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Abstract In this section, we introduce the basics of quantum walk algorithm and
its applications. Quantum walk is a natural extension of the concept of random walk
in quantum way; therefore, the results obtained from the discussion are considered
as the results by Quantum Computation. In principle, we can expect a certain type
of the computation would be boosted. There are a variety of phenomena in Quan-
tum walks, and much broader outcomes are often obtained than those from classical
random walk. Such famous examples include quantum search algorithms and quan-
tum simulations. In this article, we introduce a quantum simulation of QCD parton
shower algorithm appearing in particle physics.

1 Introduction of Quantum Walk

In this section, we introduce the QuantumWalk algorithm as an extended version of
Classical Random Walk.

1.1 Classical Random Walk

Let us begin with a traditional classical random walk on the integer points of a 1-
dimensional line. We call the object which will move around on the line as “walker”
and the movement of the “walker” is determined step-by-step randomly according
to the given probability p. At each step, the “walker” can move to the left or the
right integer points next to the current point with the probability of p and 1 − p,
respectively. We consider the same procedure t times repeated, then although we
cannot predict the location of the “walker” n at the time t we can compute the
probability of it.
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Suppose at t = 0 the “walker” starts at n = 0, then the probability that he is at n
at the time t is given by

P(t, n) = tC t+n
2
2−t , (1)

where tCn = t !/(t − n)!n!.
An important consideration here is that we can consider the “path”, in other words,

“history”, the set of the positions of the “walker” at all the time steps before the ending
time t , {nt ′ |0 ≤ t ′ ≤ t}, and that we can compute the probability of the appearance
of a certain “path”. For this example, each “path” appears at the probability of 2−t .
The above probability is given by counting the number of possible “paths” ending
at position n. For the generic p, the appearance probability of each “path” becomes
pn+(1 − p)n− , where n = n+ − n− and t = n+ + n−.

For the random walk, we can compute the average μ = 〈n〉 and the variance σ2 =
〈n2〉 − μ2 as μ = (2p − 1)t and σ2 = p(1 − p)t . Especially, the standard deviation
σ scales as O(

√
t). The asymptotic probability distribution becomes

lim
t→∞ P(Xt/

√
t ≤ x) =

x∫

−∞
f (y)dy, where, f (x) = 1√

2πσ2
exp

[
− (x − μ)2

2σ2

]
.

1.2 Quantum Walk

In classical random walk, we can predict the probability of the position of the walker
at time t by considering all the possible “paths” of the walker and computing the
probability of the “path”. We want to consider the quantum version of the corre-
sponding system. The most important property of the quantum system is that we can
consider the superposition of the states. Thus, we in the end want to consider the
superposition of the “paths”.

The dynamics of a quantum walk can be described using a quantum mechanical
formalism [1, 2]. The state of the particle on several nodes can be represented by a
quantum state vector, which evolves according to a unitary operator. One can imagine
that each node is lined on a 1-dimensional line, labeledwith an integer n. Note that the
following discussion is not restricted to the nodes lined in a line, but are valid as long
as we can label the node with n, for example, in the case that the nodes are vertices
on a graph. The position of the “walker” is described by the quantum state |n〉, which
spans the position Hilbert spaceHP = {|n〉|n ∈ Z}. Furthermore, for each node, we
assume there are two discrete states, like spin up and down. This Hilbert space is
denoted asHC , and we can label the two states with {| ↑〉, | ↓〉}, {|0〉, |1〉}, {|L〉, |R〉},
{|+〉, |−〉}, or often {|H〉, |T 〉}, which means “head” and “tail”. The coined operator
is acting on this Hilbert space. The whole Hilbert space considered is the product of
the two Hilbert spacesH = HP ⊗ HC , where the dimension of the Hilbert space is
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the product of the dimensions ofHP andHC . The quantum state |ψ(t)〉 at each time
step t is given by

|ψ(t)〉 =
∑
n

[
ψn,+(t)|n,+〉 + ψn,−(t)|n,−〉],

where ∑
n

[|ψn,+(t)|2 + |ψn,−(t)|2] = 1.

The evolution of the quantum state |ψ(t)〉 is described by the following algorithms:

1. Initial state: The particle is initialized at some node on the graph with a specific
quantum state |ψ(0)〉:

|ψ(0)〉 =
∑

n,sn=±
ψn,sn (0)|n, sn〉.

For example, ψ0,0(0) = 1, otherwise 0.

2. Quantum coin operation: The particle’s state is modified by a quantum coin
operatorC ∈ U (2) , which is a 2-dimensional unitary operator that acts on a coin
state |c〉 = α+|+〉 + α−|−〉 ∈ HC . Explicitly, |c′〉 = C |c〉 can be described by

C =
(
a b
c d

)
, |c′〉 =

(
α′−
α′+

)
, |c〉 =

(
α−
α+

)
.

3. Conditional shift: The particle’s position is then shifted according to the coin
operation. For each node, there is a corresponding shift operator that acts on the
state of the particle. The shift operator is often defined as

S =
∑
j

| j〉〈 j − 1| ⊗ |+〉〈+| + | j〉〈 j + 1| ⊗ |−〉〈−| = S+ ⊗ P+ + S− ⊗ P−,

where | j〉 represents the state of the particle at node j , and ⊗ denotes the tensor
product.

4. Total evolution: The total evolution of the quantum walk for each time step is
given by the operator:

U = S(I ⊗ C),

where C is the coin operator in HC , and I is the identity operator in HP . The
total evolution of the quantum walk over t time steps is given by the product of
U taken over t steps, Ut . The final form of the quantum state |ψ(t)〉 is obtained
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as follows:
|ψ(t)〉 = Ut |ψ(0)〉.

These equations describe the basic dynamics of a quantum walk on a line. By
choosing appropriate initial states, coin operators, and graph structures, quantum
walks can be used to solve various problems in quantum computing, such as search
and sampling.

Explicit form of the U operator is given by

U = S(I ⊗ C) =

⎛
⎜⎜⎜⎜⎜⎜⎝

...
...

...

· · · 0 P− 0 · · ·
· · · P+ 0 P− · · ·
· · · 0 P+ 0 · · ·

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

...
...

...

· · · C 0 0 · · ·
· · · 0 C 0 · · ·
· · · 0 0 C · · ·

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

...
...

...

· · · 0 P 0 · · ·
· · · Q 0 P · · ·
· · · 0 Q 0 · · ·

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where

P = P−C =
(
a b
0 0

)
, Q = P+C =

(
0 0
c d

)
,C = P + Q.

ActingU once provides the probability of finding the walker at (1,± 1) as |Pψ0|2
and |Qψ0|2, respectively, so |a|2 + |c|2 = 1 gives the similar relation of the classical
random walk system. However, if we consider more than two steps, Ut essentially
provideψn(t) as a coherent sumof the amplitudes corresponding to the possible paths
to reach the point (t, n) from (0, 0) as in Fig. 1. It is conceptually happening for the
quantum system when we don’t observe the intermediate states and only observe the
final wave function at time t .
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Fig. 1 Quantumwalk paths.An example path is denoted in red line and the corresponding amplitude
is obtained by the products of P and Q acting on the initial state ψ0(0)
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For an example discussion, the coin operator is often chosen to be a Hadamard
coin operator H ,

H = 1√
2

(
1 1
1 −1

)
,

which puts the coin into an equal superposition of |+〉 and |−〉 states. For example,
the coin state obtained by H acting on |+〉 is given by H |+〉 = 1√

2
(|+〉 + |−〉).

Here, in this setup, for the coin operator in general we can consider only the
element of SU (2), since the overall phase is not relevant in quantum computation.
Thus, the variety of coin operator is parameterized with 3-dimensional real parame-
ters, a, b ∈ C satisfying |a|2 + |b|2 = 1, and

C =
(

a b
−b∗ a∗

)
=

(√
1 − |b|2 b
−b

√
1 − |b|2

)
.

The last line can be obtained when a and b are restricted being real.
With this parameterization, it is known that the asymptotic probability distribution

of Xt (the position of the walker at time t) in the QuantumWalk with the initial state

ψ0(0) =
(

α
β

)
, and ψn(0) =

(
0
0

)
(n �= 0) is given by the following [1, 2]:

lim
t→∞ P(Xt/t ≤ x) =

x∫

∞
f (y)I(−|a|,|a|)(y)dy,

f (x) =
√
1 − |a|2

π(1 − x2)
√|a|2 − x2

[
1 − (|α|2 − |β|2 + 2Re[aαb∗β∗]

|a|2 )x

]
,

where IA(y) is the compact support function giving IA(y) = 1 for y ∈ A, and oth-
erwise 0. Especially, most of the distributions accumulate around x ∼ ±|a|. The
important fact for the Quantum Walk is that the standard deviation σ scales as O(t)
not O(

√
t), which would be advantageous for faster search algorithm and for gener-

ating samples far from initial states (Fig. 2).

1.3 Quantum Walk on FRET Networks

In the previous chapter, a mathematical model of the FRET network is introduced,
where the reactions among the excited states and the ground states in an array of
Quantum Dots (QDs) are considered. As a physical system, it should be more appro-
priate to treat it as a quantum system as a whole. We here introduce a way to include
parts of the quantum effects, the interference effects, to the mathematical model of
the FRET network.
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Fig. 2 An example
probability distribution of
the walker at time t = 100 in
Quantum Walk (blue). The
corresponding asymptotic
probability of the Quantum
Walk (blue-dashed) and the
Classical Random Walk
(red) are also shown for
comparison

For simplicity, we consider the case where the interactions occur only between the
QDs which are next to each other in the 1-dimensional array of QDs. That means,
we consider the case knm �= 0 only when m = n + 1, and otherwise knm = 0. We
also assume the spontaneous decay process is negligible, i.e. kn = 0. The resulting
master formula is given by

d

dt
Pn(t) = −kn,n+1Pn(t) + kn−1,n Pn−1(t).

Changing the continuous time to discrete time �t ,

Pn(t + �t) = (
1 − kFRETn,n+1�t

)
Pn(t) + kFRETn−1,n�t Pn−1(t). (2)

Since the sum of the probability of all the possible configurations is conserved,
we can describe this system as a unitary transformation acting on the vector in the
Hilbert space that consists of the direct product of the Hilbert space representing
n QDs {|n〉} and that representing excited/non-excited states {|+〉, |−〉} for each
QD, which is originally in 2N dimensions but restricted to the 2N dimensions since
the number of excited states is restricted to one or zero. Thus, hot vector represen-
tation can be represented as ψ01,...,0n−1,1n ,0n+1,...,0N |01, . . . , 0n−1, 1n, 0n+1, . . . , 0N 〉 =
ψn,+(|n〉 ⊗ |+〉). For each step, the FRET interaction is acting as the transition from
|n〉 ⊗ |+〉 → |n + 1〉 ⊗ |+〉. Thus, to reproduce the correct transition probability
using the coin operator in the QW algorithm, we can take b = √

kFRET�t . The
explicit form of C is given as

C =
(√

1 − kFRET�t
√
kFRET�t

−√
kFRET�t

√
1 − kFRET�t

)
,

and for this case we can take the shift operator S′ = S+ ⊗ |+〉〈+| + S0 ⊗ |−〉〈−|.
The corresponding U operator is given by
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U ′ = S′(I ⊗ C) =

⎛
⎜⎜⎜⎜⎜⎜⎝

...
...

...

· · · P− 0 0 · · ·
· · · P+ P− 0 · · ·
· · · 0 P+ P− · · ·

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

...
...

...

· · · C 0 0 · · ·
· · · 0 C 0 · · ·
· · · 0 0 C · · ·

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

...
...

...

· · · P 0 0 · · ·
· · · Q P 0 · · ·
· · · 0 Q P · · ·

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎠

.

With this unitary operator, we can reproduce the relationship among the amplitude
and the probability for one time step, which we assume to be the case when at each
step we observe the configuration. For more time steps, we should get

ψ(t) = (U ′)tψ(0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
...

...

· · · Pt 0 0 · · ·
· · ·

t−1∑
i=0

Pi QPt−i−1 Pt 0 · · ·

· · · ∑
path

Q2Pt−2
t−1∑
i=0

Pi QPt−i−1 Pt · · ·
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ψ(0).

The amplitude ψn(t) is the coherent sum of all the amplitudes corresponding to the
possible paths from ψ0(0). Note that the coin operator to reproduce the same Eq. (2)
for one step is not unique. In this way, the dynamics of the FRET networks can be
embedded in the Quantum Walk framework.

2 Application of QuantumWalk

One of the famous applications of Quantum Walk algorithm is search algorithm.
Most of the cases are based on Grover’s algorithm [3], and there are several examples
including maze solving [4].

In this article, instead of considering the search algorithm application, we will
introduce an application in particle physics. There is a well-studied phenomenon
called “jet” which is originated by a quark production, and is well described by a
parton shower algorithm [5–11] based on the Quantum Chromodynamics (QCD)
theory. It is essentially a probabilistic process with the emission probabilities. Since
processes in a microscopic world, such as this process observed in particle physics,
are intrinsically described by quantum physics, the proper simulation requires a
quantum computation or quantum simulation [12]. In particular, some properties
in parton shower could be more efficiently implemented and described using the
Quantum walk algorithm.
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2.1 Classical Parton Shower

First, we review the parton shower algorithm to describe jets. At high-energy particle
collider experiments, we expect quarks are produced. However, it is known that a
bare quark is never observed because of the color confinements. Instead, due to the
color charges, quark and gluon can emit a gluon, or split into quark and gluon, and
we can compute the emission probability by the QCD theory. There are three types
of splitting, q → qg, g → gg, g → qq̄ , as depicted in Fig. 3.

It is known that the splitting probability is enhanced when the splitting occurs in
a collinear way. For each step of splitting, k → i j the kinematics of the splitting is
described by the 3-dimensional parameters, (θ, z,φ), where θ is the angle between
i and j , z (0 ≤ z ≤ 1) is the fraction of the momentum carried by i , that is pi =
zpk, p j = (1 − z)pk , and φ is the azimuthal angle, which is just integrable to give 2π
for simplicity. The differential cross sections between the split/non-split processes,
corresponding to n-final states and (n + 1)-final states, are related as follows:

dσn+1 = dσn
αs

2π

dθ

θ
P(z)dz.

The QCD theory predicts the probability of the splitting with a parameter z as

Pq→qg(z) = CF
1 + (1 − z)2

z
, (3)

Pg→gg(z) = CA

[
2(1 − z)

z
+ z(1 − z)

]
, (4)

Pg→qq̄(z) = n f TR(z2 + (1 − z)2), (5)

where CF = 4/3,CA = 3, TR = 1/2 based on the color algebra, and n f is the num-
ber of the massless quark flavors.

The above expression suggests that for all cases, the enhanced region is described
by P(z) ∼ 1/z. It is known that we can assume θ1 > θ2 > · · · > θn due to the inter-
ference effects; thus, having an ensemble of the events with the variety of {θ} is
interpreted as a time evolution process by considering 1/θ as time t . In this interpre-
tation, a certain time duration �t corresponds to �θ.

Following those information, once a quark exists, it will evolve based on the
Poisson process with those split/non-split probabilities. At each time, splitting/non-
splitting is determined by these probability functions and the final set of the tree
structure is obtained, which we call a shower history. We can consider the one-to-
one correspondence to the “path” of the random walk and the shower history. Note

q q

g

g g

g

q q

q̄

Fig. 3 QCD splitting patterns
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that even for a classical parton shower algorithm, a part of the quantum interference
effects is already taken into account during the computation of the splitting functions
through the quantum corrections but not full.

In practice, to obtain the ensemble of the events from the parton shower algorithm,
introducing the Sudakov factor is convenient, which is the non-splitting probability
between the angle scale θi to θ,

�(θi , θ) = exp

⎛
⎜⎝− αs

2π

θ∫

θi

dθ

θ

∫
dzP(z)

⎞
⎟⎠ . (6)

Using theMonte Carlomethod, based on the Sudakov factor, the next branching scale
θ is determined by equating the random number sampled from uniform distribution
r ∈ [0, 1) as r = �(θi , θ). Note that �(θi , θ) ≤ 1. Alternatively, we can discretize
the relevant range of the evolution between θi to θ f into N steps, and introduce
�θ = (θi − θ f )/N . At step m, we obtain the non-splitting probability as

�(θm) = �(θm, θm+1) = exp

(
− αs

2π

�θ

θm

∫
dzP(z)

)
. (7)

As long as �θ is small enough, the case with more than one splitting happening
at step m is negligible, therefore the splitting probability is 1 − �(θm). We need
to repeat this probabilistic process N -times. Thus, it reduces to the random walk
system with the probability �(θm). With the probability we can determine the N -set
of non-splitting/splitting possibilities, which provide a “path”. In the end, usually an
order of 10–30 partons are generated by the splitting process.

2.2 Quantum Parton Shower Algorithm

Since the splitting history can be identified as the path, we can consider the superpo-
sition of the splitting history and the interference effects. The attempt implementing
this system in QuantumWalk is discussed in Ref. [13–15]. We can identify the event
of non-split/split in the parton shower as the shift to the left/right in the Quantum
Walk. Explicitly, the coin operator for this problem can be taken as

C =
( √

�(θm) −√
1 − �(θm)√

1 − �(θm)
√

�(θm)

)
,

where �(θm) is the non-splitting probability of a particle at step m.
We consider here a simple shower, with only one particle species that exists. The

operator C is acting on the coin space HC = {|0〉, |1〉}. The |0〉 state is identified as
the “no emission” state, and the |1〉 state is identified as the “emission” state. The
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|x S

|c C

|w D

|m M

= Probk→ij

M

Position check and Coin Shift

Fig. 4 Schematic quantum circuit to implement the quantum walk algorithm for parton shower.
The figure is taken from Ref. [13]

position space HP = {|i〉|i ∈ N0} represents the number of particles present in the
shower and include only zero and positive integers as the parton shower cannot have
a negative number of particles. The shift operation is taken as the S′ in the previous
section. In this way, the number of particles present in the shower is encoded in the
position of the walker, with the initial state of the walker being at the |0〉 position.

It is possible to implement the Quantum Walk in the Quantum Circuit. The oper-
ator U = S(I ⊗ C) consists of the C acting on the coin space HC , which can be
implemented in one qubit, and of the S, which is the conditional shift operator,
which can be described by the CCNOT operator in Quantum Circuit. Figure 4 shows
the schematic quantum circuit describing a single step of a quantum walk algorithm-
based parton shower. In this simple shower, the number of particles present is encoded
in the position of the walker, which is encoded in |x〉 in the figure. It shows a 2-qubit
case, which can describe up to 4 shower particles with the initial state of the walker
being at the zero position. The number of particles that the algorithm can simulate
increases exponentially with the number of position qubits, x as 2x . D describes
the position check scheme, which is controlled from the position of the walker and
applies the correct splitting probability accordingly in the coin operation C . The
scheme is constructed from a series of CCNOT gates, thus the operation is entirely
unitary. Furthermore, the position check scheme ensures that the coin operation is
always applied to the |0〉 state on the coin qubit to recover the correct parton shower
distribution. The subsequent shift operation then adjusts the number of particles
present in the shower, depending on the outcome of the coin operation. If the coin
qubit is in the |1〉 state after the coin operation, the splitting has occurred and the
position of the walker is increased by one, otherwise the walker does not move. The
shift operation is constructed from a series of Toffoli gates and thus is unitary. This
step can be repeated for the number of discrete shower steps N in the parton shower,
resembling the quantum random walk. Finally, we obtain the amplitude describing
the superposition of the amplitudes with 1 − N shower particles. By measuring the
amplitude, we can sample the “paths” with the appropriate probability.
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3 Conclusion

We have reviewed the quantum walk algorithm, which can introduce the quantum
interference effects to the system described by the classical random walk. From the
physical setup of the FRET network, if all the quantum correlation is preserved, or
the decoherence effects are negligible, the FRET network would provide a quantum
device to simulate a quantum walk process. Although we need to consider the deco-
herence effects in a real device, it would be interesting to see what can be done in an
ideal case. The real system would be modeled by the mixture of the classical random
walk and the quantum walk, which would require further study. Although one of
the famous applications of the quantum walk algorithm is the searching algorithm
using the Grover algorithm, we have introduced an application in the parton shower
algorithm in particle physics in this article. We explicitly show how to implement
the quantum parton shower algorithm in the quantum walk approach. We hope a real
device can help to simulate this system in future.
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