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Abstract FRETnetworks,which refer to energy transfer networks betweennanopar-
ticles due to Förster resonance energy transfer (FRET), are promising physical phe-
nomena for realizing high-speed, efficient, and compact information processing.
These networks can generate rich spatiotemporal signals that help in information
processing and are capable of function approximation, time-series prediction, and
pattern recognition. This chapter presents a mathematical model and analysis for
FRET networks, including some simulation methods for the model, and demon-
strates the power of FRET networks for information processing.

1 Introduction

The energy transfer caused by dipole–dipole interactions between fluorescent
molecules is known as Förster resonance energy transfer (FRET). Förster theory
[1] states the energy transfer rate (the expected number of energy transferred per unit
time) to be such that

kFRET = 3

2

κ2

τ

(
R0

r

)6

, (1)

where κ is an orientation factor, τ is a natural excited-state lifetime, R0 is the Förster
distance, and r is the distance between fluorescent molecules. This relation shows
that the energy transfer rate sensitively depends on the distance r between fluorescent
molecules as it is proportional to r to the power of −6.

Consider randomly distributing a large number of fluorescent molecules. The
fluorescent molecules are separated by various distances. Therefore, the energies
on the network are transferred through diverse pathways. If time-series signals are
input as excitation light in the network, we can expect high-dimensionalized and
nonlinearized time-series signals to be produced as fluorescence. Furthermore, we
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can expect some memory of previous input to be left in the network because input
energy cycles to some extent in the network. Therefore, this energy transfer network
due to FRET can be a prominent phenomenon toward a novel information processing
device.

FRET has been used as local nanoscale signaling without molecular diffusion
processes. For example, local signaling by FRET between fluorescent molecules on
DNA substrates is used as photonic logic gates [2–5]. As previously stated, the kinet-
ics of single-step FRET is well explained by Förster theory, even in special environ-
ments such as membranes and solutions (see Chaps. 13–15 in [1]). Furthermore, the
kinetics of multistep FRET (a cascade of FRET) can also be understood in principle
using Förster theory. Multistep FRET has been demonstrated experimentally on lin-
ear DNA scaffolds using heterogeneous fluorescent dyes [6] and even homogeneous
fluorescent dyes [7]. Furthermore, multistep FRET occurs also in hetero- and homo-
geneous quantum dots (QDs) [8, 9]. If spatially distributed fluorescent molecules
are excited simultaneously, multistep FRET can occur over multiple locations and
times, where fluorescent molecules act as both donors and acceptors depending on
temporally changing situations. This multistep FRET network is the one we will
consider in the study.

The spatiotemporal dynamics of FRET networks are very important from an
information processing perspective. For example, the spatiotemporal dynamics of
multistep FRET have been used to design intelligent system components, such as
unclonable physical keys [10] and photonic logic gates [2–5]. Some FRET net-
works on spatially distributed QDs are shown to generate diverse spatiotemporal
signals that can be used for information processing [11]. The key to designing
information-processing applications for FRET networks is to understand the spa-
tiotemporal behavior of FRET networks. In our previous paper [12], we developed
a spatiotemporal mathematical model for FRET networks and revealed its tempo-
ral characteristic behavior. We emphasize that our model applies to any fluorescent
molecule. However, we concentrate on QD-based FRET networks because QDs are
expected to be important fundamental elements in realizing compact and energy-
efficient information-processing systems [13–16].

The rest of this chapter is organized as follows: In Sect. 2, we introduce a spa-
tiotemporal model for FRET networks, called the multiple-donor model, and show
various analytical (theoretical) results. Section 3 presents some FRET network sim-
ulation methods, from deterministic to stochastic ones, and compares deterministic
and stochastic methods to reveal the pros and cons of both methods. In Sect. 4,
we show the power of FRET networks for information processing by simulations,
particularly nonlinear function approximation, chaotic time-series prediction, and
handwritten digit recognition. Finally, we summarize this chapter and mention some
future works in Sect. 5.
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2 Spatiotemporal Model for FRET Networks

In this section, we first introduce a spatiotemporal mathematical model for FRET
networks. Then, we show some analytical results for the model. The first part of this
section almost follows our previous paper [12].

2.1 Multiple-Donor Model

Wanget al. [17, 18] developed amathematicalmodel to describe the dynamics ofmul-
tistep FRET that assumes networks with no more than one excited molecule, which
we refer to as the “single-donormodel.” The single-donormodel is a continuous-time
Markov chain (CTMC) with a finite or countable state space where the time spent
in each state is exponentially distributed. The single-donor model assumes that the
system has only one excited molecule and hence, cannot consider the “level occu-
pancy effect,” which means that already excited molecules are effectively forbidden
from energy absorption. However, the level occupancy effect is essential for FRET
networks because they involve multiple excited molecules (donors) and non-excited
molecules (acceptors). The “multiple-donormodel” [12] is an extended version of the
single-donor model that assumes networks with multiple excited molecules and non-
excited molecules. Although similar models that consider the level occupancy effect
already exist [19, 20], their approaches differ from ours in the following points: (i)
Their main aim is to present a Monte Carlo simulation algorithm using their models.
On the contrary, our main aim is to produce the theoretical results using our model
and thus understand the spatiotemporal behavior fundamentally. (ii) They introduce
the level occupancy effect as the complete exclusion of already excited molecules
from their roles as acceptors, whereas our model incorporates such roles by consider-
ing the Auger recombination. (iii) Their models mainly handle the decay processes,
whereas our model additionally covers the light-induced excitation process.

In themultiple-donormodel for the system consisting of N QDs,we first represent
the system state by an element in {0, 1}N , where each QD is assigned either a ground
state “0” or an excited state “1.” Then, we consider the system state probability
Pi1...iN (t) such that the system is in (i1, i2, . . . , iN ) ∈ {0, 1}N at time t , where in
represents thenthQD’s state, 0 or 1. Evidently, 0 ≤ i1 + i2 + · · · + iN ≤ N . It should
hold that

∑
(i1,...,iN )∈{0,1}N Pi1...iN (t) = 1 for all t ∈ R.Asweconsider thewhole system

state at each time, we can consider the level occupancy effect in FRET between QDs,
as shown later.

Next, we define the state transition rules between system states (i1, . . . , iN ). The
following symbols are used:

Sn = (i1, . . . , in−1, 0, in+1, . . . , iN ),

S∗
n = (i1, . . . , in−1, 1, in+1, . . . , iN ).
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The state transition rules consist of the following five rules in the multiple-donor
model:

S∗
n

kFn−→ Sn, (2a)

S∗
n

kNn−→ Sn, (2b)

S∗
n + Sm

kFRETnm−→ Sn + S∗
m, (2c)

S∗
n + S∗

m

kFRETnm−→ Sn + S∗
m, (2d)

Sn
kEn (t)−→ S∗

n , (2e)

where kFn and kNn denote the rate constants of radiative (fluorescence) decay and
nonradiative decay for the nth QD, respectively, and kFRETnm denotes the rate constant
of FRET from the nth QD to the mth QD. kEn (t) denotes the rate constant of the
excitation process with irradiation of time-dependent excitation light for the nth QD.
The time spent in each state is exponentially distributed with each rate constant, kFn ,
kNn , k

FRET
nm , or kEn (t). We also illustrate the state transition rules (2a–2e) in Fig. 1.

The rate constants in the state transition rules (2a–2e) are given using the funda-
mental physical constants as follows:

kFn = Qn/τn, (3a)

kNn = (1 − Qn) /τn, (3b)

kFRETnm = (3/2)
(
κ2
nm/τn

)
(Rnm/rnm)6 , (3c)

kEn (t) = σn Iex,n(t), (3d)

Fig. 1 State transitions in the multiple-donor model: (a) Deactivation due to fluorescence, (b) Non-
radiative deactivation, (c) Excitation–deactivation due to FRET, (d) Deactivation due to the level
occupancy effect, and (e) Excitation due to light-induced excitation. Note that hν(f), hν(e) denote
a fluorescence photon and an excitation photon, respectively
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Fig. 2 Auger recombination in the process of two excited-QDs interactions. Since Auger recom-
bination is a fast process, the resulting state transition follows Rule (2d)

where Qn, τn denote the quantum yield and the natural excited-state lifetime for the
nth QD, respectively. κ2

nm is the orientation factor between the nth and mth QDs.
Rnm and rnm denote the Förster and physical distances from the nth QD to the mth
QD, respectively. σn denotes the collision cross section for the nth QD, and Iex,n(t)
denotes the irradiation photon density for the nth QD.

We note that the transition rules (2a–2c) are essentially equivalent to the ones
of the single-donor model [17, 18]. On the other hand, the transition rules (2d–
2e) are originally introduced in our study [12]. Rule (2d) describes an energy
transfer by FRET and the subsequent Auger recombination. The Auger recom-
bination is a nonradiative decay process from a higher energy excitation state
S∗∗
m = (i1, . . . , im−1, 2, im+1, . . . , iN ) to the first level excitation state S∗

m . Although
the Auger recombination can bemodeled as several interactions [21], wewill assume
here for simplicity that this decay process is relatively rapid, i.e., S∗∗

m
∞−→ S∗

m (see
Fig. 2). Therefore, the resulting state transition follows Rule (2d). Finally, Rule (2e)
is the state transition due to the light-induced excitation process.

For simplicity, we assume that the orientation factors κ2
nm and physical dis-

tances rnm are constant in time, i.e., QDs have low anisotropies and minimal lateral
motions during their excited-state lifetimes. Our model can also be applied to such
situations for (i) orientation factor values other than the commonly assumed 2/3 or
even dynamic ones and (ii) diffusion of QDs during their excited states. However,
when a considerably faster rotation or diffusion compared to their excited-state life-
times is considered, one may need to use simpler models (see Chap. 4 in [22] or [23]
for the dynamic averaging regime and [24] for the rapid-diffusion limit).

Considering the inflow and outflow of probability, the master equation of the
multiple-donormodel defined by the state transition rules (2a–2d) is given as follows:

d

dt
Pi1···iN (t) = −

N∑
n=1

in(k
F
n + kNn )Pi1···iN (t)

+
N∑

n=1

īn(k
F
n + kNn )S+

n Pi1···iN (t) −
N∑

n,m=1

ink
FRET
nm Pi1···iN (t)

+
N∑

n,m=1

īnimk
FRET
nm S+

n Pi1···iN (t) +
N∑

n,m=1

īnimk
FRET
nm S+

n S−
m Pi1···iN (t)
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−
N∑

n=1

īnk
E
n (t)Pi1···iN (t) +

N∑
n=1

ink
E
n (t)S−

n Pi1···iN (t), (4)

where īn denotes the inverted binary for the nth QD’s state in , i.e., īn = 1 −
in , and S±

n denotes the shift operator for states (i1, . . . , iN ), i.e., S±
n Pi1...iN (t) =

Pi1...in±1...iN (t). Notably, if the state (i1, . . . , in ± 1, . . . , iN ) is improper, i.e., not in
{0, 1}N , Pi1...in±1...iN (t) = 0. In addition, we set kFRETnn = 0. The time-dependent flu-
orescence intensity I (t) is expressed as

I (t) =
∑

(i1,...,iN )∈{0,1}N

[
N∑

n=1

ink
F
n Pi1...iN (t)

]
. (5)

Note that the master equation (4) includes spatial information through the rate con-
stants kFRETnm (i.e., the network structure of QDs). In the following sections, we focus
on the temporal behavior of the FRET network and analyze our model and also the
single-donor model.

As mentioned earlier, the single-donor model assumes networks with at most one
excited molecule [17, 18]. Namely, only the state transition rules described in (2a–
2c) are considered. Therefore, the master equation of the single-donor model is as
follows:

d

dt
Pn(t) = −(kFn + kNn )Pn(t) −

N∑
m=1

kFRETnm Pn(t) +
N∑

m=1

kFRETmn Pm(t), (6)

where Pn(t) denotes the probability that the nth QD is in an excited state.
Now, we will show that the master equation (4) of the multiple-donor model

coincides with the master equation (6) of the single-donor model if we assume
networks with no excitation light and only one excited molecule, i.e., kEn = 0
and i1 + · · · + iN ≤ 1. To show this, let us assume i1 + · · · + iN ≤ 1 and put
P n
0...1...0(t) = Pn(t) in (4). Then, one can easily transform each term in the right-

hand side of (4) as follows: (the first term) = −(kFn + kNn )Pn(t), (the second term) =
0, (the third term) = −∑N

m=1 k
FRET
nm Pn(t), (the fourth term) = 0, (the fifth term) =∑N

m=1 k
FRET
mn S+

mS−
n Pn(t) =∑N

m=1 k
FRET
mn Pm(t), (the sixth term) = 0,

(the seventh term) = 0.

2.2 Analytical Results

2.2.1 Multicomponent Exponential Decay

Here, we present the fundamental temporal property of the decay process of the fluo-
rescence intensity derived from the multiple-donor model with kE(t) = 0. We show
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that nontrivial network-induced properties of fluorescence intensity decay occur
when multiple donors are considered. The derivation will almost follow our pre-
vious paper [12], except for the expression of some formulae.

Now consider the simplest situation where the network consists of only one type
of QDs, i.e., kFn = kF, kNn = kN, kF + kN = 1/τ for all n, and kFRETnm = kFRETmn for all
n,m.

First, we will show that the single-donor model (6) implies the single-exponential
decay. Because the fluorescence intensity in the single-donor model (6) becomes
I (t) = kF

∑N
n=1 Pn(t), the derivative of I (t) becomes

d

dt
I (t) = −1

τ
I (t) −

N∑
n,m=1

kFRETnm kFPn(t) +
N∑

n,m=1

kFRETmn kFPm(t). (7)

The sum of the second and third terms on the right-hand side of (7) is zero because
of the symmetricity of kFRETnm . Therefore, the single-donor model (6) implies the
single-exponential decay, i.e., I (t) = I (0) exp(−t/τ).

Next, we will show that the multiple-donor model (4) implies themulticomponent
exponential decay, i.e., I (t) =∑ j α j exp(−t/τ j ). To show this, we define the l-
excited states as

�l = {(i1, . . . , iN ) ∈ {0, 1}N : i1 + · · · + iN = l}

and the time-dependent fluorescence intensity from the l-excited states as follows:

Il(t) =
∑

(i1,...,iN )∈�l

[
N∑

n=1

ink
F
n Pi1...iN (t)

]
. (8)

Obviously, I (t) =∑N
l=1 Il(t) holds from (5) and (8). The following expression for

the all-excited-state probability P1...1(t) can be easily derived from (4) in the case
where the network consists of only one type of QDs:

d

dt
P1...1(t) = −N

τ
P1...1(t) −

(
N∑

n,m=1

kFRETnm

)
P1...1(t). (9)

Therefore, the all-excited-state probability P1...1(t) shows the single-exponential
decay as follows:

P1···1(t) = P1...1(0) exp

(
− t

τ
(N )∗

)
, τ (N )

∗ =
(
N

τ
+

N∑
n,m=1

kFRETnm

)−1

. (10)
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Because IN (t) = NkFP1...1(t), the resulting fluorescence intensity IN (t) also shows

the single-exponential decay IN (t) = IN (0) exp
(
−t/τ (N )∗

)
. Similarly, the following

expression for the (N − 1)-excited-state probability P n
1...0...1(t) can be derived from

(4) by a straightforward calculation:

d

dt
P n
1...0...1(t) =

N∑
m=1

Anm P
m

1...0...1(t) +
(
N

τ
+

N∑
m=1

kFRETnm

)
P1...1(t), (11)

where the elements of the matrix A are

Anm = −

⎛
⎜⎜⎝N − 1

τ
+

N∑
n′,m ′=1
(n′ �=n)

kFRETn′m ′

⎞
⎟⎟⎠ δnm + kFRETnm (1 − δnm). (12)

δnm denotes the Kronecker delta. Since matrix A is real symmetric, it has real eigen-
values and can be diagonalized. Let λ1, . . . , λN be the real eigenvalues (with mul-
tiplicity) of the matrix A. One can show that the matrix A is negative definite, i.e.,
xTAx < 0 for all nonzero x ∈ R

N , by a straightforward calculation and rearrange-
ment of the terms:

N∑
n,m=1

xn Anmxm

= −N − 1

τ

N∑
n=1

x2n −
N∑

n=1

⎛
⎜⎜⎝

N∑
n′,m ′=1
(n′ �=n)

kFRETn′m ′

⎞
⎟⎟⎠ x2n +

N∑
n,m=1

kFRETnm xnxm

= −N − 1

τ

N∑
n=1

x2n −
N∑

n=1

⎛
⎜⎜⎝

N∑
n′<m ′

(n′,m ′ �=n)

2kFRETn′m ′

⎞
⎟⎟⎠ x2n −

∑
n<m

kFRETnm (xn − xm)2 < 0,

(13)

where we frequently used the symmetricity of kFRETnm . Therefore, all of the eigenval-
ues λ j are strictly negative. Thus, one can see that the solution of (11), P n

1...0...1(t),

is a linear sum of exp
(
−t/τ (N−1,1)∗

)
, . . ., exp

(
−t/τ (N−1,N )∗

)
and exp

(
−t/τ (N )∗

)
,

where the decay times are τ
(N−1, j)
∗ = |λ j |−1 labeled in ascending order. Because

IN−1(t) = (N − 1)kF
∑N

n=1 P
n

1...0...1(t), the resulting fluorescence intensity IN−1(t)
shows the multicomponent exponential decay, including these exponential decay
components. Finally, we will show that the fluorescence intensity I1(t) includes
the exponential decay component exp(−t/τ). The following expression for the 1-
excited-state probability P n

0...1...0(t) can be derived from (4) by a straightforward
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calculation:

d

dt
P n
0...1...0(t) = − 1

τ
P n
0...1...0(t)

+
N∑

m=1
(m �=n)

(
1

τ
+ kFRETmn

)
P n m
0...1...1...0(t). (14)

Therefore, the 1-excited-state probability P n
0...1...0(t) includes the exponential decay

exp(−t/τ) as P n m
0...1...1...0(t)goes asymptotically to zero faster than P n

0...1...0(t). Because
I1(t) = kF

∑N
n=1 P

n
0...1...0(t), the resulting fluorescence intensity I1(t) also includes

the exponential decay component exp(−t/τ). Note that we used a physical insight
in the argument for (14); hence, it is not rigorous proof. In summary, the multiple-
donor model (4) implies that the fluorescence intensity I (t) shows the multicom-
ponent exponential decay, including at least N + 2 exponential decay components,

i.e., exp
(
−t/τ (N )∗

)
, exp

(
−t/τ (N−1,1)∗

)
, . . ., exp

(
−t/τ (N−1,N )∗

)
, and exp (−t/τ)

if P1...1(0) �= 0 and P n
1...0...1(0) �= 0 for some n. We expect that each fluorescence

intensity Il(t) from the l-excited states has potentially up to
(N
l

)
exponential decay

components. Therefore, the resulting fluorescence intensity I (t) has potentially up to∑N
l=1

(N
l

) = 2N − 1 exponential decay components.Note that the observable number
of exponential decay components can be smaller if fewer QDs are initially excited.

The above theoretical result, i.e., the appearance of multicomponent exponential
decay even in single-type QDs, is qualitatively supported by experimental results
obtained from spatially distributed single-type CdSe/ZnS QDs. See Sect. 3B in our
previous study [12] for further details.

2.2.2 Some Analytical Results for Small QD Systems

Wewill show some analytical formulae for the fluorescence intensity in specific cases
that assume equidistant QD systems, as shown in insets of Fig. 3. For other points,
we continue to treat networks consisting of only one type of QDs and no excitation
light. Let us introduce

P(t) = [PT
�N

PT
�N−1

. . . PT
�0

]T
,

where P�l denotes a column vector consisting of Pi1...iN (t) for (i1, . . . , iN )

∈ �l , in which subscripts are in descending order as binary numbers. For
example, when N = 2, P(t) = [P11, P10, P01, P00]T, and when N = 3, P(t) =
[P111, P110, P101, P011, P100, P010, P001, P000]T. The master equation (4) in the
multiple-donor model can also be expressed as

d

dt
P(t) = M(t)P(t), (15)
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where M(t) denotes the transition matrix with 2N rows and 2N columns for a N QD
system.

First, consider the simplest situation where the network consists of only one type
of QDs and no excitation light. Then, the matrix M in the case of N = 2 (see inset
in Fig. 3(a)) becomes

M = 1

τ

⎡
⎢⎢⎣

−2(ρr + 1) 0 0 0
ρr + 1 −(ρr + 1) ρr 0
ρr + 1 ρr −(ρr + 1) 0

0 1 1 0

⎤
⎥⎥⎦ for N = 2, (16)

where ρr = (R0/r)
6, and r is the distance between two QDs.

Eigenvalue analysis using Maxima for the master equation (15) with the matrix
(16) derives the fluorescence intensity decay of case N = 2, which has two expo-
nential components:

I (t) = 2kF
Ar

2ρr + 1
exp

(
−2ρr + 2

τ
t

)
+ kF

Br

2ρr + 1
exp

(
−1

τ
t

)
for N = 2,

(17)

where Ar = ρr P�2(0) and Br = 2(ρr + 1)P�2(0) + (2ρr + 1)P�1(0). We introduce
initial state probabilities for l-excited states �l :

P�l (0) =
∑

(i1,...,iN )∈�l

Pi1...iN (0).

We show the shape of (17) in Fig. 3(a).
In the same way, the matrix M in the case of N = 3 (see inset in Fig. 3(b))

becomes

Fig. 3 Analytical and numerical fluorescence intensity decay for equidistant QD systems: (a)
2QD, (b) 3QD, and (c) 4QD systems (see insets). Each color dot corresponds to each distance
r = c1/n × R0, c = 3, 2, 1, 1/2, and 1/3, respectively, where Förster distance R0 = 6.18 nm, and
Dimension n = 2 for (a) and (b), n = 3 for (c). The solid black lines are analytical results obtained
using (17), (19), and (20) for (a), (b), and (c), respectively. The dots are numerical results obtained
from stochastic simulation, tRSSA, described in the next section
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M = 1

τ

⎡
⎢⎢⎢⎣

A1×1 · · · · · · O

B3×1 C3×3 . .
. ...

... D3×3 E3×3
...

O · · · F1×3
...

⎤
⎥⎥⎥⎦ for N = 3, (18)

where

A = −(6ρr + 3), B = [2ρr + 1 2ρr + 1 2ρr + 1
]T

,

C =
⎡
⎣−(4ρr + 2) ρr ρr

ρr −(4ρr + 2) ρr
ρr ρr −(4ρr + 2)

⎤
⎦ , D =

⎡
⎣ρr + 1 ρr + 1 0

ρr + 1 0 ρr + 1
0 ρr + 1 ρr + 1

⎤
⎦ ,

E =
⎡
⎣−(2ρr + 1) ρr ρr

ρr −(2ρr + 1) ρr
ρr ρr −(2ρr + 1)

⎤
⎦ , F = [1 1 1

]
.

Eigenvalue analysis using Maxima for the master equation (15) with the matrix (18)
derives the fluorescence intensity decay of case N = 3, which has three exponential
components:

I (t) = 6kF
Ar

(3ρr + 1)(4ρr + 1)
exp

(
−6ρr + 3

τ
t

)

+ 2kF
Br

(2ρr + 1)(4ρr + 1)
exp

(
−2ρr + 2

τ
t

)

+ kF
Cr

(2ρr + 1)(3ρr + 1)
exp

(
−1

τ
t

)
for N = 3, (19)

where Ar = ρ2
r P�3(0), Br = 3ρr (2ρr + 1)P�3(0) + ρr (4ρr + 1)P�2(0), and Cr =

3(ρr + 1)(2ρr + 1)P�3(0) + 2(ρr + 1)(3ρr + 1)P�2(0) + (2ρr + 1)(3ρr + 1)
P�1(0). We show the shape of (19) in Fig. 3(b).

Furthermore, eigenvalue analysis usingMaxima for the master equation (15) with
the matrix M for N = 4 (see inset in Fig. 3(c)) derives the fluorescence intensity
decay of case N = 4 (where we avoid the long explicit formula for M), which has
four exponential components:

I (t) = 24kF
Ar

(4ρr + 1)(5ρr + 1)(6ρr + 1)
exp

(
−12ρr + 4

τ
t

)

+ 6kF
Br

(3ρr + 1)(4ρr + 1)(6ρr + 1)
exp

(
−6ρr + 3

τ
t

)

+ 2kF
Cr

(2ρr + 1)(4ρr + 1)(5ρr + 1)
exp

(
−2ρr + 2

τ
t

)

+ kF
Dr

(2ρr + 1)(3ρr + 1)(4ρr + 1)
exp

(
−1

τ
t

)
for N = 4, (20)



120 M. Nakagawa

Fig. 4 Nonlinearity in themultiple-donormodel: (a) single-QD, and (b) two-QD situation. (b) Each
color dot corresponding to each distance r = √

c × R0, c = 5, 3, 2, 1, 1/2, 1/3, 1/5, respectively,
where Förster distance R0 = 6.18 nm

where Ar = ρ3
r P�4(0), Br = 4ρ2

r (3ρr + 1)P�4(0) + ρ2
r (6ρr + 1)P�3(0), Cr = 6ρr

(2ρr + 1)(3ρr + 1)P�4(0) + 3ρr (2ρr + 1)(5ρr + 1)P�3(0) + ρr (4ρr + 1)
(5ρr + 1)P�2(0), and Dr = 4(ρr + 1)(2ρr + 1)(3ρr + 1)P�4(0) + 3(ρr + 1)(2ρr

+ 1)(4ρr + 1)P�3(0) + 2(ρr + 1)(3ρr + 1)(4ρr + 1)P�2(0) + (2ρr + 1)(3ρr + 1)
(4ρr + 1)P�1(0). We show the shape of (20) in Fig. 3(c).

From the above specific results (17, 19, 20), we can infer the general case for N ∈
N that τ

(N )∗ < τ
(N−1,1)∗ ≤ · · · ≤ τ

(N−1,N )∗ < τ , that is, the network-induced decay
times are shorter than the natural excited-state decay time τ .

We show the nonlinearities of themultiple-donormodel in the stationary excitation
situation at the end of this subsection. First, considering the single QD case (see inset
in Fig. 4(a)) with stationary excitation (the rate constant kE), the matrix M in the
case of N = 1 becomes

M = 1

τ

[−τkE 1
τkE −1

]
for N = 1. (21)

Eigenvalue analysis using Maxima for the master equation (15) with the matrix (21)
derives the stationary fluorescence intensity of case N = 1:

If = kF
Ie

Ie + (στ)−1
for N = 1, (22)

where Ie = σ−1kE is the excitation intensity for the collision cross sectionσ .We show
this nonlinearity between the fluorescence intensity If and the excitation intensity Ie
in Fig. 4(a).

Next, considering the two-QD case (see inset in Fig. 4(b)) with stationary uniform
excitation (the rate constant kE for each QD), the matrix M in the case of N = 2
becomes
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M = 1

τ

⎡
⎢⎢⎣

−2(ρr + 1) τkE τkE 0
ρr + 1 −(ρr + 1 + τkE) ρr τkE

ρr + 1 ρr −(ρr + 1 + τkE) τkE

0 1 1 −2τkE

⎤
⎥⎥⎦ for N = 2,

(23)

where ρr = (R0/r)
6, and r is the distance between two QDs. Eigenvalue analysis

usingMaxima for themaster equation (15) with thematrix (23) derives the stationary
fluorescence intensity of case N = 2:

If = 2kF
I 2e + σ−1(τ−1ρr + τ−1)Ie

I 2e + 2σ−1(τ−1ρr + τ−1)Ie + (στ)−2ρr + (στ)−2
, (24)

where Ie = σ−1kE is the excitation intensity for the collision cross sectionσ .We show
this nonlinearity between the fluorescence intensity If and the excitation intensity
Ie in Fig. 4(b). Note that the nonlinearity in Fig. 4(b) depends on the distance r
between two QDs and reveals an intermediate step as the distance r decreases. The
two-QD case result of (24) suggests that in a general QD network, the nonlinearity
between fluorescence intensity (output) and excitation intensity (input) depends on
the network structure complexity and has multiple distinct intermediate steps.

3 Simulation Methods

We can use either deterministic or stochastic approaches to simulate the multiple-
donor model. Each method has its advantages and disadvantages.

3.1 Deterministic Simulation

The deterministic approach numerically solves the master equation (4) as an initial
value problem for a 2N -dimensional system of ordinary differential equations, for
example, the Euler method and the Runge–Kutta method:

d

dt
P(t) = F(P(t), t)

or
d

dt
Pi1...iN (t) = Fi1...iN ({Pi1...iN (t)}, t), (25)

where P(t) = (P1...1(t), P1...0(t), . . . , P0...0(t))T. The calculation time in the deter-
ministic simulation increases exponentially with 2N for the number of QDs, N . In the
simulation with large N , the calculation of Fi1...iN dominates the whole calculation
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Algorithm 1 Calculate the value of Fi1...iN in the right-hand side of (4)
Input: t , (i1, . . . , iN ), and {P1...1(t), . . . , P0...0(t)}
Output: Fi1...iN ({Pi1,...,iN (t)}, t)
1: set sum = 0
2: for n = 1, . . . , N do
3: if in = 1 then
4: sum = sum − (kFn + kNn )Pi1...iN (t) + kEn (t)S−

n Pi1···iN (t)
5: for m = 1, . . . , N do
6: sum = sum − kFRETnm Pi1...iN (t)
7: end for
8: else
9: sum = sum + (kFn + kNn )S+

n Pi1...iN (t) − kEn (t)Pi1...iN (t)
10: for m = 1, . . . , N do
11: if im = 1 then
12: sum = sum + kFRETnm

{S+
n Pi1...iN (t) + S+

n S−
m Pi1...iN (t)

}
13: end if
14: end for
15: end if
16: end for
Note: This optimized algorithm was created by Dr. Jaehoon Yu (former associate professor at the
Tokyo Institute of Technology).

time. Therefore, optimizing the calculation of Fi1...iN is important to accelerate the
deterministic simulation. We show an optimized algorithm for calculating Fi1...iN in
Algorithm 1, which reduces “if” conditional branches, “for” loops, and zero multi-
plications.

It is best to avoid using “if” conditional branches for GPU parallel computing.
We transform the formula Fi1...iN as follows for GPU parallelization:1

Fi1...iN ({Pi1,...,iN (t)}, t) =

2
N∑

n=1

(
1

2
− in

)[(
kFn + kNn +

N∑
m=1

(in ⊕ im)kFRETnm

)
Pi1...1...iN (t) − kEn (t)Pi1...0...iN (t)

]

+
N∑

n,m=1

(1 − in)imS+
n S−

m Pi1...iN (t). (26)

This formula enables us to create an optimized algorithm that calculates Fi1...iN with-
out “if” conditional branches, which is suitable for GPU parallel computing. An
algorithm optimized for GPU parallel computing will be created in future work.

1 This transformed formula (26) was also created by Dr. Jaehoon Yu (former associate professor at
the Tokyo Institute of Technology).
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3.2 Stochastic Simulation

The stochastic approach generates a sample path of a stochastic process that obeys
the master equation (4) by Gillespie’s direct method (DM) [25], the first reaction
method (FRM) [26], and the next reaction method (NRM) [27]. Consider one of the
state transitions (2) in the multiple-donor model, say event i , and assume its rate
constant is ki . Then, the occurrence frequency per unit time, ai , called “propensity,”
for the event i is

a(n)
1 = ink

F
n (n = 1, . . . , N ), (27a)

a(n)
2 = ink

N
n (n = 1, . . . , N ), (27b)

a(n,m)
3 = in(1 − im)kFRETnm (n,m = 1, . . . , N ; n �= m), (27c)

a(n,m)
4 = inimk

FRET
nm (n,m = 1, . . . , N ; n �= m), (27d)

a(n)

5 = ink
E
n (t) (n = 1, . . . , N ). (27e)

The total number of the above propensities ai is 3N + 2(N 2 − N ) = 2N 2 + N .
However, we can reduce the total net number of propensities by integrating the third
and fourth events:

a(n)
1 = ink

F
n (n = 1, . . . , N ), (28a)

a(n)
2 = ink

N
n (n = 1, . . . , N ), (28b)

a(n,m)
3∧4 = ink

FRET
nm (n,m = 1, . . . , N ; n �= m), (28c)

a(n)

5 = ink
E
n (t) (n = 1, . . . , N ), (28d)

where we can determine which third or fourth event occurs according to im being
0 or 1. Therefore, the total number of propensities is reduced to 3N + (N 2 − N ) =
N 2 + 2N . In the following, we write the propensities as ai (i = 1, . . . , N 2 + 2N )

by flattening the above propensities a(∗)
i of (28).

Gillespie-type algorithms are based on the fact that the waiting time τi until
a subsequent event i occurs follows an exponential distribution with a propen-
sity, P(τi ) = aie−ai τi (τi > 0). The DM first generates a waiting time τ until some
event occurs by an exponential distribution P(τ ) = ae−aτ (τ > 0), where a is the
sum of propensities such that a =∑i ai . After generating a waiting time τ , which
event occurred is determined according to the ratio of propensities ai (event i is
selected with probability ai/a). Depending on the event that has occurred, the state
(i1, . . . , iN ) is changed, and the propensities ai are updated. We show a DM algo-
rithm in Algorithm 2. We note that the DM does not assume time-dependent rate
constants. Therefore, the DM cannot be adopted for the case of modulated excitation
light, which includes time-dependent rate constants kEn (t).

The time-dependent rejection-based stochastic simulation algorithm (tRSSA)
[28], one of the Gillespie-type algorithms, can handle time-dependent rate constants.
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Algorithm 2 Direct method (DM) [25] for the multiple-donor model (2)
Input: an initial state x = (i1, . . . , iN )

Output: a sample path {(t, x)}
1: initialize t = 0 with initial state x
2: compute propensities {ai } according to the state x
3: while t < tmax do
4: compute a =∑i ai
5: generate a random number r1 ∼ U (0, 1)
6: compute waiting time τ = (−1/a) ln r1
7: update time t = t + τ

8: generate a random number r2 ∼ U (0, 1)
9: select minimum index j s.t.

∑ j
i=1 ai > r2a

10: update state x depending on the selected event j
11: compute propensities {ai } according to the state x
12: end while

Fig. 5 Simulation results from tRSSA [28] for slightly large FRET networks: 50 × 50 lattice
arrangements. The solid lines represent the intensity data accumulated every 0.1 ns. The theoretically
predicted features are found as follows: (i) the multicomponent exponential decay, (ii) fast decay
in earlier times and slow decay in later times, and (iii) slower decay during higher dilution or lower
excitation

ThemodifiedNRM (MNRM) [29], another Gillespie-type algorithm, can also handle
time-dependent rate constants. However, the generation of the waiting time in the
MNRM relies on the tractable calculation of the integration of the time-dependent
rate constants and the solution of the inverse problem (see [28] for details). Fur-
thermore, the tRSSA we adopted here is a computationally efficient and versatile
Gillespie-type algorithm that does not rely on such tractable calculations and inverse
problem solutions. In the following, we adopted the tRSSA for the case of modu-
lated excitation light and also the case of constant excitation light. We show a tRSSA
algorithm for the multiple-donor model in Algorithm 3.

Figure 5 shows the simulation results obtained from tRSSA described above
for slightly large FRET networks. The simulation was conducted in the following
settings: QDswere located on a 50 × 50 lattice, and the lattice spacing was

√
c × R0,

where c = 5 to 1/5, as shown in the legend. The parameters of QDs were set to Q =
0.40 (quantum yield), τ = 19.5 ns (natural excited-state lifetime), and R0 = 6.18
nm (Förster distance), assuming QD585. These QD parameters are used repeatedly
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Algorithm 3 The time-dependent RSSA (tRSSA) [28] for the multiple-donor model
(2)
Input: an initial state x = (i1, . . . , iN )

Output: a sample path {(t, x)}
1: initialize t = 0 with initial state x
2: define the bound [x, x] as xi = 0 and xi = xi for i = 1, . . . , N
3: discretize [0, tmax] to k intervals 0 < t1 < · · · < tk = tmax
4: set i = 1
5: compute propensity bounds {a j } and {a j } according to x and x, respectively
6: compute a =∑ j a j
7: while t < tmax do
8: generate a random number r1 ∼ U (0, 1)
9: compute waiting time τ = (−1/a) ln r1
10: update time t = t + τ

11: if t > ti then
12: set t = ti
13: update i = i + 1
14: compute propensity bounds {a j } and {a j } according to x and x, respectively
15: go to 7
16: end if
17: generate two random numbers r2, r3 ∼ U (0, 1)
18: select minimum index j s.t.

∑ j
k=1 ak > r2a

19: set accept = false
20: if r3 ≤ a j/a j then
21: set accepted = true
22: else
23: compute propensities {a j } according to current state x
24: if r3 ≤ a j/a j then
25: set accepted = true
26: end if
27: end if
28: if accepted = true then
29: update state x depending on the selected event j
30: if x ∈ [x, x] then
31: define a new bound [x, x] around current state x
32: compute propensity bounds {a j } and {a j } according to x and x, respectively
33: end if
34: end if
35: end while

in the following and are listed in Table 1. Furthermore, κ2 (orientation factors) were
set to 2/3, assuming that our QD-experimental system is in the dynamic averaging
regime for the three-dimensional spatial and orientational case (see Chap. 4 in [22]
or [23] for effective kappa-squared values). In Fig. 5, “Strong excitation” and “Weak
excitation” denote the initially excited QDs that account for 90% and 10% of the total
amount, respectively. For simplicity, we assumed that QDs are points without volume
in the simulation. We performed 104 independent simulation trials and averaged the
results. We accumulated photons in a time interval of 0.1 ns at each time point to
evaluate the fluorescence intensity. We confirmed that the simulation results show
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Table 1 Simulation parameters assumed for QD585

Q τ R0 κ2

Quantum yield Natural excited-state
lifetime

Förster distance Orientation factor

0.40 19.5 ns 6.18 nm 2/3

multicomponent exponential decay. Specifically, the decayswere fast in earlier times,
slow in later times, and finally, with the natural decay time τ , as stated above as the
inference from the case N = 2, 3, 4. Moreover, the result shows faster decays as the
density of excited QDs increases or the excitation becomes stronger, as expected due
to the level occupancy effect. The effect promotes the emission of the transferred
and saturated energy between excited QDs through a nonradiative process such as
heat dissipation. As a result, the radiative energy dissipation becomes faster as the
density of excited QDs increases or the excitation becomes strong (see also Sect. 4.1
in [11] for a more intuitive explanation).

3.3 Comparison Between Deterministic and Stochastic
Simulation

We compare deterministic and stochastic simulations to understand the difference
in characteristics. We assume common QD parameters, as shown in Table 1. We
further assume a 4QD 2 × 2 lattice arrangement system, where the nearest neighbor
distance is R0, and the 4QD system consists of single-type QDs. In the following, the
time step of the Runge–Kutta method in the deterministic simulation is set to 0.01
ns. Meanwhile, in the stochastic simulation, the fluorescence photon accumulation
time is set to 0.1 ns, and the sampling number repeated for averaging is set to 106.

Figure 6 compares deterministic and stochastic simulations for the 4QD sys-
tem with no excitation light situation. The obtained normalized fluorescence inten-
sity decays are nearly identical, but the stochastic one includes small noises due
to the intrinsic probabilistic nature of FRET. Figure 7 compares deterministic
and stochastic simulations for the 4QD system with sinusoidal excitation light:
kE(t) = A(1 + ε sin(2π t/T )), A = 1 nm−1, ε = 0.8, and T = 5 ns. The obtained
modulated fluorescence intensities are nearly identical even under excitation light,
and the stochastic one includes small noises due to the FRET intrinsic probabilistic
nature. Figure 8 compares deterministic and stochastic simulations for the 4QD sys-
tem with rectangular excitation light: kE(t) = Aθ(tw − (t mod T )), A = 1 nm−1,
tw = 1 ns, and T = 5 ns, where θ(t) is the Heaviside function. The obtained mod-
ulated fluorescence intensities are also almost identical to the above cases, and the
stochastic one again includes small noises due to the FRET intrinsic probabilistic
nature.
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Fig. 6 Comparison of (a) deterministic and (b) stochastic simulations in the no excitation light
situation for the 4QD 2 × 2 lattice arrangement system

Fig. 7 Comparison of (a) deterministic and (b) stochastic simulations in the sinusoidal excitation
light situation for the 4QD 2 × 2 lattice arrangement system

Fig. 8 Comparison of (a) deterministic and (b) stochastic simulations in the rectangular excitation
light situation for the 4QD 2 × 2 lattice arrangement system

The above three cases suggest that the stochastic simulation results converge to
the deterministic simulation results in the limit of large sampling numbers. A large
sampling number is required for a clear result in stochastic simulations. Nonethe-
less, noises in stochastic simulations are faithful to actual observations. Therefore,
the sampling number in the stochastic simulation is determined by the considered
situations.
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Fig. 9 Comparison of calculation times between deterministic and stochastic simulations. The
network structure is chain-like, as shown in the bottom inset

Table 2 Pros and cons of deterministic and stochastic simulations

Deterministic simulation Stochastic simulation

Merits Merits

• Fewer QDs means faster calculations
• Clear results are obtained

• Calculation time does not increase
significantly even if the number of QDs
increases
• Noises are faithful to actual observations

Demerits Demerits

• Calculation time increases exponentially if
the number of QDs increases
• It is necessary to investigate the influence of
intrinsic noise separately

• Fewer QDs take longer calculation time than
deterministic simulation
• Evaluation of the results must be careful
since inherent noise is always included

Finally, we show the trade-off nature between deterministic and stochastic sim-
ulations. Figure 9 represents the calculation times of deterministic and stochastic
simulations in the case of chain-like networks. As shown in Fig. 9, deterministic sim-
ulations are appropriate for small-number situations. However, the calculation times
of deterministic simulations increase exponentially as the number of QDs increases.
On the other hand, the calculation times of stochastic simulations increase polyno-
mially as the number of QDs increases. Therefore, the calculation times between
stochastic and deterministic simulations reverse at some number of QDs. Table 2
summarizes the pros and cons of deterministic and stochastic simulations.
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4 Information Processing Using FRET Networks

In this section,we show thepower ofFRETnetworks for informationprocessing.This
section follows our previous studies [30, 31]. As shown in Fig. 10(a), our information
processing scheme has a standard structure with an input layer, a single hidden layer
(consisting of FRET networks), and an output layer. The parameters to be trained are
only output weights (the part of readout) connecting the hidden and output layers,
such as reservoir computing.We sometimes call this hidden layer the “FRET-network
reservoir.” Feedback in Fig. 10(a) is optional for an autonomous signal generation
or increased memory. The learning method used for the output weights is linear
regression, particularly ridge regression, which is similar to reservoir computing.

Here, we assume a working hypothesis for the simulator’s limited ability:

1. Each node consists of infinitely many two-QD pairs.
2. There are no interactions between such pairs.

The working hypothesis is not essential for information processing. It is only due
to the simulator’s limited memory, processing speed, etc. The working hypothesis
implies that fluorescence from each node is free from inherent noise, which enables
us to perform the deterministic simulation using Algorithm 1 with N = 2 for each
node. Therefore, the simulation becomes low-cost and suitable for CPU-thread or
GPU parallelization. We assume that FRET networks consist of QD585 and the
simulation parameters of FRET networks are listed in Table 1.

We further assume a standard input scheme called the time-piecewise con-
stant excitation, as shown in Fig. 10(b). The time-piecewise constant excitation
has stationary excitation intensity within an excitation duration [tp, tp + �t) and
switches to another excitation intensity just before the next excitation duration
[tp + �t, tp + 2�t). The fluorescence of each node is briefly observed just before
the excitation switches. Therefore, the excitation switching time �t equals the fluo-
rescence sampling time. As shown in Fig. 10(b), the smaller the excitation switching
time �t , the more past inputs reflect the output. Thus, the excitation switching time
and the memory in the reservoir are negatively correlated. We finally assume that

Fig. 10 FRET-network reservoir: (a) Fundamental network structure with optional feedback,
(b) Input scheme by time-piecewise constant excitation
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the excitation intensity is created from an exponentially enhanced input signal as
follows:

Iex = 10suinput+b, (29)

where s and b are a scale factor and a bias constant, respectively. The scale factor s
and bias constant b are set such that the dynamic range of the excitation intensity Iex
is within a significant change region in the nonlinearity, approximately [0.01, 100],
as seen in Fig. 4(b).

4.1 Nonlinear Function Approximation

We show the ability of FRET networks for nonlinear function approximation
[30]. The goal of the task is to learn the nonlinear transformation u(t) → y(t) =
1
2 {u(t)}7 through input–output relation data {(sin(t/5), 1

2 sin
7(t/5))}t=0,�t,2�t,··· ,n�t .

The training and prediction phases are performed with no feedback. Since this task
needs no memory, the excitation switching time �t should be set large. Here we set
the excitation switching time �t = 100 ns.

Figure 11 represents the result of this nonlinear function approximation. Training
is done by the first half of 100 input–output data (until t = 10000 ns), and prediction
is performed by the following 100 input data (from t = 10000 ns until t = 20000 ns).
Other simulation settings are as follows: the number of nodes is set to Nnet = 1000,
the distance between each two-QDpair is chosen betweenminimum rmin = 0.3R0 nm
and maximum rmax = 2.0R0 nm, the scale factor and bias constant is set to s = 1.0
and b = 0.0, respectively, and the regularization factor for the ridge regression is set
to λ = 10−10. We set the transient duration to 80 ns to ignore the transient behaviors
of the reservoir.

Fig. 11 Nonlinear function
approximation: input
u(t) = sin(t/5) → output
y(t) = 1

2 sin
7(t/5)
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Fig. 12 Generalization of nonlinear function approximation ũ(t) → ỹ(t) = 1
2 ũ(t)7 using different

input data from the original one sin(t/5), (a) a sawtoothwave and (b) a trianglewave. The prediction
is performed with the pre-trained weight by u(t) = sin(t/5) → y(t) = 1

2 sin
7(t/5)

Furthermore, we check the generalization of this nonlinear function approxima-
tion using different input data from the original one. Figure 12 shows the results.
The prediction is performed with the pre-trained weight by the original input–output
data. The predicted outputs become ỹ(t) = 1

2 ũ(t)7 in both cases, (a) sawtooth input
wave and (b) triangle input wave. These results mean that the nonlinear function
approximation is certainly generalized.

4.2 Chaotic Time-Series Prediction

We demonstrate the capability of FRET networks for chaotic time-series prediction
with minimal memory requirements [30]. The goal of the task is to predict the next
step of the Hénon map, xn+1 = 1 − 1.4x2n + 0.3xn−1, from the present step xn with a
memory of the past xn−1 left in the reservoir. This task imposes the use of memory in
the reservoir. Therefore, the prediction phase is performed with feedback, as shown
in Fig. 10(a). On the other hand, the training phase is performed with no feedback.
Since this task needs some memory, the excitation switching time �t should be
moderately small. Here, we set the excitation switching time �t = 0.5 ns.

Figure 13 represents the result of this chaotic time-series prediction. Training is
done by the first half of 100 input–output data (until t = 50 ns), and prediction is
performed by the following 100 input data (from t = 50 ns to t = 100 ns). Other
simulation settings are as follows: the number of nodes is set to Nnet = 1000, the
distance between each two-QD pair is chosen between minimum rmin = 0.3R0 nm
and maximum rmax = 2.0R0 nm, the scale factor and bias constant is set to s =
1/3 + 0.1ξ and b = 0.5 + 0.1η (where ξ, η are uniform randomnumbers in [−1, 1]),
respectively, and the regularization factor for the ridge regression is set to λ = 10−10.
We set the transient duration to 40 ns to ignore the transient behaviors of the reservoir.

Furthermore, we check the attractor reconstruction made from the above chaotic
time-series prediction. Figure 14 shows the result. Each cross point (green) in the
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Fig. 13 Chaotic time-series prediction for the Hénon map

Fig. 14 Reconstructed strange attractor of the Hénon map from the predicted time series

figure denotes (xn, xn+1) made from the predicted time series in the above task. This
result means that the Hénon map’s strange attractor is certainly reconstructed.

Finally, we evaluate the performance of the chaotic time-series prediction by the

root mean square error (RMSE), which is defined as RMSE =
√

1
N
∑N

n=1〈(xn − x̃n)2〉,
where xn, x̃n are actual and predicted time series, respectively, and 〈·〉 is the average
with respect to different initial conditions (note: initial conditions for xn and x̃n are
set to equal). Figure 15 shows RMSE versus (a) step n from the start of prediction
and (b) the excitation switching time �t . The excitation switching time �t = 0.5 ns
provides the best performance in this task as it has the smallest RMSE. This result
means that this task needs appropriate memory. Thus, a large excitation switching
time �t reduces available memory, whereas a small excitation switching time �t
disrupts prediction by introducing unnecessary memory.



FRET Networks: Modeling and Analysis for Computing 133

Fig. 15 Root mean square error (RMSE) versus (a) step n from the start of prediction and (b) exci-
tation switching time �t

4.3 Handwritten Digit Recognition

We show the ability of FRET networks for pattern recognition, particularly handwrit-
ten digit recognition [31]. The goal of the task is to classify handwritten digit images
to correct digits using the MNIST handwritten digit dataset. Figure 16 depicts our
pattern recognition scheme. Since this task needs no memory, the training and pre-
diction phases are performed with no feedback, and the excitation switching time�t
should be set large. Here, we set the excitation switching time �t = 100 ns as in the
nonlinear function approximation.

We note that an input weight matrix is needed to transform an image vector x
to an excitation intensity vector Iex. The image vector x and excitation intensity
vector Iex are Ni (= 784) and Nnet dimensional, respectively. Therefore, the input
weight matrix V has Nnet rows and Ni columns such that Iex = 10sV x+b. The input

Fig. 16 Pattern recognition scheme using FRET networks
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Fig. 17 Investigation of appropriate hyperparameters for MNIST handwritten digit recognition.
Investigated hyperparameters are (a) excitation switching times �t , (b) the number of nonzero
elements Nh per row in the input weight matrix, (c) regularization parameters for ridge regression λ,
(d) scale factors for excitation intensity s0, and (e) bias constants for excitation intensity b

weight matrix V is better sparse. Therefore, the number of nonzero elements Nh per
row is also better small. We randomly select the nonzero elements and set the sum
of elements per row to one in the input weight matrix.

We first investigate appropriate hyperparameters, as shown in Fig. 17. The eval-
uation uses accuracy for the MNIST handwritten digit dataset with training data of
60000 and test data of 10000. Investigated hyperparameters are (a) excitation switch-
ing times �t , (b) the number of nonzero elements Nh per row in the input weight
matrix, (c) regularization parameters for ridge regression λ, (d) scale factors for exci-
tation intensity s0, and (e) bias constants for excitation intensity b. This investigation
shows that (a) �t should be large to some extent, (b) Nh should be approximately
1/100 of the total, (c) λ should be small to some extent, and (d, e) s and b should
be set such that the dynamic range of the excitation intensity is within the nonlinear
region. The adopted hyperparameters are as follows: the excitation switching time
is set to �t = 100 ns, the number of nonzero elements per row in the input weight
matrix is set to Nh = 7, the regularization factor for the ridge regression is set to
λ = 10−4, and the scale factor and bias constant is set to s = 4/255 and b = −2,
respectively. The distance between each two-QD pair is chosen between minimum
rmin = 0.3R0 nm and maximum rmax = 1.0R0 nm. In the task, we set no transient
duration.

Figure 18 shows themain result ofMNISThandwritten digit recognition: accuracy
versus the number of FRET-network nodes. The accuracy is 92% in the case of
Nnet = 1000, 94% in the case of Nnet = 2000, and finally reaches approximately
95% in the case of Nnet = 3000. This accuracy is almost as good as the ELM-based
MNIST handwritten digit recognition accuracy of 94% in the case of 1000 nodes
(see Table 1 in [32]).
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Fig. 18 Dependence of accuracy on the number of FRET-network nodes in MNIST handwritten
digit recognition

5 Conclusions and Future Works

In this chapter, we first introduced a spatiotemporal model for FRET networks, called
the multiple-donor model, and showed various analytical (theoretical) results. The
derivation of network-induced multicomponent exponential decay and the analytical
results for small QD systems, including the nonlinear relation between input excita-
tion intensity and output fluorescence intensity, are demonstrated. We then presented
the deterministic and stochastic simulation methods for FRET networks and com-
pared their advantages and disadvantages. In general, deterministic simulations are
appropriate for only a few QDs situations, whereas stochastic simulations are appro-
priate for many QDs situations in terms of computational costs. We finally showed
the power of FRET networks for information processing by simulations, particu-
larly nonlinear function approximation, chaotic time-series prediction, and MNIST
handwritten digit recognition.

We are considering future work on reinforcement learning using FRET networks
and spatial network design theory. Reinforcement learning is one of the important
applications for FRET networks. We believe that the ability of FRET networks to
recognize patterns and predict chaotic time series (with some memory) provides the
power for reinforcement learning. On the other hand, the power of FRET networks
would bemaximized if the spatial network (spatial arrangement of QDs) were appro-
priately optimized. We currently lack a design theory for the spatial network of QDs.
Therefore, developing spatial network design theory is an urgent issue for realizing
novel information processing devices.
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