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Abstract Reservoir computing is a novel computational framework based on the
characteristic behavior of recurrent neural networks. In particular, a recurrent neural
network for reservoir computing is defined as a reservoir, which is implemented as a
fixed and nonlinear system. Recently, to overcome the limitation of data throughput
between processors and storage devices in conventional computer systems during
processing, known as the Von Neumann bottleneck, physical implementations of
reservoirs have been actively investigated in various research fields. The author’s
group has been currently studying a quantumdot reservoir, which consists of coupled
structures of randomly dispersed quantum dots, as a physical reservoir. The quantum
dot reservoir is driven by sequential signal inputs using radiation with laser pulses,
and the characteristic dynamics of the excited energy in the network are exhibitedwith
the corresponding spatiotemporal fluorescence outputs.Wehave presented the funda-
mental physics of a quantum dot reservoir. Subsequently, experimental methods have
been introduced to prepare a practical quantumdot reservoir. Next, we have presented
the experimental input/output properties of our quantum dot reservoir. Here, we
experimentally focused on the relaxation of fluorescence outputs, which indicates the
characteristics of optical energy dynamics in the reservoir, and qualitatively discussed
the usability of quantum dot reservoirs based on their properties. Finally, we have
presented experimental reservoir computing based on spatiotemporal fluorescence
outputs from a quantum dot reservoir. We consider that the achievements of quantum
dot reservoirs can be effectively utilized for advanced reservoir computing.

1 Introduction

Reservoir computing [1, 2] is one of the most popular paradigms in recent machine
learning and is especially well-suited for learning sequential dynamic systems.
Even when systems display chaotic [3] or complex spatiotemporal phenomena [4],
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which are considered as exponentially complicated problems, an optimized reservoir
computer can handle them efficiently.

On the other hand, von Neumann-type architecture is known as one of the most
familiar computer architectures, which consists of a processing unit, a control unit,
memory, external data storage, and input/output mechanisms. While such archi-
tecture is now widely utilized, in the conventional von Neumann-type architec-
ture, bottlenecks between the processing unit andmemory are inevitable when imple-
menting the parallel operation of sequential processing [5]. Hence, the development
of a physical reservoir using various physical phenomena that can act as a non-
von Neumann-type architecture is required. Unlike other types of neural network
models, reservoir models are expected to be suitable for physical implementation as
their inner dynamics are fixed as a general definition and do not need to be modi-
fied during processing. Thus far, various methods for the physical implementation
of reservoirs, such as electrochemical cells [5], analog VLSI [6], and memristive
nanodevices [7], have been actively discussed.

We focused on the energy propagation between dispersed quantumdots (QDs) as a
phenomenon for implementing a physical reservoir. QDs are nanometer-sized struc-
tures that confine the motion of charge carriers in all three spatial directions, leading
to discrete energy levels based on quantum size effects. In general, the emission
properties of QD can be adjusted by changing their sizes and structures. In addition,
since QDs are typically fabricated using semiconductor materials, they exhibit good
stability and durability. Recently, QDs have been incorporated into semiconductor
devices, such as light-emitting diodes [8, 9], lasers [8, 10], and field-effect transis-
tors [11]. Our QD reservoir (QDR) consists of randomly connected transfer paths
of optical energy between the QDs and reveals the spatiotemporal variation in the
fluorescence output. Recently, we experimentally demonstrated short-term memory
capacity as a physical reservoir [12].

In this Chapter, we have discussed the fundamentals of QDR and the experi-
mental protocol for preparing QDR samples. Moreover, the results of actual reser-
voir computing based on the spatiotemporal fluorescence outputs of QDR samples
have been shown. Generally, a reservoir requires large amounts of computational
resources during the learning process. Using the spatiotemporal data obtained from
the nonlinear transformation from an optical input signal to the fluorescence output
via QDR, learning without calculating the individual states of all the nodes in the
reservoir layer is possible. As a result, by physically implementing the reservoir layer
and learning based on spatiotemporal data, we expect to solve the target problemwith
a lower reservoir power consumption than other existing implementations.
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2 Quantum-Dot-Based Physical Reservoir

2.1 Basics

As shown in Fig. 1, a QDR consists of randomly dispersed QDs. The optical input
to the QDR was determined by the incidence of the laser pulse, and some QDs were
excited by this incident light.While the excited electron energy behaves as a localized
optical energy, it can be directly relaxed to the ground energy level with/without fluo-
rescence radiation. Another typical phenomenon of such a localized optical energy
transfer, based on the Förster resonance energy transfer (FRET) mechanism, is that
a QD, initially in its electronic excited state, may transfer energy to a neighboring
QD through nonradiative dipole–dipole coupling. Generally, the fluorescence and
absorption spectra of QD partially overlap; thus, FRET is probabilistically allowed.
Furthermore, if the FRET network consists of different types of QDs, each type of
QDs is defined as a donor or acceptor. FRET from an acceptor-QD to a donor-QD is
prohibited, and an acceptor-QD often acts as a destination in each network. During
the energy transfer, optical energy percolates in the FRET network, which can be
regarded as the optical input being partially memorized with subsequent forgetting.

In particular, in our scheme for realizing the optical input/output of QDR, the light
pulses are spatially incident on the QD network in parallel and excite multiple QDs.
For the excitation of theQDs, the optical energy of the input lightmust be greater than
the bandgap energy of each QDs. The excited QDs probabilistically emit fluorescent
photons with optical energy similar to the bandgap energy. In contrast, part of the
optical energy is transferred from one excited QD to another QD based on the FRET

Fig. 1 Schematic of the inner dynamics of a QDR by sequential incidence of light pulses occurring
due to localized transfer and temporal stagnation of optical energy during periodic irradiation of
light pulses
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mechanism. After single or multiple steps of energy transfer, some of the optical
energy in the network is emitted from the destination QD. Generally, light emissions
via multiple energy transfers necessarily occur later than that involving no energy
transfer. Consequently, the fluorescence output from the QDR can be sequentially
obtained by sparsely counting fluorescence photons.

Additionally, as shown in the lower half of Fig. 1, when the next light pulse
is input to the QDR during the temporal stagnation of the inner optical energy,
the transfer process and corresponding emission of fluorescence photons reveal a
different tendency from the previous condition of the network because of the different
internal state of the QDR from the previous condition; namely, unlike the upper half
of Fig. 1, some QDs are already excited. Here, a saturated situation in which all the
QDs are excited is not anticipated. Consequently, in such cases, the optical outputs
in response to sequential optical inputs cannot be predicted using a simple linear
sum of a single input/output. Therefore, the non-linearity of an input/output can be
quantitatively evaluated by comparing the linear sum of a single input/output. In
other words, such a setup works as a fusion-type setup of the processor and storage
device, which maintains the inner states during multiple optical inputs and outputs
and can directly read out its output as fluorescence via complicated signal processing
in the network.

2.2 Experimental Demonstration: Randomly-Dispersed QDR

For the experimental preparation of QDR sample, we used two types of QDs as
components of the QD network: CdS dots (NN-labs, CS460; peak wavelength of
the emission: 465–490 nm, 3.0 nmol/mg, represented in catalog) and CdS/ZnS dots
(NN-labs, CZ600; peak wavelength of the emission: 600–620 nm, 1.0 nmol/mg,
represented in catalog) with toluene solutions. In this case, the CdS and CdS/ZnS
dots acted as donors and acceptors, respectively. Additionally, polydimethylsiloxane
resins (PDMS; Dow Corning, Sylgard184) were used as base materials to fix and
protect the inner QDR. The basic procedure for preparing a QD sample using these
materials is shown in Fig. 2a and is as follows.

Fig. 2 a Schematic of experimental process. b Appearance of three QD samples under UV light
illumination
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First, the two QD solutions were mixed with 1,000μL of PDMS base solution. To
control the configuration of theQDR, the CdS andCdS/ZnS dots weremixed in ratios
of 3:1, 1:1, and 0:1 for Samples A, B, and C, respectively. After mixing, eachmixture
was heated for evaporating toluene. Then, 100μL of polymerization initiator PDMS
was added to the mixture, and the resulting solution was dropped on the cover glass.
The mixture was spread on a cover glass using a spin coater (MIKASA, MS-B100,
rotational speed: 3,000 rpm) for 100 s to randomly disperse the QDs in the resin,
and the respective QDR was expected to be formed. The assumed thickness of the
samples was less than 1 μm. After the mixtures were thinned, to fix the alignments
of the QDs in each mixture, the thinned samples were heated on a hot plate (EYELA,
RCH-1000) at 150 °C for 600 s. The prepared samples appeared transparent under
ambient light; however, they emitted fluorescence under UV illumination, as shown
in Fig. 2b.

2.3 Experimental Demonstration: Electrophoresis

Electrophoretic deposition (EPD) was applied as another method to prepare QDR
sample [13–16]. The EPD of the QD layer was accomplished by applying a voltage
between two conductive electrodes suspended in a colloidalQD solution. The electric
field established between the electrodes drives QD deposition onto the electrodes.
EPD, as a manufacturing process, efficiently uses the starting colloidal QD solutions.

To start the EPD process, two GZO glasses coated with a Ga-doped ZnO layer
were secured 1.0 cm apart with their conductive sides parallel and facing one another,
as illustrated in Fig. 3a. An electric field of 15 V/cm was then applied, and the
electrodes were placed in the QD solution. After a few minutes, the electrodes were
QD-rich toluene droplets that left uneven QD deposits after being dried from the
surface using compressed air. In this demonstration, we used CdSe/ZnS dots (Ocean
Nanotech,QSR580; peakwavelength of emission: 580 nm, 10mg/mL, represented in
the catalog) with a toluene solution. Owing to their emission and absorption spectra,
the CdSe/ZnS dots can function as both donors and acceptors. Figure 3b, c show
the appearance of the negative and positive electrodes under UV light illumination,
respectively. As the fluorescence of the QD layer can be observed by the eye only on
the negative electrodes under UV light, the QD layer was confirmed to be deposited
by the EPD process and not by any other phenomenon.

Here, we prepared three samples using the EPD method under 10, 20, and 60
min of deposition time, which we define as 10, 20, and 60 M samples, respectively.
Figure 4a–c show fluorescence microscopic images under UV irradiation. As shown,
the coverage rate of each sample by deposited-QDs was varied from 49.8 to 76.1%
by increasing deposition time from 10 to 60 min. Atomic force microscopy (AFM)
topography images of the QD layers on the GZO anodes are shown in Fig. 5a–c. The
resulting QD layer apparently consisted of aggregated QD components, and the size
of each unit component was 100–500μm. The number of QD components increased
with an increase in the deposition time.
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Fig. 3 a Schematic of the EPD process. A voltage applied between two parallel, conducting elec-
trodes spaced 1.0 cm apart drives the deposition of the QDs. Appearance of b negative and c positive
electrodes after 60 min of EPD process under UV light illumination

Fig. 4 Fluorescence microscopic images of the surface of an electrophoretically deposited QD
layer on a 10 M sample, b 20 M sample, and c 60 M sample, respectively

Fig. 5 AFM topography images of the surface of an electrophoretically deposited QD layer on
a 10 M sample, b 20 M sample, and c 60 M sample, respectively
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3 Non-linearity of the QD Reservoir

3.1 Experimental Setup

We focused on the fluorescence relaxation from acceptor QDs for verifying the non-
linearity of our QDR. Here, photons emitted from each QD were necessarily output
at various times, regardless of whether the photons are emitted via energy transfers.
In other words, the results of photon counting, which are triggered by the timing of
the optical input, indicate the characteristics of QDR.

For experimental verification, we used a Ti:Al2O3 laser (Spectra Physics,MaiTai),
which emitted optical pulses with a pulse length of 100 fs, an optical parametric
amplifier (Spectra Physics, TOPAS-prime), and a wavelength converter (Spectra
Physics, NirUVis) as the light sources for irradiating the QD samples. The oscillation
frequency and wavelength were set as 1 kHz and 457 nm, respectively. The laser
power and polarization were appropriately controlled for exciting the QD samples
and effectively counting the fluorescent photons, as shown in Fig. 6.

The delay line generated a time lag�t between the first and second pulses incident
on the QDR sample. The range of �t was set at 0.64–7.4 ns, and the corresponding
optical length was controlled by a stage controller driven by a stepping motor with a
position resolution of 20 μm/step. Fluorescence photons induced by optical excita-
tion of the QDR samples passed through the focusing lens again and were reflected
in the detection setup using a Glan–Thompson polarizer. After passing through a
bandpass filter (UQG Optics, G530, transmission wavelength: 620 ± 10 nm), the
fluorescent photons were propagated to a photon detector (Nippon Roper, NR-K-
SPD-050-CTE). Since the irradiated light passed through the polarizers, only the

Fig. 6 Schematic of experimental photon-counting setup to identify characteristic of the QDR
sample
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fluorescence photons from the acceptor-QDs were selectively obtained by the single-
photon detector. Then, by synchronizingwith the trigger signal using a Si-PIN photo-
diode (ET-2030) on a time-to-amplitude converter (TAC; Becker and Hickl GMbH,
SPC-130EMN), the time-resolved intensities were obtained, and the results were
collated using PC software (Becker and Hickl GMbH, SPC-130 MN) as the lifetime
of each fluorescence. Here, excitation power was set as 5.0 μW, which was enough
to suppress and did not induce saturated situation of QD excitations.

Before verifying the non-linearity, the fluorescence relaxation due to multiple
incident laser pulseswas experimentally verified in the setup as the basic specification
of our three samples: Samples A, B, and C. The left-hand side of Fig. 7 shows an
example of the obtained photon-counting result from the acceptor QDs in response
to double incident laser pulses, which were obtained at a certain area in Sample A. As
shown, two rising phases were recognized, which were due to the first and second
incident laser pulses. The time lag �t between the two pulses was 7.4 ns. Under
these conditions, the second pulse was irradiated before the induced optical energy
was dissipated, and the corresponding photons were counted in response to the first
incident pulse, which corresponded to the stagnation time of the QDR induced by
the first incident pulse. Therefore, we focused on photon counting after the second
incident pulse, which was extracted from the right side of Fig. 7.

Todiscuss the spatial variation of theQDnetworks in each sample, three individual
areaswere irradiated in the three samples, and thefluorescence photonswere counted.
Toquantitatively compare thefluorescence relaxation of each sample, the resultswere
fitted using an exponential equation:

C(t) = A + Be−t / τ , (1)

whereA andB are individual positive constants, and τ denotes the time constant of the
fluorescence lifetime. The values of these parameters were selected to appropriately
match the experimental results. As a result, τ was calculated to be 168–315, 129–
257, and 99–212 ps for Samples A, B, and C, respectively. Clear differences were
observed in the results for each sample. For SampleC,which contained no donorQDs

Fig. 7 Experimentally
obtained photon counting
result of a QDR sample
under irradiation by double
pulses with time difference
�t of 7.4 ns
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and a smaller total number of QDs, energy transfer between QDs rarely occurred,
and the QDs excited by the laser pulse directly emitted photons without any energy
transfer. Therefore, Sample C revealed the shortest τ . In contrast, since Sample A
contained the largest number of donor QDs, frequent energy transfers were expected
to occur. As a result, the excited optical energy was allowed to stagnate over a longer
time in the QDR and obtained at various times owing to various energy transfers.
Therefore, Sample A revealed the longest τ among the three. The results indicated
a clear relationship between the configuration of the QD network and the extent of
the echo state owing to FRET between the QDs.

3.2 Qualitative Non-linearity

To quantitatively evaluate the non-linearity of each photon-counting result, we
employed their correlation analysis in response to double incident pulses with a
linear sum of single inputs/outputs, which are the photon counts due to a single pulse
incident on each sample. For correlation analysis, Pearson correlation coefficients,
R, were calculated as follows:

R =
∑n

i=1 (xi − x)(yi − y)
√∑n

i=1 (xi − x)2
√∑n

i=1 (yi − y)2
, (2)

where x and y represent the data obtained with the first and second incident pulses,
respectively, n is the data size, xi and yi are individual data points indexed with
i, and x and y represent the data means of x and y, respectively. While nonlinear
inputs/outputs were expected to be difficult to approximate with a linear sum of the
separately obtained single inputs/outputs, lower and higher correlation coefficients
corresponded to the larger and smaller nonlinearities of each input/output, respec-
tively. Furthermore, during irradiation with optical pulses, the length of the delay
path in the optical setup, as shown in Fig. 6, was controlled to set the time difference
�t between the two pulses. Here, �t was set to 0.64, 0.84, 1.6, and 7.4 ns, and the
photon counts in response to the second incident pulse were determined for the three
samples. Correlation coefficients were calculated from the photon counting results,
which were obtained with several �t values at three individual areas on the three
samples.

Overall, as shown in Fig. 8, with increasing�t, higher and more converged corre-
lation coefficients were observed, implying a gradual dissipation of the echo states
induced by the first incident optical pulse. Conversely, for �t shorter than 1.0 ns, the
second pulse was incident before dissipation of the echo state excited by the first inci-
dent pulse. Consequently, lower correlations and corresponding higher non-linearity
were successfully revealed.
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Fig. 8 Comparison of correlation coefficients corresponding to non-linearity of fluorescence of
three samples, a Sample A, b Sample B, and c Sample C

Furthermore, the three lines in the results for Sample C revealed similar curves,
and the correlation coefficients were greater than 0.95, which corresponded to a
smaller non-linearity. These findings were attributed to the sparse alignment of the
QDs, as schematically shown in the insets of Fig. 8. Specifically, the input/output
varied from area to area, and FRET between the QDs was rarely allowed. As a result,
the nonlinear input/output was not sufficiently revealed in Sample C. However, in
the case of Sample A, since the number of QDs was sufficient in all areas, many
paths for FRET were expected. Similar input/output tendencies were obtained in
each area, and a higher non-linearity than that of Sample C was revealed. In the case
of Sample B, tendencies showing the most variation in each area were observed, and
higher non-linearity was often revealed in some areas. As a result, we verified the
echo state properties of our QDR samples and quantitatively measured hold times of
less than 1.0 ns with our experimental conditions. As shown in Fig. 8, the hold time
and spatial variation of the echo state properties clearly depended on the composition
of the QDR sample.

4 Spatio-Temporal Photonic Processing

4.1 Basics

Based on the FRET mechanism, as described in the previous section, after the laser
irradiation of the QDR, the excited energy in some QDs was probabilistically trans-
ferred to the surroundings. Aftermultistep transferences through several FRETpaths,
the energy was probabilistically irradiated as the fluorescence of the QDs at various
times. Moreover, the fluorescence intensity varied spatially because of the random
distribution of the QDs. Consequently, the fluorescence output of the QDR can be
defined as two-dimensional spatiotemporal information, which is reflected as the
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Fig. 9 Schematic of the
spatiotemporal fluorescence
output based on various
FRETs in the QDR

nonlinear input/output and short-term memory of the QDR, as conceptually shown
in Fig. 9. Reservoir computing can be driven effectively using an appropriate readout
of several calculation parameters for reservoir computing from fluorescence outputs.

4.2 Streak Measurement

As an experimental demonstration of QDR-based reservoir computing, we prepared
QDR samples using the EPDmethod, which we defined as 10, 20, and 60M samples
in the previous section. The experimental setup for the fluorescence measurement is
shown in Fig. 10. The fluorescence output of the QDR sample was detected using
the time-correlated single-photon counting (TCSPC) method [17]. The setup and
experimental conditions of the light source were the same as those for the previous
setup shown in Fig. 6.

Several parameters of the reservoir model were identified. The QDR sample was
irradiated with first, second, and double pulses. As shown in Fig. 10, the delay
line generated 1 ns of the lag between the first and second incidents on the QDR
sample. Corresponding streak images were obtained using a streak camera (Hama-
matsu C10910) upon the insertion of an appropriate bandpass filter (Edmund Optics,
#65–708, transmission wavelength: 600 ± 5 nm) to extract the fluorescent output.
The streak camera mainly consisted of a slit, streak tube, and image sensor. The
photons of fluorescence to be measured as outputs of the QDR sample were focused
onto the photocathode of the streak tube through the slit, where the photons were
converted into a number of electrons proportional to the intensity of the incident light.
These electrons were accelerated and conducted toward the phosphor screen, and a
high-speed voltage synchronized with the incident light was applied. The electrons
were swept at a high speed from top to bottom, after which they collided against the
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Fig. 10 Schematic of experimental setup for streak measurement based on TCSPC method

Fig. 11 Examples of obtained streak images as outputs of a QDR sample with a the first pulse,
b the second pulse, and c double pulses

phosphor screen of the streak tube and were converted into a spatiotemporal image.
Streak images of a QDR sample irradiated by the first, second, and double pulses are
shown in Fig. 11a, b, c, respectively.

4.3 Spatiotemporal Reservoir Model

Referring to the echo state network [1], we define the updating formula for the state
vector s of a reservoir as follows:

St+1 = tanh(α(WresSt + W inut )), (3)

where st is the vector of the reservoir node at t, and Wres denotes the connection
weight between nodes. The non-linearity of each node is revealed as a hyperbolic
tangent function. Reservoir dynamics can be described using iterative applications
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Fig. 12 One-dimensional fluorescence intensity for experimental determination of W in

of the function. W in is the vector of input to the reservoir, and ut is the coefficient
representing the sequential evolution of W in.

Input weight matrix. W in is defined as a linear mapping vector that projects
the input vector u to the state vector space s, namely, reservoir nodes. In the QDR
experiment, W in was determined by the intensity distribution of the fluorescence,
which corresponds to the distribution of dispersed QDs. Therefore, in streak images,
the one-dimensional fluorescence intensity of all nodes immediately after irradiation
must be read to determine the W in, as shown in Fig. 12.

Leakage rate. As the fundamentals of reservoir computing, the leakage rate of
the respective nodes directly controls the retention of data from previous time steps.
Therefore, the reservoir can act as a short-term memory. In the experiment of QDR,
relaxation time τ of fluorescence output is directly related to the leakage rate of
each node. In the streak images, we focused on the respective nodes and extracted
the fluorescence relaxation, as shown in Fig. 13. The relaxations were fitted using
N = N0exp(−t/τ) for determining the relaxation time τi for each node.

Connection weight matrix. The connection weights between various nodes in the
reservoir corresponded to the FRET efficiencies between the dispersed QDs in our

Fig. 13 Extraction of fluorescence relaxation for experimental determination of relaxation time τ
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Fig. 14 Comparison of
fluorescence outputs
between all nodes for
determination of Wres

experiment. Based on these interactions, the inner state of a reservoir can sequentially
evolve to handle complex tasks. To searchWres, we assumed that multipleWress and
fluorescence relaxations of neighboring nodeswere compared for eachWres as shown
in Fig. 14. For quantitative comparison, the respective correlation coefficients were
calculated. We then determinedWres, which revealed a similar variance σ 2

R with the
experimental results.

Activate function. The change in the inner state s due to the variation in the input
vector u is defined by an active function. Here, we approximately set αtanh as the
active function of QDR and optimized its coefficient α. We varied α and respectively
compared with experimental results based on the calculation of Pearson’s correlation
coefficients. Specifically, fluorescence relaxation by the first incident pulse and the
second pulse was added and compared with relaxation by double incident pulses to
identify non-linearity, as shown in Fig. 15. Then, a was determined, which revealed
similar non-linearity with the experimental results.

4.4 Experimental Demonstration

Based on the experimental conditions and obtained results, we demonstrated the
sequential prediction of XOR logic based on machine learning. As XOR is one of
the simplest tasks that is linearly nonseparable, it is often selected for experimentally
demonstratingmachine learning using an artificial neural network. In our experiment,
the original streak image was arranged with 40 nodes in the spatial direction and 20
steps in the temporal direction. Each temporal step corresponded to 0.434 ns and each
size of node was 1 μm. Figure 16 shows some examples of data sequences predicted
by our reservoir models, which were constructed by utilizing streak images of 10,
20, and 60 M samples, respectively.

Furthermore, we successfully predicted sequential XOR logic using 1.0% of the
mean bit error rate (BER) with 100 trials, as shown in Fig. 17. The results clearly
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Fig. 15 Comparison of fluorescence relaxation by the first pulse incident, the second pulse incident,
and the cumulative result of the two with relaxation by double pulses incident

Fig. 16 Prediction results obtained by our reservoir models based on streak images of a 10 M,
b 20 M, and c 60 M samples
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Fig. 17 Comparison of MSEs of reservoir models using 10, 20, and 60 M samples with 100
respective trials

show that each model exhibits its own performance owing to the variations in the
QDR, as shown in Figs. 4 and 5. However, the theoretical relationship between each
performance metric and the corresponding QDR is now under discussion.

5 Conclusion and Future Prospect

In this section, the results of an investigation into the applicability of QDR as a
physical reservoir with an optical input/output is presented. Based on the idea that
QDR is expected to reveal nonlinear input/output owing to the short-time memory of
optical energy in the network, photon counting of the fluorescence outputs obtained
in response to sequential short-light pulses was performed for verifying the optical
input/output of our originalQDR.Consequently, the non-linearity of the input/output,
which is a fundamental requirement for the realization of effective machine learning,
was qualitatively verified. Moreover, we demonstrated that reservoir computing
based on the spatiotemporal fluorescence output ofQDRs can learn theXORproblem
and make correct predictions with a low BER. In future studies, we will extend the
applicability of our idea to execute practical tasks for a larger amount of time-series
data based on the outputs of our spatiotemporal fluorescence processing. In addition,
larger spatial variation is also expected to be one of the fundamental requirements in
QDR for physical implementations of reservoir computing because varied nonlinear
input/outputs in a single reservoir are useful for effective machine learning based on
QDR, that is, nanophotonic reservoir computing. The optimization of the composi-
tion required for targeted processes in nanophotonic reservoir computing remains an
open topic for further investigation.
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