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1 Introduction

The design and analysis of tunnel is a complex task due to the inadequacy of the
knowledge of ground behaviour under excavation procedure and insufficient data on
the state of stress of the ground condition. Tunnel is subjected to uncertainties caused
by the innate variations in the rockmass and the imprecision of measurement and
modelling. In case of conventional design, the unpredictability is generally taken in a
deterministic way by assigning a value with safety factor, which uses themean values
of deformation characteristics of rock/soil-mass. A deterministic analysis gives the
margin of safety to a very limited extent because the parametric uncertainties and their
effect on the design are not taken into account. On the other hand, a probabilistic
analysis approach provides a rational perspective to such problem. It also distin-
guishes between minor and major uncertainties. Therefore, the proposed research
study focussed on safety assessment of tunnel in probabilistic format with due impor-
tance to the various parameters that affects the tunnel behaviour. Oreste presented a
probabilistic numerical approach applicable for the design of primary tunnel supports
based on the hyper-static reaction method by Monte Carlo simulation (MCS) [1].
Mollon presented response surface method (RSM) based reliability analysis of a
shallow circular tunnel driven by pressurized shield in soil followingMohr–Coulomb
(M–C) failure criterion [2]. Lü and Low implemented first order reliability method
(FORM) to calculate the reliability index of a circular tunnel under hydrostatic stress
field and compared with the result achieved byMCSmethod. They used an approach
based on RSM and second order reliability method (SORM) to find the reliability of
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the tunnel based onM–C failure criterion andHoek–Brown (H–B) yield criterion [3].
Lu et al. [4] performed probabilistic ground-support interaction analysis of deep rock
excavation using artificial neural network (ANN) and uniform design (UD) based
on the convergence–confinement method. The least squares support vector machines
(LS-SVM) based RSM combined with FORM [5] has also been used in tunnel relia-
bility analysis of elastic-perfectly-plastic rockmass. The moving least square method
(MLSM) and FORM/SORM are also used for probabilistic analysis of rock tunnel
excavation [6]. Apart from the mentioned method, Kriging model is known to be
very efficient and flexible in dealing with cases involving numerical modelling [7].
The accuracy of the metamodel can be further improved by adding a new sample by
means of a learning function, the augmentation of which can be stopped by means
of a stopping criterion or stopping function. Bichon et al. [8] introduced an active
learning method on the threshold of Kriging metamodel, the learning function called
the Expected Feasibility Function (EFF). Echard et al. [9] introduced an efficient
active learning function for probabilistic analysis combining Kriging and MCS for
structural. In the AK-MCS, a candidate sample set was introduced to represent the
whole simulation domain for an approximate result to update the Krigingmodel. The
sampling concept for active learning in AK-MCS is further modified for rare events
e.g., brute force MCS is replaced by importance sampling in AK-IS [10] and by
subset simulation in AK-SS [11]. Learning functions implementing an active sparse
polynomial chaos expansion applicable to system reliability analysis are also devel-
oped [12]. AK-MCS method are also adapted for small failure probabilities [13].
The method however is seldom used in safety assessment of deep tunnel. Following
the same framework, an adaptive technique is proposed in the present work based
on the maximin distance criterion from the reduced space considering the prediction
uncertainties of Kriging model. The application potential of the proposed approach
is elucidated by considering reliability analysis of a tunnel example problem. The
accuracy and efficiency of the proposed approach is studied by comparing the reli-
ability results obtained by the proposed approach with the most accurate reliability
estimates obtained by brute force MCS technique.

2 Performance Function

The convergence confinement method is a simplified and rational approach for
analysing the ground-support interaction [14]. The simplicity of the approach is
due to the hypothesis based on which the method is based. For example, the tunnel
is assumed to be circular and deep, subjected to hydrostatic lithospheric stress, in a
continuous and homogeneous/isotropic soil/rock mass condition. Thus, the problem
is reduced to a two-dimensional plain strain problem. The approach is extensively
used as a basic tool for estimation of support requirement for stabilization and for
final convergence estimate of tunnel wall. The underground tunnel is assumed to be
subjected to hydrostatic insitu stress. During construction, with the progress of exca-
vation, the rockmass is subjected to redistribution of stress due to loss of confinement
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Fig. 1 A circular deep
tunnel subjected to
hydrostatic insitu stress

caused by excavation. The failure during the initial phase can be broadly classified
into structurally influenced instability considering discontinuity of rockmass and
stress induced instability considering continuity of rockmass. In the present study,
the continuity of rockmass is assumed and according to the stress induced instability
criteria, two possible failure mechanism are considered. A circular tunnel section
subjected to hydrostatic insitu stress po and applied internal stress pi, having an
internal radius of Rt and effective plastic zone radius Rp is shown in Fig. 1.

The M–C failure criterion presents the failure of an isotropic material by a set of
equations in terms of principal stress neglecting the intermediate principal stress [15].
The criterion may be expressed as the relationship between the principal stresses or
in terms of shear and normal stress on the failure plane. In terms of shear stress (τ),
and normal stress (σ), the equation is given by Labuz and Zang [16] as,

|τ | = c + σ tan φ (1)

The given equation can be written in terms of principal stresses, σ1 and σ3 as,

(σ1 − σ3) = (σ1 + σ3)c + 2c. cos ϕ (2)

In terms of radial stress (σr) and circumferential stress (σθ) in cylindrical co-
ordinate system, the above equation can be written as,

(σθ − σr ) = (σθ + σr ) sin ϕ + 2c. cosϕ (3)

Here, c is the cohesion of rockmass and ϕ is the friction angle of the rock mass.
At the plastic-elastic interface where r = Rp (from Eqs. (2) and (3) and), we get:
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σr = pcr (4)

Inserting the values in the equation for failure criterion:

pcr = 2po − σcm

1 + Kp
(5)

where Kp = 1+sin ϕ

1−sin ϕ
and, σcm = 2c. cosϕ

1−sin ϕ

The radius of the plastic zone [3] is given by:

Rp = Rt

(
2(po(Kp − 1) + σcm)

(Kp + 1)(Kp − 1)pi + σcm

)
(6)

The displacement in the plastic zone [3] is given by:

urp = Rt

2Gr

[
2(1 − ν)(po − pcr )

(
Rp

r

)2

− (1 − 2ν)(po − pi )

]
(7)

Gr is the shear modulus and ν is Poisson’s ratio of the rockmass, respectively.
The performance functions of circular unlined tunnel can now be constructed

according to the above two solutions (Eqs. (6) and (7)) as followings,

g1(x) = λ − Rp

Rt
(8)

g2(x) = ε − urp
Rt

(9)

The performance threshold λ in Eq. (8) is the maximum value of the ratio between
the radius of plastic zone and the tunnel opening radius. It depends directly on the
maximum radius of the plastic zone which is in face derived by applying the least
internal stress i.e., zero. In Eq. (9), ε is the ratio of the maximum radial convergence
of the tunnel wall and the radius of tunnel, which is achieved by not applying any
internal stress in the tunnel wall.

3 Kriging Model

Let, the input variable x is l-dimensional vector with n number of sample sets. The
variable is written in n × l matrix form with l being the number of variables and n
being the total sample set generated. The Kriging model can be written as,
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g(xi ) =
p∑

j=1

f j (xi )β j + Z(xi ) = ( f (xi ))
Tβ + Z(xi ) (10)

where βT = [β1, β2, β3, …, βp] is the vector of regression-coefficient, very similar
to the regression-coefficient vector used in polynomial model in response surface
method and f j (xi )

p
i=1 is a set of known function. Z(x) is a stationary Gaussian

process (an assortment of random variable such that every finite collection from
the collection follows a multivariate normal-distribution). The following statistical
property is used to define the Gaussian process:

E(Z(x)) = 0 and Var(Z(x)) = σ 2
Z

Cov[Z(x), Z(w)] = σ 2
Z Rθ (x,w)

σ 2
Z is the unknown variance between two points of x and w space of the stochastic

field Z(x). R is the correlation matrix of dimension (n × n) and as the correlation-
parameter vector of length n. There are variety of functional form defining the corre-
lation [17, 18]. The following correlation model (anisotropic Gaussian model) is
considered here:

Rθ (x,w) =
n∏

i=1

exp
[−θi |xi − wi |2

]
(11)

xi andwi are the ith co-ordinate point of x andw. The values ofβ and σ 2 are evaluated
by Jones et al. [19],

β̂ = FT R−1g

FT R−1F
(12)

σ̂ 2 = (g − Fβ)T R−1(g − Fβ)

n
(13)

Since the value of β̂ and σ̂ 2 are dependent upon the value of θ, hence θ is
first evaluated using the maximum likelihood estimation by minimising �(θ) =
|R(θ)| 1n σ(θ)2. The achieved predictor G(x) with parameters: β = β̂; σ 2 = σ̂ 2 and θ

= �

θ ; is known as the maximum likelihood empirical ‘best linear unbiased predictor’
(BLUP) G

∧

(x), and is evaluated by,

G
∧

(x) = β + r To R−1
θ (g − β) (14)

where ro = {R(x, x1), R(x, x2), . . . , R(x, xn)}. Here, the optimal choice of the
parameters θ is obtained as the maximum likelihood estimator using the “dacefit”
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algorithmof theDACE toolbox [17]. The least value of themean square error between
the predicted value G

∧

(x) and the response value G(x), also known as the Kriging
variance σ 2

G
∧(x) is given by,

σ 2

G
∧(x) = σ

∧2[1 + uT (FT RT F)−1u − r To R−1
θ ro

]
(15)

where u = FT R−1ro − f (x).

4 Adaptive Kriging Approach of Reliability Analysis

The applications of Adaptive Kriging BasedMCS (AK-MCS) for reliability analysis
of structures are enormous. However, it is not applied in reliability analysis of tunnel.
The present study attempts to explore an adaptive Kriging approach on the basis of
the Max–min distance concept. The proposed approach is built primarily on the
basis of AK-MCS approach. Thus, the AK-MCS based approach is explained in this
section and the proposed adaptive Kriging is presented in the next section. The failure
probability of a structural system having performance function g(x) is given by:

Pf =
∫
F

fX (x)dx =
∫
Rn

IF (x) fX (x)dx (16)

where f X (x) is the joint probability distribution function (PDF) of random variable
x = {x1, …, xn}, F is the region of failure given by F = {x|g(x) < 0 }, the indicator
function, IF(x) becomes 1 if x ∈ F and 0 otherwise. ForMCS, the failure probability
is:

Pf ≈ P
∧

f = 1

NMCS

NMCS∑
i=1

IF (xi ) (17)

For, {xi, i = 1, 2, …, NMC} are samples drawn from the PDF. In case of MCS, the
entire population are to be evaluated with the performance function. The tedious
process of evaluating the entire population with the performance function is reduced
by applying AK-MCS based on active learningmethod. The Krigingmodel is trained
with fewer possible samples by applying the active learning function on the MCS
population. The refined Kriging model then evaluates theMCS population instead of
the predefined limit state function. The active learning process dynamically updates
and refine the Kriging model based on adopted DOE which is iteratively enriched
by adding new sample identified by an active learning function. The active learning
function continues to enrich and refine the Kriging model until a prescribed stopping
condition is attained. It is to be noted that the mean Kriging (i.e., the regression part
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in Eq. 10 contains a constant only) is considered. The steps followed in AK-MCS
are outlined below.

1. Generation of a standard Monte Carlo population in the prescribed design
space:

The population S consists of N numbers of MCS samples following the respec-
tive PDF in the parameter space. The population S is only used as a pool for
drawing and identifying the next best sample which is assessed on the defined
performance function.

2. Initial design of experiments (DOE) definition:

N1 samples are randomly selected from the population S and evaluated with the
true performance function. The DOE is generally preferred to be less to reduce
the number of calls to the true performance function.

3. Construction of the Kriging model based on initial DOE:

The Kriging model is constructed based on the current DOE.
4. Prediction by Kriging and failure probability estimation:

Kriging predictions (Eq. (14)) are obtained using the DACEMATLAB toolbox.
Then, the failure probability is assessed with the signs of these predictions as
the ratio of the points in the population S with a negative Kriging prediction
and the total number of points in S.

5. Recognition of the suitable next point to evaluate on the defined performance
function:

The next best sample is identified using the learning function. Here the learning
function U(x) [9] is used:

U (x) =
∣∣μg(x)

∣∣
σg(x)

(18)

The sample is given by:


x = arg

x∈S
minU (x) (19)

The sample with minimum U(x) are either located near the limit state
((μg(x) ≈ 0)) or have high prediction uncertainty ((σg(x) � 0)), or both.
The sample so drawn will have high potential to cross the prediction separator.
Hence should be included in the DOE.

6. Definition of stopping condition for learning:

The Kriging model is updated by the augmented DOE. The iteration process is
stopped when the stopping condition is outreached. The stopping condition is
defined as:

min(U (x)) ≥ 2,∀x ∈ S (20)
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which means that the probability of executing a wrong sign prediction is
F(− 2) < 0.023

7. Update of the previous DOE with the best suitable point:

The active learning process is continued if the stopping condition given in step
(6) is not satisfied. The best sample achieved is computed on the performance
function and added to DOE. The method goes back to step (3) and the Kriging
model is updated with the updated/augmented DOE.

8. Calculation of the coefficient of variation (COVpf ) of the probability of failure:

If the stopping condition in step (7) is achieved, the learning process is stopped
and themetamodel is considered accurate enough on the performance function’s
signs of the NMC points. The next step is to check whether the Monte Carlo
population S is sufficiently large to give low COVpf on the Kriging estimation
of the failure probability (step (4)). Values of COVpf less than 5% is taken
considered acceptable.

COVP̂f
=

√√√√ 1 − P̂ f

P̂ f NMC

(21)

9. Updating of the initial population:

If the estimated COVpf is high than prescribed value (5%), S is updated with
new set of points from another Monte Carlo population (generated like in step
(1)). It is then followed by (step (4)) to predict the new population and the
active learning method continues till the stopping condition is achieved. No
information about the previous evaluations is lost.

10. End of the AK-MCS:

The COVpf is calculated and if it is small enough then the method is stopped,
the failure probability is assessed. The estimate is the final result of AK-MCS.

5 Proposed Adaptive Kriging Approach

An adaptive Kriging approach is proposed here based on the maximin distance
concept. A reduced space is constructed first by the proposed approach. Then a
new training point is selected based on the maxmin distance criterion. This process
goes on iteratively, the details of which are given below.

A population S consisting of NMC samples in the input parameter space is gener-
ated following the respective PDF. The selection of initial training samples and
searching of the next best training sample are limited to the population space S
only. To build an initial DOE, N1 samples are selected randomly from the popula-
tion space S and evaluated with the true performance function. The number N1 is
generally preferred to be less for reduction of the total number of calls on the true
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performance function. Once the initial DOE is built, the Krigingmodel is constructed
based on it. Kriging prediction and its variance at NMC samples are obtained using
the Kriging model. Then, the failure probability is assessed with the signs of these
predictions as the ratio of the points in the population S with a negative prediction
and the total number of points in S.

Now, to construct the reduced space, first,U(x) function is evaluated at all points in
S based on the Kriging predictions and its variance obtained from the Kriging model.
Then, samples, which are satisfying U(x) < 2, are selected to construct a reduced
space (denoted by R). This implies that all MCS samples having the probability of
executing a wrong sign prediction greater than 0.023 (i.e.,F (− 2)) is included in the
reduced space. Like active learning-based AK-MCS method, the sign of predicted
performance function at any point having probability of executing a wrong sign
prediction less than 0.023 is considered as accurate. After that, a new training sample
is selected by maximin distance criterion. For this, the scaled Euclidian distance of
each point in the reduced space from its corresponding nearest training sampling is
calculated as,

D(x) = ‖xr − xnearest‖ (22)

where || || represents the scaled Euclidian distance, xr is a point of the reduced space
and xnearest is the nearest training sample of the point xr . The point in the reduced
space having the maximum value of such calculated distance is selected as the next
training sample. The next training sample is given by:


x = arg

x∈R
max D(x) (23)

The sample

x is included into the DOE. The sample with maximumD(x) improve

the space-filling property of the new augmented samples. Hence increases the effi-
ciency of the model. The Kriging model is updated by the augmented DOE. Subse-
quently, the Kriging prediction and its variance at MCS samples are updated. Based
on the updated prediction, the updated failure probability is obtained. In addition, the
reduced spaceR is reconstructed based on the updated value ofU-function at theMCS
points. Again, a new training point is selected based on Eq. (23) and Krigingmodel is
updated. Thus, the failure probability is updated iteratively. It can be noted here that
no new training point can be added if there is no new sample in the reduced space.
Thus, this is treated as the stopping condition for adaptive sampling. Alternatively,
the stopping condition can also be expressed as,

min
x∈S U (x) ≥ 2 (24)

The next step is to check whether the Monte Carlo population S is sufficiently
large to give low COVpf on the Kriging estimation of the failure probability. The
COVpf is calculated (ref. Eq. (21)) and the COVpf value below 5% is considered to
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be acceptable. If the estimated COVpf is higher than the prescribed value (5%), S is
enriched with new set of NMC points generated from the associated PDF of the input
variables. The prediction of the new population is done and the adaptive sampling
continues till the stopping condition is achieved. No information about the previous
evaluations is lost. The COVpf is calculated and if the value is very high, then the
method again enriches the Monte Carlo population space S. Once, the COVpf is
small enough (i.e., less than 5%), the method is stopped, and the failure probability
is assessed.

6 Reliability Analysis of Unlined Circular Tunnel
Subjected to Hydrostatic Insitu Stress

The effectiveness of the AK-MCS and the proposed adaptive Kriging approach for
reliability analysis of underground tunnel is demonstrated by considering an unlined-
circular tunnel subjected to hydrostatic insitu stress, po and applied internal stress,
pi. The reliability analysis is performed based on the analytical formulation frame-
work defined in Sect. 2. The results of the AK-MCS and the proposed approach are
compared and validated with the results obtained byMCS. TheM–C failure criterion
is applied to assess the plastic radius of the tunnel. The cohesion, elastic modulus,
angle of internal friction and Poisson ratio of the rockmass defines the elasto-plastic
behaviour of the tunnel. The statistical properties of the parameters considered to be
random are provided in Table 1.

The performance function is defined by Eqs. (8) and (9). The performance
threshold λ and ε are taken as 3 and 0.02 [3]. The Poisson ratio is taken as 0.22.
A parametric study is made by varying the applied internal stress, hydrostatic insitu
stress, and performance threshold. The number of random samples (N1) taken to
initially start the Kriging model is 12. Three cases are considered for each perfor-
mance function, in the first case (Case 1) the value of po is taken as 2.5 N/mm2 with
varying values of pi. In the second case (Case 2), the value of pi is taken as 0.5 N/
mm2 with varying values of po. In the third case (Case 3) the value of pi and po are
taken as 0.25 N/mm2 and 2.5 N/mm2 for g1(x) and 0.5 N/mm2 and 3.25 N/mm2,
respectively for g2(x) with variation in the values of the performance functions. The
variation of failure probability (pf ) for all the three cases are shown in Fig. 2.

It may be noted that both the AK-MCS and the proposed approach can estimate
the failure probability with reasonable accuracy. The accuracy and efficiency of the

Table 1 Statistical properties of the parameters [3]

Sl. No. Property Units Distribution Mean

1 Elastic modulus E MPa Normal 1185

2 Cohesion C MPa Normal 0.28

3 Angle of internal friction φ Degree Normal 23.7
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Fig. 2 Variation in failure probability (pf ) due to change in a internal stress for g1(x); b internal
stress for g2(x); c insitu stress for g1(x); d insitu stress for g2(x); e performance function λ in
g1(x) and f performance function ε in g2(x)
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Table 2 Average number of samples required and average absolute percentage error for g1(x)

Method Case 1 (Fig. 2a) Case 2 (Fig. 2c) Case 3 (Fig. 2e)

Average no.
of samples

Average %
error

Average no.
of samples

Average %
error

Average no.
of Samples

Average %
error

Proposed
adaptive
Kriging

29 0.87 24 0.31 24 0.70

AK-MCS 27 1.78 22 1.76 21 2.29

Table 3 Average number of samples required and average absolute percentage error for g2(x)

Method Case 1 (Fig. 2b) Case 2 (Fig. 2d) Case 3 (Fig. 2f)

Average no.
of samples

Average %
error

Average no.
of samples

Average %
error

Average no.
of samples

Average %
error

Proposed
adaptive
Kriging

60 6.93 47 3.68 51 4.89

AK-MCS 61 7.75 47 3.43 48 10.60

proposed method and the AK-MCS is compared in terms of the percentage error in
the failure probability with respect to direct MCS. The average percentage error and
the average number of samples required are enlisted in Tables 2 and 3 for the first
and second performance functions respectively.

Both the method shows good accuracy and efficiency for the first performance
function. The total number of samples required are also similar for the two methods.
For the second performance function, as the equation is highly non-linear, at some
instances the accuracy is moderate for both the methods. However, the proposed
method shows better accuracy than the AK-MCS in majority of the cases.

7 Conclusion

The proposed adaptive Kriging method is applied to assess the safety of tunnel based
on the allowable plastic radius and tunnel wall displacement criteria. The proposed
adaptive Kriging approach is noted to provide comparatively better accuracy. When
highly nonlinear performance function is involved, the method showed moderate
accuracy, similar to the AK-MCS. As random sampling was adopted in the both
the methods, therefore it can be concluded that there is high chance of increasing
the accuracy and efficiency of the proposed approach if better DOE framework is
adopted. There is scope of improvement in the adaptive technique based on the stop-
ping criteria. The applicability of the proposed adaptive Krigingmethod in reliability
analysis of tunnel is studied for simple problem and needs to verify for more realistic
tunnel reliability analysis problem involving finite element response analysis.
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