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Applications of Nano Materials in Dental 
Sciences and Scope in Future Practice 
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1 Introduction to Nanotechnology 

Richard Feynman first proposed the idea of nanotechnology in his famous speech 
“There’s Plenty of Room at the Bottom” [1]. It attempts to use molecular engi-
neering to create nano machineries that can produce nano materials. Under “Defini-
tion of Nanotechnology,” an early NNI document (National Science and Technology 
Council [NSTC], 2000) claimed that the ability to operate at the molecular level, atom 
by atom, to develop enormous structures with fundamentally new molecular orga-
nization is the essence of nanotechnology. The behavior of structural features in the 
range of 10−9 to 10−7 (1–100 nm) exhibits significant alterations when compared to 
the behavior of isolated molecules of approximately 1 nm (10−9) or of bulk materials. 
We will be able to organize atoms in any way we like, thanks to nanotechnology, 
which will allow us to effectively and completely control the structure of matter 
[2, 3]. 

Nanomedicine is a brand-new area that has emerged as a result of developments in 
the applications of nanotechnology in medicine [4]. According to Robert A. Freitas 
Jr., who first proposed this idea in 1993, this notion entails using nanostructures and 
nanodevices to observe, manage, and treat the biological systems of the human body 
at the molecular level [5]. The pharmaceutical business, where many medications are 
hydrophobic in nature and only sparsely or weakly soluble in aqueous solutions, is 
one of the most straightforward applications of nanotechnology. Due to the enormous 
increase in surface area, shrinking a pharmaceutical down to the nanoparticle size 
range can enable more of the drug to go into the solution [6]. Dental treatments using 
designed nano materials can improve therapeutic and preventative outcomes.
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Fig. 1 Classes of nano materials used in dentistry 

2 Nano Dentistry 

The most recent advances in nanotechnology research and development can be used to 
improve and upgrade conventional dental materials and equipment. In order to create 
regenerative materials, nano fillers, nano composites, nano impression materials, 
target-oriented antimicrobial mouthwashes, implants, and drug-enclosing nanopar-
ticles, various synthesis approaches, including bottom up, top down, functional, and 
biomimetic approaches, can be used in nano dentistry. A thorough grasp of the 
tooth’s structure and environment, as well as expertise in the material, synthesis 
process, and synthesis technique, are necessary for the development of nano dental 
products. Since ancient times, dental biomaterials made of metals, ceramics, resins, 
and polymers have been created and further modified [7]. Polymers can be made 
from both synthetic and natural (plant- and animal-based) materials [8]. To improve 
the mechanical and optical properties of polymers, some uncommon materials, such 
as carbon nanotubes (CNT), graphene oxide, and nanodiamonds, can be used in place 
of traditional glass or carbon fibers [9] (Figs. 1 and 2).

3 Applications in Diagnosis 

For the prevention or treatment of oral disorders caused by biofilms, a thorough 
understanding of bacterial adhesion—the primary factor in bacterial colonization 
and pathogenesis—as well as bacterial nano mechanics is necessary [10]. The ability 
of bacteria to cling to individuals of the same or other species as well as to various 
substrates, such as teeth and implants, has been well documented [11, 12]. AFM offers



9 Applications of Nano Materials in Dental Sciences and Scope in Future … 145

Fig. 2 Applications of nanoparticles in dentistry

a breakthrough in the characterization of bacteria as well as the measurement of their 
adhesion to various substrates [13, 14], because of its capacity to directly interact 
with imaging live cells without affecting their morphology and properties [15]. A 
real-time, highly sensitive scanning of a living bacterial cell was made possible with 
nanomechanical biosensors and an AFM cantilever [16]. Additionally, details on the 
characteristics of the membrane molecules [17] and the elasticity of a cell [18] are  
made available. 

4 Application of Nano Dentistry in Conservative 
and Restorative Treatment of Teeth 

The primary treatment needed in the oral cavity is caries management. To preserve 
the tooth’s structural and cosmetic integrity, an appropriate restorative material has to 
be used to fill the tooth. After a tooth is lost, it is restored using a bridge, an implant, 
and a crown. Nanoparticles can be added to filling materials and implants to improve 
them. The material must be close to the tooth structure and adhere to it in order for 
the restoration of a carious tooth to be successful. Micro gaps, leaks, and ultimately 
filling failure are caused by compromised adhesion or intersurface integrity [19, 20]. 
For enhanced defense, mineral deposition, and sealing of exposed collagen fibers 
in prepared teeth, the use of nano fillers or nano gels has been tried [21]. Reactive 
nanogels [22], zirconia (20–50 nm) [23], HA (20–70 nm) [24], colloidal silica (5– 
40 nm) or barium aluminosilicate nanofillers (400 nm) [25], and bioactive calcium/ 
sodium phosphosilicate [21] are some examples of nano materials. Self-healing adhe-
sives that can patch up microscopic or nanoscale cracks without compromising the 
strength of resin-dentin connections have also been developed [26]. They contain
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nano capsules that are packed with healing agents, and the presence of a break in the 
resin matrix typically causes the nano capsules to burst and release their contents. 
The durability of the resin-dentin interface has also been improved by using nano-
controlled molecular interaction between the resin monomer and HA that is still 
present in the hybrid layer [27]. In comparison to fine size fillers, nano fillers offer 
superior adherence, biocompatibility, and durability. Many scientific organizations 
are using hydroxyapatite (HA), the primary inorganic mineral component of teeth, 
to create nano composites. To serve as an inorganic component of nano compos-
ites, Chung et al. created a physiological component mixture using HA and chitosan 
nanoparticles [28]. By creating HP-gelatin/curcumin nanocomposites, antimicro-
bial properties against Escherichia coli, Staphylococcus aureus, and Streptococcus 
mutans were introduced into filler materials [29]. Various natural polymers have 
been employed in investigations to alter the organic nanocomposites’ organic compo-
nent characteristics [30]. The strongest antibacterial HA/CuO/TiO2 nanocomposites 
were created by Imani et al. The strong Quality by Design principle assisted in the 
manifestation of development [31]. A difficult challenge to incorporate Ag NPs, 
graphene oxide (GO), multi-walled carbon nanotubes (MWCNTs), and graphene 
oxide nanoribbons (GONRs) in HA nanocomposites was recently undertaken by 
Balu et al. The team investigated how the amount of carbon affected the final hard-
ness of the nanocomposites. Additionally, a bio strain was used to assess the Ag NPs 
activity (E. coli and S. aureus bacteria). Lidocaine was made available as a model 
drug release by the created nanocomposite [32]. 

As a supplementary material in the creation of nanocomposites, other synthetic 
polymers have been investigated. Poly Methyl Methacrylate Nanocomposites 
have improved mechanical properties as compared to HA nanocomposites [33]. 
Mallakpour et al. developed multi-component nanocomposites (Polyvinylpyrroli-
done/L-leucine Amino Acid, Functionalized Mg-Substituted Fluorapatite Nanocom-
posites) using ultrasonic waves as an energy source [34]. Microwaves [35–37], 
photons [38] and their combinations [39] are other energy sources that have been 
used by various research groups to create nano composites. 

Open tubules are brushed with highly concentrated GNPs to prevent pain and 
suffering in dentinal hypersensitivity, and laser irradiation is used to encourage the 
aggregation of nanoparticles to cover the exposed tubules [40]. Additionally, dental 
nanorobots provide a rapid and effective treatment for dentin hypersensitivity by 
accurately and selectively occluding the tubules with biological materials in a matter 
of minutes [4]. 

5 Applications in Endodontics Treatment 

The innermost, most important, and vascular component of a tooth is the dental pulp, 
which is made up of nerve fibers and blood vessels. The area of dentistry known as 
endodontics deals with periodontal tissues and dental pulp. When an infection pene-
trates the dentin and enamel to reach the pulp, pulp treatment is necessary. Cleaning
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and preparing root canals that contain pulp tissues for an appropriate filling and 
sealing material is the focus of endodontics. The following qualities should be present 
in an ideal root-end filling material: a hermetic seal, non-resorb ability, non-toxicity, 
non-carcinogenicity, biocompatibility, and dimensional stability [41–43]. None of 
the materials in existence satisfies every requirement. To sanitize root canals, root 
canal sealers contain a number of nanoparticles, including zinc oxide and chitosan 
alone or in combination. The flow characteristics of the sealers were unaffected, 
but they improved the antibacterial action, as evidenced by a notable decrease in 
Enterococcus faecalis adhering to treated dentin [44]. It was possible to retain the 
inhibitory impact of a chitosan-modified root canal sealer on biofilm growth at the 
sealer-dentin interface by first treating the surface of root canal dentin with phos-
phorylated chitosan [45]. Metal oxides, including magnesium oxide nanoparticles, 
show promised antibacterial activity in both in vitro and ex vivo tests and may be 
employed as a possible root canal irrigant. Magnesium oxide nanoparticles (5 mg/L) 
show a statistically significant long-term benefit in the removal of E as compared to 
the usual NaOCl solution (5.25%). Faecalis adhered to the dentin of the root canal 
[46]. 

Nano materials that aim to regenerate pulp tissue could improve endodontic treat-
ment by preserving the health of the pulp and, by extension, the structural integrity 
of the tooth. Dentin Odontoblast (located at the edge of the pulp) stem cells have 
also been investigated for this purpose; however, the clinical setup showed a futile 
response [47, 48]. Hanafy et al. investigated two widely used dental biomaterials, 
namely mineral trioxide aggregate (MTA) and nano-HA, as odontogenic differen-
tiation promotors. The results showed significantly higher and upregulated expres-
sion of the odontotomy differentiation-specific genes, namely OPN, RUNX2, OCN, 
and Collagen1, in the treatment group compared to the control group [49]. Another 
strategy to keep the pulp healthy and keep the infection outside the vascular area 
is pulp capping. Li et al. suggested a combination of micro-nano bioactive glasses 
with biocompatible, osteogenesis-sensitizing characteristics. Dental pulp capping 
using Ca–Zn–Si-based micro nanospheres (Zn doped). The results were positive, 
showing increased antibacterial effects and increased macrophage stimulation to 
decrease proinflammatory indicators, followed by dentin remineralization via sensi-
tization of dental pulp cells [50]. Drug-encapsulated liposomes were suggested by 
Sinjari et al. as a very sophisticated nanotechnological method for restoring the 
homeostasis of dental pulp stem cells. In terms of 2-hydroxyethyl methacrylate, 
the treatment was able to help restore cell proliferation and reduce inflammation 
markers [51]. Kim et al. have suggested an RGD peptide conjugated dendrimer-
based medication delivery system for dental pulp differentiation following severe 
dental injury. Higher mineralization and odontogenic potential were very positive 
findings [52]. With a very small number of tests, Elgendy and Fayyad investigated 
natural scaffolds, such as propolis and chitosan, for tooth restoration and discussed 
their potential for endodontic treatment because of their high biocompatibility and 
capacity for tissue restoration [53]. In a similar vein, Tondnevis et al. suggested 
creating a dental tissue scaffold utilizing polymers and the freeze-drying method 
that contains nano-HA or Nano-Fluro HA/Chitosan scaffold. Results showed that



148 M. Afazal and S. Afreen

chitosan was helpful in significantly increasing cell proliferation [54]. These exper-
iments demonstrated the chitosan NPs’ potential for use in dental endodontics. 
The role of eggshell-derived porous nano-HA and CMC (Carboxy Methylcellulose) 
composite was recently reported in a laboratory study by Baskar et al., which demon-
strated their impact on dental bioactivity and cell proliferation using the significantly 
increased levels of VEGF and dentine sialo phosphoprotein [55]. The development 
and testing of amoxicillin-loaded nanodiamond Gutta-percha composite (NDGP-
AMC) for use in root canal procedures produced encouraging results [56]. Gelatin 
[57–59], collagen [60], silk [59], and other natural fibers and polymers have also 
been investigated in nano dentistry. 

6 Applications in Orthodontic Treatment 

To realign teeth, force must be applied in the desired direction and interfacial stability 
must exist between the tooth surface, bracket, arch wire, and ligatures, among others 
[61]. Better holding and stability are prevented by the frictional forces between the 
arch wire and the brackets, which can also lengthen the course of treatment and 
have an impact on the final result. These components are covered with Fullerene, 
such as Molybdenum and tungsten disulfide NPs, to lessen this friction [61]. Also, 
nanotechnology can help in maintaining better oral hygiene, better anchorage, and 
lesser enamel demineralization during orthodontic treatment by several coatings like 
elastomeric ligatured supported NPs (Benzocaine and Ag) [62], nanocomposites (Ag 
NPs with ZnO, chlorhexidine) of adhesive types/bands [63], gold NPs in orthodontic 
adhesives [64], silver NPs [65], TiO2 NPs [66], and copper oxide NPs [67]. 

7 Applications in Prosthodontic Treatment 

Patients are increasingly more likely to seek out rehabilitation therapy as a result of 
greater awareness of and interest in quality-of-life enhancement. Nanotechnology is 
now a component of materials for crown, bridge, and implants used in restorative 
dentistry as a result of progress in research aimed at improving tooth replacement. 
The qualities of currently employed materials, including ceramics, impression mate-
rials, denture bases, and different forms of prosthodontic cement, have also been 
greatly improved by nanotechnology. Polymethylmethacrylate (PMMA) polymers 
are mostly used in removable prosthodontic appliances such as complete dentures, 
partial dentures, and detachable maxillofacial prostheses. Chlorinated polyethylene, 
poly(methyl methacrylate), poly(urethane), poly(vinyl chloride), and poly(dimethyl-
siloxane) (PDMS—silicone elastomers) have all been employed in the produc-
tion of maxillofacial prosthesis [68]. Although PMMA has strong biocompatibility, 
aesthetics, processability, and reparability, it has the drawbacks of being weak, having 
a low fracture resistance, behaving radiopacitively, and having microbial adherence
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[69–71]. Well-dispersed nano-ZrO2 particles can increase the strength, modulus, and 
ductility while TiO2 nanoparticles strengthened the mechanical behavior of PMMA. 
Particles of Ag TiO2 and Fe2O3 considerably lessen C’s adhesion. albicans made of 
PMMA that have no impact on growth or metabolism [72–74]. It can aid in treating 
pathological conditions such as denture stomatitis brought on by Candida albicans 
adhering to the denture base materials [75]. Due to their sophisticated mechanical 
and physical qualities, silicone elastomers have been employed in the production 
of dental prosthesis for a long time [76]. They are also non-toxic, chemically resis-
tant, and biocompatible. PDMS [77, 78] and silicone rubber are the most preferred 
types [79–81]. In recent studies, various filler nanoparticles (NPs) have been added 
to silicone rubbers to enhance their physical and mechanical properties through [82]. 
The silicone matrix is most frequently reinforced using silica NPs as fillers [82, 83]. 
Silicone elastomers’ mechanical and physical properties would vary depending on 
the concentration of silica NPs present [82, 84]. Additionally, silicone elastomers 
are supported by polyhedral oligomeric silsesquioxanes (POS), a nano (1.5 nm) 
silica cage, and metal nanoparticles (NPs) to enhance their tensile strength and other 
physical characteristics. Fixed prosthesis can use nano materials, nanocomposites, 
and nano coatings. Cytotoxicity brought on by the leaching of organic monomers 
can be resolved by nanocomposites built on nanofiller technology. To increase flex-
ural strength and hardness, 3-methacryloxypropyl-tri-methoxy-silane was applied to 
silica particles to create zirconia-silica nanoparticles. Nanotechnology offers new 
opportunities and promises for enhancing the adherence and endurance of implants. 
In addition to calcium phosphate, silica-based NPs, polyvinyl alcohol, and carbon 
nanotubes were employed to create nanocomposites and occasionally scaffolds for 
enhancing mechanical strength and tissue regeneration [85]. The most recent devel-
opments in research on the uses of nanometals, nanoceramics, nanoresins, and other 
nano materials in prosthodontics have been reviewed. This research clearly demon-
strates that many properties of materials used in prosthodontics, such as modulus 
elasticity, surface hardness, polymerization shrinkage, and filler loading, can be 
significantly improved after their scales were reduced from micron-size into nano 
size by nanotechnology. 

8 Application in Dental Implants 

Nanostructure-modified titanium implants encourage osteogenic differentiation and 
could have a better bio-integration into the alveolar bone [86]. The flat surface of 
titanium implants can be anodized to create nanotubular structures with a diameter 
of less than 100 nm [87]. The physicochemical characteristics of surfaces [88], as 
well as the spacing and diameter of nanotubes, can be controlled by altering vari-
ables including voltage, current density, and the chemistry of the electrolyte. Long 
nano tube arrays (10 m) and pillar-like nanostructures with adjustable sizes are also 
deposited by anodization on titanium surfaces [89]. On Titanium, Ti6Al4V, Cr– 
Co–Mo alloys, and Tantalum, nano pit networks (pit diameter 20–100 nm) can be
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successfully created by combining strong acids or bases with oxidants. According to 
a study, treatment with HCl produces superior outcomes than those with H2SO4 

and Na2S2O8 [90]. Acid etching can be used in conjunction with other proce-
dures, such as grit blasting, to remove contaminants on implant surfaces by blasting 
residues. The titanium dental implants’ osseointegration could be hampered by the 
grit blasting residue. But compared to an acid-etched surface, the nanostructured 
Ti surface created by physical vapor deposition had a surface area increase of up 
to 40% and a stronger osseointegration. Additionally, to improve bone regenera-
tion, HA nanocrystals [91] and calcium-phosphorus NPs [92] can be used to treat 
or modify the implant surface. A wide range of distinctive nanostructures, including 
octahedral bipyramids, nano flowers, nano needles, nano rods, and meso-porous nano 
scaffolds, have been produced on titanium using a combination of hydrothermal treat-
ments (tuning concentration, temperature, reaction medium composition, and time 
duration) and sodium hydroxide [93]. Early bone healing and improved mechanical 
interlocking with bone result from the deposition of discrete 20–40 nm nanoparticles 
on a dual acid-etched implant surface. Niobium oxide and diamond-like carbon nano 
topographies have been produced on titanium and other substrates with the aid of a 
mixture of chemical vapor deposition and the sol–gel method, improving the bioac-
tivity of implantable metals. Other current techniques for creating a nanostructured 
dental implant surface include laser technology and coatings made of ultraviolet 
(UV) photo functionalized (picometer to nanometer) TiO2 [94]. 

9 Applications Preventive Therapy 

Anticaries DNA vaccine’s immunogenicity has been improved by the use of 
customized delivery vehicles, such as anionic liposomes in chitosan/DNA nanopar-
ticle complexes. In order to permit the release of the vaccine in a pH-dependent way, 
the surface charge of the delivery vehicle may also be pH-dependent. All in vitro 
research up to this point has suggested that nanotechnology may be able to stop the 
progression of early caries lesions in their surface but not deeper layers. A local 
application of a nanostructured doxycycline gel has been employed in an experi-
mental periodontal disease model to stop bone loss. With their continuous and quick 
movement (1–10 m/s) across the supra and subgingival surfaces, nanorobots (denti-
frobots) mouthwash or toothpaste left on the occlusal surfaces of teeth continually 
remove the organic residues and prevent the calculus accumulation. When eaten, 
these nanorobots can be safely deactivated [95]. A number of oral health care prod-
ucts, including liquids and pastes containing nano-appetite for managing biofilm at 
the tooth surface and goods including nano materials for remineralizing early submi-
crometric sized enamel defects, have been developed using biomimetic techniques. 
On the tooth surface, bacteria form biofilms that lead to dental cavities. Nanocom-
posite surface coatings can minimize bacterial adhesion, prevent pathogenic effects, 
and make the tooth surface easier to clean. The apatite nanoparticle-containing tooth-
paste can be employed as biofilm management nano materials and as a method
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for remineralizing enamel lesions that are smaller than sub-micrometers [96–98]. 
However, these oral nanoparticle preventive medications are still in the research 
phase, and further in-depth research is required before they can be used in clin-
ical settings. Several nanoparticles, like zinc oxide, silver, and polyethyleneimine, 
can be incorporated into dental composites or dental adhesives to give antibacte-
rial nano treatment. This inhibits the growth of germs through a variety of ways. 
The bacterial cell membrane is disrupted, sugar metabolism and active transport are 
both inhibited, reactive oxygen species are produced, magnesium ions necessary for 
the enzymatic activity of oral biofilms are displaced, electron transport across the 
bacterial membrane is disturbed, and DNA replication is prevented [99, 100]. 

10 Applications in Regenerative Therapy 

Different types of nano-calcium phosphates, including dicalcium phosphate anhy-
drous, tetra calcium phosphate, monocalcium phosphate monohydrate, and carbonate 
hydroxyapatite, have been employed as Ca- and PO-releasing fillers for remineraliza-
tion in recurrent caries [101, 102]. Similar to other medical fields, tissue engineering 
in dentistry has been used to integrate scaffold matrices with the regeneration abili-
ties of stem cells, which are mostly derived from dental tissues such as dental pulp, 
periodontal ligament (PDL), and alveolar bone. These scaffolding materials have 
been significantly improved thanks to nanotechnology in tissue engineering, creating 
special 3D matrix conditions for cells and tissues. A native tissue architecture can be 
developed using a bottom up method, giving an engineered construct the mechanical 
properties of enamel and dentin [103]. The dental tissues’ nanoarchitecture is used 
to create electro spun nanofibers, self-assembling peptides, and phase-separation 
matrices. The development of nanofibrous scaffolds as matrices for the regeneration 
of dental tissues, such as the dentin-pulp complex, enamel, PDL, cementum, alveolar 
bone, and temporomandibular joint, has been widespread [104, 105]. 

11 Conclusion 

Nano dentistry attracts patients to dentistry because it is cost-effective, saves time, 
and prevents psychological trauma. More patient-centered research will aid in 
the advancement of nanotheranostics that are both effective and cost-effective. 
Despite the numerous irrefutable gaps that limit its clinical exploration, revolutionary 
nanotechnology has enhanced conventional dentistry. Research in the field of nano 
dentistry still lags behind other areas of biological study. Prior to the application 
of nanotechnology on a large scale, fundamental molecular engineering methods, 
mass production techniques, and the simultaneous coordination of many nanorobots 
must be overcome. Nanotechnology advancements are shaping the future of health-
care administration. They have the potential to produce significant benefits, such
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as improved health, more efficient use of natural resources, and less environmental 
pollution. Nanotechnology will profoundly alter dentistry, healthcare, and human 
life. However, social issues of public acceptance, ethics, regulation, and human safety 
must be addressed prior to the incorporation of molecular nanotechnology into the 
modern medical and dental arsenal. 
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