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Abstract

In agroecosystems, arbuscular mycorrhizal fungi (AMF) are the most common 
and ubiquitous. Because of their productive and comprehensive symbiotic con-
nections with plants, AM technology looks to be a viable option for sustainable 
agriculture and agroforestry. The commercialization of this technology may be 
utilized in agriculture, horticulture, and agroforestry to improve land use man-
agement and reduce the need for synthetic chemicals for plant growth and dis-
ease control. Furthermore, while mycorrhiza inoculation of plants is a well-known 
procedure, developing an inoculum consistently under field circumstances 
remains a bottleneck for their wide range of applications. Mycorrhizal inoculum 
generation, on the other hand, is a complicated process that necessitates com-
mercial enterprises having the requisite biotechnological skills and capacity to 
react to ethical, educational, legal, and commercial needs. The aim of this chap-
ter is to compile the available data on the theme of commercialization of AM 
technology as a tool and its use in increasing plant growth and yield characters.

Keywords

Sustainable agriculture · Agroforestry · Arbuscular mycorrhizal technology · AM 
technology · Plant symbionts

G. Boyno · E. D. Durak · H. Güneş · R. Çevik · S. Demir (*) 
Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University,  
Van, Turkey
e-mail: semrademir@yyu.edu.tr 

R. A. Ansari 
Department of Plant Protection, Faculty of Agricultural Sciences, Aligarh Muslim University, 
Aligarh, India

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-5030-0_8&domain=pdf
https://doi.org/10.1007/978-981-99-5030-0_8#DOI
mailto:semrademir@yyu.edu.tr


174

8.1  Introduction

Nondestructive methods for achieving low costs and high output can be mutually 
reinforcing in creating a viable system with low external inputs and long-term farm-
ing. This is primarily accomplished through a societal intervention that comprises 
an increase in crop yield, a reduction in pesticide inputs, and a social assessment of 
welfare and bioethical elements. The efficient use of soil microorganisms contrib-
utes to the long-term viability of agricultural ecosystems (Jeffries et  al. 2003; 
Selosse et al. 2004; Bünemann et al. 2006; Barrios 2007; Vosátka and Albrechtová 
2009; Gianinazzi et al. 2010). Growing demand for high-quality food production 
utilizing these eco-friendly farming techniques has led to the introduction of benefi-
cial microorganism-based fertilizers that do not deplete the natural resource base 
(Ansari and Mahmood 2017a; Ansari et al. 2017a, b, 2020b). In this case, farmers 
will be able to utilize bio-fertilizers to boost productivity per unit area. Arbuscular 
mycorrhizal fungi (AMF) stand out in this group due to several mycorrhizal species 
colonizing at the same time. AMF species are found in 80–90 percent of all plant 
species known to science (Rakshit et  al. 2002; Rakshit 2015). By replenishing 
reduced carbon (C) from plant photosynthesis and mineral nutrients like nitrogen 
(N) and phosphorus (P), this relationship includes a bidirectional movement of mat-
ter between symbiotic partners (Ferrol et al. 2002; Demir et al. 2015). AMF has a 
number of “nonnutritive” impacts on plant physiology, including lowering biotic/
abiotic stress, functioning as a biocontrol agent, preventing erosion, stabilizing soil 
aggregates, and altering plant compatibility and the long-term survival of the entire 
plant–soil system (Smith and Read 2010; Ansari and Mahmood 2017b, 2019a; 
Ansari et al. 2020a). Therefore, AMF play a very important role not only as bio- 
fertilizers but also as bio-protectors and bio-regulators either in solo or in mixture 
with other potential beneficial microorganisms (Pal et al. 2013, 2015; Parewa et al. 
2014; Boyno et al. 2022; Ansari et al. 2019a, b), which are caused by pathogens and 
pests (Ansari and Khan 2012a, b). This chapter entails AMF distribution, methods 
of multiplication and application, and commercialization at a large scale. Major 
prevailing challenges and possible answers have also been put forth to get the read-
ers acquainted.

8.2  AM Technology in Sustainable Agriculture 
and Agroforestry

Research, commercialization, manufacture, marketing, distribution, and the appli-
cation of AM inoculum are all activities that fall under the umbrella of AM technol-
ogy (Benami et al. 2020). In applied mycorrhizal research for sustainable agriculture, 
the application of combinations of minimal effective propagation to crops, the iden-
tification of species, the development of AM technology to produce more effec-
tively, and the assessment of mycorrhizal viability are all priorities (Vosátka et al. 
2012; Guo 2019). Aside from these divisions, because of the complexity of these 
operations, the development and application of AM inoculums have been the 
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primary focus in the mycorrhizal sector. Producing cost-effective mycorrhizal inoc-
ulants has been a difficult challenge throughout the company’s existence. 
Mycorrhizal inoculation in agricultural areas, on the other hand, has proven consid-
erable yield advantages in various crop kinds, as recorded in several field studies 
(Pellegrino et al. 2015; Hijri 2016; Benami et al. 2020). However, it may be argued 
that the development of next-generation mycorrhizal technology should not be lim-
ited to issues about production and inoculation (Rillig et al. 2016). Given various 
situations in which they assist the plants with which they interact in obtaining nutri-
ents, mycorrhizal fungi have great promise in agriculture. Despite this, their poten-
tial impacts on products are almost imperceptible, and mycorrhizae are used in a 
few sectors (Adholeya 2012). Regardless of potential production gains, the use of 
mycorrhizae for monetization is not currently on the rise. Forestry, on the other 
hand, is among the few sectors that fully recognize the importance of mycorrhizae 
in plant growth. Although mycorrhizal symbiosis is required in exotic woods, AMF 
are critical in agroforestry (Muleta et  al. 2008; Araújo et  al. 2019). Mycorrhizal 
infection is commonly used in a variety of different small businesses. Without 
mycorrhizal inoculation, orchid seedlings will not germinate in the growth media, 
making mycorrhizae vital for farmers and small-scale firms. Because it can handle 
higher levels of heavy metals including aluminium, zinc, nikel, iron, lead, and cad-
mium, land recovery is one of the most recent areas of commercial expansion for 
mycorrhiza (Pal et al. 2016).

Many sectors are assumed to be affected by the quickly changing AM technol-
ogy environment, which is influenced by globalization, resistance, economic bur-
dens, and the progress of new innovations. As the market for organic food grows, 
especially in developed countries, so does interest in technology (Benami et  al. 
2020). Instead of utilizing inorganic fertilizers, pesticides, and fungicides, inocula-
tion of soil with mycorrhizae can increase growth and disease resistance. Inoculation 
of soil with an appropriate fungal isolate can also reduce the need for farmers in 
impoverished nations to repeat expensive fertilizer treatments that they cannot 
afford. However, the process of converting this concept into a viable firm is impeded 
by a lack of knowledge dissemination, prospective consulting services, and a lack of 
hope (Pal et al. 2016). Sustainable agriculture and agroforestry rely heavily on AM 
technology (Siddiqui and Mahmood 1996; Akhtar and Siddiqui 2008; Futai et al. 
2008; Akhtar et al. 2011). Commercialization of AM based on this technology has 
accelerated in recent years for the following reasons:

 1. Plant development and health benefits, as well as land reclamation, plant breed-
ing, and nutrition and disease control,

 2. Growing concern over soil microbes and the adoption of mycorrhizal inoculants 
as a viable agrochemical substitute, and

 3. Giving more importance to sustainable agriculture and forestry by the society.

In essence, the commercialization of AM technology is a lengthy process that neces-
sitates the acquisition of technical competence and compliance with legal, ethical, 
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educational, and business criteria. However, according to Gianinazzi and Vosátka 
(2004), future AM technology should address the following requirements:

 1. Development of genetic or sensor technology to track AM inoculum in the field;
 2. Increasing data gathering on mycorrhizae ecophysiology in stressed 

environments;
 3. Developing a better knowledge of how mycorrhizae interact with the other soil 

microbes; and
 4. Identifying suitable or innovative plant species with improved mycorrhizal char-

acteristics, as well as supplementing mycorrhizae with new symbiotic properties.

8.3  Use of AM Technology in Sustainable Agriculture 
and Agroforestry

8.3.1  An Overview of the Market and Products

The economic potential of AM technology for agro-plant production in horticulture, 
agroforestry, bioremediation in degraded regions (Neill et  al. 1991; Vural et  al. 
2018), and other parts of the plant sector has recently grown due to improved scien-
tific knowledge of mycorrhizal symbioses (Tawaraya 2003). Because many impor-
tant global food crops are highly mycorrhizal-dependent plant species, they can 
profit from the addition of appropriate AMF inoculums, improving global food out-
put. Successful firms must establish crucial technical competence as well as the 
ability to conform to legal, ethical, educational, and marketing standards in order to 
construct these inoculums. Variable volumes of different fungal species, varied per-
centages of viable spores, and inputs like fertilizers and hydrogels, among other 
things, are all possibilities. Some inoculums contain just spores from a single spe-
cies, whereas others have a diverse mix. When selecting commercially manufac-
tured inoculums, it is also necessary to consider the plant’s unique requirements and 
the current soil conditions.

During the recent decade, AMF inoculum manufacturing, related services, and 
marketing for the wholesaling markets have increased considerably (Singh et  al. 
2016; Basiru et al. 2021). Commercial producers, as well as governmental and pri-
vate entities, are among the clients (Tiwari et al. 2002). While exact sales numbers 
have yet to be gathered, based on the worldwide biofertilizer industry, it can be 
determined that there is significant development potential. The worldwide biofertil-
izer market was valued at 787.8 million dollars in 2016 and is expected to grow to 
1.65–2.31 billion dollars by 2022 (Market Analysis Report 2018). During the pro-
jected year from 2017–2025, global market demand is estimated to grow by 12.9 
percent (Transparency Market Research 2018). Increased usage of biofertilizers in 
soil management operations, expansion of the organic food sector, and rising finan-
cial and environmental expenses connected with biofertilizers are all contributing to 
this tremendous surge in demand (e.g., nutrient inhibitors). Scientific proof of this 
plant symbionts’ beneficial impacts on plant health, compatibility, and production 

G. Boyno et al.



177

has fuelled the industry’s growth. In addition, when suitable inoculums are created, 
the economic viability of AM technology becomes increasingly essential. In the 
present climate-sensitive agrotechnology framework, there has been market aware-
ness that mycorrhizal crops offer a sustainable method for crop production.

8.3.2  Inoculation Strategies and Application Technology

AMF inoculation to a wide range of crop plants is critical especially in nonirrigated 
locations or in degraded soils where plants have much turmoil in developing root 
systems. New and more productive AMF isolates may now be utilized to replace the 
less successful native AMF isolates that are already present in the soil. When inocu-
lated AMF are left in the soil for a long period, their impact is considered to dimin-
ish, although they can still be sporulated (Jansa et al. 2006; Rouphael et al. 2015). 
In the context of sustainable agriculture, it is also proposed that, while perennial 
plants in agroforestry areas only require one inoculation, it may also be useful to 
introduce newly chosen AMF isolates at optimal levels. A single propagule can 
colonize a root in theory, but it may take a longer period. As a result, starting many 
infections is the greatest way to speed up the inoculum colonization phase (Sharma 
et al. 1996; Adholeya et al. 2005). Furthermore, fungal propagules must be adjacent 
to plant roots for efficient mycorrhizal colonization. The faster the root coloniza-
tion, the more AM fungal propagules are released into the root zone. The effective-
ness of this in practice will, of course, be determined by the product, the setting, the 
distribution mechanism, and various other edaphic factors. The estimation of AMF 
propagules per zone or per plant is influenced by various factors: (a) the weight or 
volume of the packet; (b) the quantity of AMF propagules present; (c) the rate at 
which the inoculum is applied to seeds or soil; (d) how well the product adheres to 
the seed; and (e) the planting density per hectare (Adholeya et al. 2005).

Various marketed inoculums that function as natural stimulants of plant growth 
and development have been launched in recent years (Gousterova et al. 2008; Khan 
et al. 2009). These inoculums are made up of plant growth-promoting microorgan-
isms (PGPM). A marketed inoculum may contain one or more AMF species, as well 
as other organisms that help the target plant acquire the required parameters, such 
as beneficial fungi or bacteria. In addition to AMF, two other PGPMs, plant growth- 
promoting rhizobacteria (PGPR) and Trichoderma, play a role in minimizing plant 
diseases and increasing plant development (Murphy et al. 2003; Harman 2006; Woo 
et al. 2006; Grover et al. 2011; Calvo-Polanco et al. 2016; Ilangumaran and Smith 
2017). Single and mixed-production PGPMs as marketed inoculums might be a 
sustainable strategy to boost plant growth while reducing external inputs and 
increasing biotic/abiotic stress tolerance (Daranas et al. 2018).

Simultaneous inoculation with diverse strains of PGPR, Trichoderma, and/or 
AMF typically resulted in improved yield and growth due to increased nutrient 
absorption when compared to single inoculation (Belimov et al. 1995; Bashan et al. 
2004; Kabdwal et al. 2019). In the case of PGPR (Kloepper 1996; Vassilev et al. 
2001a, b; Barea et al. 2002; Akköprü et al. 2005) and N2-fixing bacteria (Biró et al. 
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2000; Akköprü and Demir 2005), interactions between bacteria and AMF have posi-
tive activities in terms of nutrient absorption.

AMF and several PGPR species, including Azotobacter, Azospirillum, 
Pseudomonas, and Bacillus species, have been shown to have a synergistic relation-
ship that benefits plant growth (Barea et al. 2005a). Furthermore, when mycorrhizal 
fungi were co-inoculated with PGPR, AMF root colonization was improved 
(Gamalero et  al. 2004; Toro et  al. 1997). Plants infected with a combination of 
G. deserticola and Rhizobium trifoli had four times greater nodule counts than sin-
gle R. trifoli, resulting in grafting and increased mycorrization and nodulation with 
R. trifoli and Yarrowia lipolytica coencapsulated (Vassilev et  al. 2001a, b). 
Inoculation with AMF and nodule-inducing rhizobia increased the efficiency of P 
and N uptake (Xavier and Germida 2003). Mycorrhizal and nodule symbiosis have 
been shown to have synergistic effects on plant development, mineral nutrition, and 
infection rate (Barea et al. 2005b). Furthermore, the consortia of AMF + T. harzia-
num (Th43) (Kabdwal et al. 2019), and AMF (Rhizophagus fasciculatus) + T. viride 
(talc based) (Doley and Jite 2014) boosted the growth and crop productivity. 
Co-inoculation of both kind of microorganisms enhanced the absorption of mineral 
nutrients and growth (Gryndler et al. 2002; Medina et al. 2003). PGPM inoculation 
with commercial biofertilizers comprising consortia of various microorganisms reg-
istered significant improvement in the plant growth and yield characters (Malusà 
et al. 2001; Malusà et al. 2007; Sas-Paszt et al. 2008).

All of this research shows the usefulness and increased efficiency of biofertiliz-
ers including a greater number of species with varying growth-boosting mecha-
nisms. The availability of diverse AMF (Ijdo et al. 2011), PGPR (Lucy et al. 2004), 
and Trichoderma (Kabdwal et al. 2019) strains studied in different crop kinds and 
field circumstances should enable the development of commercially viable consor-
tia. Indeed, it should not be overlooked that as a result of some consortia created, 
PGPMs may have a detrimental impact on each other (Boyno et al. 2022).

There are just a few techniques for delivering AMF to crops in the field. Farmers 
are hesitant to invest in specialist equipment for microbial-based goods. As a result, 
marketed inoculums should be straightforward to apply using normal agricultural 
gear and procedures. Therefore, the application of these commercialized inoculums 
can be divided into five main methods: broadcasting method, in-furrow application 
method, seed dressing method, root dipping method, and seedling/sapling inocula-
tion method (Muresu et al. 2003; Adholeya et al. 2005; Malusá et al. 2012; Basiru 
et al. 2021).

8.3.2.1  Mycorrhizal fungi in transplanted crops
Seedlings are cultivated in either sterilized or unsterilized soil containing specific 
mycorrhizal fungi in a slight nursery beds or containers. They are then transplanted 
when the mycorrhizal colonization is well established. This approach has proven 
successful in generating significant and economically viable growth responses in 
crucial crops like tobacco, tomato, finger millet and chili (Rao et al. 1983; Sreeramulu 
and Bagyaraj 1986). Additionally, it has demonstrated positive outcomes in horti-
cultural crops like citrus, mango, asters, and marigold (Viyanak and Bagyaraj 1990), 
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as well as in forest tree species including Leucaena spp., Tamarindus indica, Acacia 
nilotica, and Calliandra calothyrsus (Reena and Bagyaraj 1990). This methodology 
holds promise for application in various transplanted crops significant to agricul-
ture, horticulture, and forestry. Further exploration is warranted to investigate the 
potential introduction of efficient mycorrhizal fungi to cereals through forest tree 
species in alley cropping system.

8.3.2.2  In-Furrow Application Method
Other methods that are actively used and promoted globally include various types 
of in-furrow applications (Bashan 1998; Benami et  al. 2020). This approach 
involves placing the inoculum under or besides seeds within a furrows  (Owusu- 
Bennoah and Mosse 1979; Hayman et al. 1981). Soil is applied to the seeds after 
they have been put on the inoculum. The inoculum layer will colonize the new roots 
when the seeds germinate. In fact, when the seeds germinate, exudates such as 
strigolactones, cutin monomers, and chitin-related compounds are secreted, draw-
ing AMF to the plant (Akiyama et  al. 2010; Bonfante and Genre 2015). This is 
important as it will encourage the formation of colonization and increase the amount 
of sporulation. However, it should not be ignored that some products negatively 
affect AMF as a result of the exudates they secrete. In particular, it has been reported 
that there is no symbiotic interaction between AMF and many plant species belong-
ing to the Brassicaceae, Urticaceae, Caryophyllaceae, and Chenopodiaceae fami-
lies (Brundrett 2009; Tushar and Satish 2013; Güneş et al. 2019).

As a result, the in-furrow treatment is quite effective and results in significant 
mycorrhizal colonization (Adholeya et al. 2005). However, it can be time- consuming 
when applied to wide areas (Bashan 1998).

8.3.2.3  Application of mycorrhizal fungi as a seed coating
The seed dressing method is a distinct type of inoculation technique. In this method, 
the inoculum contains an additive that has good adhesion qualities, such as gum 
acacia. This additive enhances propagule retention on the seed surface and makes 
seed dressing technology possible. The inoculated seeds are then allowed to dry. For 
long-term viability, the drying process and keeping product humidity below 5% are 
critical (Rivera and Fernandez 2006. Seedlings will be quickly colonized with this 
approach since the inoculum is in direct contact with the seed (Adholeya et  al. 
2005). It is also a promising approach since it takes less inoculum and little study 
(Sieverding 1991; Adholeya et al. 2005). In Sorghum vulgare, Rivera and Fernandez 
(2006) reported that seed dressing with marketed mycorrhizal inoculum (EcoMic) 
at a low dose of 10% of the stated dose resulted in greater root colonization (per-
cent) and an increase in fungal mycelium. Furthermore, Saleh and El-Akshar (2020) 
demonstrated that seed dressing with AMF inoculum improved rice plant morpho-
logical development and yield, as well as resistance to Bipolaris oryzae disease. The 
most straightforward way to inoculate plants with mycorrhizal fungi would be to 
coat seeds with mycorrhizal inoculum, employing techniques similar to those used 
for Rhizobium, provided it consistently yields effective infection (Bagyaraj 1992). 
This involves applying an adhesive, such as methyl cellulose, to the seeds, to which 
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the inoculum is intended to adhere. Regrettably, due to their substantial size, attach-
ing vesicular-arbuscular mycorrhizal propagules in this manner is more challenging 
than it is for bacteria. Nevertheless, this method has proven effective for large- 
seeded crops like citrus in field nurseries (Hattingh 1975).

8.3.2.4  Mycorrhizal pellets
Instead of applying vesicular-arbuscular mycorrhizal inoculum onto seeds, a 
more practical approach for seed inoculation is to create multiseeded pellets. 
These pellets, approximately 1 cm in diameter, consist of soil or peat inoculum 
containing vesicular-arbuscular mycorrhizae, stabilized with clay or other bind-
ing agents. The inoculum can be produced in a process that involves mixing the 
soil or peat with mycorrhizal spores, and forming the mixture into pellets. This 
method has proven to be effective in producing high infection rates of vesicular-
arbuscular mycorrhizae on seeds (Hayman et al. 1981). Furthermore, Hall and 
Kelson (1981) described a system that can produce approximately 5000 of these 
infected soil pellets per person per day, with seeds attached using gum arabic as 
an adhesive (Koziol et al. 2017).

8.3.2.5  Fluid drilling in mycorrhiza inoculations
The seed slurry technique for vesicular-arbuscular mycorrhizal inoculation is not 
only effective, but also presents several advantages over other methods. Firstly, the 
use of a viscous fluid helps to maintain a uniform mixture of seeds and inoculum, 
ensuring even distribution and coverage (Hayman et al. 1981) Secondly, the reduc-
tion in the bulkiness of the inoculum makes it easier to handle and apply, which can 
be especially beneficial when working with large areas. Additionally, the ability to 
combine this technique with rhizobia inoculation provides a more comprehensive 
approach to promoting healthy crop growth, particularly in leguminous plants. In 
terms of practical implementation, this method can be scaled up to cover large areas 
and can be easily integrated into existing seed sowing and soil management prac-
tices. Moreover, the benefits of vesicular-arbuscular mycorrhizal associations, such 
as improved nutrient uptake and stress tolerance, can translate into increased crop 
yields and reduced inputs, resulting in more sustainable and profitable farming 
practices.

8.3.2.6  Pre-cropping
Populations of beneficial mycorrhizal fungi can be significantly upscaled directly 
within the field condition. Mycorrhizal plants are grown and allow their infected 
roots and associated spores to remain in the soil and colonize upcoming suitable 
crops. This method along with the judicious crop rotations that incorporate mycor-
rhizal plants and organic amendments to encourage native fungal populations, gives 
a promising tactic to improve the mycorrhizal population and inoculum size within 
the field (Bagyaraj 1990). This technique is effectively applied to enhance the popu-
lation of a specific, efficient mycorrhizal fungi.

G. Boyno et al.



181

8.4  Commercialization of AM Technology

The approaches utilized in the commercialization of AM technology were classified 
into different categories (Siddiqui and Kataoka 2011). Important approaches for 
obtaining efficient AM fungal propagules have been depicted in Fig. 8.1.

8.4.1  Soil-Based Systems

The isolation of the pure culture strain of AMF using the soil-based approach 
involves the phases of host plant selection and growth environment optimization 
(Siddiqui and Kataoka 2011; Fig. 8.1). The host plants and the fungi are cultivated 
in a solid growth medium such as soil, vermiculite, sand, clay, perlite, or other types 
of mixed bark in this traditional and extensively used technique (Brundrett et al. 
1996; Douds Jr et al. 2010). Traditional sand-based pot culture techniques do not 
generate enough mycorrhizal inoculum, and it is frequently contaminated by other 
bacteria. Pesticides such as Captan and Furadan, when used at half the authorized 
dosage in pot cultures, have been shown to reduce other microbial contaminants 
leaving no pernicious effect on mycorrhizal fungi (Bagyaraj 1992). It has been 
proven to be quite useful in creating “clean” mycorrhizal inoculum with great 
potential in a short amount of time (Bagyaraj 1992; Akhtar and Panwar 2011). Solid 

Fig. 8.1 Different methods used for large-scale production of AM fungi. The main logic of the 
techniques used in commercialization is to obtain a high amount of AM propagules
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growth culture inoculum is also heavy, difficult to transport, and too bulky to make 
it ultra. Inoculum generation is affected by different particle size distributions of 
substrates. It is also claimed that the best substrate for optimal production has a low 
nutrient and carbon content (Siddiqui and Kataoka 2011). Phosphorus (P), for 
example, is rapidly absorbed from soil particles, resulting in Pi-free zones in the 
plant’s rhizosphere soil. Mycorrhizal roots’ extraradical hyphae stretch beyond 
these P-depleted areas, bringing inaccessible Pi to plants and making it available to 
them (Etesami and Jeong 2021). As a result, in soils low in nutrients, mycorrhizae 
thrive to reach these nutrients. This aspect is considered an important concept for 
optimum production.

8.4.2  Aeroponic Culture

It is a soil-free cultivation technique in which plant roots are sprayed with nutri-
tional solutions on a regular or continuous basis (Jarstfer and Sylvia 1995; 
Mohammad et al. 2000). Several Glomus species have been tested through aero-
ponic cultivation and found promising results (Tiwari et al. 2004, 2020). An inocu-
lum generally takes 12–15 weeks to obtain. The roots are colonized after 9 weeks, 
and spore production takes 12 weeks (Sylvia and Hubbell 1986; Mohammad et al. 
2000). This has several drawbacks, as the system is also susceptible to other unde-
sirable microorganisms. In addition, the nutritional solution and flow must be moni-
tored regularly. Standardization of droplet size is required for successful aeroponic 
growth because the droplets must adhere to the root system for a significant amount 
of time. In experiments utilizing it to cultivate Bahia grass (Paspalum notatum) and 
sweet potato (Ipomoea batatas), a droplet size of 45 mm is optimum (Hung and 
Sylvia 1988; Wu et al. 1995). Because the fungus can colonize, and sporulate with-
out a substrate, it is a one of the suitable method for obtaining enough pure AMF- 
propagules (Abdul-Khaliq et al. 2001).

8.4.3  Root-Organ Culture Technique (Monoxenic Culture)

Researchers have succeeded in obtaining AMF in vitro cultures using various meth-
ods (e.g., soil-based systems and aeroponic culture) (Gaur and Adholeya 1994; 
Aryal 2017) (Fig. 8.1). These culturing procedures result in considerable financial 
benefits (Aryal 2017). The root organ culture approach enables the successful and 
large-scale generation of mycorrhizal spores in this context (Ijdo et  al. 2011). 
Samples are obtained from application regions or various rhizosphere soils, and 
AMF generation is carried out in vivo by trap plants in this approach. The most 
important of these trap plants is the Zea mays plant. Because the roots of Z. mays are 
known to be quite successful in establishing a symbiotic relationship with many 
AMF (Mathur et al. 2018; Hu et al. 2019), the procedure outlined by Gerdemann 
and Nicolson (1963) is then used to isolate healthy AMF spores from pot culture 
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using the wet sieving method. These spores are used to inoculate petri dishes with 
minimal (M) medium (Bécard and Fortin 1988).

Surface sterilization of AMF spores can be done by combining Chloramine-T 
with Tween-20 (0.1 percent v/v) for 10 min or washing with various antibiotic solu-
tions. Mycorrhizal spores that have been surface-sterilized can be aseptically trans-
planted onto fine roots of carrots that have been converted with Ri-T-DNA and put 
on M medium, also known as white medium (Bécard and Fortin 1988; Adholeya 
et  al. 2005) or Strullu-Romand (MSR) medium (Strullu and Romand 1986) 
(Fig.  8.1). Doner and Bécard (1991) found that the M medium in the two- 
compartment petri dish is deficient in sucrose, allowing spores to increase in the 
absence of roots. Every 15 weeks, clonally subculture the spores and root- containing 
media produced here in a two-compartment petri plate (St-Arnaud et al. 1996). This 
subcultured media should be injected with Agrobacterium rhizogenes bacteria to 
boost its growth potential (Bécard and Fortin 1988). According to Kumar and Yadav 
(2018), roots with 10–50 clusters of mycorrhizal spores are cut and transplanted to 
new receiver operating characteristic (ROC) medium plates with fresh roots in this 
arrangement. After 3 months of incubation at 26 °C, the spores generated on ROC 
plates are cut with a sterile knife and transferred to a falcon tube with 15 mL of 
citrate buffer. After that, the spores are shaken horizontally at 250 U/min for 60 min 
at 37 °C. To collect the residue at the bottom of the tube, let the spores be at room 
temperature for 10  min. The supernatant is then discarded, and the spores are 
washed with autoclaved Milli Q water, filtered through a sieve, and collected in 
tubes at −20 °C (Kumar and Yadav 2018).

Several species, including Rhizophagus intraradices, have been successfully 
mass-produced using AM technology. After a 4-month growth period in a single- 
compartment petri dish, Chabot et  al. (1992) developed 750 spores in a 30  ml 
medium using surface-sterilized spores as starting material. After 3 months of incu-
bation, Diop et al. (1994) got around 890 spores utilizing cut roots as the original 
inoculum. Jolicoeur et al. (1999) used an innovative airlift bioreactor-based manu-
facturing method. Cultures of the R. intraradices in Daucus carota roots were pro-
duced from spores obtained from soil, as reported by Chabot et al. (1992). Colonized 
root sections were transferred to a clean solid M medium in petri plates every 
∼3 months for the cultivation of the root-fungus pair (Bécard and Fortin 1988). At 
26  ±  1  °C, all petri plates were incubated in the dark. Mycorrhizal roots were 
removed, chopped into 1 cm sections using a knife, and placed into a bioreactor 
without the inoculum gel component. Researchers collected 12,400 spores per litre 
of media at the end of the operation (Jolicoeur et al. 1999). At 3–4 months, St-Arnaud 
et  al. (1996) collected 15,000 spores in a two-compartment petri plate. Douds 
(2002) created this two-chamber system by periodically changing the distal, medium 
chamber with the new medium. This technique yielded 65,000 spores on the distal 
side of the two chambers over 7 months. The infective propagules of AM fungi were 
recovered by avoiding severe contaminations  (Tiwari et  al.  2002; Adholeya 
et al. 2005).
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8.4.4  Technique of Nutrient Film (NFT)

NFT is a specialized commercial agricultural production system that recycles enor-
mous volumes of nutrient fluid on a continuous basis on a film that runs over plant 
roots. MacDonald (1981) created axenic mycorrhizas between Glomus caledonium 
and Trifolium parviflorum and others using a small autoclave hydroponic growth 
system. However, Mosse and Thompson (1984) modified this method for the genera-
tion of AMF inoculum. Furthermore, Lee and George (2005) developed a modified 
NFT enabling large-scale AMF biomass production combining intermittent nutrient 
supply, optimized P source, and increased aeration with the utilization of glass beads 
as support materials. In addition, the average number of spores of total AMF 
(G. manihotis, G. etunicatum, Glomus sp, Gigaspora margarita, and Acaulospora 
tuberculata) was determined to be 1783–2023.30 spores/50 g (Karti et al. 2021).

The nutrient solution in the NFT system must be kept as a thin film (5–10 mm). 
Mycorrhizal inoculation is also affected by chemical types of nutrients. As a result, 
it is preferable to employ a well-balanced and appropriate composition. NFT can 
yield less sporulation than soil-based systems. Contamination issues with undesir-
able organisms often arise as a result of the nutrient solution utilized. The optimal 
amounts of various nutritional components vary per mycorrhizal system, based on 
the plant’s size and other characteristics (Sharma et  al. 2000). Another factor to 
consider is the trade-off between growing plants and mycorrhizal colonization, 
which is impeded by soggy conditions (Tarafdar 1995). The inoculum created by 
this method, on the other hand, is more concentrated and bulkier than that generated 
by plants growing in soil or other solid media, and it can be collected more easily 
(Chellappan et al. 2002; Abdul-Khaliq et al. 2001).

8.4.5  Inoculum Made of Polymers

Polymers are frequently utilized for a variety of applications in biotechnological 
operations. Gel materials are mostly employed to immobilize live cells, but some 
are also utilized as components of solid medium for microorganism maintenance.

Hydrogels are the most convenient way to apply polymer materials without hav-
ing to go through the technical encapsulating process (Vassilev et al. 2005). Many 
hydrogels were used as transporters of AMF in root-dip and fluid-drill area and 
greenhouse experiments (Nemec and Ferguson 1985; Johnson and Hummel 1985); 
however, the pH ranges of the gel substances prevented root colonization and spore 
germination (Hung et  al. 1991; Calvet et  al. 1996; Plenchette and Strullu 2003; 
Jaizme-Vega et al. 2003).

Microbial cells are frequently retained or encapsulated in polymer materials as a 
strong immobilization technique. The purpose of this method is to keep spores or 
cells within porous materials created in situ surround biomaterial. Synthetic poly-
mers are not required in mycorrhizal inoculant compositions. The transporter must 
be reasonably priced and suitable for the materials used in the product’s construc-
tion. Natural polysaccharides and other hydrophilic hydrogels were utilized as car-
rier materials. Natural polysaccharides including kappa-carrageenan, agar, and 
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alginates come in a variety of natural, synthetic, and semi-synthetic polymer com-
binations. Of the roughly 1350 carrier combinations in use, calcium alginates are 
the most commonly utilized (Vassilev et  al. 2005). Alginate beads provide more 
flexibility in the encapsulation and inoculation of monoxenically generated AMF 
(Diop 2003). Flavonoids should be included in these capsules as well (Bécard and 
Piché 1989; Gianinazzi-Pearson et al. 1996; Siddiqui and Kataoka 2011).

8.4.6  Integrated Method

Mycorrhizal symbiosis should be viewed as more than just a bipartite plant–fungus 
relationship; it should also include the related organisms (Frey-Klett et al. 2007; 
Tarkka and Frey-Klett 2008). The “mycorrhizosphere” is the result of these 
mycorrhiza- associated organisms influencing one other (Frey-Klett and Garbaye 
2005). The mycorrhizosphere is made up of mycorrhizas, extramatrical mycelium, 
and related microorganisms. The interaction of bacterial species with AMF increases 
propagules (AMF structures such as spores, hyphae) and AMF colonization rates, 
especially in this mycorizosphere (Barea et al. 2002; Akköprü et al. 2005; Pathak 
et  al. 2017). The use of “mycorrhizal helper bacteria (MHB)” in this context 
enhances AMF symbiosis in a variety of agricultural plants (Tarkka and Frey- 
Klett 2008).

Several researchers have examined the function of MHB in the genesis and 
development of various species of AMF (Siddiqui and Mahmood 1998; Vosatka 
et al. 1999; Frey-Klett et al. 2007; Tarkka and Frey-Klett 2008). The correct estab-
lishment of in vitro-generated plantlets in field circumstances can be achieved by 
combining and carefully applying AMF and PGPR. PGPR improved mycorrhizal 
colonization, according to Bhowmik and Singh (2004), and might be used to mass- 
produce AMF cultures. Silva et al. (2007) found that adding Tris–HCl buffer to the 
substrate improved AMF sporulation. According to these researchers, large-scale 
inoculum formation may be accomplished by adding Tris–HCl buffer to the nutri-
tional solution and storing it at +4 °C.

One explanation for improved plant growth is the association of nitrogen fixers 
and P-solubilizers with AMF (Turk et al. 2006), and these connections are useful in 
increasing micropropagated plant survival rates (Webster et  al. 1995). 
Bradyrhizobium, Rhizobium, and Frankia are microorganisms that can aid in mass- 
produce AMF in vitro by improving soil-binding stability, capacity, and qualities 
that make the soil favourable to the growth of micro-propagated plantlets like 
mycorrhizae (Varma and Schuepp 1995).

8.5  Challenges to Commercial Use

Even though mycorrhizal research has just achieved a critical mass, it is essential to 
identify the obstacles in their commercialization. The inability to develop AMF in 
pure culture in particular is a significant disadvantage (Sharma et al. 2017). It can 
only be cultivated with plants by adding inoculum under certain conditions, 
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according to the available knowledge, and it cannot be easily mass-produced in 
laboratory conditions (Sharma et  al. 2017; Kadian et  al. 2018). Currently, the 
mycorrhizal inoculum is created as another non-sterile substrate, including a non-
sterile medium, soil, and propagule (spores, hyphae, and colonized root fragments) 
in the majority of the samples. Counterfeit bio-products are another issue in com-
mercializing AM technology. Increased sales of counterfeit bio-products, a dearth 
of live quality control procedures, and fewer propagule numbers than advertised in 
many products all hurt AM technology (Nagpal et al. 2021). Counterfeit mycorrhi-
zal products have a major impact on the natural resource driven products. In addi-
tion, the composition of the carrier medium and the quantity of active spores per 
unit weight/volume varies considerably among commercial suppliers. The fact that 
these fungi grow slower than other microbes, limits their use in large-scale farming. 
One of the challenges that mycorrhizal inoculum manufacturers confront is finding 
consumers in the agricultural and agroforestry sectors. In fact, in both established 
and emerging areas, the “organic” sector is regarded to be one of the most profitable 
segments in which mycorrhizal technologies may penetrate. Organic agricultural 
sectors are anticipated to have the largest value and profit margins, at least in indus-
trialized countries, because marketed mycorrhizal inoculums can supplement or 
even replace conventional and chemical-based fertilizers (Vosátka et  al. 2008). 
However, the market’s progress is limited by a lack of awareness in prospective 
emerging nations, poor infrastructure, money, and a lack of knowledge of critical 
mycorrhizal characteristics. Plant mycorrhization in agroforestry and sustainable 
agriculture has drawn a lot of attention in recent years because of its role as a bio-
fertilizer to boost host development. However, further effort is needed to identify 
acceptable local AM fungal strains for high-quality crop production and educate 
farmers in developing countries about the function of mycorrhiza in agroforestry 
and sustainable agricultural systems (Dobo et al. 2018). Also, due to shelf life or 
unclear storage stability, production constraints and technological challenges, as 
well as the time and labour needed to cultivate appropriate numbers of propagules, 
mycorrhizal markets are not very convincing (Benami et al. 2020).

8.6  Formulation of AM Technology

Today, commercialized AM technology is available in several forms. Some busi-
nesses sell a single mycorrhiza strain along with a carrier. However, most businesses 
sell microorganisms in the form of mixtures using different substrates.

Formulation methods account for possible negative environmental impacts as 
well as ingredients that might render the inoculum ineffective. To create a substance 
that can be efficiently transported to the intended application, a combination of 
microbial propagules with a variety of transporters or excipients is utilized. There 
have been several different mycorrhizal inoculum compositions proposed. Glass 
beads (Redecker et al. 1995) and expanded clay (Plenchette et al. 1983; Adholeya 
et al. 2005) have been utilized in research laboratories and the commercial sector, 
respectively. These formulations benefit from permitting the spontaneous retention 
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of mycorrhizal roots and spores during the growth period in greenhouse settings. 
Mycorrhizal invaginations can settle in the porous structure of the beads, which has 
many air gaps. Inoculum can also be mixed with carriers like air-dried sand, ver-
miculite, and soil (Millner and Kitt 1992). Liquid and powder inoculum, granules or 
tablets/pellets, granules and gel beads are all examples of mycorrhizal inoculum. 
Glomus spp. intraradical vesicles/spores can likewise be preserved and utilized as 
such in alginate beads (Redecker et al. 1995). Under controlled settings, intraradical 
elements isolated in such beads have been found to regenerate and colonize new 
roots (Strullu and Plenchette 1991). Trapping monoxenically generated spores in 
alginate particles has also been demonstrated to be successful (Declerck et al. 1996).

8.7  Conclusions and Future Prospects

Mycorrhizal fungi can help restore economic efficiency and environmental safety 
by increasing natural and managed ecosystems without depleting natural resources. 
They can also help lower fertilizer prices and energy demands, restoring economic 
efficiency and environmental protection. Appropriate mycorrhizal inoculums, on 
the other hand, improve biocontrol potential in a wide range of agricultural and soil 
characteristics in both academic and commercial settings worldwide. Under tradi-
tional agroecology or agroforestry, the main challenges in commercializing AM 
technology are a lack of large-scale field testing and appropriate finance. 
Manufacturers and distributors of mycorrhizal inoculum also confront similar prob-
lems across the world. To satisfy the needs of a broad client base, these constraints 
involve the need to modify products, boost market knowledge, and develop more 
effective distribution tactics. Concerning its commercialization plan, AM technol-
ogy must be competent, efficient, and enlightening to succeed. Another requirement 
is to foster an entrepreneurial culture within the company, supported by excellent 
research infrastructure, networking, and financing. Mycorrhizal bio-fertilizers are 
expected to become a trustworthy partner with chemical inputs in the upcoming 
years, benefiting from agricultural, economic, and social perspectives. Carrier cost 
is a significant factor in commercial process development since the cost of the com-
pleted product grows with each stage of the manufacturing process. A suitable for-
mulation carrier should be cheap (preferably from locally available nontoxic waste) 
and have no negative impacts on mycorrhizal symbiosis. It should also be simple to 
use and apply so that maximum dispersion is achieved. In potted plants, the formu-
lation should allow for early breakdown or dissemination (for pellets, granules, and 
tablets). Because the roots and mycorrhizal propagules may not make contact if the 
transporter is too firmly adherent and does not disintegrate after watering, the impact 
may be reduced. Growth conditions should be strictly controlled, with specific care 
devoted to retaining the inoculum’s potency. Even a minor error might cause the 
organism to lose viability, discouraging the end user from using these techniques in 
agriculture. Growth conditions should be strictly controlled, with specific care 
devoted to retaining the inoculum’s potency. Even a little inaccuracy might result in 
the organism losing viability, deterring farmers from employing these approaches.
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