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Abstract Various approaches have been proposed to construct reservoir comput-
ing systems. However, the network structure and information processing capacity
of these systems are often tied to their individual implementations, which typically
become difficult to modify after physical setup. This limitation can hinder perfor-
mance when the system is required to handle a wide spectrum of prediction tasks.
To address this limitation, it is crucial to develop tunable systems that can adapt to a
wide range of problem domains. This chapter presents a tunable optical computing
method based on the iterative function system (IFS). The tuning capability of IFS
provides adjustment of the network structure and optimizes the performance of the
optical system. Numerical and experimental results show the tuning capability of the
IFS reservoir computing. The relationship between tuning parameters and reservoir
properties is discussed. We further investigate the impact of optical feedback on the
reservoir properties and present the prediction results.

1 Introduction

An artificial neural network (ANN) is a brain-inspired computing model and con-
tributes to a wide field of information processing including image classification and
speech recognition [1]. The ANN is represented by a network structure connected by
weighted links. By optimizing the weight of the connections, ANNs have capabilities
for desired information processing [2]. However, the optimization requires updating
all connections in ANNs, and it is difficult to realize large-scale ANNs. Reservoir
computing, which is a kind of recurrent neural network for processing time-series
data emerged [3]. Typical models of reservoir computing are divided into an echo
state network (ESN) and a liquid state machine [4, 5]. The idea of ESN has been
employed for hardware implementation of recurrent neural network, and various
architectures have been proposed (see Chap. 13). This chapter focuses on reservoir
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Fig. 1 Model of reservoir computing

computing based on the ESN. A model of reservoir computing is shown in Fig. 1.
An echo state machine consists of three layers: input, reservoir, and output layers.
Nodes in the reservoir layer are connected, and the structure is a recurrent network.
A state of the nodes in the reservoir layer at time t , X(t), is updated by

X(t + 1) = f [W resX(t) + W inu(t)], (1)

where u(t) is the input signal at time t , and f is a nonlinear function such as a
hyperbolic tangent and a sigmoid function. Each component of X(t) is transferred to
the other nodes in the reservoir layer according to the connecting weight W res. After
adding with the weighted input signals W inu(t), the nonlinear function is applied,
and the next state is updated as X(t + 1). The connection weights W in between the
input and reservoir layers and W res in the reservoir layer are fixed and not updated
in learning process. The ESN is optimized by a linear regression of weights W out

between the reservoir and the output layers. Owing to simple structure of the echo
state network and low computational processing in the learning process, reservoir
computing can be implemented as hardware.

Reservoir computing is an intriguing and dynamic research field, offering a wide
range of possibilities for hardware implementation by leveraging diverse types of
materials and phenomena [6]. To construct a reservoir computing system, it is essen-
tial to design and implement a reservoir as the hardware component, and its response
must satisfy Eq. 1. Thus far, various types of reservoir computing systems with
individual properties of the utilized phenomenon have been proposed. For instance,
the dynamic motion of soft materials has been used to determine the response of a
reservoir [7]. The interaction of spin-torque oscillators based on spin waves provides
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small-scale reservoir devices [8]. In the field of optics, recurrent network circuits
implemented on silicon chips and time-delayed feedback loop systems utilizing opti-
cal fibers have been successfully employed as reservoirs [9]. Individual reservoirs
exhibit a specific reservoir property, which is related to the prediction performance
of time-series data [10]. For example, the coupling matrix W res shown in Eq. 1
is determined by the characteristics of utilized materials and phenomenon. Conse-
quently, the performance may decrease depending on the prediction task. Tuning of
the coupling matrix W res is crucial in optimizing the prediction performance of a
reservoir computing system, allowing it to effectively address a wide range of prob-
lems. To achieve this, the integration of the tuning function within an optical system
is imperative. However, once an optical reservoir computing system is deployed, its
physical configuration becomes fixed. This fixed configuration poses a challenge for
any subsequent tuning. To predict various types of time-series data, it is necessary
to tune systems’ parameters after the construction of the system.

Free-space optics, which expresses the coupling matrix as a light-transfer matrix,
is a promising solution for optimizing the performance of RC after the construction
of the system. The use of a spatial light modulator provides a flexible adjustment
of the transfer matrix by controlling the wavefront. In optical reservoir computing,
transmission through scattering media is used to multiply the signal by W res [11].
However, the controllability is limited by the SLM pixel size and pitch, which affect
the representable coupling matrix.

In this chapter, we describe an optical RC approach using iterative function sys-
tems (IFSs) as a method to achieve optical tuning of the coupling matrix [12]. By
employing optical affine transformation and video feedback, the coupling matrix can
be flexibly tuned, allowing for the optimization of specific tasks.

2 Iterative Function Systems

For the adjustment of the coupling matrix W res, an optical fractal synthesizer (OFS)
was employed as the tuning function. The OFS utilizes an optical computing system
to generate a fractal pattern using a pseudorandom signal, which can be applied to
various applications, including steam ciphers [13, 14]. Pseudo-random signals are
generated based on an IFS using a collection of deterministic contraction mappings
[15]. Figure 2 shows the generation of pseudorandom signals by IFS. IFS mapping
comprises affine transformations of signals, including rotation, scaling, and shifting,
as follows: [

x ′
y′

]
=

[
s 0
0 s

] [
cos θ − sin θ

sin θ cos θ

] [
x
y

]
+

[
tx
ty

]
, (2)

where x ′ and y′ are the coordinates after translation, xandy are those before trans-
lation, s is the scaling factor, θ is the rotation angle, and tx and ty are the translation
parameters. The OFS can generate pseudorandom signals when s > 1, or fractal
patterns when s < 1. Owing to the simultaneous processing of input images, IFS
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Fig. 2 Pattern generation by iterative function systems

provides spatio-parallel processing. The operations in Eq. 2 can be implemented by
using two dove prisms and lenses, and the parameters can be tuned by adjusting the
optical components. Moreover, the IFS allows for the duplication and transformation
of signals in a recursive manner, enabling more intricate and complex pattern gener-
ation. This results in an increased number of degrees of freedom in the IFS operation.
In the proposed system, the IFS is utilized for the operation of the coupling matrix
W res, which can be tuned by controlling the optical setup including the rotation and
tilt of the dove mirrors.

3 Iterative Function System-Based Reservoir Computing

Hardware can be implemented for tunable reservoir computing by utilizing IFS. We
refer to reservoir computing using IFS as IFS reservoir computing.

Figure 3 shows the model of optical RC based on the IFS. The input sig-
nal u(t) at time t is multiplied by the coupling matrix W in and converted into a
two-dimensional image. The reservoir state X(t), which is generated from the input
signal, is assigned as the input of the IFS after undergoing an electric-optic con-
version and multiplication quantization operation B. The signal is duplicated and
combined after individual optical affine transformations. This signal processing is
represented by the multiplication with the matrix W res, which can be adjusted using
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Iteration

Fig. 3 Model of IFS reservoir computing [12]

the parameters of the optical affine transformation and the number of iterations. Fol-
lowing the addition of the input image u(t) to the transferred signal, the reservoir
state X(t) is updated as

X(t + 1) = α f [B[W resB[X(t)]] + W inu(t)] + (1 − α)X(t), 0 < α < 1, (3)

where α is a leaking rate, which determines the memory capacity of the signal in the
reservoir layer. Thus, the sequence of reservoir states corresponding to a sequence of
input signals is obtained. The output signal is generated by multiplying the reservoir
state X(t) with a variable weight W out, as follows:

y(t) = W outX ′(t), (4)

where X ′(t) is a subset of pixels extracted from the reservoir state X(t). In reservoir
computing, only the output connection weights W out is updated using a dataset with
a sequence of input signals u(t) and the corresponding sequence of the reservoir
state X(t). During the training phase, Ridge regression was adopted to optimize the
output signal. The loss function E is expressed as

E = 1

n

n∑
t=1

( y(t) − ŷ(t))2 + λ

N∑
i=1

ω2
i , (5)

where n is the number of training sets, ŷ(t) is the correct value, λ is the regulation
parameter, and ωi is the i th element of W out. By minimizing the loss function E ,
W out is optimized.
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4 Prediction Performance of IFSRC

Time-series data prediction is divided into two types: multistep and one-step-ahead
predictions. The former is a task involving continuous predictions of the input signal
by updating the input to the IFS reservoir computing based on the predicted value, and
the latter involves predicting the input signal one-step-ahead based on the reservoir
state at each time. To verify whether the proposed system can predict various types
of tasks, the prediction performance was evaluated for both types of prediction tasks.

4.1 Multi-step Ahead Prediction

In the evaluation of the prediction performance for multistep ahead prediction, we
employed the prediction of the Mackey-Glass equation which represents a chaotic
signal and is used as a benchmark for time-series signal prediction [16]. TheMackey-
Glass equation in this study is given by:

u(t + 1) = au(t) + bu(t − τ)

c + u(t − τ)m
+ 0.5, (6)

where a, b, c and m are constants, and τ is the delay parameter. A dataset of 30,000
inputs and the next predicted values obtained from the equation were prepared, and
W out was optimized by using Ridge regression which is the optimization method
using Eq. 5. After optimization ofW out, we assessed the system’s ability to replicate
a chaotic signal by inputting the predicted output into the system. The pixel size of
reservoir state X(t) was set to 64 × 64 pixels.

Figure 4 shows the predicted results. The best parameters of the IFS reservoir to
predict the Mackey-Glass equation were in Table 1. The IFS reservoir parameters
are listed in Table 1. The inital time step in prediction phase was 300. The chaotic
behavior of the Mackey-Glass equation was reproduced even for prediction phase.
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Fig. 4 Prediction of Mackey-Glass equation [12]



Reservoir Computing Based on Iterative Function Systems 233

Table 1 Simulation parameters in IFS reservoir computing to predict Mackey-Glass equation [12]

Parameter Value

Number of iterations 3

Leaking rate 0.1

Affine transformation 1 Affine transformation 2

Rotation angle θ (degree) 10 50

Scaling ratio s 1.0 1.2

Horizontal shift tx (pixel) –10 –10

Vertical shift ty (pixel) 0 0

To evaluate the performance, themean squared error (MSE) between the target signal
and prediction output was estimated. The target signals were predicted for 261 time
steps with a satisfactory MSE of <0.01. These results demonstrate the capability of
IFS reservoir computing in predicting time-series data.

4.2 Single-Step Ahead Prediction of Santa Fe
Time-Series Data

Single-step-ahead prediction is a task that predicts the next time signal from the input.
To evaluate the performance of the system, we employed the Santa Fe time-series
data, which requires memory to be predicted accurately. The Santa Fe time-series
data, which models the behavior of a chaotic laser, is a widely recognized benchmark
for evaluating reservoir computing systems [17]. The number of samples used for
training and performing the test were 3,000, and 1,000, respectively. Figure 5a, b
shows the targeted data and the prediction result. Table 2 presents the parameters
of the IFS reservoir that exhibited the highest performance. Note that the best IFS
parameter was different from that in case of the signal prediction of the Mackey-
Glass equation. The system predicted signals similar to the label data. To evaluate the
prediction performance, the normalized mean squared error was calculated between
the predicted output and label. The definition of NMSE is described as follows:

NMSE = 1

nσ 2

n∑
t=1

(y(t) − ŷ(t))2, (7)

where n is the number of dataset, σ is the standard deviation of the inputs, y(t)
is the prediction, and ŷ(t) is the label value. As shown in Fig. 5c, the NMSE was
8.5 × 10−3. These results demonstrate that prediction performance can be improved
by adjusting the IFS reservoir.
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Fig. 5 Prediction result of Santa Fe time-series a target data, b predicted data, and c difference
between (a) and (b) [12]

Table 2 Simulation parameters in IFS reservoir computing to predict Santa Fe time-series [12]

Parameter Value

Number of iterations 1

Leaking rate 1.0

Affine transformation 1 Affine transformation 2

Rotation angle θ (degree) 10 80

Scaling ratio s 0.8 1.2

Horizontal shift tx (pixel) –10 10

Vertical shift ty (pixel) 0 0

5 Experimental Performance of IFS Reservoir Computing

5.1 Optical Setup

To evaluate the hardware performance of the IFS reservoir computing system, an
optical system featuring a video feedback system was constructed, as depicted in
Fig. 6. First, the image representing the reservoir state X(t) is projected into the
display (MIP3508, Prament, number of pixels: 480× 320), and replicated by a beam
splitter (BS). By using Dove prisms, optical affine transformations through rotation
and tilt are processed to the individual images. The scaling factor is determined by
the difference between the focal lengths of lenses L2 and L3. Individual images are
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Fig. 6 Optical setup of IFS reservoir [12]

combined by using a BS and pass through lens L4. Finally, the image is captured
by the image sensor (S3–U3–123S6, FLIR, number of pixels: 4096 × 3000). The
captured image is resized to perform a predetermined number of iterations and is
fed back to the display. The finally-obtained image is updated to next reservoir state
X(t + 1) by Eq. 3. After the processing, X(t + 1) is fed back to the display as the
next IFS reservoir state. The same process is repeated, and learning is performedwith
pairs of reservoir states and label data. In the experiment, a region of 37 × 30 pixels
in the display was sampled and used as the signals of the IFS reservoir to decrease
the computational cost in Ridge regression. Moreover, a hyperbolic tangent function
was used as the nonlinear function.

5.2 Multi-step Ahead Prediction of Mackey-Glass Equation

Figure 7 shows the predicted results for the Mackey-Glass equation by using the
optical system. The IFS parameters used in the experiment are listed in Table 3, and
each value was estimated from the obtained images. The initial status of the reservoir
was set to zero, and the number of training data points was 30,000. The prediction
output is the chaotic signal similar to the Mackey-Glass equation. This result shows
that the IFS reservoir can perform the prediction of time-series data. However, the
prediction point with MSE <0.01 was 85 steps, which is lower than the time step
in numerical simulation. The reason is that the iteration parameter was fixed to 1 in
the optical setup, and the captured image was resized for feedback to the display.
Increasing the output signal from the reservoir layer improves the performance in
the physical reservoir computing [18, 19]. However, too large size of X(t) takes
computational cost in Ridge regression to optimizeW out. Therefore it is important to
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Fig. 7 Prediction result of Mackey-Glass equation a target data, b predicted data, and c difference
between (a) and (b) [12]

Table 3 Experimental parameters in IFS reservoir computing [12]

Parameter Value

Number of iterations 1

Leaking rate (Mackey-Glass
equation)

0.1

Leaking rate (Santa Fe
time-series)

1.0

Affine transformation 1 Affine transformation 2

Rotation angle θ (degree) –20 43

Scaling ratio s 1.0 1.0

Horizontal shift tx (pixel) 50 460

Vertical shift ty (pixel) 370 480

adjust the resolution of an image sensor approximately depending on the time-series
data to be predicted.

5.3 Single-step Ahead Prediction of Santa Fe
Time-Series Data

Next, the one-step-ahead prediction of the Santa Fe time-series was evaluated. The
number of data points for training and prediction was set to 3,000 and 1,000, respec-
tively. The parameters used are listed in Table 3. Figures 8 show the label data,
predicted signal, and their difference. Similar to the prediction of the Mackey-Glass
equation shown in Fig. 7, the IFS reservoir computing generates a signal waveform
similar to the target signal. From the difference, the NMSE is estimated as 0.033.
Although the IFS parameters are not fine-tuned, the performance of the experimental
IFS reservoir system is higher than that of existing physical reservoir computers [20,
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Fig. 8 Prediction result of Santa Fe time-series by optical setup. a Targeted data, b Predicted data,
c difference between (a) and (b) [12]

21]. The results provide a promising perspective for IFS reservoir computing, which
can tune the performance and flexibility in optical implementations.

6 Relationship Between Performance and Spectral Radius

To evaluate a property of reservoir computing, a spectral radius of the coupling
matrixW res in the reservoir layer is often used [22]. The spectral radius is the largest
absolute value of eigenvalues of a matrix and is defined as follows:

ρ(W) = max(|λi |, i = 1, 2, . . . , n), (8)

where λ1, λ2, . . . , λn are the eigenvalues of the matrix. The memory capacity
increases as the spectral radius increases. In reservoir computing, a spectral radius
less than one is preferred because the signal memory of the reservoir layer should
be faded out [3].

In the IFS reservoir with leaking rate α, the coupling matrix was calculated as
follows:

W = αW res + (1 − α)I, (9)

where I denotes a unit matrix. To investigate the characteristics of the IFS reser-
voir, the spectral radius and the NMSE of one-step-ahead prediction for the Santa Fe
time-series were calculated. The individual parameters were set to the values listed in
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Table 4 Combination of parameters in IFS reservoir computing [12]

Parameters Value

Number of iterations 1, 3, 5, 10

Rotation angle θ (degree) 0, 30, 50, 80

Scaling ratio s 0.8, 1.0, 1.2

Horizontal shift tx (pixel) –10, 0, 10

Vertical shift ty (pixel) 0
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Fig. 9 Spectral radius and NMSE on one-step prediction for Santa Fe time-series [12]

Table 4, and the relationship between the spectral radius and NMSE were compre-
hensively verified. The size of the input image was 64 × 64, all the pixels were used
for training, and the leaking rate was set to 1.0.

Figure 9 shows the relationship between the spectral radius andNMSE.Depending
on the IFS parameters, the value of spectral radius is modulated, and the combination
of scaling factors 0.8 and 1.0 generated a smaller spectral radius and improved the
prediction performance. It was confirmed that the adjustment of IFS parameters
provides modulation of coupling matrix W . In case of three and five iterations, the
correlation coefficients were larger than 0.7, which indicates a relationship between
the spectral radius and prediction performance. This result indicates that the one-step-
ahead prediction of the Santa Fe time-series does not require rich memory capability
for the task.

7 IFS Reservoir Computing with Optical Feedback Loop

It was demonstrated that the spectral radius changed with the number of iterations,
and the prediction performance changed accordingly. However, in the experiment,
it was necessary to repeat the electronic feedback process to change the number of
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Fig. 10 Optical setup of IFS reservoir with an optical feedback loop

iterations. Therefore, optical feedback was introduced to realize optical control of
the number of iterations. The experimental system is shown in Fig. 10. To facilitate
optical feedback of the signals for multiple iterations, the combined image was
transferred to BS1 through a relay lens. Consequently, a signal wherein the optical
affine transformation is repeatedly executed can be generated. The combined matrix
calculated in the experimental system is expressed as.

W res = (1 − β)A + β(1 − β)A2 + β2(1 − β)A3 + · · · βn−1(1 − β)An, (10)

where β denotes the feedback rate of the light signal branched by the beam splitter,
and A is a coupling matrix when the number of iterations is one. By realizing multi-
stage iterations, the range of combined matrix values was expanded. The signal after
passing through the IFS processing was detected by an image sensor. Subsequently,
the reservoir state was updated based on Eq. 3, and fed back to the display. The same
procedure is repeated to develop the status of the IFS reservoir.

For evaluation, one-step-ahead prediction of the Santa Fe time-series data was
performed. The feedback rate β, the number of training data, and the number of
prediction data were set to 0.5, 3,000, and 1,000, respectively. The optical parameters
are listed in Table 3. Figure 11a–c show the prediction results for the time-series data,
label data, and their differences. The NMSE value obtained under these conditions
was 0.098. When the feedback loop signal was removed under the same conditions,
the NMSE was 0.105, demonstrating the potential for improved prediction accuracy
with feedback.

The values presented in Eq. 10 demonstrate a decrease with an increase in the
order. This is owing to β < 1. The sensitivity of the image sensor was used to adjust
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Fig. 11 a Label of Santa Fe time-series data. b, d, f One-step ahead prediction of the proposed
system with an optical feedback loop and c, e, g the difference when the magnification of the gain
in the image sensor was 1.0, 1.1, and 1.2, respectively
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the signal acquisition of the calculated higher-order terms. Therefore, the change in
the prediction ability due to the adjustment of the image sensor gain was verified.

Figure 11d, f show the prediction results when the gain was 1.1 and 1.2 times
higher than that in case of Fig. 11b. In case of Fig. 11e The NMSE was 0.083 and
the prediction accuracy improved. However, when the magnification of the gain was
1.2, the NMSE was 0.800, and the prediction accuracy decreased. When the gain
is increased, a saturation of the light intensity occurs in the image sensor. . Con-
sequently, a signal with effective prediction information cannot be obtained, and
the prediction accuracy decreases. Therefore, it was demonstrated that it is neces-
sary to adjust not only IFS parameters but also the sensitivity of the image sensor
appropriately.

8 Discussion

The IFS reservoir computing allows for tuning of the parameters depending on the
prediction task. Next step is to optimize individual parameters and maximize the
performance. Various approaches have been suggested for optimizing hyperparam-
eters in reservoir computing through computational processing [23–25]. In physical
reservoir computing using FPGA, researchers have proposed methods for parameter
tuning utilizing genetic algorithms [26]. Moreover, Bayesian estimation has been
applied to realize more efficient parameters optimization compared to grid search
methods [27]. Therefore, computational processing allows the optimization of hyper-
parameters efficiently, and the performance of reservoir computing can be optimized.
In IFS reservoir computing, the number of IFS parameters is more than ten, which
is twice as high as that in other studies. The number of parameters is corresponding
to a degree of freedom in the tuning, and it is expected that higher prediction perfor-
mance by the optimization can be realized. Furthermore, IFS reservoir computing
provides the optimization of hyperparameters by adjusting the optical elements after
construction of the system. By problem-specific parameter optimization, a reservoir
computing predicting a wide range of time-series data can be built.
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