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Abstract The spatial photonic Ising machine (SPIM) is an unconventional comput-
ing architecture based on parallel propagation/processing with spatial light modula-
tion. SPIM enables the handling of an Ising model using light as a pseudospin. This
chapter presents SPIMs with multiplexing to enhance their functionality. Handling a
fully connected Ising model with a rank-2 or higher spin-interaction matrix becomes
possible with multiplexing, drastically improving its applicability in practical appli-
cations. We constructed and examined systems based on time- and space-division
multiplexing to handle Isingmodels with ranks of no less than one while maintaining
high scalability owing to the features of spatial lightmodulation. Experimental results
with knapsack problems demonstrate that these methods can compute the Hamilto-
nian consisting of objective and constraint terms,which requiremultiplexing, and can
determine the ground-state spin configuration. In particular, in space-division mul-
tiplexing SPIM, the characteristics of the solution search vary based on the physical
parameters of the optical system. A numerical study also suggested the effective-
ness of the dynamic parameter settings in improving the Ising machine performance.
These results demonstrate the high capability of SPIMs with multiplexing.

1 Introduction

Technologies for efficiently acquiring, processing, and utilizing a large amount of
diverse information are becomingmore importantwith the recent progress in data sci-
ence, machine learning, andmathematical methods. Moreover, there is an increase in
the computation needs for addressing social issues and scaling up computer simula-
tion in various academic and industrial fields. Aiming to contribute to the remarkably
advanced information society, research on optical/photonic computing is becoming
more active. Light has a high potential for creating new computing architectures
owing to its broadband processing capabilities, low energy consumption, interac-
tion with various objects, multiplexing, and fast propagation. Novel optical/photonic
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computing systems have been recently proposed, including computing based on inte-
grated optical circuits [1, 2], optical reservoir computing [3], brain-morphic com-
puting [4], optics-based deep leaning [5, 6], and photonic accelerator [7].

Combinatorial optimization addresses important problems in daily life, includ-
ing the optimization of communication network routing and scheduling of apparatus
usage. Metaheuristic algorithms, such as simulated annealing (SA) [8] and evolu-
tionary computation [9] are often applied to these problems because they provide
approximately optimal solutions that are sufficient for practical use. However, most
combinatorial optimization problems areNP-hard, and unconventional architectures,
such as physical and optical/photonic computing, are attracting significant attention
for effectively solving large-scale problems.

Several combinatorial optimization problems can be mapped to the Ising model
[10]. The Ising model is a mathematical model introduced to represent the ferromag-
netic behavior. The system is expressed using spins with two states and the inter-
action between spins. Solving a combinatorial optimization problem is equivalent
to determining the energy ground state of the Ising model with suitably determined
interaction matrix.

Ising machines are dedicated computing systems where Ising models are imple-
mented using pseudospins. Computations are carried out by developing a spin config-
uration toward the energy ground state of the Hamiltonian. Ising machines are real-
ized using a variety of physical phenomena [11] and are expected to be fast solvers
of optimization problems. For example, Ising machines based on the quantum-
mechanics effect have been implemented using superconducting quantum circuits
[12] and trapped ions [13]. Based on quantum fluctuations, these methods execute
a solution search using quantum annealing [14]. CMOS annealing machines [15]
and digital annealers [16] are other examples of SA using semiconductor integrated
circuits. These machines can handle fully connected Ising models using suitable
software.

Photonics-based Ising machines are also promising because they provide com-
puting architectures capable of parallel data processing and high scalability. Good
examples include the integrated nanophotonic recurrent Ising sampler (INPRIS) [17],
the coherent Ising machine [18, 19], and the spatial photonic Ising machine (SPIM)
[20]. In INPRIS, spin is realized by a coherent optical amplitude. The optical sig-
nal is passed through an optical matrix multiplication unit using a Mach-Zehnder
interferometer, and the next spin configuration is created through noise addition to
improve computing speed and thresholding. In a coherent Ising machine, spins are
imitated using optical pulses generated by a degenerate optical parametric oscillator
[21]. The phase and amplitude of the pulse in an optical fiber ring were measured.
The interaction was realized by injecting optical pulses for modulation into the ring
based on the feedback signal obtained through a matrix operation circuit. To date,
the Ising machine consisting of 100,000 spins has been realized [19].

On the other hand, there aremany research examples of computing by spatial light
modulation as amethod enjoying the parallel propagationproperty of light [6, 22, 23].
Based on this concept, SPIM [20] represents spin variables as the modulation of light
using a spatial light modulator (SLM) and executes spin interaction by overlapping
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optical waves by free-space propagation. The SPIM system can be simpler than other
methods, and the scalability of the spins is high because it uses the parallelism of
light propagation based on Fourier optics. Moreover, fully connected Ising models
can be handled using free-space optics. Owing to these characteristics, the SPIM
has received considerable attention, and many derivative systems and methods have
been proposed [24–26].

An issue with the primitive version of SPIM [20] by Pierangeli et al. is the low
freedom to express the interaction coefficients. The light propagation model used
in the computation can handle only a rank-1 interaction matrix. Because this is a
major limitation in practical use, an extension of the computing model is required to
apply SPIM to a wider range of problems. A few research examples can be found,
including a quadrature SPIM that introduces quadrature phase modulation and an
external magnetic field [27] and the implementation of a new computingmodel using
gauge transformation by wavelength-division multiplexing (WDM) [28]. However,
these methods deteriorate scalability because of the decrease in the number of spin
variables owing to SLM segmentation for encoding spins. We investigated meth-
ods for increasing the interaction matrix rank without deteriorating scalability using
multiplexing. Accordingly, in Sect. 2, the basic principle of the primitive SPIM is
introduced and the concept of SPIM with multiplexing is explained. The procedure
and experimental results for time-division multiplexing SPIM (TDM-SPIM) are pre-
sented in Sect. 3 and those of space-division multiplexing SPIM (SDM-SPIM) are
presented in Sect. 4. Finally, the conclusions are presented in Sect. 5.

2 Spatial Photonic Ising Machine with Multiplexing

2.1 Basic Scheme of SPIM

The Ising model can be expressed using spins and their interactions. Let σ =
(σ1, . . . , σN ) ∈ {−1, 1}N be the spin variables and J = {Jjh} be the interaction coef-
ficients between spins σ j and σh , where j and h are the spin numbers and N is
the total number of spins. When the external magnetic field is negligible, the Ising
Hamiltonian H is represented as

H = −
∑

j,h

J jhσ jσh . (1)

The concept of SPIM proposed by Pierangeli et al. in 2019 [20] is shown in Fig.
1. The optical hardware consists of an SLM, a lens, and an image sensor. An optical
wave with a spatial amplitude distribution (uniform phase) is incident on the SLM.
The amplitude distribution is determined based on the spin interaction J in the Ising
model. The light modulated by the SLM, which encodes a spin configuration σ , is
Fourier-transformed using the lens, and the intensity distribution I (x) is acquired
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Fig. 1 Concept of the primitive SPIM

using the image sensor. The value of the Ising Hamiltonian is calculated from I (x).
The ground-state search is based on SA. The phasemodulation of the SLM is updated
for every calculation of the Hamiltonian. Repeating these operations provides a
spin configuration with the minimum energy. In the primitive SPIM, the amplitude
distribution that shines the SLM is fixed during the iterations.

The computation using SPIM is formulated as follows [20]: For simplicity, we
consider a one-dimensional case. We assume that the amplitude distribution ξ =
(ξ1, . . . , ξN ) entering the system has a pixel structure similar to that of SLM. Each
spin σ j is encoded with binary phase modulation φ j ∈ {0, π} using an SLM and
is connected to σ j = exp(iφ j ) = ±1. The width of a single SLM pixel is 2W , the
aperture is expressed as δ̃W (k) = rect

(
k
W

)
, and the optical field Ẽ(k) immediately

after the SLM is
Ẽ(k) =

∑

j

ξ jσ j δ̃W (k − k j ), (2)

where k j = 2W j . The optical field E(x) on the image sensor plane is obtained as a
Fourier transform of Ẽ(k), and the intensity distribution I (x) is represented by

I (x) = |E(x)|2 =
∑

j,h

ξ jξhσ jσhδ
2
W (x)e2ıW (h− j)x , (3)

where δW (x) = sin(Wx)/(Wx) denotes the inverse Fourier transform of δ̃W (k).
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Let IT (x) be an arbitrary target image. The minimization of ‖IT (x) − I (x)‖
corresponds to the minimization of the Ising Hamiltonian with interaction Jjh in Eq.
(4):

Jjh = 2ξ jξh

∫
IT (x)δ2W (x)e2ıW (h− j)xdx . (4)

If 2W is sufficiently small and δW (x) ∼ 1 is sufficient, Jjh can be approximated as

Jjh = 2πξ jξh ĨT [2W ( j − h)], (5)

where ĨT (k) denotes the Fourier transform of IT (x). In addition, when IT (x) = δ(x)
in Eq. (4), the interaction becomes simple: Jjh ∝ ξ jξh . In this case, neglecting the
constant of proportionality, the Ising Hamiltonian in Eq. (1) can be rewritten as

H = −
∑

jh

ξ jξhσ jσh . (6)

As seen fromEq. (6), the SPIM can handle fully connected Isingmodels using optical
computation based on spatial light propagation. However, Eq. (6) is an Ising model
with a special format known as the Mattis model. A pair of interactions between
two spins is the product of two independent variables, and the interaction matrix is
limited to a symmetric rank-1 matrix.

2.2 Concept of SPIMs with Multiplexing

As described above, the interaction matrix J has a restriction specific to SPIM. Thus,
the computational model of SPIM should be improved to handle interaction matrices
with a higher rank for application to diverse, practically useful optimization prob-
lems. A promising approach to address this issue is effectively utilizing multiplexing
capabilities. Multiplexing is a well-known method for improving the performance
and functionality of photonic information systems. Multiplexing strategies are used
in methods using spatial light modulation, including holographic data storage [29]
and computing [30], and would be effective for improving SPIM.

Consider the Hamiltonian configured using the linear sum of Eq. (6) [31]:

H = −
L∑

l=1

α(l)
∑

jh

ξ
(l)
j ξ

(l)
h σ jσh . (7)

Here, l = 1, 2, . . . , L is the multiplexing number, L is the total number of mul-
tiplexed components, α(l) is an arbitrary constant, and ξ

(l)
j is the amplitude. This

extension enables the representation of an interaction matrix with a rank L or less
in the Ising model. From Eq. (7), σ is common for all multiplexed terms; therefore,
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the hardware (SLM) for manipulating it can be shared among the multiplexed lights.
In contrast, the amplitude distributions ξ must be treated independently by assign-
ing individual multiplexed components to different amplitude distributions. Possible
methods for multiplexing include time-division, space-division, angle-division, and
wavelength-division. Figure 2 shows configuration examples of SPIMs with multi-
plexing.

TDM-SPIM (Fig. 2a) can be realized using a hardware configuration similar to
that of the primitive SPIM. However, the amplitude distribution of the light incident
on an SLM for encoding spins must change over time. This is achieved using, for
example, an amplitude-type SLM. The intensity distribution was acquired for indi-
vidual amplitude distributions while maintaining the spin configuration during each
iteration. The system energy was calculated by summing L intensity distributions
on a computer. When α(l) has the same sign, the energy can be calculated optically
by switching the amplitude distribution L times during the exposure of the image
sensor. This method enables multiplexing without sacrificing the number of express-
ible spin variables, and the number of multiplexing channels can be easily increased
while maintaining a simple hardware configuration. However, the computation time
increases linearly with the number of multiplexing channels. The switching rate of
the amplitude modulation can be a factor that restricts the computation speed.

In SDM-SPIM (Fig. 2b), mutually incoherent light waveswith different amplitude
distributions overlap and shine an SLM for encoding spins. Different amplitude
distributions can be generated simultaneously using multiple amplitude modulation
devices or bydividing themodulating area of a single device dependingon the number
of manipulated spins. When positive and negative signs are mixed in α(l), switching
between the amplitude distributions corresponding to the set of the positive and
negative signs is necessary for calculating the system energy. However, the intensity
acquisition required for each iteration is performed once or twice, independent of
the number of multiplexing channels; thus, the time cost is low. The total number
of pixels used for the amplitude modulation is divided according to the number of
multiplexing channels, and the number of spin variables is determined as the number
of pixels after division. However, as described above, introducing multiple devices
can easily extend the total number of pixels for amplitude modulation.

In angle-division multiplexing SPIM (Fig. 2c), different amplitude distributions
can be generated, for example, using a volume hologram with angle-multiplexed
recording [32]. A light-wave readout with angle multiplexing leads to a single SLM
for encoding spins. The computation of the Hamiltonian can be executed simulta-
neously and independently by reading the angle-multiplexed light using mutually
incoherent light. In addition to the SDM, the acquisition of the intensity distribu-
tion required for every iteration is twice the maximum; thus, the computation time
is independent of the multiplexing number. In addition, sharing pixels of amplitude
distributions and phase-modulation SLM amongmultiplexing lights is not necessary,
and this method is considered superior to TDM-SPIM and SDM-SPIM in terms of
the scalability of the spin variables. However, introducing angle-multiplexing optics
is necessary, and the system tends to be complicated. Moreover, the crosstalk of an
angle-multiplexing device affects the Ising machine’s performance.
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In WDM-SPIM (Fig. 2d), we generate different amplitude distributions for mul-
tiple wavelengths while acquiring the sum of the energies (Eq. (7)), optically calcu-
lated for individual wavelengths. Volume holograms or other devices can generate
wavelength-dependent amplitude distributions. Luo et al. recently proposed a sys-
tem using the dispersion of supercontinuum light as an example of WDM [28]. The
computational model was modified using gauge transformation, and the energy com-
putation was executed by leading uniform-distribution multiple-wavelength optical
waves to the phase-only SLM. In WDM methods, the computation time efficiency
is high owing to the simultaneous calculation of multiplexed terms in the Hamil-
tonian. However, compensation is required for the wavelength dependence of the
system behavior, such as the dependence of the intensity distribution scale after opti-
cal Fourier transformation on wavelengths. Moreover, it is difficult to satisfy the
phase distribution for different wavelengths simultaneously; hence, some ingenuity
is required.

This study investigated TDM- and SDM-SPIM, which provide relatively easy
implementation. The two methods are discussed in the following two sections, along
with the experimental results.

3 Time Division Multiplexed (TDM)-SPIM

We confirm that SPIM with multiplexing can handle a wider range of Ising models
by applying it to a 0–1 knapsack problem with integer weights, which is a combi-
natorial optimization problem in the NP-hard class [10]. The primitive SPIM cannot
be applied to this problem because the rank of the interaction matrix is greater than
1. A knapsack problem involves finding a set of items that maximizes the total value
when a knapsack with a weight limit and items with predefined values and weights
are given. This problem is related to several real-world decision-making processes.

Let us assume that there are n items and that the weights and values of the i th
(i = 1, 2, . . . , n) item are wi and vi , respectively. xi ∈ {0, 1} (i = 1, 2, . . . , n) is
a decision variable representing whether the i th item is selected (xi = 1) or not
(xi = 0). The knapsack problem is then formulated as follows:

maximize
n∑

i=1

vi xi , (8)

subject to
n∑

i=1

wi xi ≤ W, (9)

where W denotes the weight limit of the knapsack. The corresponding Ising Hamil-
tonian H is formulated using the log trick [10] as
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H = AHA − BHB, (10)

HA =
(
W −

n∑

i=1

wi xi −
m∑

i=1

2i−1yi

)2

, (11)

HB =
(

n∑

i=1

vi xi

)2

, (12)

where yi ∈ {0, 1} denotes the auxiliary variables. The number of auxiliary variables
is set tom = �log2 maxi wi�. A and B are constants. To find the optimal solution, the
penalty for constraint violation must be greater than the gain from adding an item,
and A and B must satisfy 0 < B

[
2

∑n
i=1 vi − maxi vi

] × maxi vi < A. HA is the
constraint term and HB is the objective term.

SPIM cannot handle Eqs. (11) and (12) directly; therefore, the Hamiltonian is
transformed into a linear sum of the Mattis model with a variable transformation.
Neglecting the constant term that does not affect the optimization, we obtain

H(σ ) = Aσ T ξ (1)ξ (1) Tσ − Bσ T ξ (2)ξ (2) Tσ , (13)

where

σ = (2x1 − 1, . . . , 2xn − 1, 2y1 − 1, . . . , 2ym − 1, 1)T , (14)

ξ (1) = (w1, . . . , wn, 2
0, . . . , 2m−1,

n∑

i=1

wi + 2m − 1 − 2W )T , (15)

ξ (2) = (v1, . . . , vn, 0, . . . , 0,
n∑

i=1

vi )
T . (16)

Equation (13) can be solved using SPIM with multiplexing. In this section, Eq. (13)
was computed using TDM-SPIM [31]. By switching the amplitude distribution
between ξ (1) and ξ (2), the intensity distributions with individual amplitude distri-
butions were acquired sequentially, and the total energy was calculated using a com-
puter. This method enables handling the same number of spins as in the primitive
SPIM by securing the number of pixels for amplitude distributions equivalent to that
of the SLM for encoding spins.

The optical setup of the TDM-SPIM is shown in Fig. 3. A plane-wave ray from a
laser source (Shanghai Sanctity Laser, wavelength: 532 nm) was incident on SLM1
(Santec, SLM-200; pixel number: 1920 × 1080, pixel pitch: 8µm) to spatiallymodu-
late the amplitudes and encode the problem to be solved. The light immediately after
SLM1 was imaged on SLM2 (Hamamatsu Photonics, X15213-01; pixel number:
1272 × 1024; pixel pitch: 12.5 µm), where spatial phase modulation was applied to
incorporate the spin configuration. The light was then Fourier-transformed by lens
L3, and the intensity distribution was acquired using an image sensor (PixeLink,
PL-B953U; pixel pitch: 4.65 µm). To eliminate the mismatch between the pixel
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Fig. 3 Optical setup of TDM-SPIM. OL: objective lens (40×, NA: 0.6); BS: beam splitter; L1, L2,
L3: lens (focal length: 150, 200, 300 mm)

sizes of SLM1 and SLM2, an area of 600 × 600 µm2 (75 × 75 pixels for SLM1 and
48 × 48 pixels for SLM2) was considered the minimum modulation size for each
spin. Because the amplitude range is limited from zero to one, ξ is normalized to
maxi ξi .

In the primitive SPIM, a target image IT , associated with the Hamiltonian using
Eq. (4), is employed to calculate the energy from the acquired intensity distribution.
In our TDM-SPIM, the energy was calculated directly from Eq. (3) without using
IT (x). By substituting x = 0 into Eq. (3), we obtain

I (0) =
∑

j,h

ξ jξhσ jσh, (17)

and find
H = −I (0). (18)

The Hamiltonian value was obtained as the intensity at the center position. This
method eliminates the cost of calculating ‖IT (x) − I (x)‖ from the intensity dis-
tribution and enables to employ a single sensor instead of an image sensor. In the
experiments, we set the intensity within a single pixel at the center as I (0).

The spin configuration was updated for each acquisition of a pair of constraint and
objective terms. The next candidate of the spin configuration σ ′ is made by flipping
individual spins except the last one, whose spin is fixed to “1,” of the current spin
configuration σ with the probability 3/(n + m). By simultaneously flipping multiple
spins, overcoming a higher energy barrier becomes easier. The transition probability
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P in the SA is determined by

P = exp

(
−H(σ ′) − H(σ )

T

)
, (19)

where T is the temperature. We adopted a sample with the maximum total value
among the feasible solutions obtained in the iterations as the final solution. This
is because the Hamiltonian can be inconsistent with the total value because of the
dependence in Eq. (10) on coefficients A and B, and to exclude samples that fail to
satisfy the weight limit. In the experiments, A = (maxi vi ) × (2

∑
vi − maxi vi ) +

1 = 2633, B = 1, and the temperature was constant at T = 10A = 26330. The
solved knapsack problem is as follows:

n = 13, W = 80,

v = (6, 7, 1, 15, 14, 8, 5, 6, 4, 7, 5, 12, 10),

w = (7, 7, 8, 8, 2, 7, 12, 4, 0, 14, 2, 7, 14). (20)

The total value and weight of the optimal solution are 95 and 80, respectively. The
total number of spin variables, including auxiliary variables, is 17.

First, the accuracy of theHamiltonian obtained using this systemwas investigated.
We compared the energy values for the 8192(=213) possible spin configurations
between the theory and experiment. Figure 4 presents an almost linear relationship
for the weight and total value terms with coefficients of determination of 0.8304
and 0.9726, respectively. In the weight calculation, we exclude the data saturated in
the experiment. The results show that the matrix operations for calculating different
terms are executed using a single system. A part of the Hamiltonian values for the
weight in the experiment is measured with saturation owing to the limitation of
the dynamic range of the image sensor. However, this does not hinder the system
behavior because the values important for finding the ground state are those on the
low-energy side. Nevertheless, it is necessary to suitably set the saturation threshold
by considering A and B to effectively utilize the limited dynamic range.

An example of the system evolution during the search for solutions is shown in
Fig. 5. Figure 5a shows the change in energy for each iteration. The total number of
iterations was 3000. Although the energy did not converge because the temperature
was set constant, searching was performed mainly in the low-energy area. Figures 5b
and c show the transitions in the weight and total values for the spin configuration
sampled at every iteration number. The spin configurations with high total values are
broadly searched under the weight constraint. We confirm that the TDM-SPIM can
deal with the Hamiltonian consisting of two terms; in particular, the constraint term,
which is not dealt with in the primitive SPIM, works well.

We executed the TDM-SPIM 50 times and the characteristics of the generated
samples were examined. Figure 6a presents a histogram of the feasible solutions,
taking the maximal total value for every execution. The optimal solution was deter-
mined to be 48%. In addition, approximate solutions with high total values were
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Fig. 4 Comparison of the Hamiltonian values between the theory and the experiment for a the
weight term and b the total value term

found even if the optimal solution could not be found, demonstrating the system’s
capability as an Ising machine. Figure 6b shows a histogram of the energy values
of 150,000 samples generated during the iteration for all executions. These statisti-
cal data show that the system generated many low-energy samples. Furthermore, an
exponential decreasewas observedwithin the areawhere the energy valuewas not too
low. This is similar to the Boltzmann distribution, and the system has characteristics
expected to be sufficient for determining the ground-state solution.

4 Space Division Multiplexing (SDM)-SPIM

TDM-SPIM can manage interaction matrices with a rank of two or more, but the
computation time increases as the number of multiplexing channels increases. As an
approach that provides other features, an SDM-SPIM system was constructed and
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demonstrated. The optical setup of the SDM-SPIM is shown in Fig. 7. We assume
that two independent and mutually incoherent intensity distributions are created
simultaneously in this setup. For this, we use two He-Ne laser sources with the
same wavelength of 632.8 nm (LASOS, LGK7654-8; Melles Griot, 05-LHP-171).
The individual beams from the sources shine in different areas of SLM1 (amplitude
type, HOLOEYE, LC2012; pixel number: 1024 × 768; pixel pitch: 36 µm), and
their amplitudes were modulated to independent distributions ξ . Beams 1 and 2
correspond to the objective and constraint terms, respectively. To control the degree
of contribution of both terms in calculating the Hamiltonian, a neutral-density (ND)
filter was inserted into the pass of beam 1 before SLM1 to adjust the intensity
ratio between the two beams. The beams modulated by SLM1 were then coaxially
combined and directed on the phase-only SLM2 (HOLOEYE, PURUTO-2; pixel
number: 1920 × 1080; pixel pitch: 8.0 µm) for encoding spins. After receiving the
same phase modulation, beams 1 and 2 were Fourier-transformed using lens L3.
The CCD (PointGray Research, Grasshopper GS3-U3-32S4: pixel pitch: 3.45 µm)
then captures the intensity images. The intensity ratio between the objective and
constraint terms was β = B

A = 4 without the ND filter in the setup in Fig. 7. An
area of 360 × 360 µm (10 × 10 pixels for SLM1 and 45 × 45 pixels for SLM2) is
considered the minimum modulation size to eliminate the mismatch between the
pixel sizes of SLM1 and SLM2.
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Knapsack problems were examined as well as the experiments described in the
previous section. Here, the contribution of the total value term in the Hamiltonian is
changed to linear such thatH ′

B is used instead of HB in Eq. (12):

H ′
B = −B

n∑

i=1

vi xi . (21)
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Fig. 7 Optical setup of the SDM-SPIM. The number of multiplexing is two. OL: Objective lens
(10×, NA 0.25); ND: neutral-density filter; BS: beam splitter; L1, L2, L3: lens (focal length: 60,
150, 300 mm)

The Hamiltonian is represented as follows:

H(σ ) = Aσ T ξ (1)ξ (1) Tσ − Bσ T ξ (2)ξ (2) Tσ + Bσ T ξ (3)ξ (3) Tσ , (22)

ξ (1) = (w0, . . . , wN−1, 2
0, . . . , 2M ,

N−1∑

i=0

wi +
M∑

i=0

2i − 2W ), (23)

ξ (2) = (v0, . . . , vN−1, vN , . . . , vN+M , 1), (24)

ξ (3) = (v0, . . . , vN−1, vN , . . . , vN+M , 0). (25)

The image captured by this system is the sum of the intensity distributions of the
individual amplitude distributions of the beams. In Eq. (22), the sign of the coefficient
of the second term is different from that of the other terms, and it is not possible to
obtain the sum of all Hamiltonians simultaneously. Therefore, TDM was utilized.
Terms with the same sign were optically calculated simultaneously, and the energy
was obtained separately for each sign. The separation of processing into two parts is
sufficient, and the time cost for TDM is constant, regardless of the number of terms
in the Hamiltonian. The spin configuration was updated based on SA. The initial
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temperature was 3000 and the cooling rate was 0.96. The next candidate of the spin
configuration σ ′ is made by flipping individual spins except the last one, whose spin
is fixed to “1,” of the current spin configuration σ with the probability 3/(n + m). The
spin configuration is updated according to Eq. (19). The delta function was employed
as the target image IT (x). To represent the delta function in the experiments, we set
3 × 3 pixels around the center to 1, and the others to 0.

Proof-of-concept experiments were performed using the knapsack problem as
follows:

n = 4, W = 11, v = (6, 10, 12, 13), w = (2, 4, 6, 7). (26)

The total value of the optimal solution is 23 and the weight is 11. The total number of
spin variables, including the auxiliary variables, is 8. Figure 8a presents a histogram
of the total values of the final solutions obtained over 100 iterations. The total number
of iterationswas 300 andβ = 0.01. The rate of execution inwhich the solution search
converges to the optimal solutionwas 52%.The rate of execution inwhich the optimal
solution is never sampled during iterationswas 27%. The rate of convergence to reach
the optimal solution out of the executions in which the optimal solution is sampled
once or more was 71%. No solution significantly exceeded the weight constraint, and
the constraint term was confirmed to work sufficiently. Figure 8b shows an example
of the time evolution of aHamiltonian during the iterations. TheSDM-SPIMprovides
sufficient opportunities for convergence to the optimal solution.

It is necessary to set the ratio (β) of the constraint and objective terms suitably
to determine the ground state in the Ising model. In the SDM-SPIM optical sys-
tem, the ratio β = B

A can be controlled by the light wave intensities related to the
individual terms. We investigated the characteristics of the solution search when
different ND filter transmittances were applied. Figure 9a shows the number of
samples that exceed the weight limit during iteration, and (b) the histogram of the
weights for the final solutions when the transmittance of the ND filter is 10% or
0.25% in 50 executions. The number of iterations was set to 300. When the intensity
of light related to the objective term decreases (the transmittance of the ND filter
decreases), the constraint is easilymaintained in searches. In contrast, when the inten-
sity increases, the constraint easily exceeds.Nofinal solution exceeds theweight limit
when β = 0.01 (ND:0.25%). However, many solutions violate this constraint when
β = 0.4 (ND:10%). These experimental results demonstrate that the distributions of
the samples during the iterations and the final solutions change depending on the
transmittance of the ND filter or β. This indicates the manipulability of the space
for solution search by controlling the optical parameters. In addition, for the con-
straint term towork effectively when using theHamiltonian in Eq. (22), the following
condition must be satisfied:

A > Bmax
i

vi . (27)

maxi vi = 13 for the examined problem, and the condition becomes β =<1/13 ≈
0.077. This is consistent with the results presented in Fig. 9.
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In the previous experiment, the ND filter’s transmittance was fixed during itera-
tions. The search characteristics can be improved by changing the optical parameters
during the iterations. Thus, we investigated amethod inwhich the iteration proceeded
by changing the coefficient ratio β step-by-step. This method is referred to as the
dynamic coefficient search in this study. The change in the coefficient can be realized
by replacing the ND filter or controlling the light source emission intensity. SA with
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fixed coefficients and dynamic coefficient searches were compared using numerical
experiments. The knapsack problem used is as follows:

n = 10,W = 60,

v = (20, 18, 17, 15, 15, 10, 5, 3, 1, 1),

w = (30, 25, 20, 18, 17, 11, 5, 2, 1, 1). (28)

The total value of the optimal solution is 52 and the weight is 57–60. The total
number of spin variables, including the auxiliary variables, is 16. The ratio β = 0.05.
In the SA, the initial temperature was 300, 000, and the cooling rate was 0.96. In the
dynamic coefficient search, the ratio was changed, β = 2, 1, 0.8, 0.5, 0.1, 0.05
for every 100 iterations. The annealing temperature was fixed at T = 30. The spin
configuration with the minimum energy in iterations with the same β is used as the
initial spin configuration in iterations with the next β. The total number of iterations
was set to 600.

Figure 10 shows the histogram of the total values for 1000 executions. The
dynamic coefficient search provides improved optimal or approximate solutions
compared to SA with fixed coefficients. This tendency is also observed when the
total number of iterations varies. A dynamic coefficient search has good potential.
A possible reason for this is the difference in the search route leading to the opti-
mal solution. In SA with fixed coefficients, the constraint term is strong from the
beginning of the iteration, and solutions satisfying the constraint are preferentially
searched. In contrast, in the dynamic coefficient search, the constraint term is weak at
the beginning of the iterations, and the search proceeds from solutions with high total
values. This suggests the possibility of the SDM-SPIM performance improvement
by dynamic optical parameter tuning.

5 Conclusion

This study presents SPIMs with multiplexing to solve combinatorial optimization
problems. An interaction coefficient matrix with a rank of two or more can be
managed, and the applicability of SPIMs to practical applications is enhanced. We
constructed TDM-SPIM and SDM SPIM systems among the possible multiplexing
schemes and verified their performance using knapsack problems. In the TDM-SPIM
experiments, the constraint and objective terms work well and the ground state of the
system can be searched efficiently by considering the two terms. In the SDM-SPIM
experiments, the search characteristics varied depending on the coefficient ratio,
which can change with the transmittance of the ND filter, between the constraint
and objective terms in the Hamiltonian. Furthermore, the numerical results suggest
that dynamically decreasing the coefficient ratio during the iteration can enhance the
performance of an Ising machine.
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With support from the performance and functionality improvements of SLMs and
the progress of mathematical methods, computing based on spatial light modulation
and free-space propagation provides advantages in terms of scalability, controlla-
bility, and simplicity [6, 23]. The number of spin variables handled in the SPIM
depends on the number of SLM’s pixels. These pixels can be manipulated in par-
allel, and the time required to calculate the energy is independent of the number of
spins and is constant. The degrees of freedom of the models that can be handled are
determined by the number of multiplexing. The number of spins and multiplexing
can be changed independently, thereby providing flexibility in the design of optical
systems. Furthermore, physical operations are possible in simple energy calculations
and when setting parameters related to annealing characteristics. These are signif-
icant features of SPIM with multiplexing, and they are expected to contribute to
creating optics-based unconventional computing architectures in the future.
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