 
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glucose biosensor technology in terms of sensitivity, reliability, stability, and porta-
bility. The historical development of glucose biosensors has been described in detail 
in several reviews [5, 7–9]. In summary, glucose biosensors are divided into three 
generations. The first-generation enzyme biosensors were oxygen-based, whereas 
the second-generation are mediator-based. However, the third-generation glucose 
biosensors are the directly coupled enzyme electrodes. The continuous emergences 
of new nanostructures and nanocomposites have led to the developments of various 
glucose biosensors with improved electron transfer efficiency and electrocatalytic 
activity [10].

Similarly, other enzyme-based biosensors for the detection of different metabo-
lites have been later developed such as lactate [11, 12], xanthine [13, 14], caffeine 
[13], glycolic acid [15], bile acids [16, 17], L-arginine [18], choline [19], and bio-
sensors. Lactate is produced when glucose is broken down and is commonly used as 
avital biomarker in medical monitoring [20]. The concentration of lactate in blood 
often rises during exercises such as running; however, it can be also altered due to 
hemorrhage, trauma, and ischemia. Lactate is also used as a biomarker for condi-
tions such as bacterial meningitis or acidosis [21]. Various enzymes have been used 
as biorecognition receptors in lactate biosensors such as lactate monooxidase, lac-
tate oxidase, lactate dehydrogenase, and cytochrome b [6]. Mediators such as 
NAD+/NADH and ferricyanide are sometimes used in these enzymatic electro-
chemical biosensors leading to the production of a current after applying certain 
potential that is measured amperometrically [6]. The uric acid is a metabolite used 
as indicator of gout which is produced by the breaking down of purine nucleotides 
with xanthine oxidase enzyme. The detection of xanthine is also of increasing medi-
cal interest. Thus, several amperometric biosensors using xanthine oxidase have 
been developed for the detection of xanthine [14].

The detection of choline is important in clinical practice, especially in the early 
diagnosis of some brain disorders such as Parkinson’s and Alzheimer’s diseases 
[22]. Many enzyme-based amperometric biosensors for choline have been devel-
oped. In these biosensors, choline oxidase was used, and the detection was based on 
amperometric monitoring of hydrogen peroxide produced when choline oxidase 
catalyzes the reaction. Hydrogen peroxide reacts either directly with the redox 
mediator [23–26], or its reaction is catalyzed by a second enzyme such as horserad-
ish peroxidase to enhance the current signal [27, 28]. Different nanomaterials have 
been integrated in these enzyme-based biosensors for choline such as carbon nano-
tubes [19, 26, 29], gold nanoparticles, and graphene [27].

2.2 � Antibody-Based Biosensors

The production of antibodies against low molecular weight compounds is usually 
challenging. Because of their small size, most metabolites are not usually immuno-
genic and need to be conjugated with larger carrier protein before using in immuniz-
ing the animals. Moreover, most of the antibodies for small molecules suffer from 
low specificity issues. However, some successful examples of antibodies produced 
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for metabolites have been reported. Antibodies against various hormones such as 
progesterone, testosterone, cortisol, 11-deoxycortisol, and diethylstilbestrol have 
been produced. Table  1 shows the reported biosensors for metabolic biomarker 
which used antibody as recognition receptor. Serafín et al. [30] have reported the 
development of a biosensor based on an anti-progesterone antibody for the detec-
tion of progesterone in saliva (Fig. 1). A competitive amperometric biosensor was 
fabricated on a low-cost disposable electrode which allowed a fast (45 min) and 
sensitive detection of progesterone with a LOD of 5 pg/mL. Good selectivity against 
other hormones such as testosterone, corticosterone, cortisol, and 
17-β-ethynylestradiol was shown with comparable results to commercial 
ELISA.  Other studies have shown the use of anti-progesterone antibody for the 
development of electrochemical immunosensors utilizing a thionine/graphene oxide 
composite achieving LOD of 6.3 pg/mL [31] and gold nanoparticles yielding LODs 
of 430 pg/mL [32] and 80 pg/mL [33].

Several biosensors have utilized antibody against cortisol for the development of 
biosensors to measure the concentration of cortisol in buffer [34–37], artificial saliva 
[38], real human saliva [39, 40], and interstitial fluid [39, 41]. Different approaches were 
used in these immunosensors to minimize the matrix effect especially when cortisol was 
detected in human saliva such as dilution [39] or using fluid control system [42].

Kämäräinen et al. [40] have utilized anti-cortisol antibody to develop a competi-
tive electrochemical disposable immunosensor for the detection of cortisol in human 
saliva using cortisol-alkaline phosphatase conjugate and screen-printed electrodes 
showing good sensitivity, reproducibility, and repeatability. Moreover, the results of 
the cortisol immunosensor were comparable with ultra-high pressure liquid 
chromatography-tandem mass spectrometry.

Many studies have shown the integration of antibody against estradiol in several 
immunosensors for the detection of estradiol [43, 44]. The reported immunosensors 
have mainly utilized a competitive assay where a protein-estradiol conjugate was 
employed to compete with the free estradiol molecules on the sample for the anti-
body immobilized on the sensor surface. Enzymes such as alkaline phosphatase [43, 
44] and horse radish peroxidase [45, 46] or bovine serum albumin [47] were conju-
gates with estradiol; in some of these studies, a competitive immunosensor was 
developed. A non-labeled competitive immunosensor for estradiol has been also 
reported using hydroquinone as redox marker and differential pulse voltammetry 
for the detection [48]. Ojeda et al. [46] have described the integration of an antibody 
in a competitive electrochemical immunosensor for estradiol hormone. The immu-
nosensor was fabricated on a screen-printed electrode modified with streptavidin on 
which a biotinylated anti-estradiol was immobilized. A competitive assay was per-
formed using horse radish peroxidase-labeled estradiol, and the detection was 
achieved amperometrically employing hydroquinone as redox mediator. The immu-
nosensor exhibited good sensitivity with a LOD of 0.77  pg/mL as well as good 
selectivity against other hormones. Moreover, this estradiol immunosensor showed 
good applicability in spiked serum and urine samples.

Antibody for testosterone was produced and utilized in the fabrication of some 
immunosensors. Eguílaz et al. [49] have reported the development of an amperom-
etry immunosensor based on disposable screen-printed carbon electrodes and 
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Table 1  Immunosensors for different metabolites

Target 
metabolite Material Transducer

Limit of 
detection Reference

Progesterone Magnetic microbeads Amperometry 5 pg/mL [30]
Progesterone Thionine-graphene

Oxide composites
Amperometry 6.3 pg/mL [31]

Progesterone Colloidal 
gold-graphite-Teflon

Amperometry 430 pg/mL [32]

Progesterone Gold nanoparticles Amperometry 80 pg/mL [33]
Cortisol Dithiobis (succinimidyl 

propionate)-modified gold 
microarray

Electrochemical 
impedance spectroscopy

1 pM [34]

Cortisol Polyaniline-protected gold 
nanoparticles

Cyclic voltammetry 1 pM [37]

Cortisol Low temperature co-fired 
ceramic (LTCC)-based 
microfluidic system

Cyclic voltammetry 10 pM [36]

Cortisol Single-walled, carbon 
nanotube

Chemiresistor 1 pg/mL [38]

Cortisol Graphite Square wave 
voltammetry

1.7 ng/mL [40]

Estradiol Carbon Amperometry 50 pg/mL [44]
Estradiol Gold nanoparticles Amperometry 6 pg/mL [45]
Estradiol Carbon Amperometry 0.77 pg/mL [46]
Estradiol Gold nanoparticle 

thiolated protein 
G-scaffold

Square wave 
voltammetry and 
electrochemical 
impedance spectroscopy

18 pg/mL and 
26 pg/mL

[47]

Testosterone Magnetic beads Amperometry 1.7 pg/mL [49]
Testosterone Carbon Amperometry 26 pg/mL and 

1.8 pg/mL in 
buffer and 
urine

[50]

Vitamin D3 Cellulose acetate fibers Amperometry 10 ng/mL [54]
Vitamin D3 Magnetite nanoparticles 

incorporated into 
electrospun 
polyacrylonitrile 
nanofibers

Differential pulse 
voltammetry

0.12 ng/mL [55]

Vitamin D3 Gold-platinum bimetallic 
nanoparticle-coated  
3 -(aminopropyl) 
triethoxysilane

Differential pulse 
voltammetry

4.9 pg/mL [56]

Vitamin D3 Gold nanoparticles Surface plasmon
Resonance

1 μg/mL [57]

Vitamin D3 Nanostructured cerium 
(IV) oxide (nCeO2)

Differential pulse 
voltammetry

4.63 ng/mL [58]
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a

b

Fig. 1  (a) Scheme of the design of progesterone amperometric immunosensor. (Reprinted with 
permission from Ref. [30]). (b) Schematic illustration of the selection process of sepiapterin 
aptamer and the working principle of the competitive biosensor using square wave voltammetry 
detection. (Reprinted with permission from Ref. [87])

protein A-functionalized magnetic beads. The antibody was immobilized onto the 
magnetic beads, and competitive assay was performed using HRP-testosterone con-
jugate. The amperometric detection was achieved after the addition of H2O2 using 
hydroquinone (HQ) as redox mediator showing a LOD of 1.7 pg/mL. The immuno-
sensor showed good selectivity against other steroid hormones and was successfully 
applied for the detection of testosterone in spiked human serum samples. A recom-
binant Fab fragment was also used for the fabrication on another electrochemical 
immunosensor using screen printed electrode and was applied for the detection of 
testosterone in bovine urine [50]. A competitive assay was utilized using 
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HRP-labeled testosterone and tetramethylbenzidine/hydrogen peroxide (TMB/
H2O2) substrate for the signal development. The detection was realized using chro-
noamperometry at +100 mV.

Vitamin D3 is one of the metabolic biomarkers that has significant physiological 
functions. Vitamin D3 deficiency is considered a global health issue because of its 
serious health impact and correlation with various diseases [51] such as cardiovas-
cular diseases, bone disorder, diabetes, infections, tuberculosis, osteoarthritis, 
hypertension, cancer, and even COVID-19 [52, 53]. Thus, antibodies for vitamin D3 
have been produced and employed for the fabrication of various immunosensors to 
monitor vitamin D3 level [54–58]. Chauhan et al. [54] have described the fabrication 
of a low-cost and eco-friendly immunosensor for the detection of 25-hydroxy vita-
min-D3 using disposable conducting paper substrate decorated with electrospun cel-
lulose acetate fibers. The detection was realized using a chronoamperometric 
technique showing a LOD of 10.0 ng/mL. Moreover, the immunosensor was applied 
for the detection of vitamin D3 in serum samples exhibiting good agreement with 
the results obtained from ELISA. The same research group has also reported that 
the development of another electrochemical immunosensor for vitamin D3 detec-
tion using magnetite nanoparticles incorporated electrospun polyacrylonitrile nano-
fibers. The immunosensor has shown a LOD of 0.12 ng/mL [55]. Kaur et al. [56] 
have also developed an electrochemical immunosensor for the detection of vitamin 
D3 using gold-platinum bimetallic nanoparticle-coated 3-(aminopropyl)triethoxysi-
lane on fluorine tin oxide glass electrode. The vitamin D3 antibody was attached to 
the electrode covalently via glutaraldehyde as a cross linker. The immunosensor 
showed good sensitivity with a LOD of 0.49  pg/mL.  Carlucci et  al. [57] have 
reported the detection of vitamin D3 using both electrochemical and surface plas-
mon resonance immunosensors showing LODs of 10 ng/mL and 45 ng/mL, respec-
tively. Recently, Chauhan et  al. [58] have described the fabrication of carbon 
cloth-based immunosensor for detection of 25-hydroxy vitamin D3 using a label-
free format. The immunosensor was prepared by depositing nanostructured cerium 
(IV) oxide on carbon cloth followed by the immobilization of anti-vitamin D3 anti-
bodies. The immunosensor exhibited good sensitivity with a LOD of 4.63 ng/mL 
and a fast response time of 15 min. The immunosensor was successfully applied in 
real serum samples and demonstrated good agreement with the conventional 
ELISA [58].

2.3 � Aptamer-Based Biosensors

Aptamers are single-stranded DNA or RNA which were firstly reported in 1990 [59] 
and widely considered as promising alternative to the gold standard antibodies in 
biosensing applications [60–62]. Many aptamers have been identified and tested 
against various analytes in the last two decades. However, only few aptamers have 
reached the commercialization stage for therapeutic and diagnostic applications. 
Aptamers have been widely identified and successfully applied for several 
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diagnostic applications showing great promise for point-of-care testing (POCT) 
[63–67]. Aptamers offers several advantages over antibodies such as their high sta-
bility, ease of in vitro production, and simplicity of synthesis at very low cost. These 
remarkable advantages, along with the ease of their immobilization and regenera-
tion as well as their small size, have made them excellent candidates for the devel-
opment of aptamer-based biosensors (aptasensors). Since metabolites are small 
molecule health markers, their detection by conventional antibody-based methods 
can be challenging. Thus, the identification of aptamers against metabolites for 
health-related and diagnostic applications has recently received considerable atten-
tion. Aptamers are usually identified through a process called systematic evolution 
of ligand by exponential enrichment (SELEX) [68]. The selection is realized by 
exposing nucleic acid library which consists of random sequences with the target 
analyte. Then, a partitioning step is performed to separate the bound from the 
unbound sequences followed by amplification of the bound sequences using a poly-
merase chain reaction. The amplified DNA is then purified and used to start a new 
SELEX cycle. The selection cycles are repeated from 10 to 20 times until the DNA 
pool is enriched with the highest affinity binders to the target.

Several aptamers have been selected against hormones such as estradiol [69, 70], 
progesterone [71, 72], cortisol [73, 74], thyroxine [75], 11-deoxycortisol [76], tes-
tosterone [77], and vasopressin [78, 79]. These aptamers have been exploited for the 
development of several biosensors for point-of-care diagnostic applications. The 
increase of progesterone levels can lead to several health issues. Therefore, the 
detection of progesterone in clinical samples is very important to protect the public 
health. Jiménez et al. [71] have described the selection, identification, and charac-
terization of high binding affinity DNA aptamers against progesterone using in vitro 
selection. Electrochemical impedance spectroscopy and fluorometric assays were 
utilized to determine the dissociation constants. The highest affinity aptamer has 
shown dissociation constant of 17 nM without any significant cross-reactivity to 
similar analogues such as 11-norethisterone and 17β-estradiol. The aptamer was 
then immobilized on gold electrode, and a complementary short sequence was 
hybridized to the aptamer at different sites to optimize the signal gain of the aptas-
ensor. The detection relied on the conformational change of the aptamer upon bind-
ing with the analyte as confirmed by circular dichroism spectroscopy. The aptasensor 
has shown excellent sensitivity with a LOD of 0.90 ng/mL. This aptamer has been 
optimized in another study [72] and used to fabricate a fluorescence-based biosen-
sor for the detection of progesterone. The aptamer was truncated in this study to 
eliminate the nonbinding region which had negative impact on the binding affinity 
of the aptamer to progesterone. Fluorescence mapping was performed to enhance 
the affinity and the specificity of the aptamer with 16-fold increase in the dissocia-
tion constant compared to the original aptamer. The truncated aptamer was then 
used in a displacement fluorescence assay where it was hybridized at different sites 
to fluorescein- and quencher-labelled complementary DNA sequences to form 
duplex structures. The detection of progesterone was realized via displacement of 
the complementary sequence which causes enhancement of the fluoresce signal.
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Despite of the numerous advantages of aptamers as bioreceptors, the selection of 
aptamers against various metabolites is still limited mainly due to the tediousness 
and high cost of the traditional SELEX process. Eissa et al. [76] have reported a new 
method for the selection of aptamers against 11-deoxycortisol hormone. The selec-
tion was based on an electrochemical method which enabled a cost-effective, effi-
cient, and rapid enrichment process. In this method, the hormone molecules were 
immobilized on a gold electrode which was then used as the solid support for the 
SELEX method. The enrichment of the DNA during the selection process was mon-
itored using square wave voltammetry in a label-free format unlike the conventional 
SELEX protocol for small molecules which often requires the use of fluorescently 
labeled DNA. High-affinity aptamers against 11-deoxycortisol hormone were suc-
cessfully selected after eight cycles showing dissociation constants at the subnano-
molar level. The selected aptamer was utilized to fabricate an electrochemical 
biosensor for the detection of 11-deoxycortisol showing very high sensitivity. This 
aptasensor has shown good selectivity and successful supplication in spiked serum 
samples.

Akki et  al. [70] have reported the selection of DNA aptamers against the 
endocrine-disrupting compounds: 17β-estradiol and 17α-ethynylestradiol using 
SELEX. The selected aptamers have demonstrated good affinity with dissociation 
constants of 0.6 and 0.5 μM for 17β-estradiol and 17α-ethynylestradiol, respec-
tively. The authors found that the selected aptamer against 17β-estradiol has shown 
good specificity against 17α-ethynylestradiol. Similarly, one of the selected aptam-
ers against 17α-ethynylestradiol showed good specificity against 17β-estradiol and 
the similar analogue, estrone. It is very important to study the selectivity when 
selecting aptamers against small molecules and to evaluate to which extent the 
aptamer binds to other structurally similar compounds.

The stress hormone, cortisol, is one of the most important metabolites synthe-
sized by the stimulation of adrenal cortex upon stress. Cortisol has immunosuppres-
sive and anti-inflammatory effects as well as a strong impact on blood pressure, 
heart rate, and reproductive and digestive activities. A selection method for an 
aptamer against the stress biomarker cortisol based on tunable stringency magnetic 
bead was described by Martin et al. [74]. After 15 rounds of selection, the enriched 
pool showed a single sequence with high copy number. A next-generation sequenc-
ing analysis indicated a correlation between the number of aptamer copies and 
enhanced affinity to the target under certain conditions. Two methods were used for 
the estimation. The highest-affinity aptamer has shown dissociation constant of 6.9 
and 16.1 μM by equilibrium and microscale thermophoresis methods, respectively. 
A gold nanoparticle assay incorporating the selected aptamer was performed show-
ing good discrimination between cortisol and other structurally related biomarkers: 
epinephrine, norepinephrine, and cholic acid.

In another study, an in silico approach of molecular docking was used to investi-
gate the interactions between aptamers and cortisol [73]. The tertiary conforma-
tional structures of ten aptamers were studied against cortisol and other related 
hormones. It was found that the hydrophobic interactions of cortisol with the 
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aptamer have the major impact on the binding compared to the hydrogen bonding 
according to the docking results.

RNA has the capability to bind to a wide range of small molecules which can be 
exploited in many applications in molecular biology. Riboswitches are examples of 
RNA domains which can serve as bioreceptors that bind to specific metabolite. 
Despite that most of the aptamers selected against metabolic biomarkers are DNA 
based, some RNA aptamers have been also reported. LEVESQUE et al. [75] have 
reported the identification of thyroxine-specific aptamers using SELEX showing 
good affinity and selectivity for thyroxine over its inactive derivative, thyronine. 
Transcripts with site-specific modified nucleotides, mutational studies, circular 
dichroism, and binding shift assays were used to investigate the binding of the 
aptamer to thyroxine. This study suggested that the iodine moiety in the thyroxine 
molecule is the main binding site to the aptamer.

The selection of an aptamer against the main sex hormone, testosterone, has been 
reported [77]. Testosterone is responsible for the regulation of various physiological 
processes in males such as growth of skeletal muscles and bones and other male sex 
characteristics. Thus, the accurate detection of testosterone levels in biological flu-
ids is highly important. The selection of testosterone aptamer has been conducted 
using classical SELEX via immobilizing the target on magnetic beads and perform-
ing counterselections against other steroids with similar chemical structures [77]. 
Ten aptamer sequences were identified using next-generation sequencing showing 
dissociation constants in the nanomolar range. The conformational change of the 
aptamers upon binding with testosterone was studied using circular dichroism.

An aptamer has been selected against the nine-amino acid peptide hormone, 
vasopressin [78–80]. This hormone is considered a biomarker in patients with hem-
orrhagic shocks as it plays an important role in enhancing peripheral vascular resis-
tance which leads to an increase in arterial blood pressure. The applicability of 
aptamers in biological fluids especially blood is often limited by their instability due 
to the presence of nucleases. However, the selection of single-stranded DNA stable 
and nuclease-resistant aptamer against vasopressin has been reported [78–80]. The 
aptamer has been also used to develop biosensors for the detection of vasopressin 
using different designs and transducers [78, 81]. Williams et al. [79] have reported 
the selection of an aptamer for the enantiomer of vasopressin to identify a mirror-
image DNA aptamer (enantiomer) that binds with vasopressin with high stability to 
nucleases. The enantiomer of the aptamer was synthesized and showed high stabil-
ity and good bioactivity as vasopressin antagonist in cell culture.

Graphene oxide-based SELEX has been used to select aptamer against 
25-hydroxy vitamin D3 [82]. This immobilization-free method has led to the identi-
fication of high-affinity and specificity aptamers. The affinity of the aptamers was 
investigated using both isothermal titration and gold nanoparticle-based colorimet-
ric assay. From the selected aptamer pool, 9 sequences showed good affinity out of 
16 aptamer candidates. The aptamer which showed the highest binding affinity to 
25-hydroxy vitamin D3 with a dissociation constant of 11 nM has been utilized to 
develop gold nanoparticle-based colorimetric biosensor showing a LOD of 
1 μM. The conformation change of the aptamer upon binding with the target was 
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also confirmed using circular dichroism analysis as well as by utilizing a displace-
ment assay with both magnetic beads and streptavidin-coated 96-well plates.

Many metabolic biomarkers are used for the diagnosis of genetic diseases. 
Among them, sepiapterin level has been used as indicator of a rare inborn genetic 
error of neurotransmitter metabolism called sepiapterin reductase deficiency [83–
85]. This genetic disease is characterized by cognitive and motor abnormalities. The 
early diagnosis of such neurotransmitter diseases is crucial to enhance the treatment 
and avoid the progression of the disease [86]. The detection of sepiapterin is chal-
lenging because there is no available specific antibody for sepiapterin in market 
until now. We have reported recently the selection and identification of DNA aptam-
ers which binds specifically to sepiapterin using SELEX [87] (Fig. 1). Few aptamers 
have been identified exhibiting high affinity and specificity with dissociation con-
stants in the nanomolar range. The aptamer with the highest affinity to sepiapterin 
was used to fabricate a competitive electrochemical biosensor. The detection was 
achieved via competition of the free sepiapterin in the sample with immobilized 
analyte on gold electrode for binding to the free aptamer. Square wave voltammetry 
technique was used for the detection showing high sensitivity and selectivity against 
closely related molecules.

Metabolomics has also led to the discovery of biomarkers associated with asthma 
pathogenesis in serum. Among these biomarkers, it was reported that a decreased 
level of arginine can be used as indicator of asthma [88]. Yuan et  al. [89] have 
reported the development of an aptamer-based biosensor for the chiral recognition 
of arginine enantiomers. The biosensor was based on fluorescence detection using 
gold nanoparticles on which fluorophore-labeled aptamers were immobilized 

Fig. 2  A schematic of fluorescence-based biosensor for the detection of D, L- arginine. The fluo-
rescence of the labeled aptamers was quenched when the aptamer adsorbs on gold nanoparticles 
due to the fluorescence resonance energy transfer. The binding of the aptamer with D, L- arginine 
leads to desorption of the aptamers from the gold surface and thus enhancement in the fluorescence 
intensity. (Reprinted with permission from [89])
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(Fig. 2). The detection was achieved by following the increase in the fluorescence 
intensity when the aptamers bind to the targets leading to the release of the fluores-
cence label from the gold nanoparticles.

3 � Transducers for Detection of Metabolic Biomarkers

Many different transducers are used for the development of various biosensors. The 
most popular transducers used in most of the biosensor’s designs are the optical, 
electrochemical, thermal, and mass-based transducers. Each of these detection tech-
niques has its own advantages and disadvantages and can be better suited for the 
detection of different target analytes.

Several biosensors have been reported for the detection of metabolic biomarkers 
for the point-of-care diagnosis of diseases [16, 35, 41, 67, 76, 90]. Considerable 
research effort has been particularly devoted toward the fabrication of electrochemi-
cal and optical biosensors for the detection of different types of metabolites. The 
integration of various nanomaterials, such as carbon nanotubes, graphene, carbon 
nanofibers, magnetic nanoparticles, and gold nanoparticles into these biosensors, 
has led to significant improvements in their analytical performance because of their 
large surface area, high electrical conductivity, and chemical stability [91]. In the 
next subsections, we will focus mainly on the electrochemical and optical detection 
techniques used in the biosensor designs for different metabolites.

3.1 � Electrochemical Detection

Electrochemical detection is the main detection approach used in most of the bio-
sensors as transducer via monitoring the electrochemical signal generated when the 
analyte binds to the recognition receptor. These electrochemical signals can be a 
measurable charge accumulation or potential (potentiometry), current (amperome-
try/voltammetry), conductivity (conductometry), or resistance and capacitance 
(Electrochemical impedance spectroscopy). Electrochemical detection methods in 
biosensors offer several advantages such as their high sensitivity, low cost, ease of 
use, and capability of miniaturization. These advantages have led to significant 
applications of electrochemical biosensors in point-of-care testing as they are easier 
to implement in integrated biosensors and operate than optical techniques. Moreover, 
the advances in the screen-printing technology have led to a wide range of applica-
tions of screen-printed electrodes in point-of-care diagnostic biosensors. 
Electrochemical detection techniques used in the biosensors for metabolites are 
mostly voltammetry/amperometry and electrochemical impedance spectroscopy. 
Thus, these techniques will be discussed in the next sections.
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3.1.1 � Amperometry/Voltammetry

Voltammetric and amperometric techniques are used to measure the current result-
ing from an electrochemical oxidation or reduction processes when a potential is 
applied to a working electrode versus a reference electrode. In the voltammetric 
techniques, the potential is scanned over a set potential range resulting in a current 
response in the form of a peak, whereas in the amperometry, a constant potential is 
maintained, and the generated current is monitored directly with time. The most 
used voltammetric methods in biosensors are the cyclic voltammetry, differential 
pulse voltammetry, linear sweep voltammetry, and square wave voltammetry. 
Amperometric methods are primarily used for biocatalytic/enzymatic biosensors, 
whereas voltammetric-based detection is often used on affinity biosensors (immu-
nosensors and aptasensors).

Several metabolites have been detected using amperometric- [15–19, 92] or 
voltammetric-based biosensors [76, 87] utilizing various electrodes and nanomate-
rials. Since most of the amperometric−/voltammetric-based detection methods are 
mainly used in enzyme-based biosensors, they were described in more detail in 
Sect. 2.1.

3.1.2 � Electrochemical Impedance Spectroscopy

Electrochemical impedance spectroscopy is an electrochemical technique which 
used to measure the capacitive and resistive properties of an electrode upon pertur-
bation of a system with a small amplitude sinusoidal ac excitation signal typically 
of 2–10 mV. The current response is then determined with changing frequency over 
a wide range, and the result is displayed in the form of an impedance spectrum. 
Impedance-based detection is mainly used in affinity biosensor showing good 
advantages in terms of sensitivity and nondestructive nature. Several impedance-
based biosensors for different metabolites have been reported [71, 93, 94]. For 
instance, impedance-based biosensor for the detection of parathyroid hormone for 
the diagnosis of thyroid cancer, hypoparathyroidism, and hyperparathyroidism has 
been described [93]. The biosensor was fabricated by immobilizing antibody for 
parathyroid on poly amidoamine dendrimer which was attached to gold electrode. 
The detection was achieved via monitoring the change in the charge transfer resis-
tance of the electrode upon binding of the hormone with the immunosensor. The 
linear range of the biosensor was from 10 to 60 fg/mL. Immunosensor was used to 
detect parathyroid levels in artificial serum samples.
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3.2 � Optical Detection

The detection of the binding event between the recognition receptor and the target 
in the biosensors through monitoring the change in the optical signals is very popu-
lar. The optical detection methods are usually based on the use of an optically active 
label conjugated to the target molecule. These labels can be a simple fluorophore or 
quencher molecules for fluorescence detection or nanoparticle tags for colorimetric 
or surface plasmon resonance-based biosensors.

A fluorescence-based aptasensor for arginine has been reported [89]. The detec-
tion is based on the quenching of the carboxyfluorescein-labeled aptamer when it is 
adsorbed on the negatively charged gold nanoparticles because of the fluorescence 
resonance energy transfer effect. However, when the D- or L-arginine exist in the 
sample, the aptamer binds to the target causing a change in the conformation of the 
aptamer. This prevents the fluorescence label from being adsorbed on the gold 
nanoparticles leading to a recovery in the fluorescence intensity. In this study, it was 
shown that the increase in the fluorescence signal was stronger when L-arginine was 
used compared to D-arginine. An aptamer-based surface-enhanced Raman spectros-
copy biosensor for the detection of vasopressin was reported [81]. Densely packed 
metal nanotube arrays prepared using an anodized alumina nanoporous membrane 
were used to create the active substrate. The integration of the membranes with a 
polydimethylsiloxane microfluidic device has demonstrated good sensitivity with a 
LOD of 5.2 μU/mL. Colorimetric-based detection of cortisol is simple and low cost 
and does not require the use of sophisticated equipment as the results can be seen by 
the naked eye. Four different chromogens (sulfuric acid, Porter-Silber reagent, 
Prussian blue, and blue tetrazolium) have been used for the detection of cortisol in 
artificial saliva and human sweat. This method has shown comparable sensitivity to 
the electrochemical biosensors. The simplicity of the colorimetric detection makes 
them suitable for point-of-care testing of different metabolites [95]. Colorimetric-
based aptasensor was reported for the detection of progesterone in human serum 
and urine [96]. This method was based on the alteration of the aggregating proper-
ties of the gold nanoparticles upon addition of progesterone, aptamer, and the cat-
ionic surfactant, hexadecyltrimethylammonium bromide. When the aptamer binds 
to progesterone, the surfactant causes aggregation of the gold nanoparticles leading 
to a change of the color of the solution from red to blue. Progesterone has been also 
detected colorimetrically using lateral flow assay [97]. A specific aptamer for pro-
gesterone was immobilized on gold nanoparticles, and a biotin-labeled complemen-
tary DNA sequence was then hybridized with the aptamer. The test line was coated 
with streptavidin which allows the capture of the biotinylated gold nanoparticles – 
aptamer duplex. However, upon binding of the aptamer with the target progester-
one, a displacement of the biotinylated complementary DNA has occurred which 
prevented the capture of the gold particles on the test line. This aptamer-based lat-
eral flow assay method has led to sensitive detection of progesterone in the nanomo-
lar range as well as good selectivity against other hormones.
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4 � Advances in the Development of Biosensors 
for Metabolic Biomarkers

Recent advances in nanotechnology have accelerated the improvements in the 
development of biosensors for metabolic biomarkers in point-of-care diagnosis. 
Multiplexed biosensors offered high-throughput simultaneous screening of various 
targets which is highly important in metabolomics. Particularly, the ease of fabrica-
tion of multiple individually addressable arrays of working electrodes on small 
chips has led to the development of many multiplexed electrochemical biosensors 
[98]. Microfluidics enables the use of very small sample volumes for detection, and 
thus, it is perfectly suited for the diagnostic point-of-care biosensors where a small 
blood sample is often used [99–101]. Zhao et al. [102] have reported the develop-
ment of a microfluidic paper-based multiplexed electrochemical biosensor array for 
the simultaneous detection of three metabolic biomarkers, glucose, lactate, and uric 
acid. Channels were fabricated on chromatographic paper via solid wax printing, 
and the silver connections and carbon electrodes were printed on the surface of the 
paper using screen printing. An array of eight biosensors were developed, and the 
signals were detected using a portable handheld custom-made potentiostat. 
Simultaneous measurements for multiple analytes were successfully recorded, and 
the analytical performance of the device was comparable with the commercial 
platforms.

We have reported the development of a multiplexed electrochemical immuno-
sensor for the simultaneous detection of the metabolites: morphine, benzoylecgo-
nine, and tetrahydrocannabinol in urine [103]. Gold nanoparticle-modified 
screen-printed carbon array electrodes were utilized on which specific antibodies 
for the three metabolites were immobilized. A competitive assay was used for the 
detection by using bovine serum albumin-conjugated analytes. The multiplexed 
biosensor showed fast response and high sensitivity and selectivity.

Wearable biosensors are gaining significant interest because of their potential to 
provide noninvasive and real-time measurements of biomarkers of different metab-
olites in biofluids, such as saliva, sweat, and tears [104]. Wearable biosensors com-
bine the microfluidic sampling, multiplexed biosensing, and transport systems with 
flexible materials to form miniaturized and easily operating detection tool (Fig. 3). 
Recent wearable biosensors for healthcare monitoring have been recently reviewed 
by Kim et al. [104].

Recently, a wearable lactate electrochemical biosensor for sweat analysis has 
been reported [11]. An outer plasticized polymeric layer containing the tetradodecy-
lammonium tetrakis (4-chlorophenyl) borate salt has been used to prevent the lac-
tate oxidase enzyme from being in direct contact with the sample which significantly 
reduced the effect of temperature and pH. The authors reported that their biosensor 
showed higher sensitivity than other reported biosensors with good selectivity and 
reproducibility. The analytical performance of this wearable biosensor was compa-
rable with ion chromatography method. The biosensor was also applied for the 
detection of lactate in sweat on three different body locations (forehead, back, and 
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b c

Fig. 3  (a) flexible screen-printed electrode array. (b) The enzymatic biosensing mechanism of 
glucose detection and implantation of wearable biosensor. (c) Schematic of the integrated wearable 
biosensor for the continuous monitoring of glucose on a rabbit. (Reprinted with permission 
from [105])

thigh) showing good performance indicating that it holds great promise toward 
other healthcare applications.

5 � Conclusions and Future Perspectives

The development of biosensors for metabolic biomarkers offers a faster, simpler, 
and lower cost alternative to the conventional analytical assays. Several biosensors 
for various metabolites have been developed for point-of-care diagnosis. In this 
chapter, we reviewed the different biosensor designs used in metabolomics. 
Extensive research has been devoted for the development of enzyme-based biocata-
lytic sensors for some metabolites used in medical diagnosis such as glucose, lac-
tate, and xanthene. Various types of nanoparticles have been integrated in these 
biosensors to enhance their analytical performance which resulted in high sensitiv-
ity and rapid analysis. However, there are no specific enzymes for many metabo-
lites. Moreover, the enzyme stability is limited as it gradually loses activity over 
time which represents a major challenge in the enzymatic biosensors. Therefore, 
recent research has focused on the development of other biorecognition receptors 
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such as antibodies and aptamer to fabricate affinity biosensors for various metabo-
lites. The continuous identification of new aptamers that binds specifically to vari-
ous types of metabolites is highly needed and can open the door for the development 
of sensitive biosensing platforms for point-of-care diagnosis. Optical and electro-
chemical detections have been used in most of the reported biosensors for metabolic 
biomarkers. Particularly, electrochemical biosensors offer great promise because of 
their low cost, high sensitivity, ease of integration into portable biosensors, and 
capability of multiplexing which make them ideal for high-throughput screening in 
metabolomics. Advances in the development of wearable biosensors have been also 
highlighted in this chapter as they provide continuous and noninvasive measure-
ments for different metabolites in body fluids. Yet, large cohort studies of these 
wearable biosensors are required for validation to reach clinical acceptance.
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