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Abstract Smart grid systems have improved networking for power systems and
many other industrial systems, but they still have many vulnerabilities, making them
an easy target for cyber attacks. Recently, the number of attacks has also increased.
The present work investigates the reliability and security of Smart Grid (SG). The
reliability and security are investigated in two aspects that are electricity fraud detec-
tion followed by the intrusion detection system. This work presents the lightweight
Intrusion detection system for SCADA and Modbus-based control systems that can
detect intrusion with very high accuracy. The IDS developed is based on the ICS
(industrial control system) dataset, which has 20 features (column) and 2,74,628
rows. The IDS dataset contains the Modbus packet’s attributes and network and
physical infrastructure attributes. The IDS work is followed by detecting electricity
theft on a realistic electricity consumption dataset released by the State Grid Corpo-
ration of China. A total of 42,372 users’ power usage data from 1,035 days is included
in the data collection (from 1 January 2014 to 31 October 2016). Eight classifiers,
as well as two basic neural networks (IDCNN and ANN), have been investigated on
this dataset.
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1 Introduction

Two-way digital communication is the foundation of a smart grid, which uses dig-
ital technologies to provide power to users. Smart meters were used as part of the
smart grid to help it overcome the shortcomings of traditional electrical networks. To
combat climate change, improve disaster preparedness, and achieve energy indepen-
dence, several governments throughout the globe are promoting the implementation
of smart grids. So, two-way communication is being used to govern the usage of
appliances in smart grid technology. However, the widespread availability of Inter-
net connectivity has made the smart grid more viable to deploy. Users, operators, and
automated systems can swiftly adapt to changes in smart grid conditions thanks to
the efficient transmission of information through a wide range of smart grid devices.

SCADA systems are used in industrial smart grid infrastructure. Supervisory
control and data acquisition (SCADA) is a group of software tools used to monitor,
control, and collect data from industrial processes in real time from various dis-
tant locations. Data-driven choices about an organization’s industrial operations are
made possible by SCADA. Hardware and software components are both included in
SCADA systems. Data is collected and transferred to field controller systems, which
send it to other systems for processing and presenting to an HMI in real time. SCADA
systems also keep track of and report on all process occurrences. Alarms are sounded
in SCADA applications when dangerous situations arise. Mostly, SCADA uses the
Modbus protocol for communication and managing SG. A serial communication
protocol designed by Modicon for use with their programmable logic controllers,
Modbus was released by Modicon in 1979. It is a way of sending data between
serial-connected electrical equipment. It is termed a Modbus Master and a Modbus
Slave when a device requests information from another. Every Slave in the 247-slave
Modbus network has its Slave Address ranging from 1 to 247. It is also possible for
the Master to transmit data to the Slaves. Intrusion detection is being done on the
dataset, which consists of packets of Modbus.

2 Literature Review

Authors in their proposed approach in [4] used the temporal behavior of frequently
occurring patterns in the SCADA protocols to identify assaults on SCADA systems
using an Intrusion Detection System (IDS) specialized to SCADA. When it detects
aberrant activity, the IDS sounds an alert. The IDS detected a significant number of
assaults, but false alarms were kept to an absolute minimum. An operating system
(OS) diversity-based intrusion detection system for SCADA systems is presented in
this [5] research as a new and reliable intrusion detection method. SCADA commu-
nication over time is analyzed at the OS level, and the most suited OS is selected
for intrusion detection based on reliability. According to experiments, OS diversity
gives a wider range of intrusion detection options, increasing detection accuracy by
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up to eight additional attack types. As a result of their idea, the system’s accuracy
can be improved by up to 8% on average when compared to a single OS method
in the best situation. Anomaly detection systems (AbIDS) may be used to identify
a stealthy cyber assault on the SCADA control system, which is being researched
in this [6] work. Intending to choose a more effective IDS for SCADA security, we
used the IDS tools Snort and Bro throughout the design phase and evaluated their
detection rates and delay in alert packets. The timing-based rule is used to detect
malicious packets based on the high temporal frequency of malicious packets in
network traffic. They used the SCADA-based protection mechanism to shield the
system from disruptions during the case study. The SCADA controller was hacked
first, and then the data integrity of the system generator was compromised. Impact
analysis and performance assessment of IDS tools are then carried out. A variety
of network packet sizes were tested to see how quickly IDS solutions could detect
cyber-attacks, and the findings showed that they were. Data from a gas pipeline sys-
tem given by Mississippi State University is used in this [7] research to evaluate the
effectiveness of Machine Learning (ML) in detecting intrusions in SCADA systems
(MSU). This work makes two contributions: Two methods of data normalization
were evaluated, one for accuracy and precision, and the other for recall and F1-score
for intrusion detection, for a total of four methods of missing data estimates and
normalization. There are two types of classifications distinguished here: binary and
categorical. This research shows that RF has a high F1-score of 99% for detecting
intrusions. Four distinct CPS datasets, this [8] research compares the performance
of several machine learning techniques. To begin, the accuracy, precision, recall,
F1-score, and AUC of machine learning algorithms are all measured and evaluated.
It is also important to keep track of the amount of computing needed for training,
prediction, and deployment. For critical infrastructure with diverse computing and
communication limits, our extensive experimental findings will assist in choosing
the appropriate machine model. According to the results of the experiments, a linear
model is quicker and more suited for CPS bulk prediction. The decision tree is a
suitable model for detection performance and model size.

This [9] research employs a SCADA dataset including DoS assaults and running
the IEC 60870-5-104 protocol. The protocol will be wrapped into TCP/IP before
being transferred so that the treatment in detecting DoS attacks in SCADA networks
utilizing the IEC 104 protocol is not significantly different from a regular computer
network. Intrusion detection systems (IDSs) are used to identify DoS attacks on the
SCADA network using three machine learning approaches: Decision Tree, Support
Vector Machine, and Gaussian Nave Bayes. 99.99 percent of the time, tests on the
testing and training datasets reveal that the decision tree technique has the best per-
formance detection. A deep learning-based intrusion detection system for SCADA
networks is proposed in this [10] study to defend ICSs against conventional and
SCADA-specialized network-based assaults. To define significant temporal patterns
of SCADA data and identify periods when network assaults are occurring, we suggest
using a convolutional neural network (CNN) rather than hand-crafted characteristics
for individual network packets or flows. In addition, we devise a re-training method
that allows SCADA system operators to augment our neural network models using
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site-specific network attack traces. A deep learning-based solution to network intru-
sion detection in SCADA systems was shown to be effective in our tests utilizing
actual SCADA traffic datasets, with high detection accuracy and the capacity to
manage newly discovered threats. Using the autoencoder deep learning model (AE-
IDS), we create an IDS for the SCADA system in this [11] study. The most often
used SCADA communication protocol in the power substation is DNP3, which is
the objective of the detection model. SCADA systems are particularly vulnerable
to data injection and modification assaults, which fall under the broad category of
“cyberattacks”. This research presents the training of an autoencoder network using
17 data characteristics collected from DNP3 transmission. We examine the accuracy
and loss of detection of several supervised deep learning algorithms by measuring
and comparing the results. Other deep learning IDS models perform better than the
unsupervised AE-IDS model.

3 Problem Definition

1. The first primary objective of this work was to build a highly accurate intrusion
detection system based on physical and network parameters for MODBUS-based
systems while reducing the intrusion detection algorithm’s reliance on domain
knowledge, i.e., the algorithm should not be pre-fed background information.

2. Another problem in smart grid infrastructure is electricity theft. The second objec-
tive of this study was to design the system to detect the same. Various ML
techniques and classifiers are deployed and experimented with improving test
accuracy.

4 Dataset and Proposed Methodology

In this section, we will discuss both datasets, dataset features, processing, and other
details. We will also see the proposed methodology and what we plan to solve the
problem at hand. In the next section, we will see the results of the methodology.

4.1 Intrusion Detection System

Dataset ICS(industrial control system: The system is simply a gas pipeline system
that relays information back to SCADA about various system characteristics. Using
the MODBUS packet, we can quickly determine the physical parameter’s value (for
example, pressure). Now, the SCADA may give control instructions based on these
data. SCADA, for example, receives a value of X-Y kPa from the field while the
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Fig. 1 Attributes in dataset

pipeline pressure should be X kPa. SCADA then sends an order to raise the pressure
by Y percent. The following is the data that the Modbus packet conveys (Fig. 1).

Proposed Methodology—IDS The objectives of algorithm selection are as follows:

1. If it can tell the difference between fault and assault, it is doing its job correctly.
It should also be able to tell what kind of assault it is.

2. The algorithm must be lightweight: it should not interfere with the core function
of the industrial computer.

3. No previous domain knowledge should be required: no networking or gas
pipeline data should be provided in this case.

Because of reason number two, we decided against using a neural network. Logis-
tic regression was our first thought when attempting to determine the likelihood of
an assault. There was no noticeable difference in accuracy when the value of “C”
was altered. Also, the next natural step was to explore SVM and try different impro-
visations.
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4.2 Electricity Theft Detection

Dataset The State Grid Corporation of China made this data public (SGCC). A total
of 42,372 power users were tracked for 1,034 days (1 Jan 2014-31 Oct 2016). One
individual out of the first 3615 has been tagged as a fraudster. There are 40258 clients
listed in the actual data.

Data Preprocessing Missing values are common in electricity usage statistics. The
failure of smart meters, the inconsistent transfer of measurement data, the unan-
nounced system maintenance, and storage concerns are all contributing factors. To
fill in the blanks, we’ll use the interpolation approach using the equation below:

"7"""'?{"3” x; € NaN,z;_1,x;+1 ¢ NaN

Ff(2:) =<0 x; € NaN,z;_; or z;+1 € NaN
T; x; ¢ NaN,
If xi is a non-numeric character or a null value in the electrical consumption

statistics throughout a period, we display it as NaN. (NaN is a set). Some of the
values in the data are incorrect. Here’s how we get back the original value:

avg(x) + 2 - std(x) if z; > avg(x) + 2 - std(x),
¥ otherwise,

fla:) =

Avg(x), std(x): The average value of x and the standard deviation of x are shown

in this equation. Because each user’s power usage always exceeds zero, we only take

into account the positive deviation in the preceding calculation. We must normalize

the dataset since neural networks are sensitive to a wide range of data. As for scaling,
we utilized MAX-MIN scaling using the equation below:

flz;) =

Min(x) is the lowest value in x and max(x) is the highest value in x.

r; — min(x)

max(X) — min(x)

4.3 Data Visualization

After creating a new dataset that includes the first three rows of the original dataset
and the final two rows of the original dataset (consumers without fraud), we can
begin our Visualization.

We must plot customer data based on the following criterion: customers with
fraud and customers without fraud. Dated customers are consumed. Consumption
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consumers that have committed fraud
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data in the form of a histogram. The amount of power used in a certain area. Other

data include the 50% value, maximum, and lowest value.

The first half of the dataset contains users who have committed the fraud, whereas
the second half of the dataset contains the consumers who have committed the fraud.
Figure 2 shows the electricity usage of the first two uses of the dataset over the whole
time range. Figure 3 plots the usage of the last two users (Users 40255 and 40256) over

consumers that have not committed fraud
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Statistics for consumers that have not committed fraud
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Statistics for consumers that have committed fraud
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Fig. 5 Consumers who did fraud

the same period. Finally, Figs.4 and 5 contain the shoes various statistical analyses
of first and last users, and the histogram is of frequency of usage vs the amount of
usage. Here, first user is a fraud, and the last user is not a fraud (Tables 1 and 2).

Proposed Methodology—ETD After processing the dataset, we now try different
categories of algorithms and models and see if we can tune the parameters and get
the improvement. In this existing work [14] (refer to Table 3), they already used deep
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Table 1 Accuracy of basic models experimented

Model Accuracy(%)

ANN 88.5678768157959
CNN1D 88.94066480273378
SVM 89.12705809257533
RF 89.12705809257533
DT 81.85771978875427
LR 85.425937556588354

Table 2 Accuracy of all of the classifiers experimented

Classifier Accuracy(%)

XGB classifier 89.25132028580305
LGBM classifier 89.22025473749612
Gradient boosting classifier 89.22025473749612
CatBoost classifier 90.59304131717925

Table 3 Comparison of our results with the results of paper [14]

Classifier Accuracy(%) Accuracy achieved [14]
LR 89.25132028580305 0.8670
SVM 89.22025473749612 0.7536
RF 89.22025473749612 0.8864

neural networks and achieved excellent results. Still, we did try ANN and 1D-CNN
with machine learning classifiers and wanted to improve performance in the classifier
category, where we got little improvement. In the next section, let us discuss each
experiment and model we tried in detail for both problems.

5 Results and Comparison

In this section, we will discuss the experiments we performed for the problem state-
ment that we discussed and their result and compared them with the existing work.

5.1 Intrusion Detection System

Experiment 1: Logistic Regression We wanted to define the boundary of classifi-
cation to be very precise and check whether having a loose or tight margin would
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help us perform better, so we performed a loop on control error (C) to see whether
LR’s accuracy improved was still 86.94 (Refer to Fig. 6).

Experiment 2: Division of Dataset Now, One thing to notice is dataset contains
both command requests and command responses. Now allowing the algorithm to
differentiate between this part does not fit our third aim, but if it significantly helps
the algorithm, then it is just the knowledge of request and response. So we divided
the dataset into one which contains “command_request” 1 and other which contains
“command_response” 2. This ultimately helped the algorithm to distinguish between
request and response. Now also note that the number of responses and requests were
equal, so the total number of rows after response removal is 274628/2 = 137314.
This is the time it improved from 86.94 to 90.7, although when we tried to vary the
value of control error (C) accuracy didn’t change much. It varies from 90.3 to 90.7
for a large range of C (Refer to Fig.7).
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Experiments 3 and 4: SVM Now with SVM, we achieved an accuracy of around
94% (on the dataset without division). We tried SVM on the divided dataset and ran
nested loop over C and gamma, and for C =5 and gamma = 0.09, we got the accuracy
of 99.4158 % . Another experiment with a different kernel in SVM (default is a radial
basis function kernel (RBF)), i.e., polynomial kernel, resulted in reduced accuracy
of 92.133. This paper [7] used SVM on the same dataset and got the best accuracy
of 94.36%.

5.2 Electricity Theft Detection

Experiment 5 We have already discussed the prepossessing. Let us split the dataset
into 80-20 for training and testing. Following is the table for results for every model
we tested on. Now, we tried the gradient boosting method, which combines various
methods which are weak and assigns weight to them. The classifier we tried vs
accuracy is shown in the following Table 2.

We got 90.59 percent test accuracy with the CatBoost classifier, which is an
improvement among the category of classifiers. Better results have been produced
using neural networks and other combinations. However, in the case of just classifiers,
this is better than the existing ones (published in the category of classifiers without
using neural networks.

It is possible to increase the performance of a machine learning model based on
gradient boosting and decision trees using the CatBoost Model. This may be used
for categorical and continuous data values, making it even more versatile. CatBoost
Classifier eases our burden of translating categorical data into the numeric form
and begins creating the model, as well as we dive into the categorical values. The
categorical characteristics or variables are enabled and handled automatically and
treated as such. It has given us the best results as of now. Note that there is no work
that compares existing methods or pre-built models (Gradient boosting versions) like
we have used here.

6 Conclusion and Future Scope

In this research work, we have presented a lightweight IDS and electricity theft
detection which can detect attacks with very high accuracy. We were able to get
the improvement from 94.3%, which is existing work, to 99.4%. We used the ICS
dataset published in 2014 and made the algorithm understand the difference between
request and response, which lead to this huge spike in accuracy. We also provided it
with information about the command request and response, which is the knowledge
about the network packets. The second section of the work consists of the electricity
theft detection on data released in 2017 by SGC of China. We tried basic methods
and various pre-built versions of gradient boosting to improve the performance and
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presented a comparison. A total of 10 different methods were experimented with.
We established that though much recent work has already explored the neural net-
work and other ways to optimize performance. However, for pre-existing classifiers,
CatBoost is the recent one, and it gave better results than other previous classifiers.
Further research can be done to improvise and not have the network knowledge while
training.
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