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Preface

In recent years, the concept of agroecosystem restoration has gained significant 
attention among ecologists, environmentalists, and policymakers worldwide. The 
term refers to the process of restoring the ecological integrity of degraded agricul-
tural landscapes by adopting sustainable and holistic approaches. One of the key 
challenges in agroecosystem restoration is to rebuild the soil health, which is often 
compromised due to poor agriculture practices.

Mycorrhiza, a symbiotic association between fungi and plant roots, has emerged 
as a promising tool for improving soil health and enhancing the sustainability of 
agroecosystems. The use of mycorrhiza in agroecosystem restoration has gained 
momentum in recent years due to its potential to improve soil structure, increase 
nutrient uptake, enhance plant growth, and mitigate the negative impacts of abiotic 
and biotic stresses. This book, Mycorrhizal Symbiosis and Agroecosystem 
Restoration, is an attempt to provide a comprehensive overview of the current state 
of knowledge on mycorrhizal symbiosis and its potential applications in agroeco-
system restoration. The book is divided into three parts. The chapters presented in 
this book provide valuable insights into the diversity and function of arbuscular 
mycorrhizal fungi, the impact of environmental changes on mycorrhizal symbiosis, 
and the potential for mycorrhizal inoculation in plant health amelioration. The cru-
cial role of mycorrhizal symbiosis in achieving global food security has also been 
presented. It highlights the benefits of mycorrhizal inoculation in enhancing plant 
growth, increasing nutrient uptake, and improving soil health. The chapter evaluates 
different methods of mycorrhizal inoculation and their effectiveness in promoting 
plant growth, enhancing nutrient uptake, and mitigating the negative impacts of 
biotic and abiotic stresses. Part II of the book delves into the role of arbuscular 
mycorrhizal symbiosis in plant nutrient acquisition and disease management. The 
chapters focus on the importance of root exudates in facilitating nutrient acquisition 
through arbuscular mycorrhizal symbiosis. The chapters provide insights into the 
importance of understanding of the interactions between root exudates, mycorrhizal 
fungi, and soil nutrients in developing sustainable agricultural practices. The authors 
discuss advancement in mycorrhizal fungi-based sustainable plant disease manage-
ment. The chapters underscore the potential for mycorrhizal fungi to serve as a 
sustainable alternative to chemical pesticides for plant disease management. 
Furthermore, chapter also evaluates the potential of mycorrhizal fungi in phytone-
matode management in different agro-climatic zones. The literature discusses the 
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role of mycorrhizal fungi in reducing nematode populations through changes in soil 
microbial communities and plant growth promotion. The book further explores the 
importance of commercialization of arbuscular mycorrhizal technology in sustain-
able agriculture, the interaction between mycorrhiza and pathogens during first 
sight recognition, and the influence of arbuscular mycorrhizal fungi on soil health 
and plant fitness under hostile environments. These chapters provide insights into 
the challenges and opportunities in scaling up the use of mycorrhizal technology in 
agriculture, the mechanisms behind mycorrhiza–pathogen interactions, and the 
potential for mycorrhizal fungi to improve soil health and plant fitness in stressful 
environments. 

As we bring this book Mycorrhizal Symbiosis and Agroecosystem Restoration to 
its completion, it is incumbent upon us to express our deep sense of gratitude to the 
numerous individuals and organizations who have played a crucial role in the suc-
cess of this project. Foremost among them are our families, whose constant and 
unfaltering support has served as a powerful anchor during the long and often ardu-
ous process of researching, writing, and editing this book. Their unwavering pres-
ence and emotional backing have been pivotal in sustaining our grit and resilience, 
and we cannot thank them enough for their unflagging commitment. We would also 
like to extend our heartfelt appreciation to the many colleagues and collaborators 
who have generously given their time, expertise, and insights into our research on 
mycorrhizal ecology and ecosystem  restoration. Their contributions have been 
invaluable in shaping the scientific and practical recommendations presented in this 
book, and we are indebted to their boundless spirit of inquiry and partnership. We 
would also like to express our deep appreciation to the reviewers who have rigor-
ously and constructively scrutinized our manuscript, offering insightful comments, 
critiques, and suggestions that have significantly enhanced the rigor and impact of 
this book. Their painstaking efforts have been critical in ensuring that the informa-
tion presented in this book is accurate, up-to-date, and relevant to the scientific and 
practical communities. Moreover, we would like to express our deep appreciation to 
the farmers, land managers, and restoration practitioners who have participated in 
mycorrhiza in agroecosystem restoration driven research, providing us with their 
rich and diverse practical knowledge, experiences, and challenges. Their invaluable 
insights and contributions have been critical in developing the various recommenda-
tions, and we are immensely grateful for their generosity, commitment, and partner-
ship. Finally, we acknowledge and express our profound gratitude to the readers of 
this book, who we hope will be inspired and informed by the research and practical 
skills presented here. We believe this book represents a significant contribution to 
the field of mycorrhizal ecology and restoration, and we hope it will encourage 
readers to explore and contribute to this vital and emerging area of research and 
practice. We are humbled and profoundly grateful for the support and encourage-
ment of the many individuals and organizations who have contributed to the devel-
opment of this book. Their selfless efforts, unwavering commitment, and visionary 
support have been pivotal in making this book a reality, and we are deeply grateful 
for their presence in our lives and in the scientific and practical communities.

Preface
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We would like to extend our heartfelt gratitude to Prof. Mohammad Gulrez, Vice 
Chancellor of our esteemed institution, Aligarh Muslim University, Aligarh, for his 
outstanding support and encouragement to pursue research and development activi-
ties. Under his visionary leadership, the university has taken remarkable strides in 
the field of agricultural sciences besides other sciences and humanities. His unwav-
ering commitment to promoting academic excellence and research culture has been 
a great source of inspiration for us.

Our heartfelt thanks go to Prof. Akram Ahmad Khan, the Dean of the Faculty of 
Agricultural Sciences, for his constant support and encouragement throughout this 
project. We are also indebted to Prof. Mujeebur Rahman Khan, Chairperson, 
Department of Plant Protection and Prof. M. Badruzzaman Siddiqui, Chairperson, 
Department of Botany for their valuable suggestions that have been instrumental in 
shaping the content of this book. Our deepest gratitude goes to Prof. Saghir Ahmad 
Ansari, who has always motivated us, and made critical suggestions to this work 
with his vast knowledge and extensive research experience in the field of agricul-
tural sciences. We are also thankful to the esteemed professors, including Prof. Zaki 
Anwer Siddiqui, Prof. Iqbal Ahmad, Prof. Malik Ahmad, Prof. Saghir Ahmad Khan, 
Prof. Anwar Shahzad, Prof. Abrar Ahmad Khan, and Prof. Masroor Akhtar Khan, 
for their invaluable feedback, suggestions, and support throughout this project. 
Their expertise and knowledge in the field have been instrumental in shaping the 
content of this book. We would also like to express our gratitude to the talented and 
dedicated researchers, Dr. Aisha Sumbul, Dr. Safiuddin, Dr. Raees Ullah Khan, Dr. 
Athar Ali Khan, Dr. Tariq Aftab, Dr. Sana Chaudhary, Dr. Faheem Ahmad, Dr. Syed 
Kamran Ahmad, Dr. Ziaul Haque, and Dr. Tahir Mohammad Chauhan, for their 
motivational support during the writing of this work. 

We have dreamt of writing this book, but it would not have been possible without 
a constant source of inspiration from our family members. They deserve special 
thanks from the den of hearts and our sincere apologies to them if we would have 
done any unacceptable activity during the writing process.

Aligarh, India� Rizwan Ali Ansari  
Aligarh, India � Rose Rizvi  
Aligarh, India � Irshad Mahmood   
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1Diversity of Arbuscular Mycorrhizal 
Fungi in Mined Land: Distribution 
and Function in Reclamation of Mined 
Land Ecosystems

Thangavelu Muthukumar and Arumugam Karthikeyan

Abstract

Arbuscular mycorrhizal (AM) fungi are the most widespread and functionally 
important symbionts of diverse plant species. The  AM fungi are likely to be 
affected by anthropogenic activities like mining. The potential of AM fungi to 
improve plant growth in stressed environments has led to their inclusion along 
with plants in the restoration of mined areas. Still, our understanding of the 
diversity of AM fungi in response to mining activities remains limited. In this 
chapter, we provide a summary of the diversity of AM fungi in mining and res-
toration areas, the influence of different mining activities on AM fungal com-
munities and root colonization, the role of AM fungi in improving soil structure 
and function, and the effect of AM fungi on plant growth in mine substrates 
under controlled and field conditions. Changes in AM fungal communities have 
been detected both in roots and soils using conventional and molecular tech-
niques in response to mining activities. However, the majority of studies do 
report an increased diversity of AM fungi in post-mining sites with time. 
Generally, moderate to high AM colonization levels are reported in revegetated 
plant species or those naturally colonizing mined areas. Inoculation of AM fungi 
individually or along with plant growth-promoting microorganisms in nurseries 
has been shown to increase growth and nutrient content in plants intended for 
planting in mining areas. Once transplanted onto mining sites, AM plants exhibit 
a better survival rate, increased growth, and improved nutrient uptake. This chap-
ter highlights current knowledge on the role of AM fungi in the restoration of 
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mine sites and some future research areas that could help in better exploitation of 
this symbiosis in stressed environments.

Keywords

Heavy metals · Endophytic fungi · Mycorrhization · Arbuscules · Glomeromycota 
· Nutrient acquisition · Stressed ecosystem

1.1	� Introduction

Mining and its related activities remove topsoil, destroy vegetation, and release sev-
eral harmful inorganic and organic pollutants into the environment. The contami-
nants originating from the mining areas, in addition to seeping into the soil and 
contaminating the surface and ground waters, also enter the food chain (He et al. 
2005). Mine wastes are dumped into the soil, and abandoned mine sites are one of 
the most common marginal lands in industrialized countries (Gibbs and Salmon 
2015). Environmental constraints that already exist before soil contamination com-
bine synergistically with the properties of mine refuse to aggravate the degradation 
of the environment, soil and water pollution, loss of biodiversity, and cause health 
concerns to humans (Confalonieri et al. 2014). Mine spoils are highly unstable with 
limited cohesion, reduced water holding capacity, high acidity, increased heavy 
metal toxicity, and low organic matter and nutrient content. These physical, chemi-
cal, and mechanical properties render mine spoils unsuitable for biological activities 
(Yan et al. 2020). The toxicity and the availability of heavy metals in the soils are 
long-lasting and determined by the total concentrations, chemical form, and soil 
factors (Rodríguez et al. 2009). Mining activities negatively affect soil microbial 
communities and drastically affect their population and activities. Moreover, bio-
geochemical cycles and establishment of plant cover are severely affected in mining 
areas due to the reduction or removal of microorganisms that are fundamental for 
these ecosystem processes. Therefore, all these need considerations for effective 
remediation of a particular site containing mining wastes. Revegetation of mine 
spoils is a formidable task, and the establishment of natural plant cover or restora-
tion of soil fertility over these degraded areas is a very slow process (Barbosa and 
Fernando 2018). Still, the use of pioneer plants or native plant species is one of the 
important steps in establishing plant cover over sites affected by mining activities. 
The success of vegetation restoration could be increased if the plants can ameliorate 
the different abiotic and biotic stresses existing like the heavy metal toxicity and 
extreme soil reactivity. However, the addition to organic matter amendments and 
inoculating soil microorganisms are essential and useful for the establishment and 
survival of plants and the formation of plant communities in deteriorated soils 
(Wang et al. 2017a). Therefore, the aim of this chapter is to integrate information 
from the literature pertaining to the diversity of AM fungi in mined sites and the role 
of AM fungi in the restoration of vegetation on sites subjected to mining 
disturbance.

T. Muthukumar and A. Karthikeyan
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1.2	� Microbial Diversity in Mine Spoils

Soil microorganisms play a pivotal role in many ecological processes. Mining activ-
ities drastically alter the populations and activities of soil microorganisms both in 
the mining and surrounding areas. Studies have shown that the diversity and meta-
bolic activities of bacteria can vary with different levels of mining impact (Fernandes 
et al. 2018). Mining affects the principal drivers of microbial communities in the 
soil like the pH, carbon, moisture, and plants. Thus, vegetation development on bar-
ren post-mine sites is curtailed by the low abundance or absence of microorganisms 
that are essential for plant establishment and nutrient cycling (Hart et al. 2019). An 
analysis of bacterial community structure in response to mercury contamination in 
a traditional gold mining waste disposal site in North Sulawesi suggested that the 
high level of soil mercury reduced the diversity and abundance of bacterial phyla 
(Kepel et al. 2020). In addition, mercury contamination also resulted in a shift in the 
dominance of bacterial phyla and lower taxa when compared to unpolluted soils 
(Kepel et al. 2020). Like bacteria, fungal communities in the soil are important as 
they perform key functions like nutrient turnover, helping plants directly through 
the formation of mycorrhizas and decomposition of organic matter (Ansari and 
Mahmood 2017, 2019a, b; Ansari et al. 2017a, b). However, fungal communities are 
not routinely examined during ecosystem restoration unlike bacteria (Yan et  al. 
2018). Moreover, information is meager on how soil fungal communities respond to 
mining activities  and post-mining restoration of the disturbed areas despite their 
direct link with higher trophic levels (Hart et al. 2019). In addition to abiotic condi-
tions, substrate conditions greatly affect the establishment and existence of fungal 
communities in the soil (Ohsowski et al. 2012). For example, the use of overburden 
(soil from deep profiles) failed to restore the fungal community in sand mine resto-
ration sites in South Western Australia even after 13 years (Hart et al. 2019). Further, 
bacterial and fungal communities may respond variedly to a mining disturbance. 
Chen et al. (2020) studied the composition of fungal and bacterial communities in 
an opencast coal mine in an Inner Mongolian region. The observations of the study 
showed that although there was an alteration in the structure of both fungal and 
bacterial communities by the mining disturbance, there was an increase in the abun-
dance of microorganisms with coal degradation and detoxification of pollutant 
capabilities. Surprisingly, bacterial communities were less stable than fungal com-
munities (Chen et al. 2020).

Mining activities also affect the population abundance of mycorrhizal fungi that 
form an association with plants. These fungi are bipartite with part of their thallus 
within plant roots and the rest in the surrounding soil. The majority of plants (>80%) 
growing on mining-disturbed sites are mycorrhizal (Wang 2017). Many studies 
examining the role of mycorrhizal fungi have reported a positive influence of these 
fungi on habitat restoration. Although there are different types of mycorrhizal sym-
biosis, the most common types are the ectomycorrhiza and arbuscular mycorrhiza 
found in more than 75% of the plants in natural and manmade ecosystems (Brundrett 
and Tedersoo 2018). As ectomycorrhiza is restricted to arborescent forms, arbuscu-
lar mycorrhiza occurs in diverse plant forms and plant groups. Studies have shown 

1  Diversity of Arbuscular Mycorrhizal Fungi in Mined Land: Distribution and…
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that mining disturbance could affect both ectomycorrhizal and AM symbiosis 
(Correia et al. 2021; Suting and Devi 2021), and both these mycorrhizal types can 
aid in the restoration of disturbed sites (Wang 2017; Policelli et al. 2020).

1.3	� AM Fungi

The AM fungi are one of the most widespread soil-borne fungi that form an associa-
tion with the majority of land plants growing in diverse ecosystems. This symbiosis 
between plants and AM fungi has evolved some 400 million years ago and played 
an important role in the colonization of terrestrial habitats by plants (Selosse et al. 
2015). All the AM fungi forming a symbiosis with terrestrial plants are placed in the 
sub-phyla Glomeromycotina and Mucoromycotina of the phylum Mucoromycota 
(Spatafora et al. 2016). There are approximately 342 validly described species in 43 
genera in four orders Archaeosporales, Diversisporales, Glomerales, and 
Paraglomerales in Glomeromycotina as of May 2021 (http://www.amf-phylogeny.
com). The fine root endophyte Planticonsortium placed in Mucoromycotina forms 
an association with diverse plant forms like the glomeromycotean fungi (Orchard 
et al. 2017). The colonization of plant roots is facilitated by the AM fungal hyphae 
emerging from a germinating spore or mycorrhizal root. The fungi enter plant roots, 
and there is a wide array of signal exchanges between the fungi and plant root dur-
ing the processes of mycorrhization (Gobbato 2015). The entry of the fungus into 
the plant root system is often characterized by the formation of an appressorium on 
the root surface (Fig. 1.1). Once inside the roots, the AM fungal hyphae traverse the 
roots inter- or intra-cellularly. The fungus forms short-living arbuscules in root cor-
tical cells which act as a transit point for nutrient exchange between the host and the 
fungus (Fig.  1.1). The development of arbuscules is determined by the nutrient 
demand of the plant host and maybe either be elaborated or rudimentary based on 
the type of AM colonization (Kobae et al. 2016). Nevertheless, arbuscules are usu-
ally absent under conditions where the symbiosis is non-functional and in 8% of the 
non-mycorrhizal plant species (Brundrett and Tedersoo 2018; Cosme et al. 2018). 
The fungal hyphae may be either linear or coiled. Based on the hyphal and arbuscu-
lar nature, the AM colonization in plant roots is categorized into Arum-, Paris-, and 
intermediate-type (Dickson et al. 2007). In addition to these structures, most AM 
fungi except those in Gigasporaceae of Diversisporales form lipid-filled storage 
structures in the root called vesicles (Fig. 1.1).

Nevertheless, AM fungi in Gigasporaceae form vesicle-like structures in the soil 
called auxiliary cells. In addition to these intra-radical structures, the AM fungi also 
develop spores in the soil and some instances within roots. These soil-borne spores 
act as the chief perennating organ of the fungus in soils covered by seasonal vegeta-
tion. As AM fungi are obligate symbionts, they depend on the host photosynthates 
that are exchanged for nutrients. The transfer of carbon from the host plant to AM 
fungus is in the form of hexose sugars and lipids (Andrino et al. 2021). Experimental 
studies have shown that the host plant transfers around 4–20% of the photosynthetic 
carbon to the AM fungus (Parihar et al. 2020).
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Fig. 1.1  (a–e) Arbuscular mycorrhizal colonization in roots of forestry species used in reclama-
tion of mine spoils. (a) Extramatrical hyphae (emh) and appressorium (ap) in roots of Dalbergia 
latifolia; (b) Arbuscule (a) with arbuscular trunk (at) in root cortical cell of Thespesia populnea; 
(c) Hyphal coils (hc) in root cortex of Acacia planifrons; (d) Arbusculate coils (ac) in A. planifrons; 
(e) Vesicles (v) in Casuarina equisetifolia. Scale bars = 50 μm
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1.3.1	� Plant Benefit from AM Symbiosis

Although AM symbiosis is often cited as an example of mutualism studies do indi-
cate that the association is more of a mutualism-parasitism continuum (Smith and 
Smith 2013). The extraradical mycelium of AM fungi originating from mycorrhizal 
roots extends into the soil well beyond the nutrient depletion zones surrounding the 
roots and promotes nutrient exploration that is otherwise unavailable to plant roots 
(Ansari et al. 2019a, b). In addition, the extraradical mycelium also connects roots 
of coexisting plants in natural and agroecosystems forming a common mycorrhizal 
network (CMN). The CMN is an important component of soil ecosystems and has 
a significant influence on plant communities including the establishment of invasive 
exotic plant species (Pringle et al. 2009). The CMN-mediated interplant exchange 
of nitrogen (N) and phosphorus (P) among plants plays an important role in main-
taining the health and fitness of plant communities (Smith and Read 2008). Plants’ 
tolerance to biotic and abiotic stresses is significantly improved through the nutrient-
related benefits of AM symbiosis (Sun et  al. 2018). Additionally, AM-mediated 
changes in soil or plant structure and function greatly benefit plants in their amelio-
ration of anthropogenic stressed soils. The glomalin containing 30–40% carbon 
exuded by the extraradical AM fungal hyphae improves the soil structure and water-
holding capacity in soils experiencing various kinds of abiotic stresses, thereby 
modulating plant growth (Sharma et al. 2017). The AM symbiosis affects plants’ 
growth-related processes like plant height, root architecture, leaf water potential, 
stomatal conductance, photosynthetic efficiency, root-to-shoot ratios, and 
nodulation-related parameters in N-fixing plants (Begum et  al. 2019). This 
AM-mediated growth promotion in AM plants often results from improved macro- 
and micro-nutrient uptake through various direct or indirect mechanisms. This 
improved vegetative growth of AM plants often culminates in a greater yield output 
(Begum et al. 2019).

1.3.2	� AM Colonization

The colonization of plant roots is an important step in the establishment and func-
tioning of mycorrhizal symbiosis. A large number of plant, fungal, and soil factors 
are known to influence the colonization of plant roots by AM fungi. Woźniak et al. 
(2021) examined the relationships between the plant species assemblages, environ-
mental factors, and AM fungal colonization in Calamagrostis epigejos and Poa 
compressa-dominated spontaneous vegetation patches in a post-coal mine heaps 
chronosequence in Poland. The results of the study indicated a high frequency of 
mycorrhization in roots of C. epigejos- and P. compressa-dominated vegetation. 
However, all the measured mycorrhizal variables were lower in roots of C. epigejos 
than in P. compressa. The maximum relative mycorrhizal intensity, and mean arbus-
cular abundance in the roots of both plant species occurred in Daucus carota-
dominated vegetation patches (Woźniak et al. 2021). Positive relations that were 
statistically significant existed between the frequency of mycorrhization, relative 
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mycorrhizal dependency, and arbuscular abundance. However, the mycorrhizal 
variables were not correlated with mine heaps’ age. Nonetheless, statistically sig-
nificant correlations occurred between the arbuscular abundance and the magne-
sium (Mg) and potassium (K) content of the substrate (Woźniak et al. 2021).

An examination of AM fungal colonization in roots of plants either planted or 
growing naturally in a post-coal mining area of Indonesia indicated that roots of all 
the plant species had medium (10–30%) to high (>30%) levels of colonization 
(Salim et al. 2020). The percent AM root colonization was more (50–100%) in roots 
of Acacia mangium and Glirisida sepium that were growing naturally on the mine 
site than Falcataria moluccana (32–44%) and Senna siamea (12–20%) that were 
widely planted in the revegetated mine area. The AM colonization in roots of plants 
growing in this post-mine area was positively influenced by organic carbon, total N, 
cation exchange capacity, calcium (Ca), iron (Fe), and Mg contents of the substrate. 
Contrarily, total and available P, K, and aluminum (Al) negatively influenced root 
colonization. The influence of Mg was more on root colonization than other ele-
ments (Salim et al. 2020). Similarly, all 84 plant species in 36 plant families grow-
ing in two different stabilized Fe ore mines in Goa, India were colonized by AM 
fungi (Prabhu and Rodrigues 2019).  The percentage of AM fungal colonization 
ranged between 12% (Adiantum philippense) and 87% (Anacardium occidentale). 
In addition, AM fungal root colonization was significantly and positively correlated 
to AM spore numbers in the soil (Prabhu and Rodrigues 2019). Roots of Vachellia 
karroo (=Acacia karroo), Senegalia hereroensis (=Acacia hereroense), and Vachellia 
robusta (=Acacia robusta) examined from two gold and uranium mine tailing sites 
in Welkom, South Africa contained hyphal coils, arbuscules, vesicles, and intra-
radical spores. Furthermore, root nodules of Acacia species examined in these sites 
were colonized by AM fungi (Buck et al. 2019). An examination of Acacia nilotica, 
Albizia lebbeck, and Pongamia pinnata roots from plants growing on four various 
coalmine overburden soils in Telangana of Southern India by Govindu et al. (2020) 
indicated an AM colonization range of 37–60%. Moreover, AM colonization in 
these tree species varied between sites with colonization ranging from 40% to 52% 
in A. lebbeck, 37% to 56% in A. nilotica, and 43% to 60% in P. pinnata (Govindu 
et al. 2020).

1.3.3	� AM Spore Numbers

Spores are important propagules of AM fungi in habitats characterized by seasonal 
vegetation (Fig. 1.2). Although the soil hyphae and mycorrhizal roots could serve as 
propagules of AM, fungi spores are still considered to be the major propagule and 
are routinely enumerated to assess the soil infectivity. Moreover, morphological 
characterization of AM fungal species is based on the morphology and subcellular 
characters of spore morphotypes. AM fungal spore numbers of 24–88 spores per 
10 g of dry soil were reported in the rhizosphere of plants growing in Seydişehir Al 
Plant Bauxite mine Deposits in Turkey (Atmaca and Karaca 2019). Spore numbers 
of 8–304/100 g of soil were reported by Prabhu and Rodrigues (2019) from the two 
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Fig. 1.2  (a–f) Spores of common arbuscular mycorrhizal encountered in the rhizospheres of plan-
tation tree species. (a) Fractured spore of Acaulospora scrobiculata; (b) Spore cluster of 
Rhizophagus aggregatus; (c and d) Spore of Funneliformis geosporus (c) and Claroideoglomus 
etunicatum (d); (e) Fractured spore of Scutellospora calospora; (f) Portion of Sclerocystis sinuosa 
sporocarp showing peridium (p) and spores (sp). Scale bars = 50 μm
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stabilized Fe-ore dumps in northern Goa, India. The density of AM fungal spores in 
the topsoil of three opencast coal mines soil stockpiles in South Africa ranged from 
40–91/100 g of soil (Ezeokoli et al. 2019). Nonetheless, these spore numbers were 
numerically lower than those recorded for unmined soils (109 spores/100 g soil). 
The average AM fungal spores in the rhizosphere of grass (Melinis minutiflora) 
used to revegetate the Brazilian Fe ore tailings piles were >470 spores/100 cm3 soil 
(Teixeira et al. 2017).

A low AM spore density was reported from the community’s post-gold mining 
land (10 spores/100  g soil) and artisanal small-scale gold mining tailings (14 
spores/100 g soil) in Indonesia (Tuheteru et al. 2020). A later study from Indonesia 
conducted on a former gold mine site also indicates similar spore numbers (7–13 
spores/50 g soil) associated with moderately mycorrhizal plants with colonization 
levels ranging from 14% to 36% (Pulungan and Nasution 2021). Yang et al. (2015) 
while assessing the AM status and heavy metal accumulation in tree species in a 
lead (Pb)-zinc (Zn) mine area of Qinling Mountain, Northwest China found highly 
varying spore numbers (47–670 spores/100 g dry soil) in the rhizosphere of the tree 
species. As tree species like Populus simonii and Populus purdomii harbored large 
spore numbers (>300–600 spores/100 g soil), other species like Platycladus orien-
talis, Eucommia ulmoides, and Cotinus coggygria had spores numbers <100/100 g 
soil. Moreover, a great variation in AM fungal spore numbers was also found 
between different areas of the mining site. Generally, the area under former direct 
mining (mine area and abandoned smelter area) contained less spore numbers com-
pared to areas where mine refuse dumping areas (mine tailing pond) (Yang 
et al. 2015).

1.3.4	� Diversity of AM Fungi on Mined Sites

The influence of mining disturbance on AM fungal communities is often contradic-
tory. Although the majority of the studies do indicate a negative impact of mining on 
AM fungal communities for several years even after cessation of their activities, 
other studies have shown either no effect or an increased diversity compared to 
adjacent unmined areas. The recovery of AM fungal communities in soil or roots of 
plants growing in mine-disturbed areas is either very slow or rapid depending on the 
type of mining. Removal and stockpiling of topsoil is a crucial and essential practice 
in surface mining operations especially in coal mines because topsoil contributes to 
the successful rehabilitation of the open pit mines after the cessation of mining. In 
this process, the topsoil from the mining area is stockpiled for future use (Mushia 
et  al. 2016). However, poor management of these topsoil stockpiles reduces the 
restoration potential of the soils and enhances the restoration costs. An assessment 
of AM fungal spore density and viability at different depths of three opencast coal 
mines soil stockpiles varying in age from 1 to 18 years in South Africa (Ezeokoli 
et al. 2019) suggested that the spore numbers and the diversity of AM fungal mor-
photypes were more in the topsoil (<20 cm) than in the sub-soil (>20 cm) of the 
stockpiles. Moreover, there was a reduction in AM spore numbers in the topsoil of 
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stockpiles when compared to unmined soils (Ezeokoli et al. 2019). This clearly sug-
gests disturbance and storing soil for extended period of time inevitably reduces the 
AM inoculum potential of the soils.

Evidence does exist that certain AM fungi could tolerate the high concentrations 
of heavy metals in the mining sites. For example, Sánchez-Castro et  al. (2017) 
examined the ability of AM fungi to tolerate and survive in an extreme metal-
polluted (total Zn 97,333 ppm and total Pb 31,333 ppm) tailing basin and a less 
contaminated waste heap in an abandoned mining site in southern France. The 
Glomeromycota diversity in mycorrhizal roots determined through sequencing of 
the ribosomal large subunit (LSU) indicated the presence of many AM fungal ribo-
types from Glomerales and a few from Diversisporales and Paraglomerales. The 
diversity of AM fungi and mycorrhization of roots was lower in the tailing basin 
than in waste heaps. A species of Paraglomus that was common in mining sites in 
Poland occurred in the roots of various plant species (Sánchez-Castro et al. 2017). 
This indicates that certain AM fungal isolates could tolerate the extreme heavy 
metal concentrations in mine sites and help in the tolerance and fitness of plants 
selected for the efficient rhizostabilization of extreme environments.

Many studies have reported high diversity of AM fungi in rehabilitated mine 
sites. An examination of AM fungi associated with 84 plant species (in 36 families) 
growing on two stabilized Fe ore mine dumps in northern Goa, India indicated the 
presence of spore morphotypes of 19 AM fungal species belonging to eight genera 
(Prabhu and Rodrigues 2019). The AM fungal community in the mine dumps was 
dominated by Acaulospora (six species) followed by Gigaspora (four species), 
Sclerocystis (three species), and Scutellospora, Funneliformis, Glomus, Racocetra, 
and Rhizophagus with one species each. A total of 31 AM spore morphotypes in 12 
genera were reported from rehabilitated Fe ore tailings piles in Brazil. More than 
40% of the spore morphotypes belonged to the AM fungal genera Acaulospora, and 
AM species richness was higher in the tailing piles when compared to unmined 
habitats (Teixeira et al. 2017). This study also showed that spore morphotypes of 
certain AM fungal species like Acaulospora alpina, Acaulospora nivalis, 
Acaulospora scrobiculata, Acaulospora tuberculata, and Septoglomus viscosum 
were exclusively present in mine tailings (Teixeira et al. 2017).

Certain studies have shown that the abundance and diversity of AM fungi tend to 
increase with time after disturbance. In a recent trap culture study involving soils of 
different ages (<2 years to >14 years) after disturbance from limestone mine sites of 
Meghalaya, India indicated the occurrence of 77 AM fungal species in 17 genera 
(Suting and Devi 2021). The diversity of AM fungi was maximum in soils that were 
>14 years old after disturbance and was even higher when compared to soils from 
an unmined forest area. Contrarily, minimum AM fungal species diversity occurred 
in the recent disturbed site (<2 years). Moreover, AM fungal species belonging to 
Acaulospora, Funneliformis, Gigaspora, Glomus, Rhizophagus, and Septoglomus 
were most frequent in limestone mines of different ages (Suting and Devi 2021). 
The high frequency of occurrence of certain AM fungi in limestone spoils of all 
ages suggests that these resilient AM fungal species could be useful in the revegeta-
tion of the mine spoils and aid plant establishment in the disturbed ecosystems.

T. Muthukumar and A. Karthikeyan



13

An assessment of the composition and diversity of soil AM fungal communities 
using a high-throughput sequence analysis in open-cast coal mining dumps that 
were revegetated and were under reclamation for different periods (<1–20 years) 
indicated the presence of 156 operational taxonomic units (OTUs) belonging to 12 
genera and nine families (Bi et al. 2021). Although the nonmetric multidimensional 
scaling analyses and network analysis indicated a significant variation in the AM 
fungal diversity between the initial (<1  year) and end of the reclamation period 
(20 years), the diversity remained similar during the intermediate stages of reclama-
tion (5–15 years). Moreover, the fungal diversity during different stages of reclama-
tion was related to total N, available soil P, and N/P and carbon/P ratios (Bi et al. 
2021). This clearly shows that revegetation of mining areas could aid in the quick 
reestablishment of AM fungal communities in disturbed ecosystems.

A comparison between the revegetated Fe-mining site and some natural ecosys-
tems in Brazil suggests that the magnitude of AM fungal diversity in the mining site 
was almost similar to natural vegetation. A total of 35 species of AM fungi were 
recorded in the mining site, whereas the diversity of AM fungal species in the natu-
ral vegetation ranged from 25 to 32 (Vieira et  al. 2018). Furthermore, species 
belonging to Acaulospora, Glomus, and Racocetra constituted 54% of the AM fun-
gal diversity in the mine-disturbed areas. Sequences generated from total soil DNA 
using Illumina revealed AM fungal OTUs belonging to Ambisporaceae, 
Claroideoglomeraceae, Gigasporaceae Glomeraceae, and Paraglomeraceae. In 
mine soils, OTUs of AM fungal community were dominated by uncultured 
Glomerales during dry and rainy seasons. Both molecular analysis and trap culture 
technique yielded less AM fungal diversity than direct observation of spores from 
the field soil (Vieira et al. 2018). A similar comparative study using morphological 
and molecular techniques on AM fungal communities in a mine-tail and natural for-
est in Korea suggested the presence of eight AM fungal species belonging to seven 
genera in the post-mining area and six AM fungal species belonging to five genera 
from the natural forest (Park et al. 2016). An assessment of AM fungal diversity in 
roots also indicated the presence of seven OTUs in the post-mine roots and five 
OTUs in roots of forest plants (Park et al. 2016).

1.4	� Mining Subsidence and AM Fungal Communities

Subsurface mining or excavation results in the sudden settlement of the overlying 
soil called subsidence. This result in cracks on the ground surface, damages soil 
structure, destruct plant roots, reduces soil moisture, available nutrients, and micro-
bial communities, thereby decreasing soil fertility and deferring the establishment 
of natural vegetation (Wang et al. 2017b). Therefore, restoration of vegetation and 
critical management is important for ensuring ecological sustainability in the min-
ing areas threatened by subsidence. Transplanting shrubs and trees in the mine sub-
sidence area is often adopted to restore green cover (Sun et al. 2019; Xiao et al. 
2019). The establishment and survival of transplanted plants in the mine subsidence 
area are often increased by inoculating plants with various microbial inoculants 
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(Guo et al. 2020). Nonetheless, studies on the influence of subsidence on AM fungal 
communities are very limited.

A study conducted in the coal mining subsidence area of the Chinese northwest-
ern city of Lingwu indicated that the AM fungal communities in the subsidence area 
were significantly affected by disturbance, seasons, and soil depths (Huang et al. 
2020). The number of AM fungal OTUs recorded during spring was higher than in 
the winter. Similarly, the surface soils (0–15 cm) contained fewer AM fungal OTUs 
compared to the subsurface region (15–30 cm). The AM fungi in this coal mining 
subsidence area belonged to six genera in six families:  Glomus (Glomeraceae), 
Paraglomus (Paraglomeraceae), Diversispora (Diversisporaceae), Claroideoglomus 
(Claroideoglomeraceae), Ambispora (Ambisporaceae), and Scutellospora 
(Gigasporaceae).  In addition, the abundance of each taxon differed with soil depth 
as the abundance of Glomus was more in the surface soil and reduced with soil 
depth (15–30 cm). Contrarily, Claroideoglomus was more abundant in the 15–30 cm 
soil and this soil region also contained the most unclassified sequences at the genus 
level. The abundance of Diversispora and Paraglomus was considerably higher than 
the Glomus in the subsidence than the undisturbed area. Ambispora was absent in 
the subsidence soils, and Scutellospora was least abundant among all the AM fungal 
genera (Huang et al. 2020).

Subsidence in mining areas also affects the diversity of AM fungi colonizing the 
roots. Examination of roots of Artemisia sphaerocephala, Caragana korshinskii, 
and Salix psammophila growing in subsidence area of the Chinese Shendong 
Bulianta coal mining region by pyrosequencing analysis indicated the symbiosis of 
AM fungi belonging to Diversisporaceae and Glomeraceae (Bi et al. 2019c). Of the 
57 OTUs present in roots of the examined plant species 81% belonged to Glomus, 
4% to Diversispora, 12% to Rhizophagus, and 2% each to Septoglomus and 
Otospora. Among the five AM fungal genera recorded, species belonging to 
Rhizophagus and Glomus were dominant in roots but significantly varied in propor-
tion in all three plant species growing in different mining areas (Bi et al. 2019c).

Guo et al. (2020) conducted a field study on the influence of subsidence and tree 
transplantation on AM fungal communities in the Shendong coal mining area of the 
Chinese Daliuta Town. The AM fungal diversity based on spore morphology indi-
cated that 60–93% of the spores belonged to Glomus followed by Diversispora 
(1–33%), Scutellospora (1–7%), and others (0–0.1%). The molecular analysis of 
the rhizosphere and nonrhizosphere subsidence soils also showed a higher AM fun-
gal diversity associated with subsidence areas under transplantation compared to 
natural vegetation regeneration areas (Guo et al. 2020).

Inoculation of AM fungi and the nature of revegetation significantly affect not 
only the AM fungal diversity in the subsidence soils but also influence nutrient 
availability and microbial activities in the soil. For example, revegetation type and 
inoculation with the AM fungus Funneliformis mosseae significantly influenced the 
soil nutrients, microbial biomass, and soil enzyme activities in the rhizospheres of 
Hippophae rhamnoides, Amorpha fruticosa, Cerasus humilis, and Xanthoceras sor-
bifolium transplanted in the subsidence area in Dongshan coal mine site in north-
western China (Xiao et al. 2019). Moreover, F. mosseae inoculation also was related 
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to N acquisition and N cycling in the coal mine subsidence soils. In F. mosseae 
inoculated subsidence soils, microbial activities were affected by nitrate-N, total N, 
and dissolved organic N (Xiao et al. 2019). Similarly, inoculation of F. mosseae in 
the coal mine subsidence area in the west Chinese County Shenmu enhanced the 
survival rate of H. rhamnoides over 4  years. The AM fungus inoculation also 
improved the plant height, crown, and ground diameter of sea buckthorn as well as 
soil organic carbon after 4 years of growth (Zhang et al. 2020). These studies clearly 
show that inoculation of AM fungi can improve the soil quality and promote plant 
growth for the long term which is essential for the restoration of the damaged sub-
sidence mine areas.

1.4.1	� Aggregate Mining and AM Fungi

Aggregates refer to a broad spectrum of materials (stone crush, gravel, sand, etc.) 
used in constructions in urban and semi-urban areas and are one of the widely mined 
materials worldwide. It is estimated that 50 billion tons of aggregates are mined 
annually from natural regions causing destruction to landscape, shrinking of agri-
cultural and grazing lands, breakdown of river banks, polluting waterways with 
heavy metals, reducing ground water table, and deforestation (Steinberger et  al. 
2010; Ako et al. 2014). Restoration of these excavated mining sites is a crucial envi-
ronmental issue. Many of the excavated mine pits especially sand pits mostly con-
sist of subsoil and rock material and lack organic matter which affects the growth 
and activity of microorganisms. In two experiments spanning over two growing 
seasons, Ohsowski et al. (2018) examined the effects of biochar, compost, and AM 
fungus Rhizophagus irregularis inoculation/amendment individually or in combi-
nation on plant growth and establishment in an active sand mine pit using two dif-
ferent approaches. In the first approach, the authors transplanted variously treated 
plugs prepared in the greenhouse, and in the second approach, seeds were directly 
sown in the field sites in various treatments. The experimental plants included C4 
grasses (Andropogon gerardii, Panicum virgatum), C3 grasses (Elymus canadensis, 
Bromus kalmii), N-fixing forbs (Desmodium canadense, Lespedeza capitata), and 
composite forbs (Liatris cylindracea, Symphyotrichum laeve). The results of the 
study indicated that although individual inoculation of R. irregularis or biochar 
application failed to significantly influence plant growth, simultaneous application 
of biochar and compost amendment along with AM fungus inoculation resulted in 
the largest plant response in the seed trial study (Ohsowski et al. 2018). The signifi-
cant response to AM fungus inoculation and organic amendments in the seed trial 
study was attributed to the positive influence of the AM fungus on seed germination 
and seedling establishment in the nutrient-stressed sandpits (Ohsowski et al. 2018).
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1.4.2	� AM Fungi Improves Soil Structure

Erosion of mining substrate and their deposition in the surrounding areas and water-
ways is one of the major causes of higher heavy metal loading of soil and surface 
water systems worldwide. For example, a study conducted in the north Mongolian 
gold mining region has shown that the sediment input from the mining site, into 
Tuul River was substantially more than from erosion from natural causes (Jarsjö 
et al. 2017). The contaminating metals originated directly from the erosion of waste 
heaps or exposed mine tailings as mining and processing activities frequently pro-
duce considerable quantities of liquid and solid wastes. Moreover, barren surface 
mines cover significant areas in different parts of the world, and disturbances in 
these mining sites resulting from road construction, changes in topography, and 
infrastructure development can increase the rate of erosion (Jaramillo et al. 2015). 
Previous studies suggest that AM fungi can deter soil erosion by improving the soil 
structure (Chen et al. 2018). The extraradical mycelial network of AM fungi forms 
a three-dimensional matrix entangling the soil particles. In addition to physical 
binding, aggregation and stabilization of soil particles also happen in response to 
the production of a glycoprotein called glomalin by AM fungal hyphae in the soil 
(Singh et al., 2013). This soil protein is not a well-established gene product and is 
chemically a heterogeneous molecular species and therefore is also termed as 
glomalin-related soil proteins (GRSPs). Glomalin is a soil fraction defined by its 
immune-reactive properties and extractability with unclear origin (Rillig 2004). 
Although the ecological role of glomalin is far from clear, it is known to improve the 
physical properties of soil, enhance soil nutrient content, carbon sequestration, sta-
bilize pollutants, positively influence microbial activities, and thereby help in eco-
logical restoration (Singh et al. 2020). Glomalin-related soil proteins can account 
for 2–5% of the total soil organic carbon with an estimated half-life of several 
decades (Wilson et al. 2009). The benefits of GRSPs are particularly important in 
dry sandy soils of arid regions where soils are low in fertility and are highly prone 
to water and wind erosion. In such circumstances, transplanting mycorrhizal plants 
is a sustainable way to prevent erosion and enhance soil fertility. Kumar et al. (2018) 
studied the GRSP fractions in six reclaimed coal mine fields’ chronosequence rang-
ing from one to 26 years and an unmined forest site in West Bengal. The results of 
the study demonstrated an increase in GRSPs content with the increasing age of the 
mine sites. Further, the strong association between GRSPs, soil organic carbon, and 
AM spore density as revealed by multivariate analysis suggests that factors favoring 
the accumulation of soil organic carbon improve GRSPs content and proliferation 
of AM fungal propagules during the rehabilitation process (Kumar et al. 2018).

In a mining soil, restoration system constructed in a coal mine involving 
microorganisms-complex substrate-plant in Xuzhou, China, sludge was amended to 
enhance the reclamation process and the system was monitored for 10 years (Li 
et al. 2021). The results of the study showed that sludge amendment increased soil 
aggregate stability. Soil GRSPs increased between 1 and 5 years and did not differ 
much thereafter until the tenth year. Moreover, GRSPs were significantly and posi-
tively correlated to soil organic carbon and soil structure-related parameters (Li 
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et al. 2021). The GRSPs content in polluted soils tends to vary with pollutants and 
soil depth. Yang et al. (2017) investigated the influence of heavy metals (Pb and Zn) 
in polluted soils on soil aggregate distribution and stability at various soil depths 
(0–40 cm). The results of the study showed that the GRSP content in the soil was 
inhibited more by Pb than Zn in the 0–20 cm of soil. This shows the greater toxicity 
of Pb than Zn in the topsoil profile layers. Moreover, GRSP and soil organic matter 
were positively related to mean weight diameter and soil large macro-aggregates 
(>2000 μm) suggesting their role in the binding of soil particles (Yang et al. 2017). 
Govindu et al. (2020) showed that the easily extractable glomalin fraction and total 
glomalin content in the rhizosphere soil of three tree species (A. nilotica, A. lebbeck, 
P. pinnata) in a North Telangana coal mine region were effective in instigating seed 
germination and the glomalin percentage was directly correlated to populations of 
AM fungi.

1.4.3	� AM Fungal Inoculation and Habitat Restoration

Inoculation of AM fungi not only improves the growth of nursery-raised forestry 
seedlings used in plantings at mining sites but also increases the outplant survival 
and performance of the inoculated plants. Under nursery conditions, AM fungal 
inoculation significantly improves seedling growth (Muthukumar and Udaiyan 
2018), thereby decreasing the time for seedlings to achieve the plantable size and 
significantly reducing the use of chemical fertilizers in seedling production 
(Fig. 1.3).

Nursery and field studies conducted at the Institute of Forest Genetics and Tree 
Breeding, Coimbatore, India have shown that inoculation of forestry species with 
AM fungi and other plant growth-promoting microbes can improve seedling growth 
in nurseries as well as the establishment and survival of these seedlings in mine sites 
(Figs. 1.4, 1.5, and 1.6).

Inoculation of Eucalyptus camaldulensis with Rhizophagus aggregatus individu-
ally or along with Azospirillum and phosphate solubilizing bacteria (PSB) increased 
seedling growth in the forest nursery (Karthikeyan and Prakash 2008). Moreover, 
transplantation of microbial inoculated E. camaldulensis onto bauxite mine spoils 
significantly increased the survival rate of multimicrobial inoculated seedlings (AM 
fungus + Azospirillum + PSB) by twofolds and growth by fivefolds than uninocu-
lated plants 2 years after transplantation (Karthikeyan and Prakash 2008). Similarly, 
inoculation of Eucalyptus tereticornis with a combined AM fungal inocula consist-
ing of R. aggergatus, R. fasciculatus, and Funneliformis geosporus increased 
growth and nutrient content of the seedlings when compared to uninoculated seed-
lings under nursery conditions. The AM-inoculated E. tereticornis seedlings exhib-
ited a 95% survival rate compared to 40% of uninoculated seedlings 2 years after 
transplantation onto a bauxite mine spoil. The growth performance of AM-inoculated 
E. tereticornis seedlings was three folds higher than uninoculated plants during the 
same period (Karthikeyan and Krishnakumar 2012). Simultaneous inoculation of 
Casuarina equisetifolia seedlings with R. aggregatus, PSB, and Frankia 

1  Diversity of Arbuscular Mycorrhizal Fungi in Mined Land: Distribution and…
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Fig. 1.3  Nursery raised Acacia auriculiformis seedlings in the presence (+M) and absence (−M) 
of arbuscular mycorrhizal fungi for transplantation onto mine sites

significantly increased the growth of seedlings when compared to seedlings inocu-
lated with these microbes alone or uninoculated seedlings raised in bauxite mine 
spoils under nursery conditions (Karthikeyan et al. 2009). When transplanted onto 
bauxite mine spoils, multimicrobial inoculated C. equisetifolia seedlings exhibited 
a survival rate of 90–100%, increased growth, and nutrient uptake at the end of 
2 years (Karthikeyan et al. 2009). Wang (2017) summarized a large number of labo-
ratory experiments and field studies reporting the influence of AM fungi on the 
restoration of mines. This showed that 95% of the studies reported a positive influ-
ence of AM fungi like increased plant growth, enhanced survival, improved plant 
and soil nutrients, better soil quality and structure, and plant establishment. Several 
studies published after 2017 also indicates a positive response of AM fungal inocu-
lation on plant growth and habitat restoration (Table 1.1).

T. Muthukumar and A. Karthikeyan
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Fig. 1.4  Restoration of vegetation through transplantation of mycorrhized forestry species on a 
bauxite mine spoils over a 4-year period. (a) Barren mine spoil; (b–e) mine spoil 1–4 years after 
restoration

1.5	� Conclusions and Future Perspectives

Rehabilitation of degraded sites is one important area where AM fungi and other 
plant growth-promoting microorganisms could play an important role as these sub-
strates either lack or contain extremely low populations of these microorganisms. 
The absence or reduced populations of microorganisms in mining areas defer the 
natural reestablishment of vegetation in these sites. Moreover, the harsh environ-
mental conditions in the mining sites further complicate the establishment of plant 
communities for several years even after the cessation of the mining activities. 
There is already ample evidence to show that AM fungi could quickly recolonize 
mine sites if inoculated or other environmental conditions are favorable. As AM 
fungi are obligate symbionts, they fail to survive in the absence of host plants. 
Therefore, habitats detrimental to plant growth are also deleterious to AM fungal 
presence and functioning. Thus to revegetate mine sites, it is important to select 
plant-AM fungal combinations that are resilient and could tolerate harsh environ-
mental conditions.

Recent evidence clearly indicates that certain levels of AM fungal diversity with 
special characteristics could be found hidden even in extreme ecosystems. The use 
of novel cutting-edge technologies like the new sequence methods along with 

1  Diversity of Arbuscular Mycorrhizal Fungi in Mined Land: Distribution and…
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Fig. 1.5  Transplanted Casuarina equisetifolia inoculated with arbuscular mycorrhizal fungi 
growing at magnesite-mined outlands

conventional approaches would help in better understanding of the changes in AM 
fungal communities in the soil and plant roots during the restoration of mine sites. 
Most information on the influence of mining activities on AM fungal diversity stems 
from a few mining types, and some widespread mining types like aggregate mining 
are largely ignored. Moreover, a critical examination of AM fungal inoculation 
studies generally reveals the use of a few AM fungal species and host plants. 
Moreover, in field transplantation studies, monitoring the populations of inoculated 
AM fungi in mine soils is generally missing. An observation of AM symbiosis in 
plant species that reestablishes naturally in revegetated mining areas is important to 
acknowledge the existence of succession in AM symbiosis. However, soil properties 
like the presence of heavy metals and extraordinary high or low pH, electrical con-
ductivity, organic matter, and nutrient levels could greatly influence the mycorrhiza-
tion of roots and functioning of AM symbiosis in mining sites. Identification of 
plant-fungal species combination through rigorous screening procedures is impor-
tant as AM fungal communities could modify the composition of plant communi-
ties. In addition, co-inoculation of other plant growth-promoting microorganisms 
along with AM fungi could be beneficial as many of these microorganisms could 
help in the establishment of symbiosis. Increasing the diversity of host plant species 
and their densities may favor AM-mediated mine restoration. Further understanding 
of AM fungal-mediated tolerance mechanisms in plants and the various signal 

T. Muthukumar and A. Karthikeyan
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Fig. 1.6  Casuarina equisetifolia inoculated with arbuscular mycorrhizal fungi and plant growth 
promoting microorganisms planted growing on limestone mine areas

exchanges between the symbionts that regulate plant growth and development may 
help to improve plant’s performance in mining areas. Even so disengaging several 
intricate processes that are involved in the development of symbiosis, as well as the 
interaction of AM fungi with coexisting microorganisms and soil factors would 
reveal a potent strategy that could aid in rapid restoration of degraded mine sites.

1  Diversity of Arbuscular Mycorrhizal Fungi in Mined Land: Distribution and…
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2Arbuscular Mycorrhizal Fungi 
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Abstract

The reciprocal give-and-take relationship of a fungus that colonises the plant 
root is termed mycorrhizae. The prime partner in the association is the fungus, 
whose obligation is to provide food and growth hormones to the plant. The fun-
gus is also saddled with the responsibility of shielding the plant from pathogens. 
Reciprocal alliances are formed by several plants and crops with arbuscular 
mycorrhizal fungi. This interchangeable relationship has propelled the occur-
rence of new techniques in crop breeding and agricultural methods to buttress 
and advance arbuscular Mycorrhizal fungi (AMF) in agroecosystems. The ben-
eficial effect of AMF could be highly favourable to crops and the ecosystem at 
large in several ways, such as furnishing great resilience to plant diseases and 
enabling amelioration of the soil structure. The colonisation does not automati-
cally bring about amplified plant burgeoning and high crop yield because land 
management customs, which motivate mycorrhiza–crop relationships, do not 
favour higher yield from crops. Land management traditions that could stimulate 
AMF, such as low tillage and a reduction in the use of chemicals. The functions 
of mycorrhiza such as its positive effect on nutrition and growth of the host plant, 
are shifted through intensive agricultural exercise. In general, the role of mycor-
rhizas is brought down by the high availability of nutrients from synthetic fertil-
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isers to common symbionts, and in some cases. The tropical ecosystems of the 
world are blessed with a high abundance and diversity of AMF, which have great 
potential for improving agroecosystems. This chapter aspires to examine crop 
development and growth in conjunction with AMF in tropical agroecosystems, 
particularly in the area of attaining food security. The key issues surrounding the 
non-nutritional and nutritional tasks of AMF bonding with the crops as influ-
enced by the environment, with a focus on optimising and employing the symbi-
otic consortium in viable management policies for excellent crop production 
have also been taken into account.

Keywords

Arbuscular mycorrhizal fungi · Agroecosystems · Management · Food security

2.1	� Introduction

The tropical regions serve as the major production sites for most agriculture-based 
raw materials in the world, including food, fibre and fuel (Laurance et al. 2014). Yet, 
commercial agriculture within this region has faced with a lot of challenges, espe-
cially a relatively high incidence of several pests and pathogens that are largely 
responsible for the prevalence of high yield losses in the region (Aghale et al. 2017; 
Atolani and Fabiyi 2020; Bello et al. 2021; Fabiyi and Olatunji 2021a). It is perti-
nent to save crops from attack of pests and pathogens; the salvaged fraction will be 
used to support the undernourished in society and the world at large (Fabiyi 2021a). 
The potential of pests and pathogens to impede successful agricultural production 
and a bountiful yield is very high if proper control or protection is not instituted in 
place, and this may prompt to food insecurity (Fabiyi et al. 2020a,b, 2021a,b; Fabiyi 
2021b). The significance of pests, pathogens and diseases in crop development and 
grain storage is very high, and the damage of their menace has shot up monumen-
tally, with great retardation to the provision of sufficient quantity and the right stan-
dard of food to the population throughout the world (Fabiyi et al. 2018a,b, 2019; 
Fabiyi 2020; Fabiyi and Olatunji 2021b). Crops and their products provide around 
57% of the complete quota of production in the agricultural units of most underde-
veloped countries; however, the production is thwarted by several pests (Atolani 
et al. 2014a,b; Fabiyi and Olatunji 2018). It has become increasingly difficult to 
sustain an intensive agricultural system based on crops because of the threat occa-
sioned by the build-up of several soil-borne microorganisms (Fabiyi 2019, 2021c,d, 
2022a,b,c,d; Fabiyi et al. 2020c, 2022a,b). There is a necessity to utilise unculti-
vated lands in a dependable manner to facilitate a tremendous increase in food pro-
duction for future use and demands (Godfray et al. 2010). One of the potentially 
feasible approaches is the no-till agriculture. Results in the literature have estab-
lished that field trials have presented dense soil fungal hyphae (Paul et al. 2013), 
high macroaggregates and soil carbon with the no-till approach in comparison to the 
traditional and customary tilled system (Paul et al. 2013). Many dependable farming 
methods, such as conservation and intercropping, could be employed to maintain 

T. T. Bello and O. A. Fabiyi



33

soil biodiversity (Palm et al. 2014; Brooker et al. 2015), with accruing benefits like 
nutrient retention, good capacity for water storage, sequestration of carbon and 
detoxification (Bardgett and van der Putten 2014; Puschel et al. 2016; Bender and 
van der Heijden 2015; Cavagnaro et al. 2015; Stirling et al. 2016). The potential of 
these occurrences has been recognised to be of great importance to yield increase 
and reliability to crop production improvement (Godfray et al. 2010; Plassard and 
Dell 2010).

Almost every agricultural activity depends directly or indirectly on the soil. 
Since time immemorial, soil has been associated with the production of arable 
crops, cash crops and raw materials for satisfying a variety of human needs. The soil 
microbial biosphere is the largest store of biodiversity on earth (Edwards et  al. 
2012). They remain the most viable indicators of soil health. Hence, the tropical soil 
is seen as the most important economic industry for the vast majority of people, 
especially within the tropics (Sachs et al. 2001). Conventional agriculture, which 
formed the basis of tropical crop production, prioritises production and profit maxi-
misation with little consideration for long-term consequences on biodiversity and 
the dynamics of agroecological systems (Erenstein et al. 2008). Furthermore, the 
increasing demand for food and raw materials due to the rapid increase in the human 
population has mounted significant pressure on the soil. To improve production, 
farmers use chemical fertilisers and chemical pesticides, which have negative effects 
on soil biodiversity and soil health. The soil rhizosphere is known to contain a high 
abundance of microorganisms, mostly bacteria, fungi, actinomycetes and protoza 
(Gottel et al. 2011). The most significant association is the symbiotic relationship 
between fungi and plant roots. This association influences the competition for pho-
tosynthetates, nutrients and colonisation sites, which in turn stimulates host plant 
defence mechanisms against pests and soil-borne pathogens (Jung et al. 2012). Soil 
organisms that are involved in a symbiotic relationship with plants, like mycorrhizal 
fungi, could be a source of these advantageous effects and thus end up being signifi-
cant constituents of maintainable intensified agriculture with tolerable capacity for 
abiotic and biotic factors (Godfray et al. 2010). Plant health, nutrition and growth 
are key factors in crop development that are functionally affected by AM fungi. The 
majority of plant taxa on the land have customary symbiotic associations with AM 
fungi which are obligate organisms (Philippot et al. 2013). Several plant species of 
economic relevance have an entrenched association with AMF. Medicinal plants, 
cereals, fruit trees, pulses and vegetables also develop symbiotic relationships 
(Philippot et al. 2013). The AMFs are endowed with extra-radical mycelium (ERM), 
which spreads from the colonised roots of host plants to the soil and is used for the 
uptake of nutrients and water for the host (Smith and Smith 2011a). The intercon-
nectedness, extent and structure of the ERM affect the flow of nutrients to the host. 
It is a critical tool of the fungal structure and a significant factor in the symbiotic 
union (Smith and Smith 2011a). The ERM contains genes responsible for nutrient 
translocation from the soil to the host roots (Smith and Smith 2011a). This assists 
the ERM to take nutrients farther away from the host’s rhizosphere; the absorbing 
process is highly structured with a good surface-to-volume ratio (Smith and Smith 
2011a; Puschel et al. 2016). Apart from providing improved nutrition to the host 
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Fig. 2.1  A schematic representation of various processes and the impact of AM fungi on achiev-
ing food security. These essential processes contribute significantly to improved plant health

plant, the biogeochemical cycles are completed with the aid of AMF (Puschel et al. 
2016), the forbearance of host plants to abiotic and biotic stress is improved with an 
increase in plant phytochemical content (Fig. 2.1), there is an increase in soil aggre-
gation, and carbon sequestration is also facilitated (Puschel et al. 2016) with great 
support during any form of environmental stress (Table 2.1). Studies have shown 
and established that the multifarious aid furnished by AMF is connected with the 
synergistic life of the multiple bacterial communities residing in the mycorrhizo-
sphere (Rouphael et al. 2015). They are associated sternly with extra-radical myce-
lium and spores, which has enabled them to play numerous plant growth-promoting 
responsibility that range from the production of antibiotics (Rouphael et al. 2015), 
siderophores and indole acetic acid to mineralisation, phosphorus solubilisation and 
fixation of nitrogen without intervening factors or oblique processes as depicted in 
Fig. 2.1 (Rouphael et  al. 2015). The bacterial strains linked with AMF could be 
employed as bio-stimulants and bio-fertilisers for tenable food production systems 
(Ortas 2012; Turrini et al. 2018). This chapter aspires to examine crop development/
growth in conjunction with AMF in tropical agroecosystems, particularly in the area 
of attaining food security. The key issues surrounding the non-nutritional and nutri-
tional tasks of AMF bonding with crops as influenced by the environment, with a 
focus on optimising and employing the symbiotic consortium in viable management 
policies for excellent crop production have also been taken into account.

2.2	� Biology of AM Fungi

AMF are members of the phylum Glomeromycota, which consists of several fami-
lies including Gigasporaceae, Acaulosporaceae, Glomeraceae, Ambisporaceae 
Pacisporaceae, Archaesporacea, Paraglomeraceae, Claroidoglomeraceae, 
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Table 2.1  Effect of AM fungi on plant health amelioration under different environmental 
conditions

S. No.
Environmental 
stress

Plant 
species AM fungi Plant response References

1. Heat Triticum 
aestivum

Funneliformis
Geosporum

Increased grain 
number and nutrient 
allocation

Cabral 
et al. 
(2016)

2. High 
temperature

Zea mays Rhizophagus 
intraradices

Application of the 
mycorrhizal fungi 
enhanced the 
photosynthetic 
capacity of the plants 
and increased overall 
biomass and yield

Mathur 
et al. 
(2016)

3. Metals Sesbania 
rostrata

Glomus mosseae Stimulated formation 
of root nodules and 
increase in nitrogen 
and phosphorus 
content

Lin et al. 
(2007)

4. Salinity Oryza 
zativa

Claroideoglomus
Etunicatum

Improved quantum 
yield of PSII

Porcel et al. 
(2015)

5. Drought Fragaria 
ananessa

F. Geosporus Increased root and 
shoot fresh weights

Boyer et al. 
(2014)

6. Drought Glycine 
max

Glomus 
aggregatum

Improved water 
content with 
phosphorus and 
nitrogen levels

Grümberg 
et al. 
(2015)

7. Drought Hordeum 
vulgare

Glomus 
intraradices

Increased root volume, 
phosphorus content 
and activity of the 
phosphatase enzyme

Bayani 
et al. 
(2015)

Sacculosporaceae and Diversisporaceae (http://www.amf-phylogeny.com/, 
accessed on 7 August 18 2021). The AMF life cycle can only be completed within 
a host plant because biotrophs are obligate. Many hyphae of limited life span are 
produced through spore germination in accordance with the presence of physical 
factors like pH, temperature and moisture; this is termed the asymbiotic phase of 
their development (Kiers et al. 2011). Another phase of development known as pre-
symbiotic occurs while the root exudate of the host plant is present (Kiers et al. 
2011). Here, the morphogenesis of differential hyphae is initiated, a reorientation by 
the germling hyphae is seen, forming the elongation direction, and thus many 
branching patterns are formed (Jiang et al. 2017). After this stage, a physical contact 
is established in the middle of the hyphae and roots of the host, appressoria differ-
entiation occurs, intracellular growth of hyphae is established in the root cortex, the 
root cells are penetrated, and tree structures in the form of hyphae are instituted in 
place, with several branches appearing like haustoria and generally called arbus-
cules (Jiang et al. 2017). The arbuscules are the main organs in the host plant and 
mycorrhizal association where nutrient exchange is achieved. Carbon and lipids are 
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obtained from the host by AMF; in return, the absorbed mineral nutrients are 
released and then translocated by ERM (Luginbuehl et  al. 2017). There are two 
types of mycorrhizal formations, namely the Paris type and the Arunm type (Kiers 
et al. 2011). The colonisation pattern of the Paris type is characterised by the direct 
growth of the fungus from cell to cell in the root cortex. Thus, hyphal coils are 
formed intracellularly, while arbuscules are seen as intercalary formations through 
the coils (Luginbuehl et al. 2017). On the other hand, the Arum-type arbuscles are 
formed terminally on hyphal intercellular branches, and the symbionts equally 
spread in the root cortical cells in an intercellular manner (Jiang et al. 2017). In 
general, available data in the literature principally originate from the Arunm type; 
they occur widely in natural habitats and are distributed widely in agricultural farm-
ing systems (Jiang et al. 2017). Structures that act as storage facilities filled with 
lipids made of spores are common to AMF species; these could be termed intra-
radical vesicles apart from the arbuscules. Once the AMF collects carbon from the 
host, the ability of the symbiont to develop extra radically begins (Luginbuehl et al. 
2017). The surroundings are completely colonised, the host receives nutrients regu-
larly, the AMF interacts with microorganisms around the soil rhizosphere (Jiang 
et al. 2017) and the roots of nearby plants are equally colonised, and nutrients are 
exchanged between different hosts, whether they belong to the same species, fami-
lies, genera or not (Luginbuehl et al. 2017). Later, asexual spores are formed by the 
ERM, depending on how the soil can maintain the growth of mycorrhiza and also 
the fertility of the soil, this stage then closes the life cycle of the AMF (Luginbuehl 
et al. 2017).

2.3	� Ecology of AM Fungi in Tropical Environments

Mycorrhizal fungi are known to have a widespread presence in almost all known 
environments. Although, on a global scale, AMF communities within the temperate 
regions have been extensively studied (Smith and Read 2008; Raviv 2010; Ansari 
et al. 2020a; Solanki et al. 2020; Ansari and Mahmood 2019a), marked variations 
are known to exist in terms of their composition and diversity among different eco-
system types worldwide. In this regard, variations in AMF communities due to veg-
etation types have been reported (Velázquez et al. 2013), between grasslands and 
forest ecosystems (Öpik et  al. 2010; Kivlin et  al. 2011; Davison et  al. 2012; 
Goldmann et al. 2020), as well as due to the different agro-ecological scales, espe-
cially in terms of land-use intensity (Oehl et al. 2010; Moora et al. 2014), soil types 
(Oehl et al. 2010; Zhu et al. 2020) and altitudinal differences (Coutinho et al. 2015; 
Vieira et al. 2019). A large studies on AMF community structures are available from 
the semi-natural and anthropogenic systems of temperate North America and 
Europe (Öpik et al. 2010; Kivlin et al. 2011; Davison et al. 2012), data from most 
natural ecosystems of the tropical and subtropical regions remains scanty (Moreira 
et al. 2007). However, the abundance and diversity of AMF in India are well docu-
mented (Gupta et  al. 2014, 2016; Yadav and Pandey 2016; Jha and Songachan 
2020). Reports from tropical and subtropical ecosystems in India indicate a high 
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abundance of AMF species existing in different agricultural systems (Hindumathi 
and Reddy 2011; Dessai and Rodrigues 2012; Parihar et al. 2019) and natural eco-
systems (Suchitra et al. 2012; Gupta et al. 2017; Jha and Songachan 2020). Other 
reports from the tropics include the studies of Husband et al. (2002), who recorded 
a high diversity of AMF from the tropical forests of Panama in Central America. 
Reports from the natural tropical ecosystems of Africa that revealed a high number 
of novel taxa largely addressed agro-ecosystems and some pastoral farmlands in 
West Africa (Tchabi et al. 2008; Alori et al. 2012; Adeyemi et al. 2019; Olubode 
et  al. 2020), Central Africa (Mathurin et  al. 2022) and East Africa (Mathimaran 
et al. 2007; De Beenhouwer et al. 2015; Utaile et al. 2021). Jemo et al. (2018) fur-
ther reported a variation in the AMF community structure under fallow and crop-
ping conditions in the tropical humid soil of Cameroon. Furthermore, research on 
tropical, natural ecosystems focused on specific host plants from shrublands and 
forests (Öpik et al. 2013; Gazol et al. 2016), savanna (Tchabi et al. 2008), forests 
(Wubet et al. 2006), and arid regions (Yamato et al. 2009). Available studies from 
the tropical and subtropical ecosystems of South America revealed a high diversity 
of AMF, especially in the rupestrian fields of Brazil (De Carvalho et  al. 2012; 
Covacevich et  al. 2012; Pagano and Cabello 2012). In addition to these, several 
indigenous AMF species were identified from agricultural fields (Miranda et  al. 
2011) as well as from different vegetation gradients in Brazil (da Silva et al. 2015). 
Despite the high abundance of AMF species in tropical regions of the world, their 
inherent potential is yet to be fully harnessed to improve agricultural productivity 
and ultimately ensure food security within the region.

2.4	� AMF Function, Environmental Modulation 
and Potential Applications in Agriculture

The AMF-plant relationship is ubiquitous, spanning many phylogenies of plants 
growing on the land and developing gradually from 475MYA (Field et al. 2015). 
Micronutrients such as zinc, nitrogen, copper, and other major elements like phos-
phorus from soil are greatly accessed via the multiplication of the mycelial in an 
extra-radical fashion (Liu et al. 2000). DNA and proteins, which are organic sources 
of phosphorus, could be acquired by the extra radical hyphae when acid phosphates 
are excluded in the hyphae (Sato et al. 2015). The Mucoromycota and Glomeromycota 
are very regular, and they establish symbiosis intracellularly with nearly all food 
crops (Smith and Smith 2011a; Spatafora et al. 2016). The apparent advantage of 
AMF to crop development through the supply of nutrition has led lately to substan-
tial attraction in their inherent ability to enable a cutback in the application of syn-
thetic fertiliser in the absence of any accompanying loss of yield (Navarro et al. 
2014; Alqarawi et al. 2014a,b; Berruti et al. 2016). Environmental factors such as 
the concentration of atmospheric CO2 and nutrient availability coupled with the spe-
cies of fungi and host plants, are known to impact the degree of nutrient uptake by 
AMF (Field et al. 2012). However, the exceedingly fluctuating end results of the 
factors involved present a significant obstacle against the application of AMF in 
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sustainable agriculture. Johnson (2010) opined that symbiotic relationship between 
plant and AM fungi is advantageous based on the expanse of nutrient exploitable 
and obtainable for growth and development of plants given the level of soil nitrogen 
and phosphorus comparable to accessibility (Johnson 2010). Plants in a bond with 
AMF are known to have displayed amplified growth in phosphorus-exhausted soils 
in parallel to plants not connected to AMF (Bender et al. 2016). The transmission of 
nitrogen to plant associates by AMF through the extra radical hyphae is extensively 
studied (Hodge and Fitter 2010). It has been also observed that increased biomass 
of the plants are observed while the phosphorus and nitrogen contents of such plants 
are equally high (Thirkell et al. 2016). These discoveries reveal that AMF has the 
capacity to diversify the origin of nutrients for acquisition by the host plants and 
also boost uptake (Thirkell et  al. 2016; Ansari and Mahmood 2017a,b, 2019b; 
Ansari et al. 2020b). However, the level to which plants utilise the advantages of the 
AMF alliance will depend on fertiliser usage and other management practises on the 
land (Johnson 2010). The attitude of cereal crops may be particularly different. 
Cynically, the growth of cereals is not affected by AMFs in soils with a phosphorus 
concentration that is equal to the level obtained with fertiliser application (Li et al. 
2016). Thus, suggesting that a foremost equilibrium exists between the usage of 
fertiliser and the satisfaction obtained from AMF interrelation by plants (Li et al. 
2016). Some plants have exhibited reduced growth in tie-ups with AMF in spite of 
the supported phosphorus uptake. High phosphorus conveyance by fungi exudes 
plant carbon to the fungi; the outcome of this process is that the plant is deficient in 
carbon, which then translates into slow and reduced growth (Kiers et  al. 2011). 
Reports by Walder et al. (2012) indicated that the collection of nutrients and miner-
als from a common mycelium is determined by the host specification and has noth-
ing to do with carbon availability in the mycelium network (Walder et  al. 2012; 
Ansari et al. 2019a,b; Sumbul et al. 2017). The normal straight pathway for phos-
phorus uptake by plant roots through the naturally designated transporters of phos-
phates in the roots is usually impaired and reduced with the AMF alliance (Smith 
and Smith 2011b; Walder et al. 2012). Phosphorus collection is reduced in AMF-
allied plants if the AMF phosphorus delivery course does not compensate for the 
low phosphorus use by plants (Smith and Smith 2011b; Walder et al. 2012). The 
dissimilarity and comparative part played by the phosphorus uptake routes could be 
accountable for discrepancies in phosphorus usage among several plant cultivars 
and species (Li et al. 2005; Walder et al. 2012). Although, AMF associations have 
been regarded lately as having a huge positive impact on the growth of plants in the 
families Solanaceae, Alliaceae and Fabaceae (Li et al. 2005). The reaction of other 
crop families, predominantly cereals, is uncertain (Li et al. 2005). Some cultivars of 
the same species also exhibit contrast in reaction to growth under the AMF alliance 
(Tawaraya 2003). The example was revealed in wheat, where some cultivars 
responded positively to the alliance with AMF (Hu et al. 2014) and some behaved 
negatively (Li et al. 2016). Lately, some findings have established that new cultivars 
of crops may be more sensitive to AMF association than the earlier varieties 
(Lehmann et al. 2012). The exact cause of this divergence is not known, thus por-
traying a noteworthy barrier to the use of AMF on a broad scale in production of 
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cereal. The physiology, morphology and traits of plant roots are perhaps responsible 
for the degree and level of nutrient collection advantages in AMF associations 
(Navarro-Fernandez et al. 2016). For instance, an immensely branched cereal root 
allows a systematised uptake of nutrients, so there is no need for an AMF alliance 
because the roots are naturally designed to perform functions close to those of AMF 
(Smith and Smith 2011a). Several factors must be considered for the optimum max-
imisation of nutrients for crop development and growth (Smith and Smith 2011a; 
Sumbul et al. 2017; Rizvi et al. 2015; Ansari et al. 2017a,b). In order of importance, 
the genetics of the plant, consistency of nutrient accessibility, knowledge of root 
characteristics and quality decisive factors of root architecture, tendency for symbi-
ont alliance and finally the effect of pathogens and pests should always be consid-
ered (Li et al. 2016).

2.5	� AMF as Moderators of Soil Functions 
for Sustainable Agriculture

The AM fungi communities in the subsoil are unique and abundant (Higo et  al. 
2013; Sosa-Hernández et al. 2018). The characteristics of the subsoil, like compac-
tion, large bulk density, limited pores and minimal concentration of oxygen in total-
ity, provide a semi-optimal habitat for plant roots (Moll et al. 2016). The supposition 
is that the AMF are well suited to the subsoil, even though there is no verifiable 
proof of specific traits of subsoil of AMF (Chagnon et al. 2015). It is hypothesised 
that the AMF inhabiting the subsoil will have the ability to colonise soil spores, 
however small they may be, their tolerance to anaerobic situations and the produc-
tion of long-lasting mycelium (Chagnon et al. 2015). It is anticipated that the AMFs 
inhabiting the subsoil will be tolerant to stress, going by the CSR framework 
(Chagnon et al. 2015). The phylotypes are envisaged to display high efficiency in 
the use of resources with long-lasting biomass, amounting in cost/advantage sav-
ings for the plant (Chagnon et al. 2015). Although at the initial stage, mycelium 
growth might be slow, without instantaneous benefit, and most likely a carbon sink 
for the host (Säle et al. 2015). However, once the network of mycelium is entrenched, 
the services provided to the plant will be long-lasting without any cost (Säle et al. 
2015). The dispersal of AMF spores could be by arthropods, earthworms, small 
mammals or wind (Egan et al. 2014), but these vectors are not likely to be germane 
in the subsoil, with the earthworm being a deviation. Once microbial activity is low 
and there is little disruption, a long-lasting mycelium is produced, which could 
serve as a dispersal agent on its own (Egan et al. 2014). The formation of the myce-
lium is a probable gain for the host plant because the AMF spores are a storage for 
carbohydrates and lipids (Walder et al. 2012). In this relationship, while the host 
provides energy and carbon, the mycelium probes the soil and extracts nutrients for 
the plant’s use (Walder et al. 2012). Succinctly put, the benefits that accrue to the 
plant for each unit of carbon are very high in the subsoil compared to the top soil 
(Walder et al. 2012). Some schools of thought have identified the significance of 
biological elements in pedogenesis, and the AMFs are known to have played 
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important functions in the formation of soil (Liu et al. 2016). The AMFs are involved 
in rock weathering, and the bacteria group equally has very high geochemical com-
petence (Berruti et al. 2016). In reality, it is very arduous to comprehend pedogen-
esis in the history of the earth without giving consideration to AMF and the evolution 
of plant roots (Leake and Read 2017). The ectomycorrhizal fungi (EM) have the 
ability to exude organic chelators of low molecular weight, which supports the 
weathering of minerals; this characteristic is absent in AMF (Leake and Read 2017). 
However, the AMF contributes to the weathering of minerals through indirect routes 
like improved soil stabilisation and respiration, plus intensified exudation and 
evapotranspiration (Lehmann et al. 2012). However, the differences in the weather-
ing patterns of AM and EM are not as obvious as expected (Koele et al. 2014). The 
deeper layers of the soil do not support biological activity, in spite of the clay miner-
als that dominate the upper layers. They are made up of primary minerals, which 
have great potential for weathering and nutrient delivery (Koele et al. 2014). The 
mycorrhizosphere is largely developed with soil volume, which comes under the 
sway of the symbionts, and thus microbial activity is fostered in the subsoil with 
huge soil volume (Koele et al. 2014). This integrated activity of AMF, roots and the 
affiliated community of soil microorganisms favours soil enlargement (Higo 
et al. 2013).

2.6	� AM Fungi for Improving Agricultural Sustainability: 
Future Direction

Mycorrhizal functions could shift with intensive agricultural activities, despite the 
fact that AMFs have been reported to have a progressive effect on the growth and 
nutrition of the host plant (Chagnon et al. 2015; Zou et al. 2016). The chemical 
fertiliser releases high nutrients, which might affect the role of AMFs and turn them 
into ordinary symbionts or, at times, pathogens or pests (Chagnon et  al. 2015; 
Johnson et al. 2015). The exemplification by Rillig et al. (2015) emphasises that it 
is pertinent to appraise the land history and land practices employed over the years 
before the introduction of AMF as an inoculum. For instance, the addition of AMF 
may be positive for wheat, while it may turn out to be species-specific for barley 
(Navarro-Fernandez et al. 2016). This may be a constraint to the use of AMFs in 
mixed cultivations (Navarro-Fernandez et  al. 2016). The majority are short-run 
experiments conducted in controlled situations without specific links or associa-
tions with abiotic and biotic factors (Li et al. 2016). There is usually no experimen-
tal field data, which is a great setback in determining the possibility of scaling up 
AMF applications on a large scale (Li et al. 2016). Similarly, the nutrient exchange 
for carbon among the symbionts has not been fully quantified, nor has it been evalu-
ated on arable crops for commercial purposes (Li et al. 2016). This also opens up a 
knowledge gap in research on the use of AMFs for the cultivation of significant food 
crops. It is important to address these deficiencies before the utilisation of AMF-
centred approach, that is, employing AMF totally as part of a crop development 
process (Li et al. 2016). It is pertinent to focus on the particular functions of AMF 

T. T. Bello and O. A. Fabiyi



41

in the systems of crops, especially in response to ‘mycorrhizal application’ (Li et al. 
2016). Application rate, method and doses of AM fungi is also an important factors 
that influence the quantitative and qualitative characters of the plants (Field et al. 
2012). The effect of the AMF alliance on crops cannot be overlooked, though we 
may say that it is not a significant factor in nutrient exchange (Field et al. 2012). The 
level of importance of AMF to the host could be measured via the carbon received. 
Also, carbon, phosphorus and nitrogen exchange in the AMF plant relationship 
measurement is hardly not substantially recorded (Field et  al. 2012; Ansari and 
Khan 2012a,b; Ansari et al. 2017b). Some schools of thought have opined that over-
saturation of the atmosphere with CO2 reduces the carbon-nutrient exchange 
between symbionts (Field et al. 2012), but the state of this in relation to agricultural 
crops is not certain. A look at the projections of the IPCC regarding high concentra-
tions of atmospheric CO2 and its effect on crop productivity in AM fungi amended 
environment is crucially important (Challinor et  al. 2016). Comprehending the 
response of these symbionts to climate change, especially with regards to increased 
atmospheric CO2, is necessary (Challinor et al. 2016). The effect of AMFs on crop 
yield globally and their prospective ability to assuage environmental issues in the 
future should be of prime concern (Challinor et al. 2016). AMFs may be used for 
some environmental issues that are easily projected, and they can also be used spe-
cifically in a region for problems that arise (Field et al. 2012; Challinor et al. 2016). 
It is crucial to recognise the attributes of plants below and above the ground that 
offer malleability functionally to AMF and crop alliances in response to interchang-
ing environmental situations, which paves the way for them to have flexibility to 
keep up yield in changing climates (Challinor et al. 2016). Among dissimilar crop 
species, carbon exchange for nutrients may be evaluated similarly to soil types 
incorporated into varying techniques of land management. These are unidentified 
attributes that could function optimally within a fluctuating environment and an be 
taken into account (Challinor et  al. 2016). The temperate regions of the world 
account for basically most of the information on AMF relationships with crops with 
regards to food production (Field et al. 2012). This opens up a wide gap of missing 
information on plant interactions with AMF in tropical climates, especially in 
underdeveloped nations that are facing serious challenges of food insecurity (Field 
et al. 2012; Challinor et al. 2016). The mechanism of functioning of the relationship 
between AMF and a plant of a single species at the physiological and molecular 
level should be discerned in simple model experiments (Sharma and Bhutani 2000; 
Sharma et al. 2005). Information is little on mycorrhiza effects at ecosystem, land-
scape or field levels. At these levels, the ecosystem is dynamic and fungal, and 
plants are connected in multiple ways (Begum et al. 2019). New mechanisms in 
ecology could be applied to food production systems, by evaluating and understand-
ing the customs and complexity of such systems (Begum et al. 2019). Constant field 
experiments are needed to measure the exchange of nutrients, discover fungal con-
nectivity and pick out their behaviour relative to instability in weather and climate 
so as to ensure the application of AMF (Birhane et al. 2012). The measurement of 
carbon, phosphorus and nitrogen outflow among symbionts under normal and pro-
jected high levels of CO2 is a vital inquest that has to be addressed (Birhane et al. 
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2012). Presently, the benefits of the AMF association are not limited to nutrient 
supply. The influence of the symbiotic relationship on plant defence, soil function 
and structure appears to be the significant gain from the association (Salam et al. 
2017). Future research is expected to concentrate on optimisation of nutrient uptake 
with an effect on yield actualisation and dependable output. By optimally recognis-
ing, the traits relevant to AMF flexibility in plant species, crucial progress can be 
achieved towards food security in supportable systems of agriculture (Abdel Latef 
2011; Abdel Latef and Chaoxing 2011, 2014).

2.7	� Conclusions and Future Prospects

The task ahead in the use of mycorrhizal fungi for reliable crop production is to 
adjust and make effective use of several factors, such as means of inoculation, soil 
properties, the combination of AM fungi inoculum and the plant. Inoculation of 
mycorrhiza is crucial for the efficiency, health and good development of seedlings. 
The impact of mycorrhizae on plant physiology will be the mechanism path to 
wholesome food for humans. Innumerable ecological factors are accountable the 
effectiveness of AMFs; these include but are not limited to the inoculums, species 
of the plant, soil type and inoculation mode. Indigenous soil mycorrhiza can infect 
plants successfully and improve the plant’s growth and yield characters. In the field, 
phosphorus supply is known to augment mycorrhiza inoculation, but with some dif-
ferences on a yearly basis, with high concentrations of phosphorus in the soil, the 
reliance on mycorrhiza declines. To manage the traditional mycorrhizae in the soil 
on a long-term basis, it will be necessary to evaluate the effects of soil management 
practices and crop rotation activities very scientifically and wisely. For the control 
of soil-borne diseases, compost and solarisation could be used to augment the inoc-
ulation of mycorrhizae to achieve disease-free plant growth and desirable nutrition 
for the mycorrhizal-dependent plants.
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Abstract

Arbuscular mycorrhizal (AM) fungi are of paramount importance that develop a 
good mutual relationship with higher plants. The impact of different environ-
mental gases on AM symbiosis has not been studied extensively. The available 
data suggest that elevated CO2 increases the biomass and productivity of plants. 
However, the effect of CO2 on mycorrhizal symbiosis is still a matter of debate. 
The impact of CO2 on the development of mycorrhiza and spore production is a 
very interesting aspect to be unravelled. Assessment of the effect of SO2 and O3 
is also not much congenial to the growth and development of mycorrhizal fungi. 
These gases cause enormous negative impacts on the plant’s biomass and pro-
ductivity, as well as mycorrhizal network. In general, the effects of these gases 
are influential to biomass production and mycorrhizal spore formation and thus 
need further attention from the researchers.
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3.1	� Introduction

Arbuscular mycorrhizal (AM) fungi are commonly distributed and are an indistin-
guishable part of the ecosystem. They possess the ability to maintain ecosystem 
stability and plant health. AM fungi function in different ways and help plant 
improve their nutrient acquisition as well as resistance abilities against biotic and 
abiotic stressors (Dowarah et al. 2021). More than 80% of higher plants make com-
patible alliances with AM fungi, making them one of the most important and com-
mon fungal symbionts (Abbott and Gazey 1994; Smith and Read 2008). AM fungi 
contain a unique feature that they survive on their host plants, while the plants 
benefit from fungus ability to access and absorb nutrients, such as phosphorous, 
from the soil and make them available to the plants (Smith and Smith 2012). AM 
fungi are also important in the maintenance of soil structure, nutrient cycling, and 
plant growth ameliorations and are therefore considered one of the key players in 
the well functioning of efficient ecosystems. AM fungal populations can be affected 
by various environmental factors like pollution and spatial and temporal climate 
change, and thus population decline of plant symbionts may cause significant effects 
on the host plant and ecosystem functioning (Smith and Read 2010; Bennett and 
Classen 2020).

Plant symbionts especially mycorrhiza develop a mutualistic relationship with 
higher plants, including annuals, perennials, shrubs, and trees. Fungi provide 
improved access to soil nutrients in exchange for photosynthetically fixed carbon 
from the plant (Bonfante and Genre 2010). This relationship is usually very com-
mon in cultivated and non-cultivated ecosystems and has been found to show 
enhanced plant biomass, survival, and ability to reduce stress. This association ben-
efits both partners and is crucial for the survival of many plant species, especially in 
nutrient-poor soils (Harrison 1999). AM fungi colonize plant roots, forming struc-
tures called arbuscules that allow for the exchange of nutrients and other compounds 
(Luginbuehl and Oldroyd 2017). The fungus also extends its mycelium into the soil, 
where it can access nutrients that are not readily available to the plant roots. This 
allows the plant to obtain otherwise inaccessible nutrients, such as phosphorus, and 
improve its growth and survival. AM fungi also help in the degradation of organic 
compounds and improve the polluted and degraded sites of soil (Rajtor and 
Piotrowska-Seget 2016). The most important salient features of AM fungi include:

	1.	 Mutualism: AM fungi develop a symbiotic alliance with the plants; in that case, 
both partners benefit. Fungi give access to nutrients and water, which are other-
wise not available to the plants. On the other hand, plants give carbohydrates to 
fungi which are essentially needed for their survival (Lanfranco et al. 2016).

	2.	 Nutrient uptake: AM fungi have an extensive network of mycelia which absorb 
and transport different nutrients like phosphorus, to the plant roots, making them 
available to the plant (George et al. 1995).

	3.	 Soil health: AM fungi are important in maintaining soil structure, improving soil 
fertility, and promoting nutrient cycling. They can also improve soil water-
holding capacity and reduce erosion (Gujre et al. 2021).
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	4.	 Plant growth and survival: The relationship between AM fungi and plants is 
crucial for the growth and survival of many plant species, especially in nutrient-
poor soils. AM fungi improve plant growth, thereby enhancing the plant’s ability 
to survive under abiotic stress (Begum et al. 2019).

	5.	 Widespread occurrence: AM fungi can be encountered in heterogeneous envi-
ronments and form symbiosis in almost all terrestrial ecosystems 
(Rosendahl 2008).

The total production of AM fungi is difficult to quantify because of various fac-
tors like the abundance of host plants, soil health, and environmental factors. AM 
fungal populations are naturally dynamic and can vary in terms of their performance 
greatly in different ecosystems and over time (Eom et al. 2000).

It is important to note that these estimates may not accurately reflect the actual 
production of AM fungi as they are based on the limited available data. Further 
research in this connection is needed to gain information relating to the production 
and dynamics of plant symbionts. It is difficult to determine the total production of 
AM fungi, as this type of fungus is naturally occurring and widespread in most ter-
restrial ecosystems. However, the diversity of AM fungi in a particular ecosystem is 
significantly affected by various factors like soil type, prevailing cropping pattern, 
and climate perturbation (Allen et al. 1995; Jeffries et al. 2003). AM fungi develop 
a symbiotic association with the higher plants, which are also influenced by types of 
mycorrhiza and the environment in which they thrive (Khaliq et al. 2022). The pro-
duction of AM fungi is likely to be highest in ecosystems with abundant plant 
growth, such as forests and grasslands, where fungi can form mutual relationships 
with an array of plants (Castillo et al. 2012). However, the precise amount of AM 
fungal biomass produced in any given area is difficult to determine and may not 
necessarily be a reliable indicator of their abundance or the overall health of the 
ecosystem (Klironomos et al. 2000).

Meagre literature is available on important environmental gases and their influ-
ence on mycorrhizal symbiosis. An emphasis has been, therefore, given in this 
chapter to collect the information related to impact of elevated CO2, SO2, and O3 on 
mycorrhizal population and mycorrhization pattern. The outcomes of this chapter 
will indeed help reader find updated, relevant, concrete, and authentic data on the 
proposed theme.

3.2	� AM Fungi and Their Diversification

The current molecular studies and fossil-based analysis suggest that the association 
between plant and AM fungi first appeared 460 million years ago (Redecker 2002). 
Host receive an increased amount of nutrient and water uptake while fungal symbi-
onts are benefitted from carbohydrates (Van Der Heijden and Horton 2009; Redecker 
et  al. 2013; Schüßler et  al. 2001). Fungi-plants symbiosis might have developed 
from those fungi that initially made an alliance with the earliest land plants after 
developing a mutual understanding with blue-green algae (Schüßler et al. 2001). 
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The last 100 million years have seen several emergences of such alliance that most 
frequently develop some specialized mycorrhiza such as ecto and ericoid mycor-
rhiza. It is debatable whether parasitic or saprotrophic fungi gave rise to mycorrhi-
zal fungi because such type of frequent relationship belongs to mutualism-parasitism 
process that depends on the availability and accessibility of soil nutrients as well as 
carbohydrate production. Evidence suggests that AM fungi are developed from sap-
robes (Hibbett et al. 2000; James et al. 2006; Kohler et al. 2015; van der Heijden 
et al. 2015). There is some important regulatory modification that help in the forma-
tion of symbiosis leading to development of independent mycorrhiza are consider-
ably important. A set of genes are also present within the host plant that governs and 
become very instrumental in the formation of such alliance (Wang et al. 2010). In 
connection to the origin and evolution of AM fungi, convergent evolution has been 
a convincing agency that supports the theory of ecto, ericoid, and orchid mycorrhi-
zal fungi (Kuhn et al. 2001). It is generally considered that plant symbionts obtain 
the food materials like carbohydrates from the host plant. It has long been observed 
that such association is encountered exclusively with the plants and such plants-
fungi have a close alliance. This type of association has attracted various scientists 
to research host–symbiosis association. Mycorrhizal fungi have a close coevolu-
tionary relationship with their host plant. Carbohydrates from one plant may be 
indirectly transferred to another through mycorrhizal association (Kiers and Heijden 
2006). Extraradical mycelia is an important aspect of the foraging strategy of many 
fungi which helps fungi acquire nutrients from the surrounding soil (Plassard et al. 
2019). AM fungi produce a network of extraradical mycelia that may extend over 
several meters, while others may grow up to a few centimetres depending on species 
of fungus, nutrient and moisture availability, and the presence of competing micro-
organisms (Mikkelsen et al. 2008). This provides an additional surface to the plant 
root system to acquire more minerals and transfer them to intraradical mycelia and 
arbuscules which are then distributed internally within the roots. Finally, the miner-
als are delivered to plant roots and carbohydrates are exchanged (Nagy et al. 2009). 
The extraradical mycelia of AM fungi enable them to explore the soil to acquire 
more nutrients for a larger period, distantly located and widely arranged and making 
them available to the plants which are grown in nutrient-deprived soil (Allen and 
Shachar-Hill 2009). The functioning of an ecosystem is greatly improved due to the 
presence of these plant symbionts. These plant symbionts can help aggregate soil 
and withstands with abiotic stressors (Leifheit et al. 2014). However, physicochemi-
cal properties of the soil also affect AM fungi symbiosis and their population diver-
sity in different environments (Li et  al. 1991). These symbionts affect the 
physiological, biochemical status of the individual plants that help in nurturing the 
soil health. AM fungi also influence the microbial composition of soil that indirectly 
help improve plant growth characters. For example, microorganisms participating 
in the nitrogen cycle are markedly influenced (Veresoglou et al. 2012), and thus they 
exert influence on cropping pattern in a particular environment (Klironomos et al. 
2011). AM fungi modulate the interaction way of plant–plant (Bever 2002), plant–
pathogen (Wehner et al. 2010) and plant–herbivore (Gehring and Whitham 2002) 
relationship.
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3.3	� AM Fungi and Its Key Functions

Carbon and other minerals movement from plant to fungus in mycorrhizal plants 
have got good pace in the literature in addition to phosphorus (Bago et al. 2000). 
Phosphorus exchange from fungi to plant has better been recorded (Smith and Read 
1997). An appreciable amount of carbon is clearly seen to be transported between 
the roots of plants through AM fungal networks (Francis and Read 1984; Grime 
et al. 1987; Lerat et al. 2002). The stable isotopic studies confirm that around 50% 
of the carbon transferred from host plant to mycorrhizal fungi can be of the root 
system of other plants that may subsequently be used by the plants (Graves et al. 
1997). The AM symbiosis with host plants is undoubtedly very old relationship and 
has been the key player in the evolution of the plants. Though this assumption is 
very important and can unravel many hidden processes which is very important for 
plant–microbe association, AM fungi help plants improve plant vigour in hostile 
environments (Ansari and Khan 2012b; Ansari et al. 2019a, b; Sumbul et al. 2017). 
AM fungi alleviate the stress levels thereby enhancing crop biomass and yield 
(Abdel-Salam et al. 2018; Rizvi et al. 2015; Ansari et al. 2017a, b). The presence of 
mycorrhiza obviates the effect of many unwanted environmental factors which cre-
ate stresses to the plants that include biotic and abiotic ones (Diagne et al. 2020). 
AM fungi-induced plant biomass enhancement is accomplished because of 
improved water and mineral uptake from surroundings and protects the host plant 
from a wide array of biotic stresses including plant pathogens (Smith and Read 
2008). The mutual alliance between plants and its symbionts is of unique feature 
that regulates plant biomass and yield development. The mycelial cord of fungi 
(extraradical mycelia) is extended and reaches into the area which is otherwise inac-
cessible for nutrient uptake. The same fungal mycelia can create a common network 
between plants of different groups. This common mycelial network help improve 
the vigour of different crop plants (Pringle et al. 2009). The nutrients are relocated 
from fungi to the plants thus ameliorated plant tolerance is ensured (Plassard and 
Dell 2010). AM fungi improve soil health, and intensify the crop growth, morpho-
logical characters, productivity in congenial, and hostile environment (Navarro 
et al. 2014; Hashem et al. 2015). Plant symbionts especially mycorrhizal fungi are 
also considered bioinoculants, and currently receiving special attention from 
researchers in sustainable crop protection and production (Barrow 2012).

Glomalin is another important proteinaceous compound which is released by 
Glomus spp. that has received the attention of researchers considerably. This com-
pound serves as glue in the adherence of soil particles. This compound sustains the 
water content especially in hostile environment (Wu et  al. 2014). The glomalin 
compounds contain 30–40% of carbon which helps in protecting soil from drying 
(Sharma et al. 2017). Other important physiological features of the plants (efficient 
activity of stoma; stomatal conductance, water potential in leaf, water contents, effi-
ciency of PSII, and carbon fixation) are imperatively improved (He et  al. 2017; 
Chandrasekaran 2019) in glomalin-enriched soil. The glomalin can persist in the 
soil for many years, providing a sustained source of organic matter (Vlček and 
Pohanka 2020). This makes a valuable resource for maintaining soil health, 
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especially in agroecosystem where soil is frequently disturbed or depleted of organic 
matter through tillage, erosion, or anthropogenic activity (Balík et al. 2022).

AM fungi also serve as biofertilizers which improve soil, plant growths, and 
overall biomass (Sadhana 2014). It is assumed that AM fungi may also be an alter-
native to inorganic fertilizers. Non-judicious application of inorganic fertilizers and 
pesticides has raised enormous issues for the ecosystem and human health as well. 
These fertilizers’ non-judiciously introduction lead to significant perturbations in 
the terrestrial ecosystem (Dai et  al. 2013). Excessive use of land may affect the 
biodiversity very badly and the functioning of ecosystem as well (Wagg et al. 2015). 
The plant symbiosis increases the accessibility of various micro and macronutrients 
to plants through various means. Plant symbionts colonization of the host plants 
boost up nutrient uptake capacity specifically phosphate (Smith et al. 2003). They 
help plant to uptake nutrient from nutrient-deprived soils (Kayama and Yamanaka 
2014). In addition to phosphate, AM fungi are also known to transfer many micro-
nutrients like Zn and Cu (Smith and Smith 1997). These plant symbionts may 
develop alliance with the plants and obtain carbohydrates for their survival. 
However, AM fungi give the plant various nutrients like nitrogen, phosphorus, 
potassium, calcium, zinc, and sulphur. Arbuscules are specialized structures and 
involved in the exchange of nutrients and are very instrumental in mutualistic rela-
tionship between the plant and fungus (Li et al. 2016a, b; Prasad et al. 2011). The 
arbuscules are highly branched, usually spherical shape that are developed within 
the plant cells, and provide a large surface area for the exchange of water and nutri-
ents, primarily phosphorous, between the fungus and the plant (Smith and Read 
2008). Plant symbionts inoculation progressively enhanced the nitrogen, phospho-
rus, and iron concentration status of Pelagronium graveolens under water deficient 
environment (Amiri et al. 2017). Application of AM fungi under salinity stress to 
the Euonymus japonica increased the phosphorus, calcium, and potassium levels in 
crop plants (Gómez-Bellot et al. 2015). Moreover, AM fungi and their role in nitro-
gen cycling have also been observed (Hodge and Fitter 2010). The extraradical 
hyphae may absorb the nitrogen progressively (Tanaka and Yano 2005). AM fungi 
usually transfer 20–75% of total nitrogen absorbed to their host plants (Tanaka and 
Yano 2005; Hashem et  al. 2018). Plant symbionts inoculation to olive plants 
increased plant health and accelerate micro- and macronutrients accumulation abil-
ity (Bati et al. 2015).

AM fungi-led grown strawberry plants showed enhanced levels of biomolecule 
synthesis which are required for plant health (Castellanos-Morales et  al. 2010). 
These plant symbionts also increase qualitative characters that influence the biosyn-
thesis of several volatile compounds and also carotene-bearing compounds (Hart 
et al. 2015). The introduction of Glomus versiforme progressively enhanced impor-
tant molecules (Sugars, organic acids, vitamin C, flavonoids) leading to improved 
quality of citrus (Zeng et al. 2014). Growth and productivity characters of Zea mays 
(Sabia et al. 2015), yam (Lu et al. 2015), and potato (Hijri 2016) were markedly 
found higher in AM fungi-inoculated plants. AM fungi have also been very pivotal 
in accelerating the biosynthesis of some important plant chemicals which make 
plants more fit, fine, and healthy (Sbrana et al. 2014; Rouphael et al. 2015).
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AM fungi have been the subject of investigation as they may be considered as 
drought stress ameliorator. Drought stress has been found reducing the rate of tran-
spiration and induces oxidatively induced stress (Impa et al. 2012). Drought stress 
contributes to the reduced crop growth as it affects enzymatic activity, ion uptake, 
and assimilation of nutrients (Ahanger and Agarwal 2017). There has been enough 
evidence which suggests that AM fungi can alleviate the stress of drought and 
improve the qualitative characters of different crops including wheat, barley, maize, 
soybean, strawberry, and onion (Mena-Violante et  al. 2006; Ruiz-Lozano et  al. 
2015; Yooyongwech et al. 2016; Moradtalab et al. 2019). The plants become more 
tolerant to the drought and such tolerance is developed which seems to be due to the 
exploration of more soil by roots of mycorrhizal plants (Zhang et al. 2016). The 
symbiotic association of plant and AM fungi also regulates enhanced osmotic 
potential (Kubikova et al. 2001), activity of natural opening like stomatal opening 
and closure by controlled plant hormone, i.e., abscisic acid (Duan et  al. 1996), 
increased proline accumulation (Ruiz-Sánchez et al. 2010), or enhanced glutathione 
level (Rani 2016). Inoculation of plant symbionts to different plants finally increases 
root size and uptake efficiency, leaf area index, and biomass in drought environment 
(Al-Karaki et al. 2004; Gholamhoseini et al. 2013). There has been a hue and cry in 
soil salinization which has caused a serious concern and poses a significant threat to 
environmental conditions. The salinity stress is well-known factor for suppressing 
the plant biomass and affects fixation of nitrogen (Hasanuzzaman et al. 2013). Soil 
salinization increases the production of oxidant molecules in an excessive amount 
which is also harmful to plants (Ahmad et al. 2010).

The growth rate, water potential of leaf, and the ability of plants to use water in 
snapdragon (Antirrhinum majus) were progressively challenged when grown under 
saline conditions (El-Nashar 2017). AM fungi inoculation progressively improved 
the photosynthesis rate, gaseous exchange characters, chlorophylls, and efficiency 
of the plants to use the water by Ocimum brasilicum in a salty environment (Elhindi 
et al. 2017). Wang et al. (2018) observed that inoculation of AM fungi alleviated the 
saline stress and enhanced the biomass characters of the plants. AM fungi-driven 
Cucumis sativus plants exhibited higher concentrations of total phosphorus, cal-
cium, nitrogen, magnesium, and potassium as compared to non-AM inoculated 
plants growing in saline soil (Hashem et al. 2018). In another study, the chlorophyll 
contents, magnesium, and nitrogen uptake were markedly higher in AM fungi-
inoculated plants of chilli which was grown in saline soil (Cekic et  al. 2012). 
AM-driven plants exhibited greater biomass production, enhanced biosynthesis of 
proline contents, enhanced nitrogen uptake and remarkable variations in ionic 
exchange, and poor uptake of sodium as compared to those which are non-
mycorrhizal under saline stress (Santander et al. 2019).

AM fungi also help in the regulation of plant growth hormones. For instance, 
AM fungi inoculation significantly improved the cytokinin concentration leading to 
enhanced photosynthate translocation in saline environment (Talaat and Shawky 
2014). Mycorrhizal plant growth was progressively higher due to remarkable 
changes in polyamine pool under saline soil (Kapoor et al. 2013). Likewise, another 
important compound (strigolacton) in mycorrhizal plants significantly obviated the 
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different salinity effects on lettuce. AM fungi-inoculated plants possess the charac-
ters to minimize the oxidative molecules production by reducing lipid membrane 
peroxidation in saline environment (Talaat and Shawky 2014). In saline soil, organic 
acids enhance osmoregulation even in the presence of plant symbionts. Increased 
level of betaine production in maize plants grown in saline soil is a traditional exam-
ple (Sheng et al. 2011).

3.3.1	� Heavy Metals

If heavy metals are taken for granted, the day is not far away when humankind will 
be facing a big challenge pertaining to ecosystem health (Liu et al. 2013; Yousaf 
et al. 2016). Soil containing heavy metals is yet another aspect which has obviously 
created chaos and unrest among biodiversity conservationists. AM fungi strengthen 
the defence system of plants that promote growth and development. Mycorrhizal 
spores infecting Triticum aestivum registered a significant amount of improvement 
in plant biomass and total yield production in aluminium-stressed soil (Aguilera 
et al. 2014). The heavy metal-enriched soil impairs plant growth and yield attributes 
causing chlorosis and finally death of the plants (Moghadam 2016). Heavy metals 
are immobilized in the internal and external fungal hyphae that fix them and are 
stored within their cells. These heavy metals are fixed in wall and vacuole that 
serves as storage part of the cells and are usually chelated with cytoplasm thus is a 
natural way to reduce the bioavailability of heavy metals in the soil and reduce their 
potential for harm to the ecosystem (Punamiya et al. 2010). AM fungi-led enhanced 
growth and development in the plants are assumed to be due to increased improve-
ment in morpho-physiological process which consequently enhances plant biomass, 
and accumulation of micro- and macronutrients such as copper, zinc, and phospho-
rus (Miransari 2017). AM fungi also bind with Cd and Zn in the hyphae and cortical 
cells thereby growth and nutrients status of the plants are significantly improved 
(Garg and Chandel 2012). These plant symbionts also improve pH levels in the soil 
(Shen et  al. 2006), restore cadmium in extraradical mycelia (Janouškova and 
Pavlíková 2010), and conjugate cadmium to glycoprotein (glomalin). Plant symbi-
onts are highly suppressive in reducing toxic concentrations of heavy metals like 
cadmium by detoxifying their level on rice plants (Li et al. 2016a, b).

3.3.2	� Temperature

High and low temperatures may cause significant damage to the crop yield contrib-
uting characters. Plants symbionts have always been instrumental in the obviation 
of such stressors and gave the researchers a convincing result. The elevated soil 
temperature badly affects plant growth, vegetative characters, and development 
which finally determines sustainability and productivity (Bunn et  al. 2009). AM 
fungi-inoculated plants have exhibited pronounced biomass under thermal stress as 
compared to plants which possess no mycorrhizal spores (Gavito et al. 2005). The 
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plant symbionts also have the ability to hold moisture for longer durations in the 
crop plants (Zhu et al. 2010) that enhance secondary biomolecules production lead-
ing to the improved resistance level, and enhanced protein contents that subse-
quently support the plant to obviate the cold stress (Abdel Latef and Chaoxing 
2014). AM fungi also improve the biosynthesis of chlorophyll status when grown in 
a cold environment (Zhu et al. 2010).

3.4	� AM Fungi in Plant Disease Management

Undoubtedly, plant symbionts always remained instrumental in the alleviation of 
various abiotic stressors. However, the significance of such important microorgan-
isms cannot be overlooked in crop health improvement while grown in fungi, nema-
tode, and bacteria-driven environment. AM fungi trigger the biosynthesis of some 
defensive biomolecules that makes the plants more resistant to pathogens (Sreenivasa 
et al. 2019; Hooker et al. 1994; Ansari et al. 2020a; Solanki et al. 2020; Ansari and 
Mahmood 2019a, b). AM fungi improve plant health in direct or indirect manner. 
The plant growth and vigour (Wang et al. 2010), phytohormone (Song et al. 2020), 
and food and space competition among the microorganisms (Qiao et al. 2015) are 
imperatively ameliorated. AM fungi also release certain phenols (Bencherif et al. 
2019) that possess antimicrobial activity like polymyxin and its derivatives (Kaur 
and Suseela 2020; Mansfeld-Giese et al. 2002). These important plant symbionts 
also have the ability to release some chemicals that become lethal to the pathogens 
(Bruisson et al. 2016; López-Ráez et al. 2017; Wang et al. 2017). AM fungi develop 
a good linkage with the rhizobiome containing rhizobacteria which helps plant sym-
bionts to be more effective in managing plant diseases and improving crop yield 
(Raklami et al. 2019; Ansari et al. 2020b; Ansari and Mahmood 2017a, b; Ansari 
and Khan 2012a). Declerck et al. (2002) found that pre-inoculation of Glomus sp., 
G. proliferum, G. intraradices, and G. versiforme not only attenuated disease sever-
ity caused by Cylindrocladium spathiphylli but also stimulated the growth and phos-
phorus contents of banana plants. The effect of AM fungi in managing different 
microorganisms causing disease has been demonstrated, however, inconsistency in 
the use of AM fungi cannot be taken for granted before commercialization of such 
models. Banana rhizome inoculated with Glomus intraradices and Glomus sp. iso-
lates significantly impaired the necrosis of rhizome and the disease induced by wilt-
causing fungi (Fusarium oxysporum f. sp. cubense) though, comparative analysis 
on the effectiveness of both AM fungi which makes the sense that both isolates were 
either equally effective against wilt pathogens or do not possess specificity (Jaizme-
Vega 1998; Jaizme-Vega et  al. 2003). The effectiveness of AM fungi was also 
enhanced if they are applied in mixture of other beneficial microorganisms. 
Nicotiana tabacum plants usually suffer from a major disease which is called black 
shank, and the disease is caused by Phytophthora parasitica var. nicotianae and 
damping off (Pythium aphanidermatum), were inoculated with a consortium of 
plant symbiont, G. fasciculatum and biocontrol agent, T. harzianum. It was observed 
that the application of these consortia effectively managed the disease leading to 
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improved plant health (Sreeramulu et al. 1998). The effect of AM fungi on phyto-
pathogenic bacteria and disease they cause have also been tested and showed satis-
factory results that can be helpful for disease management. AM fungi, Glomus 
macrocarpum, mitigated the infection caused by Pseudomonas lacrymans on egg-
plants and cucumber (Xavier and Boyetchko 2004).

Virus–mycorrhiza interaction is perhaps the least studied aspect that also require 
extensive studies. It is assumed that mycorrhizae are not viral vectors as the viral 
particles were totally absent from plant symbiont’s hyphae and arbuscules sur-
roundings (Jabaji-Hare and Stobbs 1984). However, the effect of the virus on 
mycorrhiza is still a promising field and needs to be examined very skillfully. 
Besides, plant parasitic nematodes possess different modes of parasitism that may 
induce significant yield loss to crop plants across the world (Jones et al. 2013). AM 
fungi have been found protecting crops from nematodes through various mecha-
nisms such as competition for space and nutrients (Parniske 2008), alterations in 
root morphology (Gamalero et al. 2010), induction of systemic resistance (De la 
Peña et  al. 2006), and altered rhizosphere interaction (Hodge 2000; Ansari 
et al. 2020a).

3.5	� Elevated CO2 and Its Impact on Mycorrhiza 
and Mycorrhization

The CO2 concentration varies depending on the location, time of day, and season. 
However, the average CO2 concentration in the earth’s atmosphere during 2020 was 
around 419 ppm (NOVA 2021). The impact of elevated CO2 on plant mycorrhizal 
symbiosis has been a subject of discussion on various platforms. There are several 
other factors which are also influenced due to elevation of CO2. The assumption has 
been that by the year 2100, the CO2 level may arise up to 750 ppm (IPCC 2014) 
which may cause more perturbation to the ecosystem. The effects of elevated CO2 
on different species and wild natural ecosystem are very poorly understood. The 
aboveground parts of the terrestrial ecosystem have exhibited various physiological 
changes while growning in elevated CO2 environment (Becklin et  al. 2017; 
Obermeier et al. 2017). Enhanced photosynthetic activity under elevated CO2 also 
increases photosynthetic transfer capacity of various plants and also influences car-
bon flow through soil microbial agents (Cheng et  al. 2012; Drigo et  al. 2010; 
Staddon et al. 2014).

On the other hand, few reports suggest that elevated CO2 help plants to grow 
quickly than ambient CO2 in somewhat regulated way (Poorter 1993). It is also 
observed that elevated levels of CO2 may allocate an increased level of carbon in the 
root system as compared to shoots in a mycorrhizal plant (Rogers et  al. 1995). 
Moreover, many researchers have attempted to show that elevated level of CO2 
below ground can stimulate the mycorrhizal colonization; however, it needs further 
cogent studies (Staddon and Fitter 1998; Fitter et al. 2000). In another set of experi-
ments, Gavito et al. (2000) reported that enhanced CO2 level registered no signifi-
cant effects on colonization of AM fungus or extraradical hyphal production. Under 
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elevated CO2 conditions, plants exhibited a significant increase in biomass, accom-
panied by a concurrent enhancement in mycorrhizal symbiotic associations. Lewis 
et al. (1994) reported that Pinus taeda grown in elevated CO2 caused significant 
effects on root carbohydrate levels. However, mycorrhizal colonization received no 
remarkable effects which reveal that there is no unique pattern of CO2 effects on 
mycorrhizal symbiosis (Klironomos et al. 1998). Elevated CO2 can impact the for-
mation of mycorrhizal spores in the soil. Studies have shown that elevated CO2 
levels can alter the formation of mycorrhizal spores and their abundance in soil. 
Elevated CO2 can increase the production of mycorrhizal spores, while others have 
found no effect or a decrease in their formation. The effect of elevated CO2 on 
mycorrhizal spores depends on the specific plant–fungal association, as well as 
environmental factors such as nutrient availability, soil moisture, and temperature 
(Fitter et  al. 2000). Overall, the effect of elevated CO2 on mycorrhizal spores is 
complex and more research is needed to fully understand the mechanisms and 
implications of this relationship.

3.5.1	� Effect of CO2 on Plant Biomass Colonized by 
Mycorrhizal Fungi

Elevated CO2 increases the total biomass production of some plant species. This is 
because higher CO2 levels enhance photosynthesis in a regulated way which leads 
to increased growth and productivity  (Morison and Lawlor 1990). This effect is 
known as “CO2 fertilization effect” and has been demonstrated in different condi-
tions. However, it is important to note that the extent of this effect may vary depend-
ing on factors such as the type of plant species, growing conditions, and soil 
nutrients. Elevated CO2-exposed plants increase plant growth, alter the plant’s phys-
iology, nutrient content, and susceptibility to herbivores and diseases, which have 
cascading effects on ecosystems (Insam et al. 1999). The elevated CO2 enhances the 
crop biomass and the presence of mycorrhizal spores pronouncedly increases plant 
biomass and yield characters (Gavito et  al. 2000). However, substantial research 
work is still needed to be done to come out with any concrete conclusions.

Also, plants exposed to CO2 inoculated with mycorrhizal spores are a good ave-
nue for enhanced production of plant biomass and yield. Zhu et  al. (2018) con-
ducted an experiment and observed whether AM symbionts may increase the 
nutrient accumulations and plant biomass of wheat exposed to elevated CO2 and 
saline soil. They substantially reported that elevated CO2 enhanced the plant’s sym-
bionts’ colonization and dryweight production. Elevated CO2-exposed plants regis-
tered significant growth and biomass in non-mycorrhizal wheat. The nitrogen 
contents and sodium ions of shoots and roots were progressively enhanced. Overall, 
the plants exposed to elevated CO2 obviated the stress and exhibited improved 
plant health.
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3.6	� Elevated O3 and Its Impact on Mycorrhiza 
and Mycorrhization

AM fungi and their beneficial effects on plant are very instrumental in predicting 
various environmental pollutants and also their impact on sustainable crop biomass 
and yield (Shafer and Schoeneberger 1991). Due to obligatory nature, AM fungi are 
not able to produce a sufficient number of mycelia, or further development of plant 
symbionts is halted apparently as ramification and growth of these fungi is totally 
dependent on the food supply of the host plants (Smith and Read 2008). The plant 
health improvement depends also on AM root colonization. The association of plant 
symbionts with plants has improved crop health and registered a significant amount 
of yield in total biomass (Abbott and Robson 1979). Inoculation of AM isolate and 
percent root colonization has also been positively correlated (Zangaro et al. 2007). 
Elevated O3 has been a major challenge ahead the environmental protectionists. It 
has been observed that the contribution of O3 continues to increase in developing 
nations (Wang et al. 2007). O3 also acts as an oxidant which may hamper the crop 
growth, physiology, and productivity. Reduced photosynthetic rate and other physi-
ological process, leaf injury, and leaf senescence contribute markedly to yield loss. 
For example, elevated O3 causes 5% and 10% of total yield reduction in maize and 
soybean, respectively, from 1980 to 2011 which costs around 9 billion USD in the 
United States (McGrath et al. 2015). A significant crop yield loss is being projected 
due to elevated O3 from 2000 to 2030 (Avnery et al. 2011). The ozone effect has a 
negative impact on mycorrhiza which can damage the plant root cells, leading to 
decreased effectiveness of the mycorrhiza in providing essential nutrients and water 
to the host plant. This can reduce the plant’s ability to resist disease and drought, 
and overall decrease its growth and productivity. Additionally, O3 can directly harm 
the fungal partner in the symbiotic relationship, disrupting the balance of the mycor-
rhiza, and further reducing its benefits to the plant (Ueno et al. 2016).

Studies have shown that exposure to high levels of O3 can disrupt this symbiotic 
relationship and lead to reduced plant growth and health. The O3 can damage the 
plant’s root cells, leading to a reduction in the production of root exudates, which 
are crucial for the establishment of mycorrhiza (Wilkinson and Davies 2010). 
Moreover, O3 can also lead to the production of oxidative stress in mycorrhizal 
fungi, which can reduce their ability to form and maintain a symbiotic relationship 
with the plant. This, in turn, can lead to decreased plant growth and reduced toler-
ance to environmental stresses (Baier et al. 2005). Therefore, the ozone effect on 
mycorrhiza is generally considered to be negative and can lead to significant impacts 
on plant growth and productivity (Booker et al. 2009).

Exposure to O3 has reduced crop health, photosynthetic variables; therefore, 
insufficient carbon is made available which obviously affect the AM fungi and host 
interaction with a plant (Parniske 2008). The rate of AM colonization in O3 exposed 
environment has been negatively affected (Wang et al. 2017). It is the need of the 
hour to look into the effect of AM fungi on plant health and yield grown in elevated 
O3 environment. A high level of O3 also affects AM colonization, though consis-
tency in such experiments has not been observed. Elevated O3 cause varied effects 
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on AM colonization. Vesicle formation and development frequency, hyphal coiling 
is enhanced while the frequency of arbuscules is reduced (Duckmanton and Widden 
1994). For instance, increased O3 exposure registered substantially improved vesi-
cle formation, and reduced arbuscular and hyphal colonization in Phseolus vulgaris 
(Wang et al. 2011).

3.7	� O3 and Its Effect on Total Biomass

Elevated O3 is well known to hamper plant growth, biomass markers, and crop yield 
characters in appreciable amount (Gelang et al. 2001; Feng et al. 2008; Black et al. 
2012). Increased O3 significantly harms different ionic particles of membrane, 
accelerates the leaf senescence and reactive oxygen species production from differ-
ent enzymatic sources, and also decreases photosynthetic activity (Calatayud et al. 
2011; Mills et al. 2013). However, plant symbiont’s introduction induced good plant 
health and enhance biomass production and yield (Smith and Read 2008; Heidari 
and Karami 2014). Under elevated O3 exposure, AM symbiosis may survive and 
trigger the enhancement of biochemical processes like stomatal conductance, tran-
spiration, and photosynthesis (Wang et al. 2015) which suggest that AM fungi pos-
sess the ability to obviate the O3 stress. Elevated O3 frequently reduces stomatal 
conductance, CO2 exchange rates, electron transport, PSII function, photochemical, 
and non-photochemical quenching (Ismail et  al. 2014; Guidi et  al. 2002; 
Pellegrini 2014).

AM symbiosis includes germination of mature spore, growing hyphae, coloniza-
tion rate and pattern, formation of vesicles, functionality of arbuscules, and hyphal 
structure within a plant root (Bécard et al. 2004). Elevated O3 markedly impaired 
the mycorrhizal colonization rate except for hyphal coiling at 41–80 ppb O3. Higher 
concentration of O3 progressively decrease the mycorrhizal colonization rate. It is 
speculated that elevated O3 minimizes the rate of photosynthesis of host plants and 
cargo of carbohydrates from the leaf to roots of the host plants thus poor supply of 
carbohydrates is only left to AM fungi (Morgan et  al. 2003; Feng et  al. 2008). 
Impact of elevated O3 on AM symbiosis is related to various important characters 
like exposure duration is one of the important variables that leaves substantial 
impact on hyphal coiling, arbuscule, and vesicle formation (Kytöviita et al. 2001; 
Wang et al. 2017). Elevated O3 also determines the formation and disappearance of 
arbuscules which is very frequent and for shorter duration (Alexander et al. 1989; 
Read 1991). Elevated O3 may enhance the biosynthesis of some biomolecules like 
phenols, polyphenols different plant growth regulators, and various molecules 
which are players in defence system of the plants (Ludwikow and Sadowski 2008; 
Häikiö et  al. 2009). The secondary biomolecule compound synthesis is highly 
regarded for generation and degeneration of hyphae and arbuscules in AM symbio-
sis (Nagahashi and Douds 2000; Requena et al. 2007). Abbott et al. (1984) reported 
that in excessive phosphorus environment, vesicle formation is reduced while it is 
increased during the flowering period and high nitrogen environment (Gunze and 
Hennessy 1980; Bevege et al. 1975). Contrary to this, Yin et al. (2022) published 
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research finding in the journal “mycorrhiza” reporting the effects of elevated O3 on 
plant biomass and different nutrients. The study reported that elevated O3 (60nml.
mol1 O3 enrichment) reduced the net photosynthetic rate and plant’s overall biomass 
and yield production. On the other hand, malondialdehyde was progressively 
increased. Moreover, Ho and Trappe (1984) conducted an experiment on the effect 
of O3 on the growth and mycorrhizal symbiosis of Festuca arundinacea. It was 
observed that mycorrhiza-inoculated F. arundinacea and also exposed with 0.1 ppm 
O3 for three months impaired the root biomass, although increase in mycorrhiza-
related parameters was observed which suggests that there is no unique pattern in 
mycorrhization.

3.8	� Elevated SO2 and Its Impact on Mycorrhiza 
and Mycorrhization

Elevated SO2 levels can acidify the soil and reduce plant growth, leading to a 
decrease in the benefits of mycorrhizal symbiosis. Additionally, high SO2 levels can 
directly damage the fungal hyphae, reducing the efficiency of the symbiotic rela-
tionship (Clapperton and Parkinson 1990; Clapperton 1991). To mitigate the effects 
of elevated SO2 on mycorrhizal symbiosis, measures can be taken to reduce SO2 
emissions and improve soil and plant health. Elevated SO2 can have a negative 
impact on mycorrhizal symbiosis. Elevated SO2 causes damage to both the plant 
and fungal partner, resulting in reduced plant growth and decreased efficiency of 
nutrient acquisition (Dighton and Jansen 1991). The mechanisms of SO2 toxicity 
are not yet fully understood, but it is believed to have involved oxidative stress and 
cellular damage in both the plant and fungal cells (Mahoney et al. 1985). SO2 can 
also interfere with the process of photosynthesis, which is the process by which 
plants use sunlight to produce energy and convert carbon dioxide into glucose. High 
levels of SO2 can also increase acidity status in soil and in such environment, plants 
are failed to absorb the nutrient efficiently (Agrawal and Deepak 2003). Furthermore, 
continuous elevated SO2 exposure can reduce the ability of plants to withstand 
against extreme environment, and fight pathogens and pests. Elevated SO2-exposed 
plants exhibit reduced growth, photosynthesis, and plant health. Additionally, SO2 
can hamper the process of root development and nutrient uptake, which is a limiting 
factor for nutrient acquisition by plants. Elevated SO2 may also cause acid rain, 
which lower soil pH and negatively reduce plant growth, health, and productivity 
(Gaffney et al. 1987).

Elevated SO2-exposed plants reduce the formation and functioning of arbuscules, 
which can lead to reduced nutrient uptake by the plant (Clapperton et al. 1990). This 
can overall affect the growth and development of plant as well as efficiency of the 
mycorrhizal symbiosis pertaining to the acquisition of nutrients (Clapperton 1991). 
High levels of SO2 can also interfere with the formation and maintenance of arbus-
cules, which can further reduce the effectiveness of the symbiotic relationship 
(Jakobsen et al. 2003; Clapperton 1991).

Elevated SO2 is well-known gaseous pollutants which have warranted many 
noticeable damages to the ecosystem. The SO2 is a highly reactive gas that harms 
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terrestrial ecosystems when used alone or in combination with other harmful sub-
stances. Vegetation of terrestrial ecosystem has efficiently absorbed the SO2 through 
stomatal absorption, water dissolution, etc. (Fowler and Unsworth 1974; Majernik 
and Mansfield 1970). Elevated SO2 causes some effects on the soil microbes associ-
ated with mycorrhizosphere which is assumed to be either indirect or plant medi-
ated. Plants exposed to low SO2 have produced poor quality dry biomass (Bell and 
Clough 1973). Such degradation in plant biomass is directly linked with reduced 
photosynthesis and modulation in translocation of newly synthesized carbohydrates 
(Noyes 1980). Furthermore, biochemical and physiological changes in the host 
plants exposed to SO2 have also been monitored. Rice et al. (1978) reported that 
increased SO2 in open air fumigation systems showed less vesicular arbuscular 
mycorrhiza symbiosis with Agropyron smithii. Likewise, an individual field (prai-
rie) were exposed continuously to low concentration of SO2 which results in lower 
population of VAM fungi in the field condition. Clapperton et al. (1990) observed a 
substantial reduction in mycorrhization pattern when exposed to lower (005–007 μl) 
concentration of SO2.

3.9	� Conclusions and Future Outlooks

The effects of various air gases on mycorrhizal symbiosis have become a very 
important topic of research for plant scientists, root biologists, microbiologists, etc. 
Elevated CO2, SO2, O3 are important environmental gases and have been instrumen-
tal in mycorrhizal symbiosis. We base on available literature suggest that elevated 
CO2 exhibit varied responses in mycorrhizae formation and its development which 
seems to be due to various agroclimatic conditions prevailing in a particular envi-
ronment. Elevated CO2 has been somehow found helping the plants to maximize 
their biomass and yield perhaps due to carbon fertilization effect. Elevated CO2 has 
shown inconsistent effects on mycorrhizal parameters. Moreover, elevated SO2 has 
shown devastating effects on mycorrhization and overall biomass formation of 
plants. Important determining markers of the AM fungi are affected badly when 
exposed to elevated SO2. Likewise, elevated O3 has been found as a limiting factor 
that induces lethal effects on the formation of mycorrhizal networks on the plants. 
Elevated O3 has negatively affected the plant growth and biomass in mycorrhiza-
inoculated plants. Studies relating to effect of these gases may unravel key points 
which can be beneficial for environmentalists in devising different policies regard-
ing phytoremediation.
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Abstract

Arbuscular mycorrhizae (AM) fungi interact with plant roots in a symbiotic 
manner. These fungi serve well in the maintenance of soil fertility and crop 
health improvement. The current chapter entails soil sample collection, isolation, 
characterization, and enumeration of AM fungi and their mass multiplication. 
These procedures necessitate a skilled hand and high level of knowledge, and 
thus not much common. The current state of the art in inoculation, root coloniza-
tion assessment, and massive propagation have been discussed. The techniques 
that are used for AM fungi production are slowly gaining attention and being 
popularized nowadays. Molecular approaches for the identification of any micro-
organisms, including AM fungi, are also gaining significant attention from the 
researchers. Some techniques like fluorescent antibody methodology, enzyme-
linked immunosorbent assay, and molecular quantification through PCR, qPCR 
technique, and Illumina MiSeq high-throughput DNA sequence-based analysis, 
have also been explained.
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4.1	� Introduction

A mutual alliance of host plants and a special group of fungi form mycorrhizae. 
Mycorrhizal plants are divided into two key groups as ectomycorrhiza (ECM) and 
endomycorrhiza (ENM), and are bifurcated based on their form and anatomy (Subba 
Rao 1977). ECM is mostly found in coniferous trees, and these trees cannot survive 
without the help of mycorrhizal fungi (Policelli et al. 2020). ENM are symbiotic 
fungi that prevail in plant and soils of cultivated crops and some important weeds 
(Santos et al. 2013; Hayman 1980; Trappe 1982; Maitra et al. 2020).

AM fungi form endomycorrhizae and have vesicles, a food storage organ, and 
arbuscules, a nutrient transfer site (Sylvia 1998). AM fungi are long-lived structures 
that persist in the soil as spores or in connection with some roots. They provide 
several benefits to their host, like nutrient absorption and enhanced stress tolerance 
(Smith and Read 2008; Ansari et al. 2020a; Solanki et al. 2020; Ansari and Mahmood 
2019a). The quantitative and qualitative occurrence of AM fungi under different 
agroclimatic conditions aids in root colonization, spore survival, and their judicious 
dissemination (Daniels 1984). A better understanding of these aspects is required to 
maximize crop production and productivity through the use of AM fungi. Different 
mechanisms implicated in the biosynthesis of plant growth enhancer molecules are 
still poorly understood, which contribute significantly for the maximization of crop 
biomass (Ansari and Mahmood 2017a, b, 2019b; Ansari et al. 2020b). AM fungi 
enhance the movement and uptake of major and micronutrients and water, which 
reduces water stress (Zhao et al. 2015). Plants’ ability to withstand diseases is devel-
oped due to the involvement of plant symbionts that enhance crop biomass and 
development process; also, nutrient absorption and fertilizer use efficiency of the 
plants are improved (Sood et al. 2020). AM fungi increase drought resistance levels, 
plants’ ability against other stress, and also resistance level against plant pathogens 
(Begum et  al. 2019; Nemec and Myhre 1984; Pozo and Azcón-Aguilar 2007). 
Various plant metabolites such as plant growth regulators, enzymes, siderophores, 
and antibiotics are used to stimulate crop growth and biomass (Sood et al. 2020). 
The application of AM fungi in sustainable cropping systems has been an emerging 
spot of research. Researchers are putting more stress on finding out the suitability of 
AM fungi that can withstand harsh environments and produce more yields in a 
nutrient-deprived ecosystem. Our understanding of AM fungi as bioprotectants or 
symbionts, how they work, and why they are important in plant health management 
in sustainable agriculture needs rigorous studies (Kumar 2013). The current section 
emphasizes on the basic work of AM fungi such as isolation, identification, and 
their propagation. The chapter also appraises the readers on different techniques 
being used in the maximization of AM fungal spore production and their consis-
tent supply.
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4.2	� Morphological Features of AM Fungi

Mycelium is coarse, coenocytic, and grows intracellularly, which produces varying 
sizes of spores (Drijber and McPherson 2021). Mycorrhizal fungi are usually hya-
line to dark in color and texture mostly smooth to highly echinulate (Vaingankar 
2012). After penetration, the hyphae produce branches constantly to form a dichoto-
mous tree-like assembly known as arbuscules, having a short life span of 15 days 
that later degenerate forming new arbuscules in new areas (Hata et al. 2010; Davison 
et al. 2015; Roth et al. 2019).

4.3	� Collection of Soil Samples

The collection techniques of soil samples are also crucial in the isolation of AM 
fungi for their application. The population and beneficial aspects of AM fungi are 
directly related to soil type and geographical conditions. Other factors such as 
microbial activities, location, and sampling depth are also important in isolating the 
AM fungi to determine their efficiency. Many reports state that almost all microbial 
activities take place near the rhizosphere (Chennappa et al. 2014a, b).

4.4	� Isolation and Characterization

The selection and production of inoculants begin with the proper isolation of AM 
fungi from the various ecosystem. For the isolation of AM fungi, various approaches 
are utilized to produce it on a large-scale using soil and inert substrate. Efficient AM 
fungi can be found in natural conditions, which are used in agroecosystem restora-
tion. However, soil inoculum can be erroneous unless specific information on prop-
agule volume, variety, and infectivity is provided. Spores collected from the earth 
are generally used as starters for making crude inoculum (Habte and Osorio 2001).

4.4.1	� AM Fungi Sampling

The sampling approach varies with a natural and an agricultural ecosystem.

	1.	 Depending on the site and varied soil usage, 3–5 sampling zones are chosen.
	2.	 Five to eight sampling spots with a distance of 50 m, randomly in each sampling 

region, are selected.
	3.	 At each sampling site, two concentric circles with a radius of 3 and 6 m are drawn.
	4.	 A total of 12 soil subsamples are taken out with the help of soil core sampler.
	5.	 The dirt from the 12 subsamples are manually, homogenously shredded and 

combined.
	6.	 Approximately 2 kg of sample is collected and kept in a labeled plastic bag at 

4 °C until further processing.
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4.5	� Enumeration of AM Fungal Spore Population

Generally, a commonly used method (wet sieving) is practiced to sum up the AM 
fungi, as per standard protocol (Gardemann and Nicolson 1963). In a nutshell, 50 g 
of dirt soil in 200 ml of water is dissolved. To remove the larger organic matter 
particles included in the samples, the suspension is decanted using a 710-micron 
sieve. Then after, the residue is re-suspended in more water and sieved once more. 
The suspension is allowed to pass through the filter paper, agitate, and keep it for a 
while. Heavier particles are settled down, and then the supernatant is decanted 
through a 250-micron mesh. A 45-micron nylon mesh is used to catch spores sus-
pended in the solution, which is stored in a labelled Petri plate, and the quantity of 
spores is counted using a binocular stereo microscope. The spores that have become 
shriveled and dried are removed. Only living spores are counted based on surface 
conditions, shape, and spore content assessment (Eom et al. 2001).

4.5.1	� Spore Extraction

By following the wet sieving and decanting method, the spores are extracted 
(Gardemann and Nicolson 1963; Sieverding and Howeler 1983). The following 
techniques are used to find out and isolate the mycorrhizal fungi from soil.

	1.	 Wet sieving and decanting technique (Varma et al. 1991).
	2.	 Sucrose centrifugation technique (Daniels and Skipper 1982).
	3.	 Adhesion-flotation technique (Sutton and Barron 1972).
	4.	 Extraction of AM fungi spores by using capillary rise method (Shamini and 

Amutha 2014).

4.6	� Morphological Identification of АМ Fungi

More than twenty distinct unique features (morphological) are employed for the 
characterization of plant symbionts (INVAM 2019). Extraradical (out-root) spore 
color, transparency, size, and shape; the shape of spore attachment to subtending 
hypha; number, thickness, density, elasticity or fragility, and color in Melzer’s 
reagent of layers of spore walls and subtending hypha; presence or absence of spore 
wall, etc., are some of the parameters used to determine the parameters of mycor-
rhization and the type of mycorrhization (Kariman et al. 2005).

Biotechnological approaches in the characterization and identification of AM 
fungi have improved the qualitative approach of mycorrhizological studies.
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4.7	� Spore Characterization

Spores are collected from rhizosphere samples collected, mounted with polyvinyl 
lacto-glycerol, and examined under a compound microscope (100–1000). 
Bibliographies can be used for the morphological identification of the spores 
(Almeida and Schenck 1990; Morton 1996; Weickel et al. 1997; Walker and Vestberg 
1998; Rodrigues and Muthkumar 2009; Oehl et al. 2010), and also the culture data-
base established by INVAM is frequently used.

Trappe (1982) used synoptic keys of zygomycetes to identify spores of common 
AM fungi, while Hall (1988) and Abbott and Robson (1982) used a photographic 
slide collection to illustrate some aspects of endogonaceae (Rodrigues and 
Muthkumar 2009).

4.7.1	� Visualization of Mycorrhizal Fungi

Staining is a relatively easy and inexpensive method for visualizing mycorrhizal 
fungi in roots (Phillips and Hayman 1970).

4.7.2	� Protocol as Described by Phillips and Hayman (1970)

•	 Pick roots that are smaller than 2 mm in diameter and rinse them.
•	 In a beaker, combine the roots and 10 mL of 10% KOH. Incubate it in an 80 °C 

water bath for 15–120 min.
•	 Take a beaker out of the water bath, add a drop of 30% H2O2, and then incubate 

for 10 minutes at room temperature.
•	 In a Petri dish, place the roots. Rinse the roots for 15 s with tap water.
•	 Combine the roots and 10 mL of 10% HCl in a beaker (enough to cover roots).
•	 Incubate it for 5 min at room temperature.
•	 Directly from the 10% HCl solution, place roots in a beaker containing 10 mL 

0.05 percent aniline blue/lactic acid solution. After that, incubate the beaker for 
30 min in an 80 °C water bath.

•	 Place the roots in a 10-mL lactic acid solution containing 85 percent lactic acid 
after removing them from the aniline blue/lactic acid solution. At room tempera-
ture, incubate for 5 min.

•	 Store the roots in lactic acid at an 85 percent concentration.
•	 Examine the dyed roots under a microscope after they have been wet mounted.
•	 Although the fungus appears blue, the root tissue is not.
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4.8	� Molecular Approaches in the Identification 
of Mycorrhizal Fungi

The appropriate identification of mycorrhizal fungi through molecular approaches 
has revolutionized the researchers ability to study and understand these essential 
plant symbionts. Molecular techniques provide higher resolution, accuracy, and 
speed as compared to traditional methods. Here are some common molecular tech-
niques used in the identification of mycorrhizal fungi:

4.8.1	� Advancement in Identification of Mycorrhizal Fungi

Morphological identification is still considered an important tool, but some recent 
advanced techniques have augmented the identification of different AM fungi from 
the heterogeneous environment (Declerck et al. 1998).

4.8.2	� Fluorescent Antibody Technique (FAT)

Aldwell (1983) used FAT techniques to treat mycorrhizal fungi, but the antisera had 
low specificity because the antigens were made from crushed spores, which con-
tained a lot of non-specific chitinaceous spore wall material, and were given as a 
single intramuscular injection with no adjuvant or boosters. Mampaso and Wilson 
(1983) grounded, centrifuged, and sonicated germ tube hyphae and auxiliary cells 
gathered from spores germinated between millipore filters before producing anti-
sera by subcutaneous injection with Freund’s Complete Adjuvant (FCA) and intra-
venous boosters. They were able to identify between Eucalyptus decipiens, 
Acaulospora laevis, and other non-mycorrhizal mucoraceous fungi using similar 
techniques.

Aldwell (1983) devised an antisera technique for washing mycorrhizal hyphae 
off, which later became target antigens. He further narrated important characters 
that are used nowadays to differentiate between Glomus, Gigaspora, Acaulospora, 
and Sclerocystis, as well as the non-mycorrhizal fungi Pezizella ericae, Mortierella 
wolfii, Mucor hiemalis, and Rhizopus oryzae, through these approaches.

4.8.3	� Enzyme-Linked Immunosorbent Assay (ELISA)

Serological techniques, particularly the ELISA, hold great promise as taxonomic 
tools for the mycorrhizal fungi. Several immunochemical approaches to character-
izing and detecting endo- and ectomycorrhizal fungi have recently been developed 
(Wright et al. 1987; Cleyet-Marel et al. 1990; Perotto et al. 1992).

Serological techniques are dependent on the production of highly specific anti-
bodies in animals when they are inoculated with the chemicals contained in or pro-
duced by microorganisms. If antibody and antigen that elicited its formation are 

S. Patil et al.



83

incubated together, they will react. A wide range of assays have been established to 
detect the presence of either the antibody or the antigen. Of these tests, the radioim-
munoassay (RIA) and ELISA are important.

Following Aldwell’s failure to distinguish between species within a genus using 
the FAT, he chose to study VAM using the ELISA rather than the radioimmunoassay 
(RIA). The RIA has not yet been used to identify mycorrhizal fungi; it is unlikely to 
be widely used due to a lack of equipment. Aldwell (1983) used an ELISA and 
antisera made using processes similar to those used to make antisera for the FAT.

The development of more specific antisera against ectomycorrhizal fungi than 
those raised by Seviour et al. (1973) and the use of the ELISA could provide a more 
rapid and more reliable technique for identifying the fungal symbiont in mycorrhi-
zas collected than those currently used (Schenck 1982). These techniques could also 
be useful for confirming the presence of a desired fungal symbiont on seedlings 
raised in the nursery.

4.8.4	� Recent Advances in the Identification of AM Fungi

Morphological, biochemical, physiological, and many more markers are impor-
tantly used for the identification of AM fungi (Diédhiou et al. 2014; Edgar (2010), 
Edgar (2013), Edgar (2018). However, we shall only discuss here the molecular 
techniques as these are the latest, robust, and trustable techniques that are being 
used by different workers. In comparison with other approaches, the technology 
behind genetic markers has improved very quickly. Markers that are based on mor-
phology and biochemistry are being phased out in favor of DNA-based approaches 
of increasing complexity.

4.8.5	� RAPD: Random Amplified Polymorphic DNA

This technique depends on the synthesis of the DNA containing nine or ten bases 
that hybridize to chromosomal DNA at a very low annealing temperature (Demeke 
et al. 1992). The amplification is closely followed by agarose gel electrophoresis 
that produces a band pattern that is unique to the AM fungus. RAPD is an effective 
diagnostic technique for assessing isolates of certain species and potentially distin-
guishing different taxa (Kruger et al. 2009; Wyss and Bonfante 1993). This tech-
nique has been a popular way to discern Glomus, Gigaspora, and Acaulospora from 
a mixed population (Gomez-Leyva et al. 2008).

RAPD offers all the advantages of a PCR-based marker, in addition to the fact 
that primers are commercially available and conceptual comprehension of the 
sequence of the target DNA is not required. Besides, screening a large number of 
loci is facilitated by RAPD. The use of RAPD markers is influenced by the presence 
of paralogous PCR products and by the reduced reproductive potential resulting 
from a lower temperature, which is required for annealing employed in PCR 
amplification.
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4.8.6	� Restriction Fragment Length Polymorphism (PCR RFLP)

Botstein et al. (1980) used for the first the RFLP markers. The RFLP probe employs 
endonucleases to break DNA into parts of varying sizes, which are then separated 
by electrophoresis. The technique takes advantage of naturally occurring genetic 
variations in an organism’s DNA sequence that can result in alterations in DNA pat-
tern in those fragments that are produced by restriction enzyme digestion (Marshall 
et al. 1999).

PCR-RFLP was utilized efficiently to differentiate AM fungi species from spore-
isolated DNA (Sanders et al. 1996). However, this approach may induce polymor-
phism in non-target organisms when applied to field samples. Using HindI 
endonuclease, AM fungi permitted discrimination between F. mosseae and other 
related species.

4.8.7	� T-RFLP: Terminal Restriction Fragment 
Length Polymorphism

T-RFLP is a unique technique that is used to analyze and compare microbial com-
munities. It is a fingerprinting method that involves cutting of DNA from the micro-
bial sample using restriction enzymes. The restriction enzymes break the DNA at a 
very specific site. The electrophoresis is then used to separate the length and size of 
DNA fragments. T-RFLP investigation rests on the digestion of restriction enzymes 
that are fluorescently labelled products of PCR.  Electrophoresis is a method for 
separating the digests, which are then detected by a sequencer that is automatically 
operated. Outcomes reflect a picture of some microorganisms in the given commu-
nities (Mummey and Rillig 2006). For T-RFLP analysis, there are some important 
aspects that need to be used meticulously such as primers, target site, and restriction 
endonucleases. For the identification of specific fungi from the microbial commu-
nity, internal transcribed spacer (ITS), small subunit (SSU) or large subunit (LSU) 
is utilized. In the case of AM fungi, ITS4/ITS5 are utilized for ITS amplification 
(Lekberg et al. 2018); AM1/NS31 are specifically utilized for the amplification of 
SSU (Uibopuu et al. 2009). Likewise, FLR3/FLR4 are usually accepted to amplify 
LSU of AM fungi (Koch et al. 2011). Restriction enzymes are also another crucial 
things that are chosen wisely. A restriction enzyme of the highest quality will gener-
ate a wide range of fragment sizes with little variance between the species. AluI and 
MboI are available in the market and have been utilized in many cases (Barto 
et al. 2011).

4.8.8	� DGGE: Denaturing Gradient Gel Electrophoresis and TGGE: 
Temperature Gradient Gel Electrophoresis

The DGGE is a molecular technique used to separate DNA fragments based on their 
difference in the sequence rather than sizes (Hovig et al. 1991). DGGE exploits such 
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difference by creating a gradient of chemical substances (urea and formamide) 
across a polyacrylamide gel. The gradient is created by mixing different concentra-
tions of denaturants into the gel before polymerization. Sequences of organisms are 
segregated based just on G + C content of PCR-amplified DNA using mixtures of 
formamide and urea (Kirk et al. 2004). Triple hydrogen bonds between G and C are 
harder to break than the two bonds of hydrogen between A and T. As DNA breaks, 
movement in the gel starts to slow down. Attachment of GC clamp to PCR primer 
prevents complete strand separation, producing a fine band on gel (Sheffield et al. 
1989). The heterogeneous amplified PCR is separated during electrophoresis. The 
results that are depicted in the form of various bands give a glimpse of the approxi-
mate population and abundance of a community. Similar patterns and principles are 
also operated in TGGE except the gradient where in this case temperature instead of 
chemical is the final gradient. Nested PCR in which AM1-NS31 is a primer gave a 
picture of high quality of AM fungi collected from polluted soil (Krishnamoorthy 
et al. 2014, 2015).

4.8.9	� Illumina MiSeq for the Identification of AM Fungi

Morphological identification is frequently unreliable due to the vast number of 
cryptic species (Kryukov et  al. 2020). The number of AM fungal biodiversity 
research using modern NGS-based technologies, especially the Illumina MiSeq, has 
increased in recent years. Illumina MiSeq is a next-generation sequencing (NGS) 
platform developed by Illumina, Inc. It is designed for targeted resequencing, 
metagenomics, small genome sequencing, and amplicon sequencing applications. 
MiSeq uses Illumina’s sequencing by synthesis (SBS) technology, which is based 
on reversible terminators and fluorescent detection. This technique helps us identify 
eight out of nine isolates of AM fungi (Kryukov et al. 2020). It permits the identifi-
cation of a great amount of AM fungi from a fungal community, particularly when 
the percentage of genes of interest is very low in the given sample. MiSeq can give 
longer reads and fewer mistakes than other techniques such as HiSeq and Ion 
Torrent, correspondingly (Salipante et al. 2014; Razzauti et al. 2015).

Fungi with the letters AM selecting a marker for barcoding, the most important 
factors to consider are whether to use conservative or flexible sequences, as well as 
whether to use universal or AM fungi-specific primers. Using universal primers 
ITS3 and ITS4, the ITS 5.8S rDNA–ITS2 area of the 35S rRNA was successfully 
sequenced in Illumina MiSeq, which included both a conservative and aggressive 
sequence.

4.9	� AM Fungi Propagation

Some approaches for AM fungi propagation have been found in recent decades. The 
obligatory nature of this biotrophic fungus is the chief hurdle, so AM fungi cannot 
be cultured. For bulk production of AM fungi, in vitro growing methods such as 
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hydroponics (Das et al. 2020) and root organ culture (Mathur and Vyas 2007) are 
used. These techniques are used to produce cost-effective AM fungal propagules 
keeping in mind that their quality is retained. Other techniques such as substrate-
based production (Khaliq et  al. 2010), substrate-free production (Hawkins and 
George 1997), and in vitro production (Lee and George 2005; De Boulois et  al. 
2006) are the commonly used techniques for AM fungi.

4.9.1	� Methodology for Mass Propagation

AM fungi and their mass production is still a great challenge; however, substrate-
based inoculum, nutrient film technique, aeroponic culture, root organ culture 
method are some of the techniques that may be used for this purpose.

4.9.2	� Substrate-Based Inoculum Propagation

This is a widely accepted normal method of propagating AM culture. Sterile soil 
treated with a pure culture of a particular AM fungi containing a plant roots is a 
commonly utilized media for this purpose (Khaliq et al. 2010). For the inoculation, 
inoculum containing spores, hyphal fragments, and infected root portions are used. 
Despite of having good popularity among the workers, it has some disadvantages. 
To begin with, this approach can only create a little amount of inoculum. The prod-
uct is big and heavy, making it difficult to maintain and move to the application site. 
There are some inert substances like vermiculite, perlite, sand, and mixture of all 
substances that are used and replaced with soil. Substrate-based inoculum is fre-
quently used for bulk generation of AM fungus (Schenck 1982). The major goal of 
this technology is to create as many infective propagules as possible in a short time 
while minimizing impurities. Large plastic troughs or cement cisterns can be filled 
with perlite: soil rite mix (1:1), inoculated with the chosen AM fungal starter culture 
and seeded with Rhodes grass as the host (Khaliq et al. 2010). Guinea grass or any 
other suitable grass can be substituted, if Rhodes grass is unavailable (Khaliq et al. 
2010). As a nitrogen and phosphorus source, calcium ammonium nitrate (80 ppm N) 
and rock phosphate (10 ppm phosphorus) can be also added (Daniel and Arya 2012). 
The fungicide, acaricide, and insecticide can be added with the substrate at half of 
the recommended dosage to minimize pests and pathogens population in the inocu-
lum while not affecting AM fungus. Plants are harvested after 75 days. The roots are 
cut into small pieces, mixed with substrate, air-dried, and packaged in polythene 
bag (Coelho et al. 2015).

4.9.3	� Nutrient Film Technique

Warner et al. (1985) devised a peat moss-based technique for mass-producing AM 
fungi. Peat moss is combined with three times to its weight in water and a tiny 
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amount of lime to maintain a pH that is congenial for AM fungi multiplication. Pot 
culture mycorrhizal inoculum is put into the peat moss and crushed into 4 × 4 × 4 cm 
blocks. The lettuces are then planted and allowed to germinate and grow in such a 
way that the root system reaches throughout the peat (Warner et al. 1985). These 
root peat segments are included in the nutrition film where a nutritious solution is 
passed through the channels. These plants are allowed to grow up to 8–10 weeks. 
AM fungus grows throughout the root and peat block during this period. The lettuce 
is harvested and eaten as a vegetable, while the peat blocks are dried. The entire peat 
block is then crushed and used as source of AM fungi (Warner et al. 1985).

4.9.4	� Aeroponic Culture

Aeroponics is a way of cultivating plants that do not require soil. This method was 
developed by David Sylvia of the University of Florida, the United States. The host 
roots containing AM fungi are dipped in nutrient solution. Spraying micro-droplets 
improves medium aeration and enables gas exchange through the liquid layer sur-
rounding the roots. With the mist sprayer, a nutrient solution is put into the bottom 
of a plastic container. Seedlings of mycorrhizal grass are placed in a container with 
a perforated lid. The nutrient solution is sprayed using a mist sprayer. After a few 
weeks, the roots are sliced into 1 cm pieces, shade dried, and used as a source of AM 
fungi (Jarstfer and Sylvia 1994; Mohammad et al. 2020).

4.9.5	� Root Organ Culture

Mugnier and Mosse (1987) were the first to use Ri-plasmid-modified root cultures. 
Yve Piche and co-workers in Canada established the full potential of this culture 
method (Becard and Piche 1989; Chabot and Becard 1992). The most extensively 
utilized plant symbionts in this technique are Rhizophagus intraradices and 
Gigaspora margarita in axenic cultures.

4.9.6	� Substrate-Free Production System

The substrate-free growing systems or nutrient flow approaches are already acces-
sible. The mechanism of aeration and application of the nutritional solution may 
change across these different strategies. In brief, the nutrition solution is aerated by 
an aeration pump in a static type of system to prevent oxygen deprivation of the 
roots. The pumps must be switched on and off constantly to avoid the rush of nutri-
tional solutions and gas bubbles from injuring the fragile extraradical mycelium 
(Hawkins and George 1997).
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4.10	� Significance of Plant Symbionts (AM Fungi) in Plant 
Health Improvement in Pathogen-Induced Environment

Mycorrhizal plants are able to withstand diseased plants and improve the status of 
plants grown in a pathogen-induced environment (Ansari and Khan 2012a, b; Ansari 
et al. 2019a, b).

4.10.1	� Competition

AM fungi do not compete for nutrients in soil; they require spore reserves till the 
root connectivity is achieved. After penetration into roots, further processes such as 
infection site competition, photosynthetically produced materials, and root space 
for their survival begin (Rodrigo Mendes et al. 2013). Pathogens can be physically 
excluded by taking advantage of AM fungi-pathogen competition. Physiological 
and biochemical alteration in plants takes place in mycorrhizal plants. Phosphorus 
levels in the host root tissue are frequently elevated, and the phospholipid profile 
and permeability of the membrane are altered, leading to the generation of less net 
sugar, carboxylic acid, and amino acid leakage into the rhizosphere (Mendes 
et al. 2013).

4.10.2	� Systemic-Induced Resistance (SIR), Phytoalexins, 
and Phytoanticipins

SIR is the process of inducing disease resistance in plants over time through inocu-
lation with a pathogen.

Phytoalexins are synthesized by plants in reaction to microbes, while phytoanti-
cipins are maintained before the pathogen infection (Paxton 1981). The levels of 
phytoalexin elicited by causal agent are found substantially greater than those trig-
gered by symbiotic species. Based on the molecules’ cellular location, they are lipo-
philic, allowing them to pass through the plasma membrane and perform their 
actions inside the cell (Braga et al. 1991). Mycorrhizal plant roots enhanced second-
ary metabolites such as coumaric acids, lignin, ferulic, syringic phenolics, isoflavo-
noids, or flavonoids. Plants have an improved defense system against F. oxysporum 
with high beta-glucosidase and phenylalanine activity, as well as total phenol con-
centration in their roots (Dehne and Schönbeck 1979). Furthermore, phytoalexins 
are necessary to neutralize the anti-pathogen effect in AM plants compared to con-
trol plants (Caron et  al. 1986). Phytoalexin and phytoanticipin are isoflavonoid 
compounds produced by AM fungi (Morandi 1996).

S. Patil et al.



89

4.10.3	� Organic molecules behaviour 

The growth media of a Glomus intraradices produce some organic molecules that 
are responsible for either the stimulation or inhibition of microorganism. The extr-
aradical mycelia of G. intraradices release molecules that impact microorganisms’ 
equilibrium. It is vital to understand and implement AM fungi significance in plant 
disease control (Lisette et al. 2003). Filion et al. (1999) reported that some antimi-
crobial substances synthesized by G. intraradices regulate the conidial germination 
of F. oxysporum f. sp. chrysanthemi under the non-influential effect of pH. However, 
further studies are to be ascertained in order to get any concrete findings over it as 
this kind of study are scanty. 

4.11	� AM Fungi in Disease Management Caused by 
Phytopathogenic Fungi

Plant symbionts that inhabit the plant’s root living in rhizosphere are thought advan-
tageous to the growth of the plant. Plant symbionts improve overall crop growth and 
productivity (Linderman 2000; Begum et al. 2019). Plants do have certain tolerance 
mechanisms that assist them in avoiding the negative repercussions of diverse envi-
ronmental circumstances (Table 4.1; Graham 1981; Rouhier et al. 2008; Xavier and 
Boyetchko 2003; Xavier and Boyetchko 2004; Sumbul et al. 2017; Rizvi et al. 2015; 
Ansari et al. 2017a, b).

AM fungi promotes plant growth and metabolisms, leading to enhanced crop 
yield and productivity (Fall et al. 2022). AM fungi in stress reduction is self-evident, 
as they improve the essential defensive systems of host plants. AM fungi stimulate 
some metabolites such as indole-3-acetaldehyde, indole-3-carboxyaldehyde, and 
indole-3-ethanol, volatile compounds, and peptides (Lorito and Woo 2015; Colla 
et al. 2015; Rouphael et al. 2017).

4.11.1	� AM Fungi in Bacterial Disease Management

Glomus mosseae that lowered the pathogen’s population density in the rhizosphere 
prevented P. syringae infection of soybean plants (Dreischhoff et al. 2020; Mingqin 
et al. 2004; Shalaby and Hanna 1998). Despite no growth or production, G. macro-
carpum reduced P. lacrymans infection in eggplant and cucumber, indicating resis-
tance to the pathogen as a potential causal agent (Li et al. 1997). The occurrence of 
P. syringae pv. mori bacterial blight was reduced when mulberry trees were inocu-
lated with plant symbionts (G. fasciculatum and G. mosseae) along with 60–90 kg 
of phosphorus/ha/year.
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Table 4.1  AM fungi-mediated plant disease control in different crops

Sl. 
no.

Mycorrhizal 
fungi

Targeted 
pathogenic fungi Host Mechanism(s) References

1 Glomus 
fasciculatum

Fusarium 
oxysporum f. sp. 
lycopersici

Solanum 
lycopersicum

AM fungi 
inoculated plants 
increased the amino 
acid contents, 
leading to improved 
resistance level 
against pathogens

Manila and 
Nelson 
(2017)

Fusarium 
oxysporum f. sp. 
ciceris

Cicer 
arietinum

AM fungi induce 
the changes in the 
host root exudation 
pattern and inhibit 
the multiplication of 
the pathogens. 
Inoculation of AM 
fungi helps plants 
absorb more 
nutrient and 
improves plant 
biomass

Siddiqui 
and Singh 
(2004)

2 Glomus 
mosseae

Phytophthora 
capsici

Piper nigrum AM fungi 
significantly 
increases capsidiol 
level in pepper

Ozgonen 
and Erkilic 
(2007)

P. syringae Lycopersicon 
esculentum

AM fungi-
inoculated crop 
improves biomass 
and reduces the 
pathogen activity

Garcia-
Garrido and 
Ocampo 
(1989)

3 Funneliformis 
mosseae

Gaeeumanomyces 
gramanis

Triticum 
aestivum

AM fungi-
inoculated plants 
significantly 
increase 
phytoalexins, 
enzymes of phenyl 
propanoid pathway, 
chitinase 
peroxidases, 
PR-related proteins, 
phenolics, etc.

Falahian 
et al. 
(2007)

Tomato yellow leaf 
curl virus and 
cucumber mosaic 
virus

Lycopersicon 
esculentum 
and Cucumis 
sativus

AM fungi-
inoculated crop 
advances the 
resistance levels 
against these viruses

Maffei 
et al. 
(2014)

4 Rhizophagus 
irregularis

Potato virus Y
Potato virus Y

Solanum 
tuberosum

AM fungi 
inoculation 
improves the 
resistance levels 
against these virus

Sipahioglu 
et al. 
(2009)Tobacco mosaic 

virus
Nicotiana 
tabacum
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4.11.2	� AM Fungi for the Management 
of Phytoparasitic Nematodes

The plant parasitic nematode is a diverse group of species with different life behav-
iors that can destroy some key crops around the world (Schouteden et al. 2015).

4.11.3	� Major Challenges in the Application of AM Fungi in Plant 
Disease Management

AM fungi’s effectiveness against plant diseases has only been studied in controlled 
circumstances that suggest that AM fungi has a high potential for managing plant 
infections. AM fungi research on the biological control of plant diseases in field 
situations has two drawbacks.

	1.	 Due to obligatory nature, mass production of inoculum is a difficult task (Budi 
et al. 1999).

	2.	 After introduction into the field, there is negative reciprocity/interrelation 
between the introduced AM fungi and the indigenous AM fungi, as well as other 
microbial populations (Bever et al. 1996).

The efficacy of AM fungi inoculum in disease management under field condi-
tions is often determined by the challenges given by interactions between AM fungi 
and the indigenous microbial community, as well as edaphic factors. Understanding 
the characteristics that determine plant symbiont efficacy as bioagents can help 
them survive, compete, and be more effective (Xavier 1999).

4.12	� Conclusions and Future Outlooks

Plant symbionts are beneficial microorganisms that develop mutual relationships 
with higher plant roots. These fungi are phenomenal in long run soil fertility, health 
maintenance, and sustainable plant production systems.

Some robust techniques for culturing AM fungi have recently come out. The 
obligatory nature of these biotrophic fungi is the main impediment to mass produc-
tion. Though, AM fungi products are based on substrate-based inoculum, root organ 
culture, substrate-free production systems. Application of AM fungi in disease man-
agement and maintaining sustainability in agroecosystem has a crucial role. The 
rhizosphere is home to AM fungi’s diverse services, which include improved plant 
nutrients, pathogen resistance, qualitative and quantitative changes in pathogen bio-
mass, competition impacts on rhizosphere microbial populations, and systemic 
induction resistance. These are some mechanisms that help plants cope with any 
biotic stressors. Some efficient techniques for propagating AM fungi are the need of 
the hour, and it must be realized that these microorganisms if used judiciously may 
help improve crop health.
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Abstract

The growth and development of plants happen through internal molecular com-
munications that rely on adequate nutrient supplements to roots from the soil. 
Plants take mineral nutrients from the rhizosphere, where the microbes interact 
with plant root exudates. The root exudates secreted by the plants into the rhizo-
sphere have a pivotal function in mediating the relationship between plants and 
soil microbes. These metabolites from plant roots have different responses 
toward soil organisms and modify their composition and activity. Plants utilize 
root exudates to balance the role of mineral nutrient transporters in recognizing 
the availability of nutrients and further the direct supply of nutrients depending 
on the demand. The root exudates are affected by fungal communities associated 
with the roots depending upon their abundance and composition. Root exudation 
commences and regulates the communications channel between plant roots and 
the associated soil microbes like arbuscular mycorrhizal (AM) fungi. In addition, 
the root exudates act as signals that instigate the establishment of AM symbiosis. 
During the pre-symbiotic phase, some metabolites secreted by roots are neces-
sary for AM fungal spore germination, hyphal growth, and root colonization. The 
metabolites in the root exudates are sensed by AM fungi, and these metabolites 
may be stimulatory or inhibitory to the symbiotic establishment. In this chapter, 
we highlight the role of root exudates in plant nutrient availability, the establish-
ment of AM symbiosis, and also the influence of AM fungi on plant root exudates.

R. Koshila Ravi · T. Muthukumar (*) 
Root and Soil Biology Laboratory, Department of Botany, Bharathiar University,  
Coimbatore, Tamilnadu, India

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-5030-0_5&domain=pdf
https://doi.org/10.1007/978-981-99-5030-0_5


102

Keywords

Hyphosphere · Mycorrhizosphere · Nutrient cycling · Nutrient stress · 
Rhizodeposits · Rhizosphere · Symbiosis

5.1	� Introduction

The lack of mobility has rendered plants to adopt strategies to reach for resources 
that are heterogeneously distributed in the environment. This has resulted in the 
indefinite growth of shoots and roots from seed germination to senescence. In addi-
tion to reaching toward the resources, plants also adopt strategies that would enable 
them to make resources available in their vicinity, thereby reducing the cost of 
resource acquisition. One such mechanism is the creation of the rhizosphere, the 
region of the soil that is influenced by plant roots. The term rhizosphere, coined by 
Hiltner (1904), is a complicated ecosystem and a hotspot for millions of diverse 
microorganisms. According to Pinton et al. (2007), the rhizosphere is the soil region 
influenced by the exudation from plant roots and colonized by microorganisms. For 
example, the populations of the bacteria have been estimated to be 10 to 100 times 
more in the rhizosphere than in the bulk soil. However, the population and diversity 
of microorganisms in the rhizosphere vary with plant genotypes, developmental 
stages of plants, and the soil environment (Liu et al. 2020). The plant rhizosphere 
can be broadly differentiated into three different zones (Fig. 5.1). The ectorhizo-
sphere or exorhizosphere is the soil outside the plant roots that are affected by rhi-
zodeposits, root surface, rhizoplane, and the endorhizosphere: region of root tissues 
flanked by the epidermis and the endodermis, i.e., the root cortex. Based on these, 
the rhizosphere microbiome is classified into endophytic (residing within roots), 
ectophytic (rhizoplane), and rhizospheric (present in soil affected by roots) (Edwards 
et al. 2015). The microorganisms coexisting in the different regions of the rhizo-
sphere are involved in different types of dynamic interactions, and fluctuating 
metabolites in root and rhizodeposits originating from plant roots shape the rhizo-
sphere microbiota. The interactions among organisms in the rhizosphere can be 
neutral, positive, or negative (Hernandez et al. 2015; Ansari and Mahmood 2017, 
2019a, b). Although the role of the rhizosphere microbiome on plant health is well 
recognized, the various interactions among these microorganisms are rather obscure 
(Ansari et al. 2017a, b). However, some progress has been made in understanding 
the interactions among the rhizosphere microbiome and their effect on plant health 
through the use of sequencing technologies along with the application of proteomic, 
transcriptomic, metagenomic, metatranscriptomic, and metabolomic approaches 
(Schlaeppi and Bulgarelli 2015; Olanrewaju et al. 2019).

Of the various microorganisms inhabiting different regions of the rhizosphere, 
the most influential ones are the endophytic microorganisms that reside in the endo-
rhizosphere of plant roots. Nevertheless, some microorganisms like mycorrhizal 
fungi extend their presence in the ecto- and endorhizosphere, thereby directly bridg-
ing the root to the soil environment (Ansari et al. 2019a, b). Among the different 
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Fig. 5.1  Structure of rhizosphere and mycorrhizosphere. AMF arbuscular mycorrhizal fungi

types of mycorrhizal fungi, the most common and widespread is the arbuscular 
mycorrhizal (AM) fungi which occur in more than 70% of the terrestrial plant spe-
cies (Brundrett and Tedersoo 2018). The AM fungi are obligate symbionts, and the 
establishment of symbiosis is mandatory to complete the fungal life cycle (Smith 
and Read 2008). Indeed, different AM fungi may colonize the same host root sys-
tem and functionally complement in rendering host benefit (Jansa et al. 2008).

The establishment of the symbiosis between the AM fungus and plant roots hap-
pens with the germination of spores or soil hyphae originating from mycorrhizal 
roots. Studies have shown that a large number of molecules produced by fungi and 
plants are involved in the chemical dialogue before any physical contact in the sym-
biotic establishment (Sun et  al. 2015). The AM fungus develops an asymbiotic 
phase involving the germination of spores, the development of germ tubes, and 
limited presymbiotic mycelium prior to the establishment of the symbiosis. The 
energy for this asymbiotic phase is obtained from the metabolism of triglycerides 
stored in the fungal structures (Giovannetti et al. 2010). Once established, the AM 
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fungi produce the extraradical hyphae, which extend from the roots and explore the 
surrounding soil (Sumbul et al. 2017). Like plant roots, AM fungi also exude metab-
olites into the surrounding soil resulting in the formation of a hyphosphere (Fig. 5.1). 
For example, the extraradical hyphae of Rhizophagus clarus originating from roots 
of Allium fistulosum and Linum usitatissimum release acid phosphatases that hydro-
lyze organic phosphatic sources and enhances the availability of inorganic phospho-
rus in the soil solution under in vitro conditions (Sato et al. 2015). The extraradical 
hyphae of AM fungi Gigaspora margarita or Claroideoglomus etunicatum coloniz-
ing roots if Allium cepa seedlings secrete citric acid capable of solubilizing iron 
phosphate (FePO4) in the soil solution (Tawaraya et al. 2006). In addition to these, 
the hyphosphere also maintains a distinct microbiome that is specific for an AM 
fungal taxon (Zhou et  al. 2020). These demonstrate that AM fungi can directly 
mediate the availability of nutrient elements in the soil. The rhizosphere along with 
the hyphosphere is known as the mycorrhizosphere. The formation and functioning 
of the mycorrhizosphere are dealt with in detail elsewhere (Priyadharsini et  al. 
2016). In this chapter, the role and importance of root exudates are discussed in 
detail. Root exudates and their importance in the establishment and functioning of 
AM symbiosis have also been unraveled.

5.2	� Root Exudates

Roots perform several functions in addition to anchoring plants to the substrates. 
Apart from acquiring nutrients and water from the soil or other substrates, roots also 
modify the soil structure and function (Fig. 5.2). A large number of microorganisms 
reside in the rhizosphere surrounding the roots, and several of these plays a central 
role in plant growth and development. The rhizospheric microbiota is different from 
those that inhabit the bulk soil. For instance, the majority (~80%) of the rhizo-
spheric bacteria is larger >0.3 μm than those in the bulk soil (~37%) (Olanrewaju 
et  al. 2019). This rhizosphere microbiota plays an important role in facilitating 
nutrient availability to plants and protecting the roots against pathogenic inva-
sion (Rizvi et al. 2015; Solanki et al. 2020). The interaction among soil microbes 
inhabiting the rhizosphere and plants is mostly mediated by root exudates. These 
exudates monitor several crucial ecosystem processes, including soil biogeochemi-
cal cycles (Meier et al. 2017), modify the structure of soil, solubilize/mobilize nutri-
ents (Pantigoso et  al. 2020), and liberate allelochemicals which may promote or 
suppress plant growth (Bouhaouel et al. 2019) and also regulate the establishment 
of interaction among different soil microbial communities and plant–microbe asso-
ciations (Olanrewaju et al. 2019). Normally plant roots exude a diverse range of 
plant metabolites (Table 5.1), and it has been estimated to involve up to 10–50% of 
the carbon fixed by plants (Korenblum et al. 2020). Primary metabolites such as 
amino acids, carbohydrates, membrane lipids, and organic acids exuded by roots 
into the soil provide nutrients and energy to the soil microorganisms (Canarini et al. 
2019). Root exudates also contain secondary metabolites such as flavonoids, 
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Fig. 5.2  Influence of root exudates on the nutrient availability in the rhizosphere. (1) Nutrient 
stressed plants exude metabolites into the rhizosphere; (2) Some exudates (e.g., organic acids) 
directly solubilize the organic molecules releasing the inorganic nutrients that are directly taken up 
by plant roots; (3) Certain metabolites in the root exudates act as signaling molecules (e.g., flavo-
noids) chemotactically attracting the microorganisms resulting in changes in their diversity and 
abundance; (4) Signal molecules (e.g., strigolactones) also play an important role in the reorgani-
zation and establishment of symbiosis between plant and microorganisms; (5) Inorganic nutrients 
are made available indirectly to the plants through microbial mediated nutrient solubilization and 
fixation; (6) Phytohormones produced by microorganisms increase root proliferation; (7) Available 
inorganic nutrients are acquired from the soil and transported to plant roots through arbuscular 
mycorrhizal fungi (AMF) (shown in broken lines)

phenolics, and terpenoids; inorganic molecules such as water and carbon dioxide, 
enzymes, nucleosides, and vitamins (Olanrewaju et al. 2019).

Plants release root exudates into the rhizosphere through active and passive 
transports. Generally, the process of root exudation secretion is passive and is regu-
lated by various pathways including transport via vesicles and ionic channels in the 
root membrane (Maurer et  al. 2021). The positive interaction involves a mutual 
relationship with beneficial soil organisms, including mycorrhizal fungi, plant 
growth-promoting rhizobacteria, etc. Likewise, negative interactions with plants 
comprise association with pathogenic microorganisms and invertebrate herbivores 
(Haldar and Sengupta 2015). The constituents of root exudates differ according to 
environmental conditions, plant species, root characters, developmental stages of 
the plant, and availability of nutrients (Herz et al. 2018). The composition of the 
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Table 5.1  Metabolites identified in root exudates of some terrestrial plant species under different 
types of stresses

Compounds Plant species
1,2-Benzenedicarboxylic acid, mono (2-ethylhexyl) 
ester

Flaveria bidentis14

1-Hexacosene Scirpus triqueter9

1-Hexadecanol, 2-methyl S. triqueter9

1-Methoxy-3-indolylmethyl Brassica rapa13

1-Octadeccane F. bidentis14

2-(2-Butoxyethoxy)ethoxy Arachis hypogaea1

2(3H)-Benzothiazolone F. bidentis14

2,3,4 Trihydroxybutyric (isomer 1) Trifolium pratense12

2,3,4 Trihydroxybutyric (isomer 2) T. pratense12

2,3,4-Trihydroxybutyric acid A. hypogaea1

2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one 
(DIMBOA)

Triticum aestivum3

2,4-Dimethyl benzaldehyde A. hypogaea1

2,6,10,14,18,22-Tetracosahexaene, 2,6,10,1519,23- 
hexamethyl-(all-E)-

F. bidentis14

2-Aminoadipic T. pratense12

2-Butenedioic T. pratense12

2-Ethylhexanoic acid A. hypogaea1

2-Furancarboxylic acid A. hypogaea1

2-Hydroxy-3-butenyl B. rapa13

2-Hydroxy-4-pentenyl B. rapa13

2-Hydroxyglutaric T. pratense12

2-Ketoglutaric acid S. triqueter9

2-Mercaptobenzothiazole F. bidentis14

2-methyl butyric acid S. triqueter9

2-Monopalmitoylglycerol A. hypogaea1

2-Monostearin A. hypogaea1

2″-O-glucosyl-8-C-glucosylapigenin Desmodium incanum8, Desmodium 
intortum8, Desmodium uncinatum8

2″-O-glucosylvitexin D. uncinatum8

2-Picolinic acid A. hypogaea1

2-Pyrrolidone carboxylic acid A. hypogaea1

3- Butenyl B. rapa13

3-Phenylpropanoic acid T. pretense12

3,4-Dihydroxybutanoic acid A. hypogaea1

3-Furoic acid A. hypogaea1

3-Hydroxybutyric acid A. hypogaea1

3-Indolylmethyl B. rapa13

3-Pyridinecarboxylic acid A. hypogaea1

4-Hydroxy-3,5-dimethoxy-, hydrazide S. triqueter9

4-Hydroxy-3-indolylmethyl B. rapa13

(continued)
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Table 5.1  (continued)

Compounds Plant species
4-Hydroxybenzoic acid T. pratense12

4-Hydroxybutanoic acid T. pratense12

4-Methoxy-3-indolylmethyl B. rapa13

4-Methylbenzoate A. hypogaea1

4-Pentenyl B. rapa13

5-Oxo-proline A. hypogaea1

5-Tetradecene S. triqueter9

6,8-di-C-hexosylapigenin ferulate D. incanum8, D. intortum8, D. 
uncinatum8

6,8-di-C-hexosylapigenin sinapinate D. incanum8, D. intortum8, D. 
uncinatum8

6-C-arabinosyl-8-C- galactosylapigen D. incanum8, D. intortum8, D. 
uncinatum8

6-C-arabinosyl-8-C-glucosylapigenin 
(isoschaftoside)

D. incanum8, D. intortum8, D. 
uncinatum8

6-C-galactosyl-8-C-arabinosylapigenin D. incanum8, D. intortum8, D. 
uncinatum8

6-C-galactosyl-8-C-glucosylapigenin D. incanum8, D. intortum8, D. 
uncinatum8

6-C-glucosyl-8-C- galactosylapigen D. incanum8, D. intortum8, D. 
uncinatum8

6-C-glucosyl-8-C-glucosylapigenin (Vicenin-2) D. incanum8, D. intortum8, D. 
uncinatum8

8-C-glucosylapigenin (vitexin) D. incanum8, D. intortum8, D. 
uncinatum8

9,12-Octadecadienoic acid A. hypogaea1

9-Octadecenamide, N,N-dimethyl- F. bidentis14

9-Octadecenamide, F. bidentis14

9-Octadecenamide S. triqueter9

a-Amino-3-hydroxy-4-methoxyacetophenone S. triqueter9

Acetic acid Oryza sativa 2

Aconitic acid T. pratense12

Adipic acid A. hypogaea1

Alanine A. hypogaea10, T. pretense12

Amine (3TMS) A. hypogaea1

Arginine A. hypogaea10

Aspartic acid A. hypogaea10, T. pratense12

Azelaic acid T. pratense12

Azelaic acid (2TMS) A. hypogaea1

Azulene A. hypogaea1

Benzo[1,3]dioxolecarbonitriles Secale cereale 4

Benzoic acid A. hypogaea10, S. triqueter9, T. 
pretense12, Citrullus lanatus7, O. sativa7

Butanedioic acid A. hypogaea1

Butanoic acid A. hypogaea1

(continued)
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Table 5.1  (continued)

Compounds Plant species
Butanol (4TMS) A. hypogaea1

Butylated hydroxytoluene F. bidentis14

C-hexosyl-C-pentosylapigenin ferulate D. incanum8, D. intortum8, D. 
uncinatum8

C-hexosyl-C-pentosylapigenin sinapinate D. incanum8, D. intortum8, D. 
uncinatum8

Cholestan-3-ol, 2-methylene-,(3 beta., 
5alpha.)-(Methylthio)-acetonitrile)

F. bidentis14

Cinnamic acid Musa paradisiaca AAA Cavendish cv. 
Brazil15, C. lanatus7, O. sativa7

Citric acid O. sativa2, S. triqueter9, T. pratense12

Coumaric acid A. hypogaea10

Crotonic acid S. triqueter9

Cyanato- and carbonitrile-benzo[1,3]dioxoles S. cereale4

Cyanatophenol S. cereale4

Cycloeicosane F. bidentis14

Decane, 2,4,6-trimethyl- F. bidentis14

Decanoic acid S. triqueter9

Deoxytetronic acid T. pratense12

Di-n-octyl phthalate F. bidentis14

D-pinitol T. pratense12

Eicosane F. bidentis14

Eicosanoic acid A. hypogaea1

Ethanol, 2-methoxy- carbonate A. hypogaea1

Ethyl citrate F. bidentis14

Ethylmalonic/methylsuccinic acid T. pratense12

Ferulic acid C. lanatus7

Fructose T. pratense12

Galactaric acid T. pratense12

Galactopyranose A. hypogaea1

Galactose T. pratense12

Gallic acid O. sativa7, C. lanatus7

Gluconic acid (isomer 1) T. pratense12

Gluconic acid (isomer 2) T. pratense12

Glucose T. pratense12

Glutamic acid A. hypogaea10, S. triqueter9, T. pretense12

Glutaric acid (pentanedioic) T. pratense12

Glyceric acid T. pratense12

Glycerol T. pratense12

Glycine A. hypogaea10, T. pretense12

Glycolic acid T. pratense12

Heptacosane A. hypogaea1

Heptacosane F. bidentis14

Heptadecanoic acid A. hypogaea1

(continued)
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Table 5.1  (continued)

Compounds Plant species
Hexadecane A. hypogaea1

Hexadecanoic acid S. triqueter9, A. hypogaea1

Hexagecane 2,6,10,14-tetramethyl F. bidentis14

Histidine A. hypogaea10

Homoserine T. pratense12

Isoleucine T. pratense12

Isoschaftoside D. intortum8, D. uncinatum8

Lactic acid T. pratense12

Lauric acid A. hypogaea1

L-Indole-3-lactic acid T. pratense12

Lysine A. hypogaea10

Malic acid O. sativa2, T. pretense12

Malonic acid (propanedioic) T. pratense12

Maltose A. hypogaea1, T. pretense12

Methylmalonic T. pratense12

Myoinositol A. hypogaea1, T. pretense12

Myristic acid A. hypogaea1, S. triqueter9

Nicotinic acid A. hypogaea1

N-Methacryloylglycine T. pratense12

Nonadecane F. bidentis14

Nonahexacontanoic acid F. bidentis14

Octacosane F. bidentis14

Octadecane A. hypogaea1

Octadecanoic acid S. triqueter9

Octanedioic acid A. hypogaea1

Octanoic acid S. triqueter9

Oleic acid A. hypogaea1, S. triqueter9

O-phthalic acid S. triqueter9

Oxalic acid T. pratense12

Oxoproline T. pratense12

p-coumaric acid C. lanatus7, O. sativa7

Peagol Pisum sativum5

Peagoldione P. sativum5

Pentadecane F. bidentis14

Pentadecanoic acid S. triqueter9

Pentanedioic acid A. hypogaea1

Pentanoic acid S. triqueter9

Phen-1,4-diol, 2,3-dimethyl-5-trifluoromethyl- S. triqueter9

Phthalic acid M. paradisiaca15, C. lanatus7, O. sativa7

P-hydroxybenzoic acid C. lanatus7, O. sativa7, A. hypogaea10

P-phthalic acid S. triqueter9

Proline A. hypogaea10, T. pretense12

Propachlor A. hypogaea1

Propanedioic acid S. triqueter9, A. hypogaea10

(continued)
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Table 5.1  (continued)

Compounds Plant species
Propanoic acid A. hypogaea1

Protocatechuic acid T. pratense12

Rhamnose T. pratense12

Ribitol A. hypogaea1

Ribonic acid A. hypogaea1

Ribose T. pratense12

Ryecarbonitriline A S. cereal4

Ryecyanatine A S. cereal4

Ryecyanatine B S. cereal4

Saccharose T. pretense12

Salicylic acid M. paradisiaca15, C. lanatus7, O. sativa7, 
A. hypogaea1

Serine T. pratense12

Shikimic acid T. pratense12

Silanamine A. hypogaea1

Silane A. hypogaea1

Silanol, trimethyl-, phosphate (3:1) A. hypogaea1

Soyasapogenol B 
[olean-12-ene-3,22,24-triol(3β,4β,22β)]

Vicia sativa6

Succinic acid S. triqueter9, T. pretense12

Sulfurous acid, butyl heptadecyl ester F. bidentis14

Syringic acid C. lanatus7, O. sativa7

Tartaric acid O. sativa2, A. hypogaea1, T. pretense12

Terephthalic acid T. pratense12

Tetradecanoic acid (1TMS) A. hypogaea1

Tetradecanoic acid S. triqueter9

Thieno[3,2-e]benzofuran F. bidentis14

Threonine A. hypogaea10, T. pretense12

Trans-22-dehydrocampesterol [(ergosta-5,22-dien-
3-ol, (3β,22E,24S)]

V. sativa6

Tridecane A. hypogaea1

Tridecane,5-propyl- F. bidentis14

Tris borate (1TMS) A. hypogaea1

Tris(hydroxymethyl)aminomethane (3TMS) A. hypogaea1

Uracil T. pratense12

Urea (3TMS) A. hypogaea1, T. pratense12

Valine A. hypogaea10, T. pretense12

Vanillic acid S. triqueter9, O. sativa7, C. lanatus7

Vicenin-2 D. intortum8

Vitexin D. uncinatum8

1Ankati et al. (2019); 2Bhattacharyya et al. (2013); 3Chen et al. (2010); 4Cimmino et al. (2015); 
5Evidente et al. (2009); 6Evidente et al. (2011); 7Hao et al. (2010); 8Hooper et al. (2015); 9Hou et al. 
(2015); 10Li et al. (2013); 11Liu et al. (2015); 12Molina et al. (2021); 13Schreiner et al. (2011); 
14Xing et al. (2014); 15Yuan et al. (2018)
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root exudate is also determined by the photosynthetic modes of the plants. As eryth-
ritol, inositol, and ribitol are dominant sugars in root exudates of C4 plants, ribose, 
maltose, and mannose are the prominent sugars in C3 plant root exudates. Moreover, 
C4 plants release greater numbers of amino acids and organic acids compared to the 
greater exudation of organic carbons and carbohydrates by the C3 plants (Olanrewaju 
et al. 2019). The developmental stage of the plants also affects the nature and extent 
of root exudation. Young plants excrete more exudates than older plants due to the 
asymmetrical portioning of carbon to shoots and roots during the early stages of 
plant development (Pausch and Kuzyakov 2018). Continuous exudation of metabo-
lites and antimicrobial substances (phytoanticipins and phytoalexins) incurs a sig-
nificant carbon cost to the plant (Bamji and Corbitt 2017). Therefore, strict regulation 
on the release of root deposits and other plant metabolites is essential to reduce the 
plant’s energy cost. Most of our understanding of the cost–benefit ratio of root exu-
dates on plant health has arisen from the studies on the role of root exudates in 
plant-phytopathogen interactions (Olanrewaju et al. 2019).

5.3	� Plant Nutrient Stress and Root Exudation

Plants growing in stressed environments release a wide range of metabolites into the 
rhizosphere (Table 1), and the exudation of various inorganic and organic molecules 
into the rhizosphere mostly depends on the nutritional status of the plant (Vives-
Peris et al. 2020). For example, certain plant species release more organic acids into 
the rhizosphere during iron and phosphorus deficiency and phytosiderophores dur-
ing zinc and iron deficiency (Olanrewaju et al. 2019). The release of these com-
pounds increases the availability of these nutrient elements in the soil to be acquired 
by roots (Fig. 5.2). Plants like Nicotina tabacum, Beta vulgaris, Hyoscyamus albus, 
and Medicago truncatula secretes riboflavin or its derivatives under iron-deficient 
conditions (Chen et al. 2017). Likewise, Arabidopsis thaliana and Brassica napus 
excrete the phenolic compound coumarin to acquire iron from substrates that are 
highly alkaline (Clemens and Weber 2016). Carvalhais et  al. (2011) studied the 
influence of nitrogen, phosphorus, potassium, and iron deficiencies on the exuda-
tion patterns of amino acids, sugars, and organic acids in Zea mays plants. The 
results of the study indicated that root exudates of iron-deficient Z. mays plants 
contained higher concentrations of citrate, glucose, glutamate, and ribitol, whereas 
plants deficient in phosphorus exuded more carbohydrates and c-aminobutyric acid. 
Potassium deficiency reduced the excretion of sugars, especially fructose, glycerol, 
maltose, and ribitol, while nitrogen deficiency decreased the quantities of amino 
acids released (Carvalhais et al. 2011). Further specified concentrations of nitrogen 
or phosphorus upregulate the production of secondary metabolites like the isoflavo-
noids in plants, and these metabolites, when secreted into the soil, act as signal 
molecules to soil microbiota (White et  al. 2017). Reciprocally, the presence of 
microbes in the rhizosphere has a powerful influence on the rate of root exudation, 
facilitating the uptake of some nutrient elements by plant roots. This clearly shows 
that the quantity and quality of metabolites in root exudates are altered with plants’ 
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exposure to nutrient limitations and can act as a distinct signaling factor in the rhi-
zosphere. Once within the rhizosphere, several bacteria undergo rapid multiplica-
tion in response to the flavonoid molecules released by roots. This in turn triggers 
plants to exude more new or existing flavonoids in the rhizosphere (Olanrewaju 
et  al. 2019). Several organic molecules released into the rhizosphere, especially 
carbohydrates, amino acids, proteins, vitamins, and organic acids, promote ethylene 
synthesis by microorganisms, which is a powerful chemical signal in controlling 
plant development. Finally, these components play various roles in nutrient element 
acquisition by plants. Strigolactone levels in root exudates of maize cultivars with 
varied susceptibility to Striga infestation were low or below detectable limits under 
normal nutrient conditions (Yoneyama et al. 2015). But, a deficiency of nitrogen 
and phosphorus increased the presence of strigolactone in root exudates of both 
cultivars (Yoneyama et al. 2015). Phosphorus limitation also increases the exuda-
tion of citrate by tobacco roots (Del-Saz et al. 2017). All these clearly show that 
plant nutrient stress could qualitatively and quantitatively modify root exudates to 
increase the availability of nutrients in the soil.

5.4	� Propagules of AM Fungi

The propagule composition of AM fungi can have a strong influence on the estab-
lishment of symbiosis with plants. The different kinds of AM fungal propagules 
include mycorrhizal roots, soil hyphae, and spores (Smith and Read 2008; Varela-
Cervero et al. 2016). Of these, specific types of propagules dominate the mycorrhi-
zation of plant roots in various habitats. For example, spores appear to be the 
dominant form of propagules in seasonal and disturbed vegetations, whereas soil 
hyphae and mycorrhizal roots are the chief propagules in vegetations where new 
roots are formed throughout the year (Paz et al. 2021). Moreover, AM fungal taxa 
vary in their strategies of colonization, and these differences are often associated 
with the type of propagules involved. Mycorrhizal roots are the major propagules 
for taxa in Claroideoglomeraceae and Glomeraceae rather than the soil hyphae or 
spores (Varela-Cervero et al. 2016). Contrarily, spores are the primary propagules 
for initiating colonization in roots by taxa in Gigasporaceae. Taxa in Diversisporaceae 
and Pacisporaceae adopt an intermediate strategy of initiating colonization from 
both root and soil-based propagules (Varela-Cervero et  al. 2016). Nonetheless, 
exceptions tend to persist like certain members of Glomeraceae where effective 
colonization of roots is initiated through spores as well as soil hyphae (Varela-
Cervero et al. 2016). Previous studies have shown the variation in the longevity of 
different types of AM fungal propagules. Spores and mycorrhizal roots are consid-
ered to be more resistant to soil disturbance than soil hyphae (Varela-Cervero et al. 
2015). Several factors influence the initiation of mycorrhization by different types 
of propagules. These involve a large number of interacting host-fungus-soil factors 
(Fig. 5.3).
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Fig. 5.3  Factors affecting arbuscular mycorrhizal fungi (AMF) spore germination. Soil factors 
are indicated in shades of blue

5.5	� Establishment of the Symbiosis

The process of mycorrhization begins with the reciprocal exchange of signaling 
molecules before any physical contact between the engaging symbiotic partners 
(Bonfante and Genre 2015). Plant roots exudate strigolactones, the signal molecules 
that are recognized by the fungal symbiont, which eventually induce substantial AM 
fungal hyphal branching (Mori et al. 2016; Lanfranco et al. 2018a, b). Increasing 
hyphal branching enhances the chances of the fungus coming into contact with the 
host root (Besserer et al. 2006). In turn, the fungus releases signal molecules termed 
“Myc factors” into the rhizosphere, which are recognized by the host roots (Maillet 
et al. 2011). Recognition of Myc factors by the host roots activates unique calcium 
spiking in the root cells. This initiates a symbiotic program called the “Sym path-
way,” which comprises a morphological, physiological, and transcriptional change 
in the host roots to harbor the fungal symbiont (Gough and Cullimore 2011). After 
the recognition of the molecular signals between the symbionts, the fungus enters 
the root and colonizes the root cortex. For the successful establishment of functional 
symbiosis, the fungus has to modify plants’ defense signaling to decrease defense 
reactions in the root (Fernández et al. 2019). To overcome the host defense, AM 
fungus, Rhizophagus irregularis, secretes effector proteins like SP7 to suppress host 
defense and allows the fungus to establish itself in the root cortex of the host plants 
(Kloppholz et al. 2011). Nevertheless, several studies have reported limited coloni-
zation of nonhost plant roots by AM fungi when raised along with mycorrhizal host 
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plants despite these plants lacking the symbiotic genes essential for establishing the 
functional symbiosis (Veiga et al. 2013). In a recent study, Fernández et al. (2019) 
showed that presymbiotic interactions can occur between the AM fungus R. irregu-
laris and the nonhost Arabidopsis plants. For instance, the expression of the specific 
strigolactone biosynthesis genes (CCD7, CCD8) was upregulated in the Arabidopsis 
roots in the presence of R. irregularis. Nonetheless, the fungus failed to establish a 
functional symbiosis despite colonizing the root cortex. In addition to the absence 
of arbuscular, the expression of AM symbiotic marker genes GintAMT2, GintMST2, 
GintMST4, and GintPT was downregulated. Indeed, R. irregularis colonization trig-
gered defense response in Arabidopsis, resulting in reduced plant growth and resis-
tance against the fungal pathogen Botrytis cinerea (Fernández et  al. 2019). This 
indicates that the interactions between the nonhost plants and AM fungi may be 
more intricate than generally assumed (Bravo et al. 2016).

After the colonization of the root cortex, the fungus forms highly branching 
hyphal structures called arbuscules in the cortical cells where the exchange of 
resources between the symbiotic partners occurs (Choi et al. 2018; Voß et al. 2018). 
The fungal hyphae penetrate the cortical cell forming an arbuscular trunk before 
elaborating dichotomously. The developing arbuscular trunk and the arbuscular 
branches are enveloped by the periarbuscular membrane, which is continuous with 
the cortical cell membrane (Choi et al. 2018). Despite their intricate structure and 
functional significance, arbuscules are ephemeral, with a limited lifespan of a few 
days. The mechanism that initiates arbuscule senescence is obscure. Normally the 
arbuscular degeneration commences in the fine branches and slowly progresses 
toward the arbuscular trunk. The collapse of the arbuscules is preceded by the 
retraction of the cytoplasm and septation (Choi et al. 2018).

5.6	� Role of Root Exudates in Mycorrhization

Root exudates, in addition to structuring the soil microbiota, play a pivotal role in 
regulating AM symbiosis. Available evidence does suggest that plant root exudates 
can positively influence the rate of AM spore germination and proliferation of 
hyphae (Nagata et al. 2016). The addition of activated carbon to the soil reduces 
mycorrhization and alters the AM fungal community composition in Solidago 
canadensis (Yuan et al. 2014). These changes in AM status of S. canadensis were 
attributed to the absorption of molecules released by the roots by activated carbon 
and confirm the view that root exudates play an important role in plant–AM fungal 
interactions (Yuan et al. 2014). Tian et al. (2021) investigated the presence of flavo-
noids quercitrin and quercetin in root exudates of different populations (introduced 
vs. native) of the invasive Triadica sebifera and examined its impact on AM fungi. 
The results of the study indicated the presence of more quercetin in root exudates 
and higher AM colonization in the introduced T. sebifera population. Further, the 
application of quercetin or root exudates from introduced population enhanced AM 
colonization in target T. sebifera plants and germination of Funneliformis mosseae 
spores (Tian et al. 2021). These observations suggest variations in flavonoid content 
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in root exudate may play a vital role in increasing AM association and performance 
of invasive plants.

The occurrence of factors of unknown chemical nature in root exudates can influ-
ence the establishment of AM symbiosis. For example, exudates produced by roots 
of tomato cultivar Micro-Tom M161, a pre-mycorrhizal colonization mutant, failed 
to induce hyphal growth and branching of the AM fungus, Rhizophagus intraradi-
ces (Sun et al. 2012). This failure of M161 tomato root exudates to influence the 
presymbiotic development of R. intraradices was attributed to the absence of an 
active factor in the root exudates. The active factor isolated from root exudates of 
wild tomatoes was shown to promote fungal development, hyphal branching, and 
the development of viable spores in dual culture conditions (Sun et al. 2012). The 
phytohormone jasmonic acid that regulates plant growth and development, in addi-
tion to modulating plants’ response to various types of stresses, also affects AM 
symbiosis. Nagata et al. (2016) studied the influence of Red/Far Red light condi-
tions on strigolactone and jasmonic acid signaling mediated AM (R. irregularis) 
symbiosis in legume (Lotus japonicus) and nonlegume (Solanum lycopersicum) 
plants. The results of the study indicated that plants grown in high Red/Far Red light 
accumulated and excreted more jasmonic acid in their root exudates resulting in 
increased hyphal length, enhanced colonization, and mycorrhization of plants 
(Nagata et al. 2016).

A qualitative and quantitative variation in the composition of strigolactone com-
position significantly affects the interactions between AM fungi and the plant host. 
Mutants of tomato and pea deficient in strigolactone production were less suscep-
tible to AM fungi and exhibited low levels of colonization compared to their respec-
tive wild types (Gomez-Roldan et  al. 2008; Koltai et  al. 2010). Moreover, 
strigolactone plays a significant role in stimulating AM fungal hyphal branching in 
Gigaspora margarita colonizing crop plants. Nevertheless, the stimulatory activity 
of the nonhydroxy-strigolactone (5-deoxystrigol) was thirty times greater than the 
hydroxy-strigolactone sorgomol (Akiyama et  al. 2010). In addition to exudates 
released from roots, seed exudates also influence the germination of AM fungal 
spores to a greater extent. For example, crude seed exudates of Sesbania virgata 
stimulated the spore germination and mycelial development of a symbiotic phase of 
Gigaspora albida (Coelho et al. 2019). Nevertheless, the stimulatory effect of seed 
exudate appears to be concentration dependent, as increasing concentrations of 
S. virgata root exudates inhibited spore germination of G. albida (Coelho et al. 2019).

5.6.1	� AM Induced Changes in Root Exudates

Apart from being influenced by root exudates, AM fungi can also modulate the 
composition of the root exudates produced by plant roots. Inoculation of AM fun-
gus, Acauloapora scrobiculata decreased the relative abundances of aldehydes, 
alkanes, olefins, and sterols but increased the relative abundances of nitriles and 
ketones in root exudates of peach seedlings (Lǚ et al. 2019). The presence of A. scro-
biculata in peach roots also reduced the presence of allelochemicals like benzoic 

5  Root Exudates and Their Importance in Arbuscular Mycorrhizal Symbiosis…



116

acid, diisooctyl phthalate, n-hexadecanoic acid, phenols, and sterols (Lǚ et  al. 
2019). Root exudates of maize had reduced citric, fumaric, malic, malonic, oxalic, 
and T-aconitic acids when colonized by diverse AM fugal taxa like C. etunicatum, 
Diversispora versiformis, F. mosseae, and R. intraradices (Hussain et  al. 2021). 
Although it is generally presumed that AM fungi are nonhost specific, a certain level 
of partner preference has been reported (Davison et al. 2016; Põlme et al. 2018). 
Evidence suggests that exudates from mycorrhizal roots could affect the germina-
tion of AM fungal taxa differently. An examination of five chickpea genotypes colo-
nized by R. intraradices indicated variations in the composition of the methanolic 
fractions of the root exudates (Ellouze et al. 2012). Moreover, some of these metha-
nolic fractions inhibited the germination of Claroideoglomus and Gigaspora rosea 
spores under in vitro conditions. Certain proteins in the root exudate bioactive frac-
tions were identified which are involved in plant defense responses indicating that 
these chemicals could play some role in the patterns of partner preferences in AM 
symbiosis (Ellouze et al. 2012).

Changes in the composition of root exudates by AM fungi depend on nutrient 
availability in the soil. Colonization by R. intraradices generally decreased the exu-
dation of carboxylates by tobacco roots in both phosphorus-deficient and sufficient 
soils (Del-Saz et al. 2017). More specifically, R. intraradices colonization reduced 
the citrate concentration by 72% and malate concentration by 50% under phospho-
rus-limiting conditions. However, no significant changes were noted in lactate, 
fumarate, and oxalate concentrations in root exudates of nonmycorrhizal and 
mycorrhizal tobacco plants growing under phosphorus-sufficient and deficient con-
ditions (Del-Saz et al. 2017). A gas chromatography–mass spectrometry analysis of 
root exudates of tomato roots colonized by F. mosseae indicated an AM-dependent 
hike in sugars like malate and glucose and a decrease in amino acids and organic 
acids (Hage-Ahmed et al. 2013). These AM-mediated changes in root exudates are 
shown to reduce the incidence of pathogenicity in plants. Inoculation with AM fun-
gus F. mosseae and Fusarium oxysporum decreased the incidence of wilt disease in 
Citrullus lanatus (Ren et al. 2015). The exudation of free amino acid from C. lana-
tus roots decreased by 50–85%, but malic acid and p-coumaric acid exudation 
increased by 142% and 62%, respectively (Ren et al. 2015).

5.6.2	� AM-Mediated Changes in Rhizosphere Microflora

It is now well known that AM-induced changes in root exudates can modify micro-
bial diversity, thereby indirectly affecting nutrient availability in the rhizosphere 
(Fig. 5.2). Field inoculation of four autochthonous shrub species Lavandula den-
tata, Salvia officinalis, Santolina chamaecyparissus, and Thymus vulgaris growing 
in a semiarid soil with the AM fungus, R. intraradices affected changes in the rhi-
zosphere bacterial community structure and composition as well as enhanced plant 
growth (Rodríguez-Caballero et al. 2017). Generally, AM symbiosis promotes or 
represses certain groups of microorganisms in the rhizosphere. For example, differ-
ent studies have shown an increase in the abundance of anaerobic bacteria 
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belonging to the family Anaerolineaceae in response to AM fungal  inoculation 
(Rodríguez-Caballero et  al. 2017; Cao et  al. 2016; Qin et  al. 2016). Taxa in 
Anaerolineaceae are shown to degrade microbial products like sugars and other cel-
lular components (Miura and Okabe 2008) like the chitin that constitute the fungus 
cell wall besides plant and microbial deposits, thereby aiding nutrient cycling in the 
rhizosphere (Rodríguez-Caballero et al. 2017). Similarly, changes in the abundance 
of bacteria (Agrococcus, Bacillus, Skermanella, Microbacterium, Nitrospira, 
Planomicrobium, Gemmatimonas, Lysobacter, Streptomyces) and fungi (Penicillium) 
in the rhizosphere of mycorrhizal plants are often correlated to increased nutrient 
availability and plant growth (Cao et al. 2016; Rodríguez-Caballero et al. 2017; Hao 
et  al. 2021). Moreover, an increase in the abundance of plant growth-promoting 
rhizobacteria in the rhizosphere of AM plants could also increase root proliferation 
and modify root architecture, thereby increasing nutrient acquisition by plants 
(Nanjundappa et al. 2019).

Many bacteria associated with the rhizosphere or AM fungal propagules can 
stimulate plant growth as well as the establishment of symbiosis and therefore 
termed as mycorrhizal helper bacteria (MHB). For instance, Azospirillum, 
Rhizobium, Bacillus, Pseudomonas, and Paenibacillus are shown to enhance plant 
growth and can also act as MHB by increasing the germination of AM fungal propa-
gules or markedly increase hyphal growth (Bidondo et al. 2016). Experimental stud-
ies have shown that dual inoculation of AM fungi and MHB can significantly 
increase growth and nutrient uptake in plants like onion, Medicago sativa, Lactuca 
sativa, Tagetes erecta, Artemisia annua, Geranium sp., Stevia rebaudiana, Withania 
somnifera, Cucumis sativus, S. lycopersicum, Musa sp., Cymbopogon citratus, and 
Capsicum sp. (Carina et al. 2016; Nanjundappa et al. 2019; da Cruz et al. 2020; Saia 
et al. 2020). Based on these evidence, it is clear that AM fungi-mediated changes in 
root exudates may significantly influence the availability of nutrients through altera-
tion in the microbial community.

5.7	� Conclusions and Future Prospects

Plants sustain a stable rhizobiome through the release of fixed carbon into the rhizo-
sphere. These microorganisms in turn help plants in their nutrient and water acquisi-
tion and protection against various abiotic and biotic stresses. Thus, the rhizosphere 
plays a central role in the growth and wellbeing of plants. The quality and quantity 
of root exudates are influenced by several factors including the plant factor. Root 
exudates influence the establishment of symbiotic interactions in plants. Ample evi-
dence now exists that root exudates can influence the germination of AM fun-
gal propagules, development of the asymbiotic phase, and symbiosis establishment 
in roots. The AM fungi, in turn, could modify the composition of the root exudates 
enabling changes in microbiome structure and nutrient availability in the rhizo-
sphere. Moreover, the AM fungi-mediated changes in the plant root exudates also 
protect plants against different stresses, thereby enabling their survival and estab-
lishment in harsh environments. However, most studies examining the role of root 
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exudates on AM symbiosis are conducted under controlled conditions involving a 
few plants host and fungal species. AM fungi are presumed to be nonhost specific; 
therefore, it would be interesting to see how different fungi colonizing the same root 
system modifies the chemical composition of the mycorrhizal roots and those that 
are released from the root. Like roots, AM fungal hyphae also exude carbon into the 
soil, and information on which is very limited. Although the nutritional aspects of 
AM fungi–plant interaction are well worked out, the intricacies of symbiosis estab-
lishment are not well resolved. Untangling the secrets of AM fungal–plant chemical 
dialogues will enable us to better understand and exploit this symbiosis for improv-
ing crop growth. However, the collaboration of the symbiosis and the influence of 
various external factors can make this a daunting task but worth enough to work out.
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6Advancement in Mycorrhizal 
Fungi-Based Sustainable Plant Disease 
Management
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Abstract

Good agricultural soil requires a decent nutrient retention ability which could be 
largely enhanced by the collective activities of soil microorganisms. However, in 
practice, agricultural soils are largely exposed to disturbance as a result of tillage 
activities which break up the soil and make it liable to nutrient leaching in soils 
with low nutrient retention ability. In the past decades, there has been increased 
awareness about the inherent potential of microorganisms in sustainable agricul-
ture. This is largely attributed to expanding bodies of research exposing the eco-
friendly nature of microorganisms like the mycorrhizal fungi, and the roles they 
play in soil fertility, crop health improvement and agricultural disease manage-
ment, which ultimately provide the needed support for crops to achieve optimal 
productivity. Since the importance of mycorrhizal fungi has become an increas-
ingly popular discussion in sustainable crop production, emphasis should be 
placed on how to manage our crop production systems in such a way to be able 
to harness the potential of mycorrhizal fungi while sustaining their continued 
propagation in order to retain the ecological and production benefits.
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6.1	� Introduction

Arbuscular mycorrhizal fungi (AM fungi) are described from almost known habitats 
and ecosystems throughout the world (Öpik et al. 2006, 2013; Ansari and Mahmood 
2019a, b), ranging from the extremely dry desert habitats (Al-Yahya’ei et al. 2011) to 
the extremely cold arctic regions, and while species are known to occur only within 
natural communities, many others are of true cosmopolitans (Varga et al. 2015). This 
phenomenon has been attributed to either innate dissemination or a sequel to human 
action. The existence of most cosmopolitan AM fungi species as genetically differen-
tiated species complexes suggests that they are extremely adaptable to a wide range of 
hosts as well as different environmental conditions (Fig. 6.1). AM fungi are acknowl-
edged to be central in protection against adverse abiotic conditions like drought 
(Chitarra et al. 2016), heat stress (Bunn et al. 2009) and nutrient shortage (Wu 2017). 
These attributes have made them to be exceptionally useful in the wild in conjunction 
with conservative agriculture (Van der Heijden et al. 2015; Wu 2017). Hence, AM 
fungi have established themselves as having an excellent influence within both natural 
and controlled environmental conditions (Van der Heijden et al. 2015), as well as in 
agriculture, forestry and horticulture. This chapter looks at the inherent potentials of 
AM fungi and how these could be harnessed in different areas of agriculture soil and 
plant health, crop improvement, crop protection and commercial agriculture to ensure 
food security through sustainable farming practices.

Fig. 6.1  A schematic representation of the mechanisms implicated behind improved plant bio-
mass and yield, and the different roles of AM fungi in the management of various economically 
important plant diseases
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6.2	� Effects of AM Fungi in Improving Soil Properties

AM fungi possess a compact network of hyphae mycelium which creates a three-
dimensional matrix that entangles soil particles without inducing soil compaction. 
They are able to achieve this due to the possession of glomalin-related soil proteins 
(GRSPs) which serve as an agent for stabilising soil aggregates (Gao et al. 2019). 
GRSPs serve as a crucial determinant of soil quality and carbon sink which confers 
the soil stabilising potential on AM fungi. Furthermore, the hyphal network initiated 
by AM fungi effectively promotes root development and plant growth, which pro-
tects from wind and soil erosion as well as leaching (Kumar et al. 2016). AM fungi 
also influence soil water-holding capacity which in turn promotes improved plant 
growth through increased nutrient supply. These qualities are particularly critical 
for plants within marginal soils of dry and arid regions, which are characterised by 
low fertility and high susceptibility to erosion (Yadav et al. 2015; Kumar et al. 2016; 
Ansari et al. 2017a, b). Thus, AM fungi have proved themselves as excellent eco-
friendly biological medium for augmenting water and nutrient usability of crops. 
Hence, the utilisation of AM fungi may be a sustainable method for the penurious 
farmers of developing regions to counteract these adverse conditions at no addi-
tional cost (Cavagnaro et al. 2015; Chen et al. 2018). Nutrient leaching from soil is 
a devastating phenomenon within several agroecological zones and has led to the 
loss of soil fertility through the downward movement of soil nutrients deep into the 
horizon causing pollution of surface water, especially springs and lakes (Zhang 
et al. 2020a; Ansari et al. 2019a, b). Good agricultural soil requires a decent nutrient 
retention ability which could be largely enhanced by the collective activities of AM 
fungi and other soil microorganisms. However, in practice, agricultural soils are 
largely exposed to disturbance as a result of tillage activities which break up the soil 
and make it liable to nutrient leaching in soils with low nutrient retention ability 
(Awe et al. 2020). The valuable intervention of AM fungi in preventing leaching in 
soils is known to occur at different stages. The first stage involves fortifying the soil 
structure to permit enhanced nutrient division to both macro- and micro-composite 
induced in mycorrhizal soil (Querejeta 2017). Second, AM fungi, through their 
complex mycelium, take up nutrients from one end of the soil and recycle them to 
another end, and in the process, they make nutrients available to all parts of the plant 
roots with their reach and network while also improving soil water retention in the 
process (Bitterlich et al. 2018; Sileshi et al. 2020). This has been particularly accen-
tuated to enhance tomato yield under dry spell pressure situations (Bitterlich et al. 
2018). To sum all these up, AM fungi have shown great potential for maintaining 
and improving soil fertility by blending all nutrient fluxes within the soil by initiat-
ing a closed nutrient cycle within the plant rhizosphere which ultimately results in 
long-term and sustainable soil fertility maintenance (Cavagnaro et  al. 2015; 
Bitterlich et al. 2018; Chen et al. 2018). AM fungi have a more efficient nutrient 
uptake ability than most plants since their hyphal networks shorten the distance 
needed for nutrient diffusion. Hence, the speed by which available phosphorus 
moves into the mycorrhizae could increase by as much as five times that of the plant 
roots. Some AM fungi have been found to completely take over the role of 
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phosphorus uptake as a result of their hyphal structure ramifications. A remarkable 
advantage of this to host plants is the initiation of increased phosphorus uptake 
(MacLean et al. 2017; Zhang et al. 2020b). This is attributed to an enlargement in 
the expanse and contact with the soil causing a steady and continuous flow of nutri-
ents into the mycorrhizal structures which provides a modified environment for 
increased phosphorus storage. Furthermore, some AM fungi isolates possess the 
ability to alter the phytohormone balance in some host plants which in turn influ-
ences the activities of some bioregulators responsible for plant tolerance to stress 
conditions through improved root production (Rouphael et  al. 2015; Lehmann 
et al. 2020).

6.3	� AM Fungi and Plant Yield

The impact of AM fungi on plant/soil and water relations has been exposed where 
host plants were reported to exhibit increased stomatal conductance and transpira-
tion. AM fungi were also able to alter some physiological processes in colonised 
plants. These include inducing an increase in the photosynthetic rates and leaf 
hydration efficiency of host plants. With these, AM fungi have displayed a remark-
able ability to influence several growth and plant reproduction characteristics by 
differentially affecting the reproductive processes of affected plant species (Bennett 
and Meek 2020). The most commonly reported reproductive responses induced by 
AM fungi in associated plant species include but are not limited to early flowering, 
increase in flower bud numbers and inflorescences as well as fruits and seed produc-
tion. These have been largely attributed to changes in host plant phenology, shoot 
architecture, onset of flowering, fruit production and number of seeds per fruit (Gao 
et al. 2020). The degree of benefits a plant can derive from AM fungi association 
largely depends on the prevailing environmental conditions. Since most natural 
environments experience nutrient deficiency coupled with the attendant biotic stress 
conditions, AM fungi colonised host plants tend to have an advantage over the non-
host ones of equal species. Thus, AM fungi can invariably increase intraspecies 
competition in favour of AM fungi host plants (Chen et al. 2018). Due to different 
plants being connected through a common web of mycorrhizal networks, this bond 
tends to promote stability of the weaker plant individuals who benefit from the 
increased nutrient supply with less competition from the stronger ones (Selosse 
et al. 2017; Chen et al. 2018).

6.4	� AM Fungi in Crop Protection

On a global scale, plant diseases stand as a major limiting factor in crop production 
(Ansari and Khan 2012a, b; Atolani and Fabiyi 2020; Fabiyi 2020). This menace is 
further aggravated by an upsurge in the resistance of plant pathogens to conven-
tional pesticides which is largely due to excessive continuous use over time with 
their devastating consequences on human health and the environment (Fabiyi and 
Olatunji 2021a). In order to ensure food sufficiency and eradicate poverty through 
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increased crop production, especially in the developing worlds, efforts must be put 
in place to explore all available alternatives to chemical pesticide use in agricultural 
disease management (Atolani et al. 2014a, b; Fabiyi et al. 2020a, 2022a, b; Fabiyi 
2021a). Several biocontrol agents have been studied for their potential as suitable 
alternatives to chemical pesticides in economically important plant disease manage-
ment (Fabiyi et  al. 2019, 2020b; Fabiyi and Olatunji 2021b; Fabiyi 2021b, c, d, 
2022a, b, c, d). AM fungi are known to have provided some levels of protection for 
agricultural crops due to the fact that most colonised plants have experienced a 
reduction in damage caused by soil-borne pathogens (Chahal et al. 2021; Himaya 
et al. 2021; Rizvi et al. 2015; Solanki et al. 2020; Sumbul et al. 2017). Potentials of 
AM fungi as biocontrol agents of major pathogenic species like Fusarium, 
Phytophthora, Rhizoctonia, Guaemannomyces, Verticilium, Sclerotium and Phytuim 
as well as plant parasitic nematodes such as the root-knot (Meloidogyne spp), cyst 
nematode (Heterodera spp.), root lesion (Pratylenchus spp.) and the reniform nem-
atode (Rotylenchulus spp.), etc., as well as some viruses have been adequately 
documented (Karagiannidis et  al. 2002; Al-Askar and Rashad 2010; Affokpon 
et al. 2011; Yuan et al. 2016; Aseel et al. 2019; El-Sharkawy et al. 2021). A list of 
applications of AM fungi in managing some economically important fungal plant 
pathogens has been enlisted (Table  6.1). However, the level of protection from 
individual pathogen species varies in respect of host plant species and AM fungi 
strains involved. Generally, disease reduction experienced due to AM fungi coloni-
sation of host plants results from a complex chemical and biological relationship 
linking the AM fungi, pathogen and the host plant (Pandey et  al. 2018; Gupta 
2020). Although some authors concluded that plant defence response activated by 
AM fungi is usually uncoordinated and transient in nature when compared to the 
usual response exhibited by naturally resistant plant species, it is widely agreed 
that AM fungi colonised plants respond more rapidly to most pathogen attacks 
expressing the phenomenon known as ‘induced systemic resistance’ (Vos et  al. 
2012; Jacott et al. 2017; Gupta 2020). There is emerging evidence which proves 
that AM fungi also confer certain protection from some insects on host plants basi-
cally by causing chemical changes within the roots which in turn affects the growth 
and or reproduction of such insect species (Selvaraj and Thangavel 2021). 
Furthermore, some chemicals like terpenoids and phenolics which are found to be 
active pest killers have also been isolated from mycorrhizal roots (Zeng et al. 2013; 
Pandey et al. 2018).

6.4.1	� Mycorrhiza Mediated Fungal Disease Management

The utilisation of mycorrhiza in managing several important fungal diseases of 
plants in diverse agroecosystem  has been extensively studied (Whipps 2004; 
Ronsheim 2016; Singh and Giri 2017). The activities of mycorrhiza fungi alone or 
in combination with other microorganisms, especially in most common soil-borne 
fungal pathogens like Aphanomyces, Alternaria, Botrytis, Colletotrichum, 
Fusarium, Macrophomina, Pythium, Phytophthora, Rhizoctonia, Sclerotium and 
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Table 6.1  Applications of AM fungi in managing some economically important plant pathogens

Plant pathogen Crop affected AM fungi Disease Reference
Aphanomyces 
euteiches

Pea (Pisium 
sativum)

Glomus intraradices Root rot Bødker et al. 
(2002)

Alternaria 
triticina

Wheat Glomus mosseae Leaf blight Siddiqui and 
Singh (2005)

Botrytis cinerea Tomato Glomus mosseae Bunch rot Fiorilli et al. 
(2011)

Colletotrichum 
gloeosporioides

Strawberry G. mosseae Bitter rot Li et al. (2010)

Fusarium 
oxysporum

Garden 
asparagus 
(Asparagus 
officinalis L.)

G. mosseae Root rot Matsubara et al. 
(2001, 2002)

Fusarium 
oxysporum

Common bean 
(Phaseolus 
vulgaris L.)

G. mosseae, 
G.intraradices

Root rot Al-Askar and 
Rashad (2021)

Fusarium 
oxysporum f. sp. 
pisi

Pea (Pisum 
sativum)

G. mosseae Root rot El-Sharkawy 
et al. (2021)

Macrophomina 
phaseolina

Chickpea Glomus fasciculatum Damping off Shakoor et al. 
(2015)

Pythium ultimum Cucumber Glomus etunicatum Root rot Rosendahl and 
Rosendahl 
(1990)

Phytophthora 
capsici

Pepper G. mosseae Blight and 
fruit rot

Pereira et al. 
(2016)

Rhizoctonia 
solani

Mung bean 
(Vigna radiata)

G. intraradices Root and 
stem rot

Kjøller and 
Rosendahl 
(1996)

Rhizoctonia 
solani

Cowpea (Vigna 
unguiculata)

G. intraradices Root rot Abdel-Fattah 
and Shabana 
(2002)

Sclerotinia 
sclerotiorum

Bean 
(Phaseolus 
vulgaris L.)

G. mosseae White mould Aysan and 
Demir (2009)

Sclerotium 
cepivorum

Onions (Allium 
cepa)

Glomus spp. White rot Torres-
Barragán et al. 
(1996)

Verticillium 
dahliae

Tomato 
(Solanum 
lycopersicum 
(L) H. karst)

G. mosseae Verticillium 
wilt

Karagiannidis 
et al. (2002)

Verticillium sp. Garden egg 
(Solanum 
melongena)

G. mosseae Wilt Matsubara et al. 
(2000)

(continued)
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Table 6.1  (continued)

Plant pathogen Crop affected AM fungi Disease Reference
Helicobasidium 
mompa

Garden 
asparagus 
(Asparagus 
officinalis L.)

Glomus coronatum Violet root 
rot

Kasiamdari 
et al. (2002)

Pseudomonas 
syringae

Soybean Entrospora 
infrequens

Canker Malik et al. 
(2016)

Ralstonia 
solanacearum

Tobacco 
(Nicotiana 
tabacum)

G. mosseae Bacterial 
wilt

Yuan et al. 
(2016)

Ralstonia 
solanacearum

Tomato G. versiforme Wilt Tahat et al. 
(2012)

Xanthomonas 
campestris pv. 
alfalfae

Medicago G. intraradices Leaf and 
stem spot

Liu et al. 
(2007)

Tomato mosaic 
virus

Tomato 
(Solanum 
lycopersicum 
(L) H. karst)

G. mosseae, G. 
clarum

Tomato 
mosaic 
disease

Aseel et al. 
(2019)

Meloidogyne spp. Vegetables Glomus mosseae, 
Glomus etunicatum, 
Kuklospora 
kentinensis, 
Acaulospora 
scrobiculata

Root-knot 
disease

Affokpon et al. 
(2011)

Meloidogyne spp. Tomato G. margarita Root-knot Labeena et al. 
(2002)

Meloidogyne spp. Okra G. fasciculatum Root-knot Vos et al. 
(2013)

Pratylenchus 
coffeae

Banana G. intraradices Root lesion Elsen et al. 
(2008)

Radopholus 
similis

Banana G. intraradices Toppling 
disease

Elsen et al. 
(2008)

Xiphinema index Grapevine G. intraradices Secondary 
infection

Hao et al. 
(2012)

Nacobbus 
abberans

Tomato G. intraradices Swollen root Marro et al. 
(2014)

Verticillium has been recorded (Table 6.1). Most of the success stories recorded so 
far have been largely ascribed to the ability of the AM fungi to alter the hormonal 
balance of the host plant, effectively induce resistance and or enhance its tolerance 
to external aggression of invading pathogens (Singh and Giri 2017).

Glomus mosseae was combined with Pseudomonas fluorescens to manage 
Rhizoctonia solani (Berta et  al. 2005). Also, a combination of two  AM fungi: 
G. mosseae and G. deserticola, respectively, produced a reduction in bacterial infec-
tion in maize plants (Vázquez et al. 2000). Furthermore, combined inoculation of 
G.mosseae and Aspergillus fumigatus suppressed diseases caused by Phytophthora 
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sp. and Rhizoctonia solani which led to an increase in shoot and root length of cul-
tivated wheat plants (Berta et al. 2005; Bhale et al. 2018).

6.4.2	� Mycorrhiza Mediated Bacterial Disease Management

When compared to fungi, very few reports are available on the activities of AM 
fungi in managing bacterial pathogens in plants. However, substantial successes 
have been reported in the application of AM fungi in the control of common plant 
bacterial pathogens like Pseudomonas syringae on soybean, Ralstonia sola-
nacearum on tobacco and tomato plants (Tahat et al. 2012; Yuan et al. 2016), and 
Xanthomona campestris pv. alfalfae on Alfafa (Liu et al. 2007; Avis et al. 2008) 
(Table 6.1).

6.4.3	� AM Fungi Mediated Nematode Management

Plant-feeding nematodes are known to pose a significant threat to crop production 
worldwide by causing an estimated 10–15% yield loss per annum which translates 
to approximately 170–180 billion USD (Elling 2013). In addition to the direct dam-
age they inflict on crops, researches have shown that they predispose host crops to 
secondary infection by other pathogens like fungi, viruses and bacteria (Singh et al. 
2013, Jones et al. 2013). In view of the increasing health and environmental con-
cerns about the use of synthetic nematicides in nematode pest management, there is 
a need for other eco-friendly alternatives; the application of AM fungi stands as one 
of the suggested environment-friendly approaches to nematode pest management. 
The suppressive influence of AM fungi on some economically important plant nem-
atodes has been reported in several field and greenhouse studies involving crops like 
tomato, banana, okra and grapevine (Alban et  al. 2013; Marro et  al. 2014). The 
activities of AM fungi in managing some plant nematodes classified to the genera 
Meloidogyne, Xiphinema, Radopholus, Heterodera, Nacobbus, etc., on some agri-
cultural crops (Table 6.1).

6.4.4	� AM Fungi Mediated Insect Pest Management

The application of AM fungi in managing agricultural insect pests is well substanti-
ated. The majority of the available articles proved that AM fungi colonisation 
induces an increased nutrient assimilation potential in host plants which has impli-
cations on the plant physiology, metabolism and hormonal balance resulting in 
changes in host plant nutrient composition (Cardoso Filho et al. 2017; Frew 2019), 
or by altering gene expression independently of plant nutrition (Vannette and Hunter 
2009), thereby naturally affecting the behaviour of natural enemies, mostly insect 
pest. Some reports further suggest that AM fungi influence the host plant’s tolerance 
to insect pest damage by nourishing the host crop with the required nutrients 
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especially nitrogen and phosphorus needed to synthesise defense-related enzymes 
and or metabolites as well as modified physical structures (Andrade et  al. 2010; 
Seguel et  al. 2015). Furthermore, an increase in host plant’s nutrient acquisition 
induced by AM fungi most of the time means more investment in plant defences. 
Recent findings also reported that AM fungi colonised hosts accumulate more lig-
nins, tannins, cellulose, silicates and some phenolic contents which help to reduce 
host plant palatability to insect pests (MacLean et al. 2017; da Trindade et al. 2019). 
A practical example was reported by Formenti and Rasmann (2019) where 
Rhizophagus irregularis symbiosis with tomato plants resulted in an increase in 
trichomes density of the host plant as a counter response to attack by the oriental 
leaf worm (Spodoptera litura) This further emphasises the fact that AM fungi asso-
ciation is largely responsible for causing a significant improvement in plant defence 
mechanisms towards invading insect pests by modulating some plant traits which 
confer tolerance or resistance against such insect pest attack (Koricheva et al. 2009). 
The application of AM fungi in managing agricultural insect pests has been studied 
in a diversity of crops worldwide, together with maize (Zea mays) (De Lange et al. 
2020), potato (Solanum tuberosum) (Schoenherr et al. 2019), fava bean (Vicia faba) 
(Cabral et al. 2018), strawberry (Fragaria species) (Gange 2000), narrowleaf plan-
tain (Plantago lanceolata) (Wang et al. 2015), urad bean (Vigna mungo) (Selvaraj 
et al. 2020), etc. However, available information has shown that the abilities of AM 
fungi to improve tolerance or resistance in host plants differ from one AM fungi to 
another and also the efficacy of the protection conferred varies among pathogens. 
Furthermore, several soil and environmental conditions also play their roles either 
by promoting or hindering the effectiveness of the protection.

6.4.5	� Mechanisms Involved in AM Fungi Plant 
Disease Management

The mechanisms involved in the process of AM fungi-mediated control of plant 
diseases and pests may be either directly which usually takes the form of competi-
tion for nutrients or space which gives rise to increased nutrient intake by the host 
plant, or indirectly which involved plant system manipulation processes in areas 
like alteration in rhizosphere interactions, inducing plant defence and improving 
tolerance to adverse effects of pathogens invasion (Cameron et al. 2013; Pieterse 
et al. 2014). These mechanisms, most of the time, are not considered as being inde-
pendent of one another. However, the comparative contributions of a specified tech-
nique will depend largely on the individual AM fungi–host  plant-pathogen 
interactions involved. The previously highlighted mechanisms will be presented in 
detail within the next four paragraphs.
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6.4.6	� Mechanisms Implicated behind Mycorrhiza Mediated 
Disease Resistance

AM fungi have the ability to increase the uptake of the host plant through their 
extensive extraradical hyphae which functions as an add-on of the host plant’s root 
structure with which they are able to explore more soil area and depth to take up 
more mineral nutrients such as nitrogen and phosphate in addition with water (Baum 
et al. 2015). Multiple studies have analysed the nutritional aspect of AM fungi-host 
plant interactions and concluded that AM fungi substantially improve the uptake of 
both macro and micronutrients by host plants especially under pressure circum-
stances (Smith and Smith 2011). Findings have also shown that mycorrhizal-
associated host plants displayed better growth, survival and improved resistance to 
pathogens compared to non-AM fungi-associated plants (Declerck et  al. 2002). 
Several authors have identified increased nutrient uptake as one important AM 
fungi-mediated plant disease control mechanism (Pettigrew et  al. 2005; Wehner 
et al. 2010; Smith and Smith 2011; Schouteden et al. 2015), some others hold con-
tradictory views in this regard (Linderman 1994; Coyne et al. 2004). These contra-
dictions suggest that host plant pathogen suppression by associated AM fungi 
should not be considered as being solely due to improved nutrient uptake but rather 
to a combination of mechanisms that confer reduced pathogen incidences.

6.5	� Modification of Host Plant Root System

Modification of the host plant root system by associated AM fungi is mostly 
described in root number and length which vary according to the AM fungi symbio-
sis. The formation of a highly branched lateral root system by host plants due to AM 
fungi colonisation coupled with an increasing number of sites available for root 
colonisation which is triggered by the production of some metabolites together with 
auxins that have been recognised to play a prominent part in the modification of root 
design and this change has been largely linked to altering the dynamics of some 
soil-borne pathogens (Jung et al. 2012). The intensification observed in AM fungi 
colonised host plant has also been attributed directly to the activities of some exu-
dates turned out by the AM fungi (Fusconi et al. 1999), or contingently due to the 
surge in nutrient intake and or transformation induced in the hormonal balance of 
the host plant which all have implications on infection by pathogens (Vos et  al. 
2014). A typical example is the infection of the root tips of a hugely branched root 
structure of strawberry plant by the Phytophthora fungus which showed lower 
infection in the regions of the root which had AM fungi association when compared 
to the non-mycorrhizal roots (Bhale et al. 2018). On the other hand, depending on 
the type of pathogen and host plant involved, increased root branching might also 
work to increase potential infection sites. In some pathogens, especially the migra-
tory endoparasitic nematodes like the Radopholus spp., the key roots are the major 
spot of infection while the sedentary endoparasitic nematodes such as Meloidogyne 
and Heterodera species would target the root tips and sites of lateral root formation 
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for infection. Hence, an increase in these root regions due to AM fungi interaction 
might tend to increase damage potential to the host plant since it provides more 
avenues for pathogen invasion (Curtis et al. 2009). These opposing scenarios make 
it almost impossible to have a lack of clear and generalisable conclusion on the 
mechanisms involving host plant root modification in managing soil-borne patho-
gens of plants.

6.5.1	� Mechanism of Competition

Competition for nutrients and space by AM fungi has been proposed as having a 
direct effect on the infection of host plants by pathogenic agents. This was proposed 
that both the AM fungi and the invading pathogenic agent would probably seek and 
depend on the host plant nutrition, photosynthate, root rhizosphere and or infection 
site for their survival (Hammer et al. 2011; Jung et al. 2012); hence, if the availabil-
ity of any of these growth factors becomes limited, competition would result in 
reduced multiplication of pathogens within the AM fungi colonised root system 
(Vos et al. 2014). Some studies suggested a positive effect of AM fungi competition 
in reducing population levels of some plant-feeding nematodes (Vierheilig et  al. 
2008; Schouteden et al. 2015); other reports in respect of AM fungi competition 
with plant parasitic nematodes went contrary (Elsen et al. 2003; Dos Anjos et al. 
2010; Koffi et al. 2013). Apart from the study by Cordier et al. (1998), who demon-
strated a positive effect of the competition between the AM fungi, Glomus mosseae 
the plant morbific fungus, Phytophthora parasitica on tomato plant where the com-
petition resulted in the complete exclusion of the pathogenic fungus from the tomato 
roots, most other available studies were of the views that depending on the AM 
fungi species, contention for nutrients and space may additionally impact negatively 
on the AM fungi in favour of the invading pathogen (Elsen et al. 2003; Vos 2012). 
Hence, authenticity of assigning competition for nutrient and space as a mechanism 
in AM fungi-mediated biocontrol process is still in doubt due to the many contradic-
tory and inconsistent reports in this regard (Singh and Giri 2017).

6.5.2	� Activation of Host Plant Defence System

It is quite typical of most soil microbes, especially AM fungi to exhibit a sustained 
induction of tolerance termed: induced systemic resistance in response to any other 
invading pathogenic organism. This form of resistance, which is mostly initiated by 
the priming of defence genes of the host plant, affords it some degree of protection 
from infection by different pathogenic agents such as bacteria, fungi, viruses and 
nematodes as well as different species of herbivorous insects (Pineda et al. 2010). 
Furthermore, the induced aversion often works by increasing the sensitivity of the 
host crop towards some plant growth regulators like ethylene and jasmonic acid 
(Pineda et  al. 2010). Successes of AM fungi-induced resistance (AIR) has been 
demonstrated in many plants involving several plant pathogens; AIR was reported 
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as being the major mechanism involved in managing the pathogenic fungus, 
Gaeumannomyces graminis causing take-all disease (Khaosaad et al. 2007). Also, 
the activities of AIR were linked with the suppression of different strains of the 
fungi species such as Fusarium oxysporum in transformed carrot root (Benhamou 
et al. 1994); and in date palm trees; Alternaria solani (causing early blight disease 
in tomatoes) (Fritz et al. 2006); Colletotrichum in cucumber plants (Jaiti et al. 2008).

AIR is associated with the production of several chemicals such as chitinases, 
phytoalexins, glucanases, glycoproteins, phenolic compounds, calloses and enzymes 
of phenylpropanoid with a diversified range of biochemical properties which are 
mostly synthesised as secondary metabolites (Singh 2017).

6.6	� AM Fungi Application in Commercial Agriculture

In view of the numerous benefits that AM fungi confer on their hosts, it is clear that 
AM fungi bear substantial potential to be applied in improving agricultural yield. 
Diverse studies have underscored the great potential of commercial AM fungi inoc-
ulum in agricultural production (Berruti et al. 2016; Igiehon and Babalola 2017; 
Wang et  al. 2017) either as a catalyst to improve plant health (Hijri 2016) or in 
mineral nutrients absorption and translocation (Huang et al. 2020) as well as nutri-
ent mobilisation beyond depletion zones of the crop rhizosphere (Bender et  al. 
2015). AM fungi have the ability to cause moderate to significant alterations in the 
secondary metabolism of host plants leading to what is described as enhanced 
nutraceutical potentials. It is a well-established fact that AM fungi confer great ben-
efits to their host which shows great promise for application in agriculture in differ-
ent ecological zones of the world. Many studies have revealed several applications 
of commercial mycorrhizal inoculum in agriculture (Rouphael et  al. 2015; Hijri 
2016). Most modern agricultural practices are characterised by excessive tillage 
operations, fertiliser application, use of pesticides and poor rotation sequence which 
limit the power of plants to effectively establish mutualisms with AM fungi. 
Although most modern agronomic practices tend to be disruptive to AM fungi, there 
might still be a great opportunity for cost-effective agriculture to oversee the crop-
ping structure in a course of action that advances AM fungi production. Although 
commercial assembly and utilisation of AM fungi inoculum are considered exhaus-
tive, AM fungi implementation is worth the stress, especially in the cultivation of 
high-value horticultural crops and also during adaptation of micropropagated plant-
lets in nurseries (Tchabi et al. 2016; Chen et al. 2018). Inoculation of micropropa-
gated plants like peach and apple at transplant will help to induce rapid nutrient 
uptake at the critical weaning stage so as to achieve plants with desirable commer-
cial traits thereby rendering crop production more profitable. AM fungi, thus, invari-
ably cause a decrease in the amount of artificial fertiliser application with less fear 
of reduced yield thereby increasing farmers’ profit. In spite of the great potentials 
inherent in the application of AM fungi in agriculture, its effectiveness depends 
largely on the degree of some external factors especially tillage operations and the 
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application of some specific biocides which interfere with AM fungi proliferation in 
soils and cropping systems involving non-host plants (Hartmann et  al. 2015). 
Furthermore, each crop has its best corresponding AM fungi which would provide 
diverse benefits and not in every single amalgamation of crop and mycorrhiza, the 
benefit of appeal is incontrovertibly and emphatically impacted (Berruti et al. 2016; 
Chen et al. 2018).

6.7	� Conclusions and Future Outlooks

Sustainable agriculture is one that relies on biological procedures to accomplish 
optimal positions of food output in terms of grade and quantity with negligible dis-
turbance to the ecosystem. The several benefits of AM fungi have also positioned 
them with great potential for significant ecological services within the environment. 
Application of AM fungi in plant diseases management caused by plant pathogenic 
fungi, bacteria, nematodes, etc. is a very viable option. However, some setbacks, 
especially biotrophic nature of AM fungi creates a significant challenge in their 
application. The world’s current mycorrhizal products market is yet to achieve its 
full potential due to problems arising from regulatory constraints, product efficacy, 
quality assurance issues, customer awareness and other technical issues. In order to 
harness and maximise the inherent potential of AM fungi to be used in plant disease 
management, efforts should be geared up at providing an environment for AM fungi 
through manipulation of agricultural systems to favour AM fungi colonisation and 
proliferation. Therefore, understanding and managing the mycorrhizal symbiosis 
dynamics is crucial for maintaining the growth and health of crops.
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7Arbuscular Mycorrhizal Fungi: 
A Potential Agent for Phytonematodes 
Management in Diverse Agro-climatic 
Zones
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Abstract

Plants face continuous environmental stress at different stages of their life cycle. 
These stresses may be biotic or abiotic. Various strategies are to be devised to 
fulfill the food requirements of the population, which are increasing day by day. 
The stress tolerance potential of crop plants with regard to environments needs 
to be improved to maximize crop production and productivity. In this connection, 
biological means are one of the most promising means to persuade plants of their 
stress-resistant ability. Among several biological means, arbuscular mycorrhizal 
fungi (AMF) has enough potential for mitigating plant stress by increasing their 
vigor. These AMF are the mycorrhizae that form mutual relationships with 
higher plants by changing their root morphology and physiology. These plant 
symbionts assist the crop plants in acquiring essential nutritive composition from 
the soil, such as phosphorus, sulfur, and nitrogen. Generally, higher plants are 
colonized by plant symbionts and benefit from these microorganisms. AMF are 
significantly involved in nutrient management and also help plants synthesize 
appropriate amounts of heterogenous plant hormones. AMF helps plants improve 
their developmental characters and vigor to sustain even in extreme environmen-
tal conditions. It also improves the different aspects of soil, like soil nutrition, 
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soil aggregation, physical, chemical, and biological properties. Eventually, these 
qualities will help reduce soil erosion caused by wind and water. In this way, the 
nutrients’ leaching reduces and groundwater contamination due to leachates 
lessens to a minimum. However, there is a need for much researches to be done 
in identifying different AMF suitable for different crops.

Keywords

Arbuscular mycorrhizal fungi · Bio-fertilizer · Plant parasitic nematodes · 
Interaction · Rhizosphere · Mycorrhizae

7.1	� Introduction

Agricultural soil comprises a diverse range of microbes such as fungi, bacteria, 
viruses, protozoans, and nematodes. The rhizospheric soil, which is under the direct 
influence of plants, is the most important area where the biotic and abiotic compo-
nents interact. During evolution, plants form a wide array of positive interactions 
with several microorganisms harboring in the rhizospheric zone that help in the 
uptake of nutrients and the protection of plants against pathogenic biotic factors 
(Smith and Read 2008). Henceforth, the feeder roots, which are infected, got trans-
formed into a different structure called mycorrhizae (“fungus roots”). The interac-
tions between mycorrhizal fungi or nodulating rhizobial bacteria and plants are 
mutual and have a significant role in plant health improvement (Smith and Read 
2008; Hayat et al. 2010). The information with respect to fossil and atomic phylog-
enies shows the presence of AMF in roots since the very beginning, i.e., 460 MYA 
(Remy et al. 1994; Redecker et al. 2000). Unfortunately, due to contamination with 
organic compounds at the time of the green revolution, the soil conditions, like soil 
moisture, soil pH, and soil mineral constituents, have changed, and because of these 
affects, there is an imbalance of these interactions, such as water, pH, and mineral 
nutrient contents (Dudal et al. 2002; Ansari and Mahmood 2017a). So, the most 
effective way to nullify the harmful impact of chemicals is to search for alternative 
methods, and bioagents may be a potential source of exploitation in the future. 
Researchers showed paramount interest in mycorrhizae for use in sustainable plant 
protection systems.

In the year 1885, A.P. Frank coined the term mycorrhizae, which is derived from 
a Greek word. This serves as a very perfect example of mutualistic symbiosis, where 
the plants provide energy in the form of carbohydrates to the fungus, and in return, 
the fungus provides important nutrients, specifically phosphorus, to the plant, which 
are usually inaccessible (Smith and Read 2008). There are two kinds of mycorrhiza, 
ectomycorrhiza (ECM) and endomycorrhiza (EDM); other distinguished mycor-
rhizae also exist, such as ectendomycorrhizae, orchids, arbutoids, and monotro-
poids. Hence, AM symbiosis is of greater importance and interest for agriculture 
and horticulture as it delivers mineral nutrients, particularly phosphate, to plants. In 
addition to this, a bio-protective effect has also been reported in the last thirty years 
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(Dehne and Schönbeck, 1975; Rosendahl 1985), and its potential role in the man-
agement of plant diseases has also been confirmed (Whipps 2004). However, mech-
anisms implicated in controlled/regulated disease are still poorly understood. 
Ectomycorrhizal fungi are key players in forestry and agronomy (Smith and 
Read 2008).

Plant growth is increased by mycorrhizae apparently because of the enhanced 
root surface area, which enables it to absorb more water and nutrients because the 
water stress becomes lessened on plants through selective nutrient absorption and 
accumulation (Ansari and Mahmood 2019a, b). This makes the root more impervi-
ous to fungal infections such as Phytophthora, Pythium, and Fusarium (Smith and 
Read 2008) and also to some important plant parasitic nematodes. AMF need hosts 
for their multiplication and growth, but in the case of non-availability of hosts, they 
can also survive through spores or resistant hyphae.

7.1.1	� Ectomycorrhiza (ECM)

ECM belong to the phylum, Basidiomycota, with a few Ascomycota and very few 
Zygomycota (Tedersoo et  al. 2010). ECMs are shaped principally on timberland 
trees, generally by mushroom and puffball-delivering basidiomycetes and by cer-
tain ascomycetes. The spores of these organisms are created on the ground and are 
scattered by the wind. These symbionts enter the roots, yet they just multiply around 
the cortical cells, supplanting the piece of the center lamella between the cells and 
framing “Hartig net” (Domínguez-Núñez and Albanesi 2019). Interwoven “fungus 
mantles” are generally produced outside the feeder roots, which have one or two 
hyphal diameters thickness to as many as thirty to forty.

7.1.2	� Endomycorrhiza (EDM)

This is the normally found mycorrhizae, which seem like non-mycorrhizal (NM) 
establishes in shape and shading remotely, however it develops into the cortical cells 
of the feeder roots inside either by framing a specific taking care of hyphae (hausto-
ria) called arbuscules by setting up the nearby contact with plant cells (Berruti et al. 
2016) or by forming vesicles, which are large swollen food-storing hyphal swell-
ings with varying shape from globose to irregular and contain lipids. It belongs to 
the phylum glomeromycota. On the root surface, they are encircled by a free myce-
lial development from which hyphae and huge pearl-covered zygospores, or chla-
mydospores, are delivered underground. EDMs are developed on most developed 
plants and on a few woody trees for the most part by zygomycetes, essentially of the 
genus Glomus and other genera such as Acaulospora.

The fungus that is capable of establishing AM symbiosis is glomeromycota 
(Schubler et al. 2001). The strategy of colonizing the root differs in different fami-
lies. Glomerales primarily colonize root systems starting with hyphal fragments. 
Diversisporales start from the spores; hence, they are slower colonizers than 
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Glomerales. Hence, the glomerales possess the greater ability to increase phospho-
rus uptake, promote biomass production and protect the plant against pathogens as 
well as drought stress (Hart and Reader 2002). AM has the ability to develop exten-
sive hyphal growth in soil, which extends the nutrient to all zones of plants. AM 
association with the root enhances soil nutrient uptake (Islam et al. 1980), improves 
plant growth and yields (Daft and Nicolson 1972; Chhabra et al. 1990), improves 
stress tolerance, and helps suppress infection caused by plant parasitic nematodes 
(Rich and Bird 1974; Jain and Sethi 1988a; Sharma et al. 1994). This plant symbi-
ont can also reduce nematode populations and disease production rates (Bagyaraj 
et al. 1979; Cooper and Grandison 1986; Jain and Hasan 1988). There are some 
reports where the population of nematodes did not change (O'Bannon et al. 1979; 
Caron et al. 1983) under the influence of AMF. Plant symbiont Glomus spp. is one 
of the most predominant genera in India, and Glomus fasciculatum has been phe-
nomenal in managing plant pathogenic nematodes (Jalali and Chand 1990; Sharma 
and Trivedi 2001; Nehra et al. 2003; Trivedi 1995, 2003). G. intraradices is a very 
competent species that manages the nutrient uptake by individual hyphae, which 
also depends on the nutrient status of the surrounding soil (Cavagnaro et al. 2005). 
G. intraradices-inoculated plants exhibited increased levels of phosphorus in a wide 
array of crops and also improved soil health (Cardoso and Kuyper 2006). Improved 
plant health, including significant crop production and productivity, is obtained if 
microbial consortia are introduced into the agroecosystem (Ansari et al. 2017a, b, 
2019a, b).

Losses inflicted by nematodes continue to increase and are becoming a limited 
factor in maximizing crop yields (Ansari and Khan 2012a, b; Ansari et al. 2020a, b). 
The AMF is not restricted to use as biofertilizer but recently crop protection aspects 
of these plant symbionts have also been realized, which has drawn the attention of 
researchers due to a wide range of environmental adaptation capabilities.

Plant parasitic nematodes and plant symbionts share the common ecological 
niche of agroecosystems. It acts as an obligate symbiont that enhances the biomass 
of plants, and the nematodes are an obligate parasite that depletes important nutri-
ents from the root, resulting in reduced plant growth. Even if the plant parasitic 
nematodes are present at high damaging levels, the heavily colonized mycorrhizal 
plants have the ability to grow well. Specialized structures (mycelia, arbuscules, 
vesicles, auxiliary cells and spores) are also formed:

•	 Hyphae: The filamentous organization framed are called hyphae. They structure 
various shapes like “H” or “Y” shapes that develop along the roots, colonize the 
soil and structure new spores, which are known as fertile hyphae (Akiyama 
et al. 2005).

•	 Arbuscules: Formed by glomalean fungus within the plant root cells, here the 
plant exchanges food and nutrients with each other. It also has many small pro-
jections that get extended inside the plant cells and are formed by repeated 
branching of hyphae when they enter the root cells (Balestrini et al. 2015).

•	 Vesicles: A vesicle is the swollen end seen between the cells of the root of the 
wall. They serve as storage organs for fungal foods and appear as oval bags. 
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Glomus, Acaulospora and Entrophospora are vesicles producing plant symbi-
onts and have remarkable role in agroecosystem reconciliation. Arbuscules last 
for a few days as they are digested by plants, while vesicles may remain viable 
for longer being an infective propagules (Wang and Qiu 2006).

•	 Spores: They too function as storage structures, propagules, reproductive, and 
resting structures. Their size is between 10 and 1000 μm, and they form as swell-
ings on hyphae in the roots and soil (Alizadeh 2011).

•	 Auxiliary cells: Thin-walled cells are the key composition of auxiliary cells, and 
their function is to store carbon, which is found only in the suborder Gigasporinae 
(Alizadeh 2011).

7.1.3	� Characteristics of AMF

•	 The arbuscules present within the cortical cells of the roots of the colonized 
plants supply the inorganic water and nutrients from the soil; in exchange, they 
derive the organic compounds and the CHO supplied by the plants.

•	 It helps in soil health ameliorations through glomalin exudation and the binding 
of soil particles through hyphal bindings.

•	 Hyphae have the capacity to absorb nutrients because of active transporters, so 
they are able to colonize other zones of soil where the roots of plants can-
not reach.

•	 Besides the supply of phosphorus to plants from soil, it also helps in the acquisi-
tion of immobile nutrients such as ammonia, copper, potassium, iron, sulfur, 
zinc, and molybdenum; hence, (AMF) can be termed a natural bio fertilizer.

•	 It acts as bioprotectant against bacterial, nematode, and fungal pathogens.
•	 AMF colonization builds ferulic and gallic acids in higher plants.
•	 Ferulic acid was found to be toxic to burrowing nematodes, Radopholus similis 

(Wuyts et  al. 2006), and gallic acid showed nematicidal potential against 
Meloidogyne incognita (Seo et al. 2013).

•	 Plant functional groups such as non-nitrogen-fixing woody plants and forbs, as 
well as C4 grass respond positively to mycorrhizae compared to plants with 
N-fixing bacterial symbionts, and C3 grasses. Nitrogen-fixing forbs had a greater 
mycorrhizal growth response than woody ones.

AMF make certain root architectural changes that contribute to acquiring more 
nutrients that are otherwise not available to plants. This characteristic helps the 
plants mitigate their stress tolerance under varied extreme conditions (Abass 
et al. 2014).
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7.2	� Systemic Acquired Resistance (SAR)

AMFs induce systemic resistance and also possess a bio protectional effect against 
different plant nematodes. Elsen et  al. (2008) conducted studies to determine if 
G. intraradices could induce SAR against R. similis and Pratylenchus coffeae 
infesting banana using a split root compartment setup. When both the AMF and 
nematodes were spatially separated, AMF reduced both nematodes by more than 
50%, suggesting that AMF has the ability to SR against the tested nematodes. For 
AM-induced immunity, systemic mechanisms are involved. AMF-induced resis-
tance generates SAR such as SA priming-dependent genes (Pozo and Azcón-
Aguilar 2007; Glazebrook 2005) and preconditioning of Jasmonates (JA)-dependent 
defenses (Van der Heijden and Horton 2009; Song et al. 2011; Jung et al. 2012), as 
well as cell wall defenses (Cordier et al. 1998; Pozo et al. 2002). AMF colonized 
plants have shown higher production of defense compounds like phenolics and β-1 
and 3-glucanase are upregulated in pathogen-infected AM plants (Pozo et al. 2002).

Pieterase et al. (2012) reported that initially the host assumes AMF as potential 
invaders, thus activating the defensive molecules, but later on they are downregu-
lated to allow colonization. The analogous structures of AMF, called arbuscules, are 
bound by the host plasma membrane. Thus, the host immune system is activated, 
and the plant responds to pathogen infection through a two-part innate system 
(Jones and Dangl 2006). The plant defense instrument includes acknowledgment of 
microorganism/organism-related molecules (PAMPs/MAMPs) at the first site that 
trigger the safeguard reactions of plants, which incorporate quick ion fluxes across 
the plasma layer, MAP kinase activation, gene expression changes, support of the 
cell wall, and the creation of reactive oxygen species (Zipfel et  al. 2006). This 
response is called MTI, i.e., molecular pattern (MAMP)-triggered immunity. The 
biotrophic pathogens have the capacity to conquer the MTI component by releasing 
effector proteins into the plants. The recognition of these effectors by so called  
“R genes” (resistance genes) by plants is the second line of plant immunity, hence 
generating effector triggered immunity, which is a stronger resistance response. The 
R-genes and their products control the disease resistance responses at the site of 
infection. The plant immune element response is used to differentiate between 
pathogens and symbionts before the establishment of symbiosis. Thus, there is an 
accumulation of defensive molecules like phytoalexins, callose, lignin, suberin, ter-
penoids, PR proteins, phenolic compounds, ribonucleases, PALs, peroxidases, and 
chalcone synthases (Hohmann and Messmer 2017; Jacott et al. 2017; Hill et al. 2018).

AMF do not directly interact with plant parasitic nematodes (PPNs); even though 
they are close to each other, they change the host physiologically and physically and 
indirectly affect the host–nematode relationship. De la Pena et al. (2006) observed 
the locally operating mechanisms involved in plant nematode and AM fungi interac-
tion on Ammophila arenaria (dune grass). Lopez Raez et al. (2010) stated that func-
tional diversity exists among AMF species. Plant growth-promoting molecules are 
instrumental biomolecules that help in morphological, physiological, and biochemi-
cal modifications. The gene LePT4 of tomato plants which encodes the phosphate 
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transporter was encountered in arbusculated cells and used in functional symbiosis 
as a marker (Balestrini et al. 2007). JA (Jasmonates) plays an important role in AM 
symbiosis, as JA levels were found to be more in the mycorrhizal roots of Medicago 
truncatula compared with plants receiving no mycorrhizal spores (Hause et  al. 
2002; Meixner et  al. 2005). Riedel et  al. (2008), however, reported that the said 
hormone remains unaltered in Nicotiana attenuata. However, a few earlier workers 
reported that JA biosynthesis or JA flagging showed positive or negative administra-
tive roles of the JA pathway in symbiotic interaction utilizing reverse genetic meth-
odologies with plant mutants (Isayenkov et al. 2005; Herrera-Medina et al. 2008; 
Jejeda-Sartorius et al. 2008). These contentions were raised because of covering of 
distinct signaling exercises of its pioneer called oxo-phytodienoic acid (OPDA), 
and their derivatives of jasmonate, for example, isoleucine form (JA-Ile) (Wang 
et al. 2008). The UPLC-tied mass spectrometry (LC-MS/NS) analysis studies quan-
tified free JA, which is the JA precursor OPDA, JA-Ile, ABA and salicylic acid (SA) 
and the results obtained by Lopez et al. (2015) cleared that levels of OPDA, a bioac-
tive derivative of JA-Ile, and SA content were higher on G. mossae and G. intaradi-
ces colonized roots compared to NM roots, while JA levels and ABA levels remained 
unaltered and ET levels were significantly impaired in AMF inoculated plants 
(Barazani et al. 2007; Reidel et al. 2009).

The researchers have pointed out markers encoding chitinase, glutathione 
S-transferase, β-D-xylosidase, PR10-like protein, and a key compound, DXS-2, of 
the mevalonate autonomous pathway of carotenoid biosynthesis (Hohnjee et  al. 
2007; Walter et al. 2007; Floss et al. 2008). There is also induction of some genes in 
the biosynthesis of oxylipins. Two fundamental parts of the oxylipin pathway exist 
in plants and are consequently governed by two unique Lipoxygenases (LOXs), i.e., 
9-LOX and 13 LOXs. The same is true for OPDA content in mycorrhizal barley and 
medicago roots. Subsequently, one might say that stronger induction of 9 LOX 
pathways and induction of JA-Ile, many JA-based markers, and enhanced degrees of 
SA prompt lower levels of mycorrhizal colonization.

The early MTI reaction, including jasmonate-linked 9-LOX pathway, impacts 
the population of root knot nematodes. Gao et al. (2008) found in maize that the 
expression of 9 LOX genes (ZMLOX3) is mandatory for resistance against root-
knot nematode (M. incognita). The successful symbiosis with the plants becomes 
possible due to the weak and transient initiation of the MTI response during the 
early stages of plants. AMF circumvent their recognition by plants and also vigor-
ously conquer MTI responses through effector proteins. Hence, to understand this, 
it is pertinent to know the pre symbiosis part. In asymbiotic stage, AMF with no 
requirement of plant factors after spore germination and enter the presymbiotic 
phase, where the fungus shows its activity in the presence of host plant roots by 
forming many branches. This suggests that AMF perceives the signals released by 
host plants. As far as nematode and AMF interaction is considered, research was 
mainly focused on root knot, root lesion, and burrowing nematodes (Hol and Cook 
2005). The split root experiment by Hao et al. (2012) provided a demonstration that 
R. intraradices induced bioprotection through both local and systemic mechanisms 
against Xiphinema index activity. They studied the 14 genes to understand the 
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transcriptional modification in X. index and myco interactions and observed that 
CHI, GST, STS, PR-10, ESPS, and HIP (seven genes) were upregulated.

PR-10 proteins express their genes in both the early and late phases of root–AMF 
interactions (Brechenmacher et al. 2004; Siciliano et al. 2007a, b). In mycorrhizal 
and X. index interactions, the EST91, PR 10 isoform was produced early and prior 
to the identified bioprotective benefits, while it is missing in roots colonized exclu-
sively by G. intraradices or nematodes. PR-proteins have antimicrobial activity and 
RNAse activity to combat biotic and abiotic stresses (Van Loon and Van strain 1999; 
Liu and Ekramoddoullah 2006). The PR-10 protein extracted from Crotolaria pal-
lida shows nematostatic effects against M. incognita via inhibiting digesting pro-
teinase (Andrade et  al. 2010). The ESPS enzyme is engaged in the shikimate 
pathway, which creates aromatic secondary metabolites and amino acids in plants, 
as well as phenylamine, tyrosine, and tryptophan precursors for aromatic secondary 
metabolites and plant hormones (Tzin and Galili 2010). According to Ferrari et al. 
(2007), enhanced expression of ESPS throughout defensive responses generated by 
oligosaccharide administration in Arabidopsis thaliana resulted in Botrytis cinerea 
resistance. As a result, HsP70 protects proteins against degeneration in stressful 
situations. Rivera-Becerril et  al. (2005) exposed mycorrhizal roots to Cd (heavy 
metal) stress, resulting in the activation of the Hsp70 gene, which preserved protein 
membrane integrity in arbuscule-containing cells, allowing VAM plants to tolerate 
contaminated soils and contributing to symbiotic functioning. When the pathogen is 
present, the conservation of protein integrity may be done when the pathogen is 
subjected to biotic stress (X. index) (Smith 2000; Marshall and Keegstra 1992; 
Neumann et al. 1994; Hottiger et al. 1992; Rivera-Becerril et al. 2005).

The AMF not only acts systematically in controlling the nematode infection but 
also enhances the resistance of plants against pathogens that are assumed to be 
infected by plant nematodes. Hao et al. (2018) reported that R. intraradices induces 
systemic protection against Grape Fan Leaf transmitted by X. index. Li et al. (2006) 
conducted the studies to identify which grapevine chitinase genes among class I chi-
tinase gene (VCHIT 1b), class III chitinase gene (VCH3) & class IV chitinase genes 
(VvChi4A, VvChi4B, and VvChi4D) were induced following inoculation with G. ver-
siforme and to confirm if the increase in gene activity provides resistance to mycor-
rhizal grapevines against M. incognita. The relative quantitative Polymerase chain 
reaction (PCR) analysis revealed upregulation of class III chitinase gene (VCH3) tran-
scripts, and after infection with root knot nematode, the increase was much higher.

7.3	� Interaction of AM Fungi with Plant Parasitic Nematodes

Different plant responses, such as physical and physiological responses to the activ-
ity of fungus, are the result of AMF action, which is meant for plant protection 
(Smith and Read 2008). When both nematodes and AMF compete for root space 
and feeding sites, AMF have direct effect on root feeding nematodes. The AMF 
directly compete with roots and create local changes in the root chemistry and root 
exudates. This makes inhibition of nematodes multiplication (Graham 2001). The 
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majority of the PPNs live in the soil, except Ditylenchus spp., which resides in 
aboveground parts. Based on feeding strategy, they are classified as (a) ectoparasitic 
nematodes: they feed the plant roots from epidermal cells or cortical cells, keeping 
their whole body outside the root by inserting only stylets (example).  
(b) Endoparasitic nematodes: they enter the roots with their whole body and feed 
inside (example). (c) Sedentary endoparasites: feed inside the roots, displaying the 
most complex feeding strategy by converting the cells of the vascular cylinder into 
the feeding sites and thus becoming sedentary parasites with the onset of feeding 
(cysts and root knot nematodes, for example). (d) Migratory endoparasites: They 
migrate inter or intracellularly and feed on the cells and thus cause damage along 
the migration path, e.g., R. similis and Pratylenchus spp. (Jones et al. 2013; Gheysen 
and Mitchum 2011).

The nature of interaction between them varied from antagonistic to neutral to 
synergistic. The primary effect of AMF has generally been to increase host resis-
tance during the infection of plant nematodes. This variation in the nematode popu-
lation or disease incidence in AM-colonized plants was found to be due to the 
varying nematode host symbiont combinations. Variables that influence the interac-
tion include the order in which crops are attacked with nematodes compared to the 
time of AM infection, the infection levels of both worms and fungus, and soil 
fertility.

7.3.1	� AM Fungi and Their Impact on Root-Knot Nematodes

Endoparasitic nematodes and AMF both present in soil and also colonize the same 
area in host plant roots; hence, They interact with each other (Hussey and Roncandori 
1982; Elsen et al. 2003; de la Pena et al. 2006; Rizvi et al. 2015). The effects of 
nematodes on mycorrhizal development are different (Ansari and Mahmood 2017b). 
Atilano et al. (1981) reported poor mycorrhizal colonization and the formation of 
vesicles and extra-metrical mycelia in G. fasciculatum in the presence of root-knot 
nematodes (De-souza 1979; Germani et al. 1980). Prior inoculation of AMF resulted 
in greater suppression of M. incognita multiplication in soil, especially when applied 
20  days before nematode inoculation. The higher initial densities of nematodes 
affected the colonization of G. fasciculatum; hence, the initial inoculum of fungus 
exerted an effect on nematodes that penetrated the seedlings, as nematodes require 
only a few hours to penetrate, whereas fungus requires a minimum of 10 days to get 
them established (Sankaranarayanan and Sundarababu 2009). Kellam and Schenk 
(1980) reported that chlamydospores of G. macrocarpus impaired the gallings of 
M. incognita on Pickett soybean plants. AM plants have a larger root system than 
non-AM plants, and the total number of galls produced on AM plants was less than 
that on non-AM plants.

Mycorrhizal roots reduced the penetration ability of nematodes, and if penetra-
tion was done, interference in giant cell formation was observed. The compatible 
results were obtained in the findings of Sikora and Schoenbeck (1975), where they 
reported a significant reduction in the number of M. incognita larvae due to 
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Endogene mossae that were able to reach adulthood in plants containing mycorrhi-
zal roots. Roncadori and Hussey (1977) observed the Gigaspora margarita and 
M. incognita interaction and reported that combined inoculation nullified the stunt-
ing caused by nematodes. The nematode reproduction, i.e. egg production, was 
higher on cotton roots with mycorrhiza compared to NM roots because the root 
systems of mycorrhizal cotton were considerably larger than those of controls. The 
suppressive effects of G. intraradices on M. incognita in cucumber have been 
reported by many workers. Castillo et al. (2006a, b) found that this AMF markedly 
reduced gall formation (6.3–36.8%) in the root system of the plants and the multi-
plication of both nematodes, M. incognita and M. javanica, by 11.8–35.7% in olive 
trees. The cucumber plants developed tolerance to M. incognita by increasing plant 
growth and yield when pre-inoculated with G. intraradices and P fertilizers during 
the early stages of plant growth (Zhang et al. 2009). It was studied that AMF inocu-
lation reduced infestation and reproduction of root knot nematodes infesting papaya 
(Jaizme-Vega et al. 2006), tomato infested with M. incognita (Siddiqe and Akhtar 
2007), and pyrethrum infested with M. hapla (Waceke et al. 2001). The olive plants 
infected with M. incognita/javanica were managed by AMF, G. intraradices, 
G. mossae, and G. visocum (Castillo et al. 2006a, b). Three AMFs, G. intraradices, 
G. mossae, and G. versiforme, decreased root galling index, egg masses per root 
system, mature females, and eggs or egg masses. Among the three, G. mossae pro-
duced the largest shoot biomass, on the other hand, G. versiforme plants registered 
maximum nutrient conditions. Likewise, similar results were obtained in tobacco 
plants when inoculated with G. fasciculatum that increased growth, biomass uptake 
ability of phosphorus, and total yield (Subhashini and Ramakrishnan 2011).

Researchers have published conflicting data (reduction, increase, or no effect of 
AMF inoculations on nutrient uptake), and nematode effects on plant development, 
such as AM inoculations, have frequently decreased the negative effects of root knot 
nematodes on plant growth and nutrient uptake. G. fasciculatum inoculations 
reduced nitrogen, phosphorus, potassium, calcium, zinc, and manganese absorption 
in tomato plants infested with root-knot nematodes. Altered zinc, copper, and boron 
accumulation in coffee plants (Bhagyaraj et al. 1979) infested with nematodes; poor 
nitrogen, phosphorus, and potassium in grape leaves (de Souze 1979) were observed, 
and this depends on nematode species (Kesba and Al-Sayed 2005). There also exists 
a synergistic interaction between the biocontrol agents. Researchers have also found 
that AMF sporulation and ramification have been significantly improvised by the 
spore activator, which is generally used during inoculum preparation of other fungal 
bioagents.

The combination of two or more species of AMF provides good results, such as 
G. etunicatum and G. deserticola, along with the dual introduction of bionematicide 
on tomato against M. incognita race 1 in green house experiments, which resulted 
in greater inhibition of galls, egg masses, and subsequently growth and reproduction 
parameters of plants. AMF is a phosphate-solubilizing microorganism and has the 
potential for the biomanagement of plant pathogens too. They help change the phos-
phatic compounds, which are insoluble, into soluble forms. Glomus intraradices 
combined application of Aspergillus awemori and Pseudomonas aeruginosa 
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increased pod numbers, chlorophyll, nitrogen, phosphorus, and potassium contents, 
and reduced plant nematode-related parameters of M. incognita in chickpea 
(Siddiqui and Akhtar 2009). Some compounds, such as phenylamine and serine, 
have an inhibitory role against nematodes. These compounds were significantly 
increased in the plants of tomato inoculated with plant symbionts. It was reported 
that G. mossae, G. fasciculatum, and G. mykovam increased the biomass of two 
onions (Yellow Granex and Red Creole) in the existence/absence of P-deficient 
soils. Yellow Granex exhibited good tolerance to M. graminicola with improved 
bulb weight (262%) and bulb diameter (96.4%). Owing to alterations in biochemis-
try and physiology, this additional supply of phytoalexins, phenols, lignin, phenyl-
alanine, serine chitinase, and decreased leakage of CHO takes place. (Graham 
2001). The compatibility of AMF with some fungi parasitizing the eggs of nema-
todes differs among the various species of AMF. Root knot nematode causes the 
root galls, and the root galls hinder the uptake of water and nutrients, and thus 
photosynthesis and other related mechanisms are impaired. Hence, the growth and 
yield of plants are increased due to the lowering down of the nematode population, 
and systemic resistance is induced by improving the host nutrition through modifi-
cation of the mycorrhizosphere by AM.

To maximize the potential of biocontrol agents, the combined application of two 
or more beneficial microbes in the preparation of biocontrol agents has been recom-
mended. Oyekanmi et al. (2007) applied the microbes in full factorial combinations 
that suppressed nematode reproduction. After 7 days, the M. incognita penetration 
rate in cotton plants inoculated with G. intraradices and non-AM roots was the 
same; however, after 28 days, the population of root knots in AMF-colonized roots 
decreased. The development rate of second-stage juveniles to adult females was not 
impacted by AMF when M. incognita was added at planting, but it was slowed when 
the juveniles were introduced 28 days after planting in AM-mediated soil (Smith 
et al. 1986). The species of AMF determines whether or not nematode reproduction 
is suppressed. For example, AMF differently reduced M. javanica reproduction on 
chickpea, with AMF being more prominent with G. manihotis compared to G. mar-
garita, very minimally with Gigaspora gigantean, and zero with Entrophospora 
Columbiana (Diederichs 1987).

7.3.2	� AM Fungi and Their Impact on Cyst Nematodes

Plant symbionts affect potato cyst nematode (PCN) hatching in soil by influencing 
the production of hatching factors like potato root leachates (PRLs; Deliopoulos 
et al. 2008). Both PCN and AM occupy the same locations of root systems, which 
interferes with the PCN life cycle. A range of in vitro or in soil studies on various 
aspects of PCN-AMF interactions and the different mechanisms implicated have 
been unraveled (Deliopoulos 2004). Jones and Ryan (2004) compared the PRLs 
collected from the roots of AMF-mediated and non-mediated potatoes and gave the 
confirmation that potato microplots inoculated with Vaminoc (mixture of three 
Glomus species) promoted the early hatching of G. pallida, but there was no effect 
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on the hatching of G. rostochiensis. Also, the hatching factors were more active 
towards both species of cyst nematodes.

The juveniles hatch in response to the chemicals that leach out of the roots. The 
PRLs isolated from the AMF-inoculated plants contain a large number of HFs and 
HS, which are more active against G. pallida as compared with the PRLs of control 
plants (Ryan and Jones 2004b). AM colonization stimulated potato root growth and 
enhanced the tolerance level of plants against G. rostochiensis (Ryan et al. 2003). 
Francil and Dropkin (1985) reported the occurrence of chlamydospores of G. fas-
ciculatum in the cysts of the soybean cyst nematode, H. glycines, i.e., 1–24% of 
cysts recovered from field soil samples. Gf1 isolate decreased the population of 
adult females of nematodes in the first generation by 26% over control. The soybean 
plants inoculated with AMF and H. glycines registered more biomass than NM 
plants inoculated with nematodes. Similar AMF exhibited negative effects on the 
production and multiplication of H. cajani infecting cowpea (Jain and Sethi 1988a). 
Earlier, the workers reported the abundance of AMF in soybean production soils, 
maximizing their roles as nematode antagonism and strategy for management of 
H. glycines on soybean. H. glycines in the roots of soybeans and soil was decreased 
by AM up to 73% at high soybean cyst inoculum levels after 45 days of planting. 
Also, H. glycines was suppressed by AMF and increased soybean tolerance to nem-
atodes under greenhouse conditions, but no such suppression was observed in the 
field (Tylka et al. 1991; Winkler et al. 1994). The effects of H. glycines and G. mos-
sae on soybean growth were additive, and the growth stimulation by G. mossae was 
reduced in the presence of H. glycines (Todd et al. 2002). The potential for suppres-
sion of H. glycines populations by AMF is less than that of root knot nematode on 
the same host, as improved P nutrition is suppressive to M. incognita but not to 
H. glycines. The antagonistic nature of H. glycines was found in many AMF coloni-
zations as Todd detected the consistent suppression of root colonization by G. mos-
sae at high levels of H. glycines infection.

7.3.3	� AM Fungi and Their Impact on Root Lesion Nematodes

Another migratory endoparasites, root lesion nematodes, move through the cortex 
and, with the help of stylets, penetrate the parenchymatous cells. With the release of 
cell-degrading enzymes, they ingest the cellular contents, thus destroying the corti-
cal tissues and resulting in necrotic lesions. After root knot nematodes, the 
Pratylenchus species are of great economic importance to agricultural crops. All the 
stages of root lesion nematodes, i.e., eggs, juveniles, and adults, and the AM struc-
tures such as hyphae, arbuscules, and vesicles, co-occur in the root cortex and tis-
sues. Compared to Rhizophagus and Claroideoglomus, Glomus or Funneliformis 
belonging to the order glomarales decreases or has a non-significant effect on popu-
lations of root lesion nematodes. This might be due to a difference in the production 
of secondary metabolites by AM. A high genetic variability exists within the popu-
lations of AMF single species and thus affects the plant mycorrhizal relationships. 
It was reported that the population of Pratylenchus species was significantly 
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impaired in the presence of AMF isolated from Wales and Belgium (Rodríguez-
Echeverría et al. 2009). Elsen et al. (2003) observed greater variations in the effect 
of solo species when compared with the findings of Jaizme-Vega and Pinochet 
(1997). In spite of using the same banana cultivars and F. mossae, the results were 
quite different. To this end, they interpreted that the AMF strain and environmental 
conditions could have produced different results between the two experiments.

Commercial AMF protected Leymus arenarius against migratory endoparasites 
(Greipsson and El-Mayas 2002). The results of interaction studies between AMF 
and Pratylenchus are quite inconsistent, as some showed higher plant tolerances/
resistance to root lesion nematodes as a result of AMF inoculations to the plants, 
while others reported no protective effects (Forge et al. 2001; Elsen et al. 2003). The 
migratory endoparasites did not get affected by AMF root colonization; hence, it 
can be inferred that there is no mutual inhibition between them. Few researchers 
have reported that AM is only effective in plants that are colonized with fungi before 
the nematode attack, as the plants already got improved in respect of nutrition and 
health. This ability of the plants allows them to survive even in the presence of 
higher densities of pathogenic nematodes. But De la Pena et al. (2006) reported no 
maximum. No higher folds of carbon and nitrogen content were observed when 
they were reinoculated with fungus 2 and 5 weeks before nematode inoculation, 
whereas the plant biomass was more when simultaneous inoculation of AMF and 
nematodes was done (De la Pena et al. 2006).

7.3.4	� Effect of AM Fungi on Reniform Nematode

Plant parasitic nematodes stimulate the sporulation of AMF by inducing physiologi-
cal changes (Roncadori and Hussey 1977; Smith 1987).

When co-infecting grape roots, AMF, Glomus macrocarpus and plant nema-
todes, Meloidogyne incognita and Tylenchulus semipentrans, a concrete finding 
came out. The plant nematodes badly affected the spore formation, while AMF 
reciprocally affected the nematodes development and reproduction ability. G. mac-
rocarpus increased root protein, total soluble sugars, total carbs, and reduced lipids 
and dry matter when grown alone or in combination with M. incognita or T. semi-
penetrans. G. macrocarpus and R. reniformis combined reduced protein, total solu-
ble sugars, total carbs, and dry matter while significantly increasing lipids (Kesba 
and Al-Sayed 2005).

The delay in the development of gelatinous matrix, female eggs, and egg sac 
production was observed in tomato plant roots of G. fasciculatus inoculated plants, 
leading to enhanced resistance of tomatoes against R. reniformis (Sitaramaiah and 
Sikora 1996). This AMF induced tolerance in cowpea to reniform when the nema-
todes were present at a damaging level under P-deficient conditions (Lingaraju and 
Goswami 1993). In the early 1990s, many workers made attempts to select efficient 
species of AMF for the management of reniform nematodes in cultivated cotton 
species because of the assumption of intraspecific and interspecific host preferences 
for EDM. Sreenevasa et al. (2003) screened some AMF isolates that are commonly 
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encountered in cultivated soil: G. mossae, G. fasciculatum, and G. intraradices, and 
found that the first two AMF nicely performed in terms of improved plant growth 
and yield character enhancement.

7.4	� Commercialization of AM Fungi

AMF is getting increased attention for their role as biofertilizers, bioregulators, and 
bioprotectants as they are highly capable of nutrient uptake and P storage ability 
(Rouphael et al. 2015). AMF are found mostly in higher plants except in some fami-
lies and crop species, and their major biological character is their obligate biotro-
phic nature. Understanding AMFs and their symbiosis and species identification at 
early stages of development is very challenging. Also, the important factor in the 
inoculum production is isolation and selection of AMF species, and obtaining pure 
cultures cannot be overlooked. Hence, appropriate host plants is needed to maintain 
the continuous supply of the spores of AMFs. For large production of AMF, in vitro 
cultivation methods like hydroponic system and root organ culture are mostly used. 
Conventional methods like mass production in soil-based media and living hosts are 
popular and used for rapid production. AMF are propagated on substrate-based pro-
duction systems, substrate-free production systems, and in vitro production sys-
tems. For commercialization, techniques like hydroponics, aeroponics, and soil less 
culture produce high-quality inoculums with more number of propagules (Lee and 
George 2005a, b).

7.4.1	� (I) Conventional Methods

Due to the obligate nature of AMF, there are big complications to develop economic 
production for large-scale supply and getting high-quality AMF inoculum. This is a 
major bottleneck for commercialization. Several techniques given by workers 
across the world, such as farm production, pot culture using traps, nutrient film 
technique (NFT), and aeroponics, have been attempted (Fortin et al. 2002; Lee and 
George 2005a, b). AMF are cultured on the roots of plants on many substrates like 
vermiculites, soilarite, sand peat, rockwool, glass beads, and clay. In aeroponic sys-
tems, the pre-colonized AM fungal seedlings with roots are used for production and 
modified Hoagland’s nutrition with lower phosphorus levels (Mohammad et  al. 
2000). For large-scale AMF, the NFT and modified NFT were developed by improv-
ing aeration with the supply of nutrients, optimum phosphorus, and the use of glass 
beads (Lee and George 2005a, b). Pot culture is the most commonly used technique 
for AMF propagation on the right host in disinfected soils.
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7.4.2	� (II) In Vitro Method/Root Organ Culture Method

It is an amazing bulk reproduction approach that uses less area to produce clean, 
functional, and contamination-free inoculum. Through transformation by A. rhizo-
genes, a continuous culture of robust ROCs (Ri T-DNA-converted) (soil bacterium) 
has been obtained.

7.4.3	� (III) On Farm Production

After the AMF roots are gathered and utilized as inoculum in the field, the AMF 
inoculum is replicated on raised beds in the farmers’ nursery kitchen garden. This 
approach saves money over the other ways since it eliminates the need for numerous 
processes such as AMF inoculation, substrate/potting mixture usage, maintenance, 
and shipping. As a result, it has an impact on commercialization. The aforemen-
tioned processes are eliminated by on-farm reproduction of indigenous species that 
are already acclimated to the optimum site and habitat, lowering the cost.

7.5	� Summary and Future Outlooks

AMF are the most common and important plant symbionts that are usually encoun-
tered in a diverse range of rhizosphere. They develop different structures for their 
survival, growth, and development. It primarily colonizes the root system starting 
from hyphal fragments, possesses the greater ability to increase the phosphorus 
uptake, promotes the plant growth, protects the crop plants from various plant 
pathogens, and has ability to develop extensive mycelium in the soil, thereby 
extending the nutrient to all the zones of plants. The strategy of root colonization 
differs in different families. AMF may induce systemic resistance and hold biopro-
tectional properties against plant parasitic nematodes. AMF have a direct effect on 
root-feeding nematodes. It competes directly with roots and creates changes in root 
physiology. This inhibits nematode multiplication. The population of plant nema-
todes, including root knot nematodes, is reduced when they multiply with AMF, 
while the plant growth characters significantly enhanced. AMF products should be 
registered under different categories, like bioprotectants, biofertilizers, or biostimu-
lants, according to their use, so that the eco-friendly management of plant nema-
todes could be promoted. For appropriate marketing, a proper dosage and the 
density of the formulation are still poorly understood and required to be taken into 
consideration. Field-based demonstrations are also required to  be performed to 
prove the beneficial effect of AMF in agriculture with regard to plant nematode 
management.
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Abstract

In agroecosystems, arbuscular mycorrhizal fungi (AMF) are the most common 
and ubiquitous. Because of their productive and comprehensive symbiotic con-
nections with plants, AM technology looks to be a viable option for sustainable 
agriculture and agroforestry. The commercialization of this technology may be 
utilized in agriculture, horticulture, and agroforestry to improve land use man-
agement and reduce the need for synthetic chemicals for plant growth and dis-
ease control. Furthermore, while mycorrhiza inoculation of plants is a well-known 
procedure, developing an inoculum consistently under field circumstances 
remains a bottleneck for their wide range of applications. Mycorrhizal inoculum 
generation, on the other hand, is a complicated process that necessitates com-
mercial enterprises having the requisite biotechnological skills and capacity to 
react to ethical, educational, legal, and commercial needs. The aim of this chap-
ter is to compile the available data on the theme of commercialization of AM 
technology as a tool and its use in increasing plant growth and yield characters.
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8.1	� Introduction

Nondestructive methods for achieving low costs and high output can be mutually 
reinforcing in creating a viable system with low external inputs and long-term farm-
ing. This is primarily accomplished through a societal intervention that comprises 
an increase in crop yield, a reduction in pesticide inputs, and a social assessment of 
welfare and bioethical elements. The efficient use of soil microorganisms contrib-
utes to the long-term viability of agricultural ecosystems (Jeffries et  al. 2003; 
Selosse et al. 2004; Bünemann et al. 2006; Barrios 2007; Vosátka and Albrechtová 
2009; Gianinazzi et al. 2010). Growing demand for high-quality food production 
utilizing these eco-friendly farming techniques has led to the introduction of benefi-
cial microorganism-based fertilizers that do not deplete the natural resource base 
(Ansari and Mahmood 2017a; Ansari et al. 2017a, b, 2020b). In this case, farmers 
will be able to utilize bio-fertilizers to boost productivity per unit area. Arbuscular 
mycorrhizal fungi (AMF) stand out in this group due to several mycorrhizal species 
colonizing at the same time. AMF species are found in 80–90 percent of all plant 
species known to science (Rakshit et  al. 2002; Rakshit 2015). By replenishing 
reduced carbon (C) from plant photosynthesis and mineral nutrients like nitrogen 
(N) and phosphorus (P), this relationship includes a bidirectional movement of mat-
ter between symbiotic partners (Ferrol et al. 2002; Demir et al. 2015). AMF has a 
number of “nonnutritive” impacts on plant physiology, including lowering biotic/
abiotic stress, functioning as a biocontrol agent, preventing erosion, stabilizing soil 
aggregates, and altering plant compatibility and the long-term survival of the entire 
plant–soil system (Smith and Read 2010; Ansari and Mahmood 2017b, 2019a; 
Ansari et al. 2020a). Therefore, AMF play a very important role not only as bio-
fertilizers but also as bio-protectors and bio-regulators either in solo or in mixture 
with other potential beneficial microorganisms (Pal et al. 2013, 2015; Parewa et al. 
2014; Boyno et al. 2022; Ansari et al. 2019a, b), which are caused by pathogens and 
pests (Ansari and Khan 2012a, b). This chapter entails AMF distribution, methods 
of multiplication and application, and commercialization at a large scale. Major 
prevailing challenges and possible answers have also been put forth to get the read-
ers acquainted.

8.2	� AM Technology in Sustainable Agriculture 
and Agroforestry

Research, commercialization, manufacture, marketing, distribution, and the appli-
cation of AM inoculum are all activities that fall under the umbrella of AM technol-
ogy (Benami et al. 2020). In applied mycorrhizal research for sustainable agriculture, 
the application of combinations of minimal effective propagation to crops, the iden-
tification of species, the development of AM technology to produce more effec-
tively, and the assessment of mycorrhizal viability are all priorities (Vosátka et al. 
2012; Guo 2019). Aside from these divisions, because of the complexity of these 
operations, the development and application of AM inoculums have been the 
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primary focus in the mycorrhizal sector. Producing cost-effective mycorrhizal inoc-
ulants has been a difficult challenge throughout the company’s existence. 
Mycorrhizal inoculation in agricultural areas, on the other hand, has proven consid-
erable yield advantages in various crop kinds, as recorded in several field studies 
(Pellegrino et al. 2015; Hijri 2016; Benami et al. 2020). However, it may be argued 
that the development of next-generation mycorrhizal technology should not be lim-
ited to issues about production and inoculation (Rillig et al. 2016). Given various 
situations in which they assist the plants with which they interact in obtaining nutri-
ents, mycorrhizal fungi have great promise in agriculture. Despite this, their poten-
tial impacts on products are almost imperceptible, and mycorrhizae are used in a 
few sectors (Adholeya 2012). Regardless of potential production gains, the use of 
mycorrhizae for monetization is not currently on the rise. Forestry, on the other 
hand, is among the few sectors that fully recognize the importance of mycorrhizae 
in plant growth. Although mycorrhizal symbiosis is required in exotic woods, AMF 
are critical in agroforestry (Muleta et  al. 2008; Araújo et  al. 2019). Mycorrhizal 
infection is commonly used in a variety of different small businesses. Without 
mycorrhizal inoculation, orchid seedlings will not germinate in the growth media, 
making mycorrhizae vital for farmers and small-scale firms. Because it can handle 
higher levels of heavy metals including aluminium, zinc, nikel, iron, lead, and cad-
mium, land recovery is one of the most recent areas of commercial expansion for 
mycorrhiza (Pal et al. 2016).

Many sectors are assumed to be affected by the quickly changing AM technol-
ogy environment, which is influenced by globalization, resistance, economic bur-
dens, and the progress of new innovations. As the market for organic food grows, 
especially in developed countries, so does interest in technology (Benami et  al. 
2020). Instead of utilizing inorganic fertilizers, pesticides, and fungicides, inocula-
tion of soil with mycorrhizae can increase growth and disease resistance. Inoculation 
of soil with an appropriate fungal isolate can also reduce the need for farmers in 
impoverished nations to repeat expensive fertilizer treatments that they cannot 
afford. However, the process of converting this concept into a viable firm is impeded 
by a lack of knowledge dissemination, prospective consulting services, and a lack of 
hope (Pal et al. 2016). Sustainable agriculture and agroforestry rely heavily on AM 
technology (Siddiqui and Mahmood 1996; Akhtar and Siddiqui 2008; Futai et al. 
2008; Akhtar et al. 2011). Commercialization of AM based on this technology has 
accelerated in recent years for the following reasons:

	1.	 Plant development and health benefits, as well as land reclamation, plant breed-
ing, and nutrition and disease control,

	2.	 Growing concern over soil microbes and the adoption of mycorrhizal inoculants 
as a viable agrochemical substitute, and

	3.	 Giving more importance to sustainable agriculture and forestry by the society.

In essence, the commercialization of AM technology is a lengthy process that neces-
sitates the acquisition of technical competence and compliance with legal, ethical, 
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educational, and business criteria. However, according to Gianinazzi and Vosátka 
(2004), future AM technology should address the following requirements:

	1.	 Development of genetic or sensor technology to track AM inoculum in the field;
	2.	 Increasing data gathering on mycorrhizae ecophysiology in stressed 

environments;
	3.	 Developing a better knowledge of how mycorrhizae interact with the other soil 

microbes; and
	4.	 Identifying suitable or innovative plant species with improved mycorrhizal char-

acteristics, as well as supplementing mycorrhizae with new symbiotic properties.

8.3	� Use of AM Technology in Sustainable Agriculture 
and Agroforestry

8.3.1	� An Overview of the Market and Products

The economic potential of AM technology for agro-plant production in horticulture, 
agroforestry, bioremediation in degraded regions (Neill et  al. 1991; Vural et  al. 
2018), and other parts of the plant sector has recently grown due to improved scien-
tific knowledge of mycorrhizal symbioses (Tawaraya 2003). Because many impor-
tant global food crops are highly mycorrhizal-dependent plant species, they can 
profit from the addition of appropriate AMF inoculums, improving global food out-
put. Successful firms must establish crucial technical competence as well as the 
ability to conform to legal, ethical, educational, and marketing standards in order to 
construct these inoculums. Variable volumes of different fungal species, varied per-
centages of viable spores, and inputs like fertilizers and hydrogels, among other 
things, are all possibilities. Some inoculums contain just spores from a single spe-
cies, whereas others have a diverse mix. When selecting commercially manufac-
tured inoculums, it is also necessary to consider the plant’s unique requirements and 
the current soil conditions.

During the recent decade, AMF inoculum manufacturing, related services, and 
marketing for the wholesaling markets have increased considerably (Singh et  al. 
2016; Basiru et al. 2021). Commercial producers, as well as governmental and pri-
vate entities, are among the clients (Tiwari et al. 2002). While exact sales numbers 
have yet to be gathered, based on the worldwide biofertilizer industry, it can be 
determined that there is significant development potential. The worldwide biofertil-
izer market was valued at 787.8 million dollars in 2016 and is expected to grow to 
1.65–2.31 billion dollars by 2022 (Market Analysis Report 2018). During the pro-
jected year from 2017–2025, global market demand is estimated to grow by 12.9 
percent (Transparency Market Research 2018). Increased usage of biofertilizers in 
soil management operations, expansion of the organic food sector, and rising finan-
cial and environmental expenses connected with biofertilizers are all contributing to 
this tremendous surge in demand (e.g., nutrient inhibitors). Scientific proof of this 
plant symbionts’ beneficial impacts on plant health, compatibility, and production 
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has fuelled the industry’s growth. In addition, when suitable inoculums are created, 
the economic viability of AM technology becomes increasingly essential. In the 
present climate-sensitive agrotechnology framework, there has been market aware-
ness that mycorrhizal crops offer a sustainable method for crop production.

8.3.2	� Inoculation Strategies and Application Technology

AMF inoculation to a wide range of crop plants is critical especially in nonirrigated 
locations or in degraded soils where plants have much turmoil in developing root 
systems. New and more productive AMF isolates may now be utilized to replace the 
less successful native AMF isolates that are already present in the soil. When inocu-
lated AMF are left in the soil for a long period, their impact is considered to dimin-
ish, although they can still be sporulated (Jansa et al. 2006; Rouphael et al. 2015). 
In the context of sustainable agriculture, it is also proposed that, while perennial 
plants in agroforestry areas only require one inoculation, it may also be useful to 
introduce newly chosen AMF isolates at optimal levels. A single propagule can 
colonize a root in theory, but it may take a longer period. As a result, starting many 
infections is the greatest way to speed up the inoculum colonization phase (Sharma 
et al. 1996; Adholeya et al. 2005). Furthermore, fungal propagules must be adjacent 
to plant roots for efficient mycorrhizal colonization. The faster the root coloniza-
tion, the more AM fungal propagules are released into the root zone. The effective-
ness of this in practice will, of course, be determined by the product, the setting, the 
distribution mechanism, and various other edaphic factors. The estimation of AMF 
propagules per zone or per plant is influenced by various factors: (a) the weight or 
volume of the packet; (b) the quantity of AMF propagules present; (c) the rate at 
which the inoculum is applied to seeds or soil; (d) how well the product adheres to 
the seed; and (e) the planting density per hectare (Adholeya et al. 2005).

Various marketed inoculums that function as natural stimulants of plant growth 
and development have been launched in recent years (Gousterova et al. 2008; Khan 
et al. 2009). These inoculums are made up of plant growth-promoting microorgan-
isms (PGPM). A marketed inoculum may contain one or more AMF species, as well 
as other organisms that help the target plant acquire the required parameters, such 
as beneficial fungi or bacteria. In addition to AMF, two other PGPMs, plant growth-
promoting rhizobacteria (PGPR) and Trichoderma, play a role in minimizing plant 
diseases and increasing plant development (Murphy et al. 2003; Harman 2006; Woo 
et al. 2006; Grover et al. 2011; Calvo-Polanco et al. 2016; Ilangumaran and Smith 
2017). Single and mixed-production PGPMs as marketed inoculums might be a 
sustainable strategy to boost plant growth while reducing external inputs and 
increasing biotic/abiotic stress tolerance (Daranas et al. 2018).

Simultaneous inoculation with diverse strains of PGPR, Trichoderma, and/or 
AMF typically resulted in improved yield and growth due to increased nutrient 
absorption when compared to single inoculation (Belimov et al. 1995; Bashan et al. 
2004; Kabdwal et al. 2019). In the case of PGPR (Kloepper 1996; Vassilev et al. 
2001a, b; Barea et al. 2002; Akköprü et al. 2005) and N2-fixing bacteria (Biró et al. 
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2000; Akköprü and Demir 2005), interactions between bacteria and AMF have posi-
tive activities in terms of nutrient absorption.

AMF and several PGPR species, including Azotobacter, Azospirillum, 
Pseudomonas, and Bacillus species, have been shown to have a synergistic relation-
ship that benefits plant growth (Barea et al. 2005a). Furthermore, when mycorrhizal 
fungi were co-inoculated with PGPR, AMF root colonization was improved 
(Gamalero et  al. 2004; Toro et  al. 1997). Plants infected with a combination of 
G. deserticola and Rhizobium trifoli had four times greater nodule counts than sin-
gle R. trifoli, resulting in grafting and increased mycorrization and nodulation with 
R. trifoli and Yarrowia lipolytica coencapsulated (Vassilev et  al. 2001a, b). 
Inoculation with AMF and nodule-inducing rhizobia increased the efficiency of P 
and N uptake (Xavier and Germida 2003). Mycorrhizal and nodule symbiosis have 
been shown to have synergistic effects on plant development, mineral nutrition, and 
infection rate (Barea et al. 2005b). Furthermore, the consortia of AMF + T. harzia-
num (Th43) (Kabdwal et al. 2019), and AMF (Rhizophagus fasciculatus) + T. viride 
(talc based) (Doley and Jite 2014) boosted the growth and crop productivity. 
Co-inoculation of both kind of microorganisms enhanced the absorption of mineral 
nutrients and growth (Gryndler et al. 2002; Medina et al. 2003). PGPM inoculation 
with commercial biofertilizers comprising consortia of various microorganisms reg-
istered significant improvement in the plant growth and yield characters (Malusà 
et al. 2001; Malusà et al. 2007; Sas-Paszt et al. 2008).

All of this research shows the usefulness and increased efficiency of biofertiliz-
ers including a greater number of species with varying growth-boosting mecha-
nisms. The availability of diverse AMF (Ijdo et al. 2011), PGPR (Lucy et al. 2004), 
and Trichoderma (Kabdwal et al. 2019) strains studied in different crop kinds and 
field circumstances should enable the development of commercially viable consor-
tia. Indeed, it should not be overlooked that as a result of some consortia created, 
PGPMs may have a detrimental impact on each other (Boyno et al. 2022).

There are just a few techniques for delivering AMF to crops in the field. Farmers 
are hesitant to invest in specialist equipment for microbial-based goods. As a result, 
marketed inoculums should be straightforward to apply using normal agricultural 
gear and procedures. Therefore, the application of these commercialized inoculums 
can be divided into five main methods: broadcasting method, in-furrow application 
method, seed dressing method, root dipping method, and seedling/sapling inocula-
tion method (Muresu et al. 2003; Adholeya et al. 2005; Malusá et al. 2012; Basiru 
et al. 2021).

8.3.2.1	� Mycorrhizal fungi in transplanted crops
Seedlings are cultivated in either sterilized or unsterilized soil containing specific 
mycorrhizal fungi in a slight nursery beds or containers. They are then transplanted 
when the mycorrhizal colonization is well established. This approach has proven 
successful in generating significant and economically viable growth responses in 
crucial crops like tobacco, tomato, finger millet and chili (Rao et al. 1983; Sreeramulu 
and Bagyaraj 1986). Additionally, it has demonstrated positive outcomes in horti-
cultural crops like citrus, mango, asters, and marigold (Viyanak and Bagyaraj 1990), 

G. Boyno et al.



179

as well as in forest tree species including Leucaena spp., Tamarindus indica, Acacia 
nilotica, and Calliandra calothyrsus (Reena and Bagyaraj 1990). This methodology 
holds promise for application in various transplanted crops significant to agricul-
ture, horticulture, and forestry. Further exploration is warranted to investigate the 
potential introduction of efficient mycorrhizal fungi to cereals through forest tree 
species in alley cropping system.

8.3.2.2	� In-Furrow Application Method
Other methods that are actively used and promoted globally include various types 
of in-furrow applications (Bashan 1998; Benami et  al. 2020). This approach 
involves placing the inoculum under or besides seeds within a furrows  (Owusu-
Bennoah and Mosse 1979; Hayman et al. 1981). Soil is applied to the seeds after 
they have been put on the inoculum. The inoculum layer will colonize the new roots 
when the seeds germinate. In fact, when the seeds germinate, exudates such as 
strigolactones, cutin monomers, and chitin-related compounds are secreted, draw-
ing AMF to the plant (Akiyama et  al. 2010; Bonfante and Genre 2015). This is 
important as it will encourage the formation of colonization and increase the amount 
of sporulation. However, it should not be ignored that some products negatively 
affect AMF as a result of the exudates they secrete. In particular, it has been reported 
that there is no symbiotic interaction between AMF and many plant species belong-
ing to the Brassicaceae, Urticaceae, Caryophyllaceae, and Chenopodiaceae fami-
lies (Brundrett 2009; Tushar and Satish 2013; Güneş et al. 2019).

As a result, the in-furrow treatment is quite effective and results in significant 
mycorrhizal colonization (Adholeya et al. 2005). However, it can be time-consuming 
when applied to wide areas (Bashan 1998).

8.3.2.3	� Application of mycorrhizal fungi as a seed coating
The seed dressing method is a distinct type of inoculation technique. In this method, 
the inoculum contains an additive that has good adhesion qualities, such as gum 
acacia. This additive enhances propagule retention on the seed surface and makes 
seed dressing technology possible. The inoculated seeds are then allowed to dry. For 
long-term viability, the drying process and keeping product humidity below 5% are 
critical (Rivera and Fernandez 2006. Seedlings will be quickly colonized with this 
approach since the inoculum is in direct contact with the seed (Adholeya et  al. 
2005). It is also a promising approach since it takes less inoculum and little study 
(Sieverding 1991; Adholeya et al. 2005). In Sorghum vulgare, Rivera and Fernandez 
(2006) reported that seed dressing with marketed mycorrhizal inoculum (EcoMic) 
at a low dose of 10% of the stated dose resulted in greater root colonization (per-
cent) and an increase in fungal mycelium. Furthermore, Saleh and El-Akshar (2020) 
demonstrated that seed dressing with AMF inoculum improved rice plant morpho-
logical development and yield, as well as resistance to Bipolaris oryzae disease. The 
most straightforward way to inoculate plants with mycorrhizal fungi would be to 
coat seeds with mycorrhizal inoculum, employing techniques similar to those used 
for Rhizobium, provided it consistently yields effective infection (Bagyaraj 1992). 
This involves applying an adhesive, such as methyl cellulose, to the seeds, to which 
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the inoculum is intended to adhere. Regrettably, due to their substantial size, attach-
ing vesicular-arbuscular mycorrhizal propagules in this manner is more challenging 
than it is for bacteria. Nevertheless, this method has proven effective for large-
seeded crops like citrus in field nurseries (Hattingh 1975).

8.3.2.4	� Mycorrhizal pellets
Instead of applying vesicular-arbuscular mycorrhizal inoculum onto seeds, a 
more practical approach for seed inoculation is to create multiseeded pellets. 
These pellets, approximately 1 cm in diameter, consist of soil or peat inoculum 
containing vesicular-arbuscular mycorrhizae, stabilized with clay or other bind-
ing agents. The inoculum can be produced in a process that involves mixing the 
soil or peat with mycorrhizal spores, and forming the mixture into pellets. This 
method has proven to be effective in producing high infection rates of vesicular-
arbuscular mycorrhizae on seeds (Hayman et al. 1981). Furthermore, Hall and 
Kelson (1981) described a system that can produce approximately 5000 of these 
infected soil pellets per person per day, with seeds attached using gum arabic as 
an adhesive (Koziol et al. 2017).

8.3.2.5	� Fluid drilling in mycorrhiza inoculations
The seed slurry technique for vesicular-arbuscular mycorrhizal inoculation is not 
only effective, but also presents several advantages over other methods. Firstly, the 
use of a viscous fluid helps to maintain a uniform mixture of seeds and inoculum, 
ensuring even distribution and coverage (Hayman et al. 1981) Secondly, the reduc-
tion in the bulkiness of the inoculum makes it easier to handle and apply, which can 
be especially beneficial when working with large areas. Additionally, the ability to 
combine this technique with rhizobia inoculation provides a more comprehensive 
approach to promoting healthy crop growth, particularly in leguminous plants. In 
terms of practical implementation, this method can be scaled up to cover large areas 
and can be easily integrated into existing seed sowing and soil management prac-
tices. Moreover, the benefits of vesicular-arbuscular mycorrhizal associations, such 
as improved nutrient uptake and stress tolerance, can translate into increased crop 
yields and reduced inputs, resulting in more sustainable and profitable farming 
practices.

8.3.2.6	� Pre-cropping
Populations of beneficial mycorrhizal fungi can be significantly upscaled directly 
within the field condition. Mycorrhizal plants are grown and allow their infected 
roots and associated spores to remain in the soil and colonize upcoming suitable 
crops. This method along with the judicious crop rotations that incorporate mycor-
rhizal plants and organic amendments to encourage native fungal populations, gives 
a promising tactic to improve the mycorrhizal population and inoculum size within 
the field (Bagyaraj 1990). This technique is effectively applied to enhance the popu-
lation of a specific, efficient mycorrhizal fungi.
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8.4	� Commercialization of AM Technology

The approaches utilized in the commercialization of AM technology were classified 
into different categories (Siddiqui and Kataoka 2011). Important approaches for 
obtaining efficient AM fungal propagules have been depicted in Fig. 8.1.

8.4.1	� Soil-Based Systems

The isolation of the pure culture strain of AMF using the soil-based approach 
involves the phases of host plant selection and growth environment optimization 
(Siddiqui and Kataoka 2011; Fig. 8.1). The host plants and the fungi are cultivated 
in a solid growth medium such as soil, vermiculite, sand, clay, perlite, or other types 
of mixed bark in this traditional and extensively used technique (Brundrett et al. 
1996; Douds Jr et al. 2010). Traditional sand-based pot culture techniques do not 
generate enough mycorrhizal inoculum, and it is frequently contaminated by other 
bacteria. Pesticides such as Captan and Furadan, when used at half the authorized 
dosage in pot cultures, have been shown to reduce other microbial contaminants 
leaving no pernicious effect on mycorrhizal fungi (Bagyaraj 1992). It has been 
proven to be quite useful in creating “clean” mycorrhizal inoculum with great 
potential in a short amount of time (Bagyaraj 1992; Akhtar and Panwar 2011). Solid 

Fig. 8.1  Different methods used for large-scale production of AM fungi. The main logic of the 
techniques used in commercialization is to obtain a high amount of AM propagules
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growth culture inoculum is also heavy, difficult to transport, and too bulky to make 
it ultra. Inoculum generation is affected by different particle size distributions of 
substrates. It is also claimed that the best substrate for optimal production has a low 
nutrient and carbon content (Siddiqui and Kataoka 2011). Phosphorus (P), for 
example, is rapidly absorbed from soil particles, resulting in Pi-free zones in the 
plant’s rhizosphere soil. Mycorrhizal roots’ extraradical hyphae stretch beyond 
these P-depleted areas, bringing inaccessible Pi to plants and making it available to 
them (Etesami and Jeong 2021). As a result, in soils low in nutrients, mycorrhizae 
thrive to reach these nutrients. This aspect is considered an important concept for 
optimum production.

8.4.2	� Aeroponic Culture

It is a soil-free cultivation technique in which plant roots are sprayed with nutri-
tional solutions on a regular or continuous basis (Jarstfer and Sylvia 1995; 
Mohammad et al. 2000). Several Glomus species have been tested through aero-
ponic cultivation and found promising results (Tiwari et al. 2004, 2020). An inocu-
lum generally takes 12–15 weeks to obtain. The roots are colonized after 9 weeks, 
and spore production takes 12 weeks (Sylvia and Hubbell 1986; Mohammad et al. 
2000). This has several drawbacks, as the system is also susceptible to other unde-
sirable microorganisms. In addition, the nutritional solution and flow must be moni-
tored regularly. Standardization of droplet size is required for successful aeroponic 
growth because the droplets must adhere to the root system for a significant amount 
of time. In experiments utilizing it to cultivate Bahia grass (Paspalum notatum) and 
sweet potato (Ipomoea batatas), a droplet size of 45 mm is optimum (Hung and 
Sylvia 1988; Wu et al. 1995). Because the fungus can colonize, and sporulate with-
out a substrate, it is a one of the suitable method for obtaining enough pure AMF-
propagules (Abdul-Khaliq et al. 2001).

8.4.3	� Root-Organ Culture Technique (Monoxenic Culture)

Researchers have succeeded in obtaining AMF in vitro cultures using various meth-
ods (e.g., soil-based systems and aeroponic culture) (Gaur and Adholeya 1994; 
Aryal 2017) (Fig. 8.1). These culturing procedures result in considerable financial 
benefits (Aryal 2017). The root organ culture approach enables the successful and 
large-scale generation of mycorrhizal spores in this context (Ijdo et  al. 2011). 
Samples are obtained from application regions or various rhizosphere soils, and 
AMF generation is carried out in vivo by trap plants in this approach. The most 
important of these trap plants is the Zea mays plant. Because the roots of Z. mays are 
known to be quite successful in establishing a symbiotic relationship with many 
AMF (Mathur et al. 2018; Hu et al. 2019), the procedure outlined by Gerdemann 
and Nicolson (1963) is then used to isolate healthy AMF spores from pot culture 
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using the wet sieving method. These spores are used to inoculate petri dishes with 
minimal (M) medium (Bécard and Fortin 1988).

Surface sterilization of AMF spores can be done by combining Chloramine-T 
with Tween-20 (0.1 percent v/v) for 10 min or washing with various antibiotic solu-
tions. Mycorrhizal spores that have been surface-sterilized can be aseptically trans-
planted onto fine roots of carrots that have been converted with Ri-T-DNA and put 
on M medium, also known as white medium (Bécard and Fortin 1988; Adholeya 
et  al. 2005) or Strullu-Romand (MSR) medium (Strullu and Romand 1986) 
(Fig.  8.1). Doner and Bécard (1991) found that the M medium in the two-
compartment petri dish is deficient in sucrose, allowing spores to increase in the 
absence of roots. Every 15 weeks, clonally subculture the spores and root-containing 
media produced here in a two-compartment petri plate (St-Arnaud et al. 1996). This 
subcultured media should be injected with Agrobacterium rhizogenes bacteria to 
boost its growth potential (Bécard and Fortin 1988). According to Kumar and Yadav 
(2018), roots with 10–50 clusters of mycorrhizal spores are cut and transplanted to 
new receiver operating characteristic (ROC) medium plates with fresh roots in this 
arrangement. After 3 months of incubation at 26 °C, the spores generated on ROC 
plates are cut with a sterile knife and transferred to a falcon tube with 15 mL of 
citrate buffer. After that, the spores are shaken horizontally at 250 U/min for 60 min 
at 37 °C. To collect the residue at the bottom of the tube, let the spores be at room 
temperature for 10  min. The supernatant is then discarded, and the spores are 
washed with autoclaved Milli Q water, filtered through a sieve, and collected in 
tubes at −20 °C (Kumar and Yadav 2018).

Several species, including Rhizophagus intraradices, have been successfully 
mass-produced using AM technology. After a 4-month growth period in a single-
compartment petri dish, Chabot et  al. (1992) developed 750 spores in a 30  ml 
medium using surface-sterilized spores as starting material. After 3 months of incu-
bation, Diop et al. (1994) got around 890 spores utilizing cut roots as the original 
inoculum. Jolicoeur et al. (1999) used an innovative airlift bioreactor-based manu-
facturing method. Cultures of the R. intraradices in Daucus carota roots were pro-
duced from spores obtained from soil, as reported by Chabot et al. (1992). Colonized 
root sections were transferred to a clean solid M medium in petri plates every 
∼3 months for the cultivation of the root-fungus pair (Bécard and Fortin 1988). At 
26  ±  1  °C, all petri plates were incubated in the dark. Mycorrhizal roots were 
removed, chopped into 1 cm sections using a knife, and placed into a bioreactor 
without the inoculum gel component. Researchers collected 12,400 spores per litre 
of media at the end of the operation (Jolicoeur et al. 1999). At 3–4 months, St-Arnaud 
et  al. (1996) collected 15,000 spores in a two-compartment petri plate. Douds 
(2002) created this two-chamber system by periodically changing the distal, medium 
chamber with the new medium. This technique yielded 65,000 spores on the distal 
side of the two chambers over 7 months. The infective propagules of AM fungi were 
recovered by avoiding severe contaminations  (Tiwari et  al.  2002; Adholeya 
et al. 2005).
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8.4.4	� Technique of Nutrient Film (NFT)

NFT is a specialized commercial agricultural production system that recycles enor-
mous volumes of nutrient fluid on a continuous basis on a film that runs over plant 
roots. MacDonald (1981) created axenic mycorrhizas between Glomus caledonium 
and Trifolium parviflorum and others using a small autoclave hydroponic growth 
system. However, Mosse and Thompson (1984) modified this method for the genera-
tion of AMF inoculum. Furthermore, Lee and George (2005) developed a modified 
NFT enabling large-scale AMF biomass production combining intermittent nutrient 
supply, optimized P source, and increased aeration with the utilization of glass beads 
as support materials. In addition, the average number of spores of total AMF 
(G. manihotis, G. etunicatum, Glomus sp, Gigaspora margarita, and Acaulospora 
tuberculata) was determined to be 1783–2023.30 spores/50 g (Karti et al. 2021).

The nutrient solution in the NFT system must be kept as a thin film (5–10 mm). 
Mycorrhizal inoculation is also affected by chemical types of nutrients. As a result, 
it is preferable to employ a well-balanced and appropriate composition. NFT can 
yield less sporulation than soil-based systems. Contamination issues with undesir-
able organisms often arise as a result of the nutrient solution utilized. The optimal 
amounts of various nutritional components vary per mycorrhizal system, based on 
the plant’s size and other characteristics (Sharma et  al. 2000). Another factor to 
consider is the trade-off between growing plants and mycorrhizal colonization, 
which is impeded by soggy conditions (Tarafdar 1995). The inoculum created by 
this method, on the other hand, is more concentrated and bulkier than that generated 
by plants growing in soil or other solid media, and it can be collected more easily 
(Chellappan et al. 2002; Abdul-Khaliq et al. 2001).

8.4.5	� Inoculum Made of Polymers

Polymers are frequently utilized for a variety of applications in biotechnological 
operations. Gel materials are mostly employed to immobilize live cells, but some 
are also utilized as components of solid medium for microorganism maintenance.

Hydrogels are the most convenient way to apply polymer materials without hav-
ing to go through the technical encapsulating process (Vassilev et al. 2005). Many 
hydrogels were used as transporters of AMF in root-dip and fluid-drill area and 
greenhouse experiments (Nemec and Ferguson 1985; Johnson and Hummel 1985); 
however, the pH ranges of the gel substances prevented root colonization and spore 
germination (Hung et  al. 1991; Calvet et  al. 1996; Plenchette and Strullu 2003; 
Jaizme-Vega et al. 2003).

Microbial cells are frequently retained or encapsulated in polymer materials as a 
strong immobilization technique. The purpose of this method is to keep spores or 
cells within porous materials created in situ surround biomaterial. Synthetic poly-
mers are not required in mycorrhizal inoculant compositions. The transporter must 
be reasonably priced and suitable for the materials used in the product’s construc-
tion. Natural polysaccharides and other hydrophilic hydrogels were utilized as car-
rier materials. Natural polysaccharides including kappa-carrageenan, agar, and 
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alginates come in a variety of natural, synthetic, and semi-synthetic polymer com-
binations. Of the roughly 1350 carrier combinations in use, calcium alginates are 
the most commonly utilized (Vassilev et  al. 2005). Alginate beads provide more 
flexibility in the encapsulation and inoculation of monoxenically generated AMF 
(Diop 2003). Flavonoids should be included in these capsules as well (Bécard and 
Piché 1989; Gianinazzi-Pearson et al. 1996; Siddiqui and Kataoka 2011).

8.4.6	� Integrated Method

Mycorrhizal symbiosis should be viewed as more than just a bipartite plant–fungus 
relationship; it should also include the related organisms (Frey-Klett et al. 2007; 
Tarkka and Frey-Klett 2008). The “mycorrhizosphere” is the result of these 
mycorrhiza-associated organisms influencing one other (Frey-Klett and Garbaye 
2005). The mycorrhizosphere is made up of mycorrhizas, extramatrical mycelium, 
and related microorganisms. The interaction of bacterial species with AMF increases 
propagules (AMF structures such as spores, hyphae) and AMF colonization rates, 
especially in this mycorizosphere (Barea et al. 2002; Akköprü et al. 2005; Pathak 
et  al. 2017). The use of “mycorrhizal helper bacteria (MHB)” in this context 
enhances AMF symbiosis in a variety of agricultural plants (Tarkka and Frey-
Klett 2008).

Several researchers have examined the function of MHB in the genesis and 
development of various species of AMF (Siddiqui and Mahmood 1998; Vosatka 
et al. 1999; Frey-Klett et al. 2007; Tarkka and Frey-Klett 2008). The correct estab-
lishment of in vitro-generated plantlets in field circumstances can be achieved by 
combining and carefully applying AMF and PGPR. PGPR improved mycorrhizal 
colonization, according to Bhowmik and Singh (2004), and might be used to mass-
produce AMF cultures. Silva et al. (2007) found that adding Tris–HCl buffer to the 
substrate improved AMF sporulation. According to these researchers, large-scale 
inoculum formation may be accomplished by adding Tris–HCl buffer to the nutri-
tional solution and storing it at +4 °C.

One explanation for improved plant growth is the association of nitrogen fixers 
and P-solubilizers with AMF (Turk et al. 2006), and these connections are useful in 
increasing micropropagated plant survival rates (Webster et  al. 1995). 
Bradyrhizobium, Rhizobium, and Frankia are microorganisms that can aid in mass-
produce AMF in vitro by improving soil-binding stability, capacity, and qualities 
that make the soil favourable to the growth of micro-propagated plantlets like 
mycorrhizae (Varma and Schuepp 1995).

8.5	� Challenges to Commercial Use

Even though mycorrhizal research has just achieved a critical mass, it is essential to 
identify the obstacles in their commercialization. The inability to develop AMF in 
pure culture in particular is a significant disadvantage (Sharma et al. 2017). It can 
only be cultivated with plants by adding inoculum under certain conditions, 
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according to the available knowledge, and it cannot be easily mass-produced in 
laboratory conditions (Sharma et  al. 2017; Kadian et  al. 2018). Currently, the 
mycorrhizal inoculum is created as another non-sterile substrate, including a non-
sterile medium, soil, and propagule (spores, hyphae, and colonized root fragments) 
in the majority of the samples. Counterfeit bio-products are another issue in com-
mercializing AM technology. Increased sales of counterfeit bio-products, a dearth 
of live quality control procedures, and fewer propagule numbers than advertised in 
many products all hurt AM technology (Nagpal et al. 2021). Counterfeit mycorrhi-
zal products have a major impact on the natural resource driven products. In addi-
tion, the composition of the carrier medium and the quantity of active spores per 
unit weight/volume varies considerably among commercial suppliers. The fact that 
these fungi grow slower than other microbes, limits their use in large-scale farming. 
One of the challenges that mycorrhizal inoculum manufacturers confront is finding 
consumers in the agricultural and agroforestry sectors. In fact, in both established 
and emerging areas, the “organic” sector is regarded to be one of the most profitable 
segments in which mycorrhizal technologies may penetrate. Organic agricultural 
sectors are anticipated to have the largest value and profit margins, at least in indus-
trialized countries, because marketed mycorrhizal inoculums can supplement or 
even replace conventional and chemical-based fertilizers (Vosátka et  al. 2008). 
However, the market’s progress is limited by a lack of awareness in prospective 
emerging nations, poor infrastructure, money, and a lack of knowledge of critical 
mycorrhizal characteristics. Plant mycorrhization in agroforestry and sustainable 
agriculture has drawn a lot of attention in recent years because of its role as a bio-
fertilizer to boost host development. However, further effort is needed to identify 
acceptable local AM fungal strains for high-quality crop production and educate 
farmers in developing countries about the function of mycorrhiza in agroforestry 
and sustainable agricultural systems (Dobo et al. 2018). Also, due to shelf life or 
unclear storage stability, production constraints and technological challenges, as 
well as the time and labour needed to cultivate appropriate numbers of propagules, 
mycorrhizal markets are not very convincing (Benami et al. 2020).

8.6	� Formulation of AM Technology

Today, commercialized AM technology is available in several forms. Some busi-
nesses sell a single mycorrhiza strain along with a carrier. However, most businesses 
sell microorganisms in the form of mixtures using different substrates.

Formulation methods account for possible negative environmental impacts as 
well as ingredients that might render the inoculum ineffective. To create a substance 
that can be efficiently transported to the intended application, a combination of 
microbial propagules with a variety of transporters or excipients is utilized. There 
have been several different mycorrhizal inoculum compositions proposed. Glass 
beads (Redecker et al. 1995) and expanded clay (Plenchette et al. 1983; Adholeya 
et al. 2005) have been utilized in research laboratories and the commercial sector, 
respectively. These formulations benefit from permitting the spontaneous retention 
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of mycorrhizal roots and spores during the growth period in greenhouse settings. 
Mycorrhizal invaginations can settle in the porous structure of the beads, which has 
many air gaps. Inoculum can also be mixed with carriers like air-dried sand, ver-
miculite, and soil (Millner and Kitt 1992). Liquid and powder inoculum, granules or 
tablets/pellets, granules and gel beads are all examples of mycorrhizal inoculum. 
Glomus spp. intraradical vesicles/spores can likewise be preserved and utilized as 
such in alginate beads (Redecker et al. 1995). Under controlled settings, intraradical 
elements isolated in such beads have been found to regenerate and colonize new 
roots (Strullu and Plenchette 1991). Trapping monoxenically generated spores in 
alginate particles has also been demonstrated to be successful (Declerck et al. 1996).

8.7	� Conclusions and Future Prospects

Mycorrhizal fungi can help restore economic efficiency and environmental safety 
by increasing natural and managed ecosystems without depleting natural resources. 
They can also help lower fertilizer prices and energy demands, restoring economic 
efficiency and environmental protection. Appropriate mycorrhizal inoculums, on 
the other hand, improve biocontrol potential in a wide range of agricultural and soil 
characteristics in both academic and commercial settings worldwide. Under tradi-
tional agroecology or agroforestry, the main challenges in commercializing AM 
technology are a lack of large-scale field testing and appropriate finance. 
Manufacturers and distributors of mycorrhizal inoculum also confront similar prob-
lems across the world. To satisfy the needs of a broad client base, these constraints 
involve the need to modify products, boost market knowledge, and develop more 
effective distribution tactics. Concerning its commercialization plan, AM technol-
ogy must be competent, efficient, and enlightening to succeed. Another requirement 
is to foster an entrepreneurial culture within the company, supported by excellent 
research infrastructure, networking, and financing. Mycorrhizal bio-fertilizers are 
expected to become a trustworthy partner with chemical inputs in the upcoming 
years, benefiting from agricultural, economic, and social perspectives. Carrier cost 
is a significant factor in commercial process development since the cost of the com-
pleted product grows with each stage of the manufacturing process. A suitable for-
mulation carrier should be cheap (preferably from locally available nontoxic waste) 
and have no negative impacts on mycorrhizal symbiosis. It should also be simple to 
use and apply so that maximum dispersion is achieved. In potted plants, the formu-
lation should allow for early breakdown or dissemination (for pellets, granules, and 
tablets). Because the roots and mycorrhizal propagules may not make contact if the 
transporter is too firmly adherent and does not disintegrate after watering, the impact 
may be reduced. Growth conditions should be strictly controlled, with specific care 
devoted to retaining the inoculum’s potency. Even a minor error might cause the 
organism to lose viability, discouraging the end user from using these techniques in 
agriculture. Growth conditions should be strictly controlled, with specific care 
devoted to retaining the inoculum’s potency. Even a little inaccuracy might result in 
the organism losing viability, deterring farmers from employing these approaches.
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9Unraveling the Mysteries 
of Mycorrhiza-Plant Interactions: 
Mechanisms of Protection 
and Ecological Factors Influencing 
Symbioses
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Abstract

Mycorrhizal fungi are root symbionts that embrace many benefits to the associ-
ated plant host. Protecting plants from devastating plant pathogens and pests like 
fungi, bacteria, and nematodes is among the numerous significant attributes 
besides plant health and yield ameliorations. The protection that mycorrhiza 
holds for their hosts extended to cover a large number of economic crops world-
wide that possess the possibility of using it as a potential bio-protector. However, 
in order to maximize the efficacy of mycorrhizal application, the mechanism 
implicated behind protection and factors that affect mycorrhizal symbioses 
should be well examined. Several mechanisms and factors have been proposed to 
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explain this protective relationship. Most of them are either conditional or case 
specific. Most plants rely on several mechanisms at the same time. In this chap-
ter, we go over the main mechanisms reported to involve in mycorrhizal host 
protection against fungal, bacterial, and nematode diseases. Spotting the light on 
the main ecological factors that affect the outcome of mycorrhiza interaction 
with hosts has also been taken into consideration.

Keywords

Mycorrhiza · Bio-protector · AM fungi · Plant disease resistance · Sustainable 
agriculture

9.1	� Introduction

Mycorrhizal fungi are the oldest symbiotic relationship between fungi and plants. 
The symbiotic relation was discovered in 1879–1882 by Kamieński (Frank 1885). 
The word mycorrhiza originated from the word “mukès”, which means fungus in 
Greek, and the word “rhiza” means root (Deacon). There are two types of arbuscular 
mycorrhizal (AM) fungi: ectomycorrhizae and endomycorrhizal (EM). 
Ectomycorrhizae fungi produce hyphae that are externally connected and cover the 
root of the plant. They develop among the outside surface of root epidermal cells 
creating a complicated intercellular system that looks like a net of hyphae, called the 
Hartig net (Smith and Read 2010), whereas EM creates relationships within the 
cells of the host. The apoplectic space separates plant and fungal cells within the 
Hartig net and acts as an interchange area for plant carbon and fungus nutrients 
(Nehls 2008; Smith and Read 2010). AM fungi are obligate symbiosis fungi with 
wide host ranges and a significant role in curving ecological systems and related 
productivity. A large number of tracheophyte plants can create a symbiotic relation-
ship with AM fungi (Sumbul et al. 2017; Dowarah et al. 2021). AM fungi mainly 
depend on their host for photosynthesis, but they also provide many other beneficial 
properties for their host through many processes. The most important one is to boost 
host tolerance to biotic stresses caused by harmful nematodes, fungi, bacteria, and 
many other pathogens. Various studies on the decrease of damage caused by soil-
borne necrotrophic pathogens have been conducted through the connection of host 
with mycorrhiza, including Fusarium oxysporum, the pathogenic fungi of cucurbits 
(Jun-Li et al. 2010), Pythium aphanidermatum in pawpaws (Olawuyi et al. 2014), 
and Fusarium oxysporum pathogen of strawberries (Yang et al. 2015). The primary 
mechanism of mycorrhiza involves competing with the pathogen for food, space, 
and hosted plant root colonization sites, rhizosphere microbial change, and induc-
tion of host defense (Harrier and Watson 2004). Other mechanisms include improve-
ment in nutrient uptake ability in host plants, healing pathogen infection site 
damage, modification in host root architecture, and durability as well as competition 
with soil pathogens for the colonization sites and also for the maximum exploitation 
of host photosynthates (Harrier and Watson 2004). Finally, the performance of a 
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mycorrhizal association in mitigating different biological stresses is totally depen-
dent and crafted by many other environmental, microbial, and compatibility ele-
ments. This chapter narrates numerous mechanisms contributed to AM fungi 
mediating plant stress tolerance, and different factors that affect the ability and 
effectiveness of mycorrhizal association.

9.2	� Interactions Between Mycorrhizal Associations 
and Root Exudates

The rhizosphere is a complex environment of numerous microorganisms as well as 
the site of many chemical and physical reactions (Odelade and Babalola 2019; 
Oliver et al. 2021). Root exudation plays an important role in the organization of 
plant interactions with the soil environment (Canarini et  al. 2019a, b). 
Polysaccharides, which form a layer of mucilage around the root, are among the 
exudate components of plants, enzymes including acid phosphatases; volatile com-
pounds like ethylene; and low molecular weight metabolites including sugars, 
amino acids, organic acids, and phenolic acids (Bais et al. 2006).

The AM fungi pre-symbiosis process is stimulated by the secretion of specific 
plant root exudates that are required for fungal development and root colonization. 
This relationship between mycorrhizal fungi and plants provides many benefits to 
the plants such as increased plant development and tolerance. Thus, root exudates 
can be illustrated as messenger molecules that initiate and coordinate bio-
communication between the host’s roots and various soil organisms (Vigo et  al. 
2000; Tahat et al. 2012). Root exudation and sensing of specific secondary metabo-
lites have to be managed to develop a successful mycorrhizal association (Bais et al. 
2006). Once the symbiotic relationship is recognized, plants begin to supply plenty 
of carbon (recently photo-assimilated sugars in addition to fatty acids) to fungi. The 
fungus in turn provides nutrients, especially phosphorus, to the plant (van der 
Heijden et  al. 2015). It is unknown whether this significant diversion of below-
ground carbon flux causes a qualitative or quantitative change in the ratio of the 
plant root exudates (Canarini et al. 2019a, b). During the colonization phase, the 
communication between the roots of the plant and the mycorrhizal fungi occurred 
via the exchange of chemical signals (Gutjahr and Parniske 2013; Smith et al. 2011). 
Many researchers have exhibited the defensive impact of mycorrhizal symbioses for 
various root diseases (Harrier and Watson 2004; Goicoechea 2020; Rodriguez-
Heredia et al. 2020).

9.2.1	� Modulation in Root Architecture

Majority of AM fungi are well known for their ability to facilitate the uptake of 
water, and nutrients by the plant, causing modification in root architecture and 
affecting the rhizosphere interactions (Poveda 2020; Poveda et al. 2020). Plants 
acquire nutrients through the joint activity of roots and associated microbes, 
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which show a major role in nutrient solubilization and absorption as well as the 
prevention from soil-borne diseases (Ismail et  al. 2013). In symbiotic relation-
ship, plants provide organic nutrients to the fungal symbiont in exchange for inor-
ganic nutrients absorbed by hyphae extending from roots into the soil. The AM 
fungi could augment the surface area of plant roots more than 100 times compared 
to plants without mycorrhizal association (Smith and Read 2010; Yang et  al. 
2015). Plant’s responses to AM fungi colonization are influenced by the root 
structure (Smith and Read 2010; Smith and Smith 2011). Plants species character-
ized by coarse root architecture have large-diameter roots and little root hair 
(Fitter 2004; Smith and Read 2010). The ability of such plants to absorb nutrients 
is limited (Bates and Lynch 2001); thus the presence of AM fungal hyphae maxi-
mizes the surface area accessible for nutrient absorption, particularly phosphorus 
in these plants (Raven and Edwards 2001). Newsham et al. (1995) stated that AM 
fungi function is affected by the morphology of the root. Plants with simple root 
systems rely on AM fungi for the uptake of nutrients, while plants having roots 
with more complex structures are less reliant on mycorrhizal fungi for their uptake 
of nutrients and are much more susceptible to causal agents of root diseases due 
to the increased number of infection sites. The architecture of the plant root is 
changed by the mycorrhizal symbiosis that aids in the control of various phytodis-
eases and supporting plants to absorb valuable mineral elements from the soil. It 
produces a mechanical barrier against the penetration of phytopathogen and sub-
sequent spread, as well as thickening the cell wall by lignification and the forma-
tion of additional polysaccharides, which prevents root pathogen entry (Singh 
et al. 2000). Additionally, such changes in root morphology, for instance, increas-
ing the total root length, enhance the plant’s capacity to absorb and utilize nutri-
ents in the soil (Xia et al. 2020). Moreover, suppressive effect of AM fungi on root 
pathogens may result from the direct competition for space and different resources 
(Bødker et al. 2002).

9.2.2	� Nutrient Uptake and Accumulation

To combat various plant infections, agricultural techniques including bio-fertiliz-
ers, resistant cultivars, plant quarantine, fumigation of the soil, and crop rotation 
are the techniques that can be used to improve soil quality. Alternative measures 
such as the addition of microorganisms like AM fungi must be used to strengthen 
plant disease resistance (Grosch et al. 2005). There is an increased interest in bio-
logical fertilizers that comprises of a large number of microorganisms. These types 
of fertilizers are environmentally friendly, inexpensive, and widely available 
throughout the country. The importance of using bio-fertilizers in agriculture is 
reducing mineral fertilizers, thereby lowering production costs and increasing 
yield in terms of quality and quantity. Moreover, it improves soil fertility, reduces 
nitrogen and phosphate fertilizer application rates by at least 25%, and reduces 
pollution problems (Sadhana 2014).
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AM fungi are found in 90% of plant species as part of a symbiotic connection 
between higher plants’ roots and non-pathogenic soil fungi (Zhu et  al. 2010; 
Ahanger et al. 2014a, b). The AM fungi is entwined with the host’s roots. In this 
relationship, the fungus and the plant exchange several molecules and components 
that are used in both partners’ growth and reproduction (Ahanger et al. 2014a, b). 
The fine soil granules are gathered by the action of the fungal hyphae and the 
organic compounds in the roots, and a complex structure is created that serves to 
hold them. AM fungi form many dense hyphae with the host plant’s roots, allowing 
the roots to reach a vast area of the soil surface and improve plant growth. They 
also produce vesicles, arbuscular mycorrhizae, and hyphae in the root system 
(Bowles et al. 2016). AM fungi collects soil nutrients through their roots and then 
transports them through the mycorrhizal hyphae into the hosts (Simard et al. 2012). 
They secrete various compounds that improve the soil’s composition, like polysac-
charide compounds, which help to glue the soil particles together, increasing the 
soil’s ability to retain water. Furthermore, they improve plant nutrition by improv-
ing various nutrients, soil quality, and plant health. (Thirkell et  al. 2017). The 
mycorrhizal mutuality relationship gives the fungus consistent access to carbohy-
drates like sucrose and glucose (Harrison 2005). Carbohydrates are transported to 
the root and then to the plant. AM fungi have a large surface area, which helps 
plants absorb more water and minerals. Because the hairs of AMFs are finer and 
longer than those of plant roots, some of these AM fungi can store soil minerals for 
the host’s roots. Plant mineral absorption is improved (Selosse et al. 2006). AM 
fungi may create a competitive atmosphere for this carbon with pathogens (Vos 
et al. 2014). They have the potential to grow nutrient absorption in hosts, particu-
larly phosphorous absorption (Nell et al. 2010), and increase the activity of phos-
phate-dissolving bacteria. Several mechanisms are used by the fungus to absorb 
phosphorous, including the secretion of the enzyme phosphatase by the fungus 
hyphae, which dissolves organic phosphorous and transforms it into forms that can 
be absorbed by the plant. Another mechanism is the secretion of hydroxy acids. In 
phosphorus limited environment,  AM fungi colonized maize plants and signifi-
cantly improved phosphorus delivery to the plant roots (Garcés-Ruiz et al. 2017a, 
b). When nutrients are restricted to organic matter, AM fungi mobilizes the nutri-
ents and delivers them to the plants, which is a different sort of fixation. (Hogan 
2011). For example, in some dystrophic forests, AM fungi hyphae working directly 
on leaf litter, absorb enormous amounts of phosphate and other nutrients, obviating 
the need for soil uptake (Hogan 2011).

Plants and AM fungi share a relationship that is more complicated than just 
mutuality. It was found that AM fungi can extract a high amount of nitrogen from 
dead and decomposing materials and may grow and survive for longer periods, 
producing a large amount of biomass (Hodge and Fitter 2010). The AM fungi can 
transfer roughly 20–75% of the entire nitrogen intake to its hosts (Hashem et al. 
2018a, b). Under ambient and increased CO2 concentrations, AM fungi inoculation 
enhances carbon and nitrogen buildup and nitrogen assimilation (Zhu et al. 2016). 
AM fungi work to absorb nitrogen, phosphorous, and carbon, which leads to 

9  Unraveling the Mysteries of Mycorrhiza-Plant Interactions: Mechanisms…



202

increased photosynthesis and improved leaf growth, and also work to enlarge the 
size of the tubers. Mycorrhizal symbiosis enhances N, P, and Fe levels in sweet-
scented geraniums during droughts (Amiri et al. 2017a, b). It increases the absorp-
tion of critical nutrients while decreasing the absorption of Cl and Na, causing the 
plants to grow faster (Evelin et al. 2012). Numerous studies have been conducted on 
AM fungi, all of which have found numerous benefits for soil health and agricul-
tural productivity. Because it reduces the usage of chemical fertilizers, particularly 
phosphorous fertilizers, AM fungi are now used as an alternative to inorganic fertil-
izers (Ortas 2012).

9.3	� AM Fungi and Other Beneficial Microbe Interactions

The zone of soil affected by mycorrhizal connections is known as the mycorrhizal 
sphere (Fulekar and Pathak 2015). The mycorrhizosphere is formed when a change 
in the root exudates alters the microbial populations surrounding plant roots (Zhang 
et al. 2010a, b; Ansari and Mahmood 2017a; Ansari et al. 2017a, b, 2020b). The 
emergence of AM fungi in the mycorrhizosphere has a significant impact on the 
microbiota rhizosphere. The microbiota of rhizosphere mycorrhizal plants differ 
from that of non-rhizosphere mycorrhizal plants in both qualitative and quantitative 
aspects. The mycorrhizosphere is made up of a layer of soil overlying the mycor-
rhiza roots and the hyphosphere that surrounds the mycorrhizal hyphae in the soil 
(Solanki et al. 2020; Rizvi et al. 2015). Soil microorganisms aid in improving soil 
fertility and plant health. The association root of the host plant with AM fungi 
causes variations in root respiration and secretion volume (Marschner and Baumann 
2003). In comparison with a single inoculation with the synergistic combination of 
AM fungi and Bacillus spp., dual inoculation promotes plant development because 
dual inoculation improves the absorption of nutrients, protects pathogens that attack 
plants, and alleviates abiotic stresses (heavy metals, salinity, and water) when com-
pared to a single inoculation with AM fungi or Bacillus (Nanjundappa et al. 2019). 
AM fungi play a significant role in the development of crops and the control of 
many diseases (Ansari et al. 2019a, b). The effects of AM fungi and Epicoccum 
nigrum endophytic fungi, either independently or in combination, result in a reduc-
tion in potato blackleg disease (Pectobacterium carotovora subsp. atrosepticum). 
The highest decrease in the incidence of the disease was recorded by studying the 
treatment of AM fungi with Epicoccum nigrum (Bagy et  al. 2019). AM fungi 
improves the host plant’s resistance to damage by compensating for pathogen-
induced losses of biomass and functional roots. This demonstrates that AM fungi 
play a role in biological control by maintaining the function of plant roots through 
the growth of AM fungi filaments in the soil, causing the root’s absorption to rise, 
and functionally improving the level of root uptake. Following AM fungi coloniza-
tion, several publications have found an increase in bacteria: Pseudomonas, 
Streptomyces, and actinomycetes (Nuccio et al. 2013).
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9.4	� Interplay Between AM Fungi and Host Plants

9.4.1	� Direct Competition

The AM fungi have a big role in the competition and compete with plant pathogens 
where they live (Ortas 2012). They are a type of alternative management strategy for 
protecting plants from infection (Brimner and Boland 2003). AM fungi colonize 
host plants by living in a symbiotic relationship with their roots (Harrier and Watson 
2004). It has been demonstrated that AM fungi symbiosis reduces the damage 
caused by plant pathogens (Azcón-Aguilar et al. 2002). 

9.4.2	� Competition for Infection Sites

One of the mycorrhiza’s most important functions is to protect plants from root 
pathogens. Complex root systems make plants more vulnerable to pathogen attack; 
however, if the plant is colonized by a mycorrhizal fungus that is resistant to patho-
gens, such as Glomus isolates, the AMF symbiosis can reduce infection in such 
plants (Sikes 2010). AM fungi can inhibit pathogens in several ways, including 
direct competition for colonization sites and indirect induction of plant defense 
responses, and changes in the rhizosphere biota (Azcón-Aguilar and Barea 1997). It 
was found that tomato plants inoculated with AM fungi are not infected with 
Phytophthora, and studies have revealed that it is a competition for carbon com-
pounds. It is well known that it is reliant on the host plant and the photosynthesis 
process, which ultimately leads to plant soil inhibition (Cordier et al. 1998).

9.4.3	� Competition for Host Photosynthates

AM fungi and soil pathogens present in the roots depend on the photosynthesis 
process that takes place in the plant, which leads to better plant growth. During 
photosynthesis, competition occurs for carbon molecules in the form of fats and 
sugars (Smith and Read 2010; Jiang et al. 2017; Luginbuehl et al. 2017). It was 
found that during the photosynthesis mechanism of the host plant, whose roots con-
tain AM fungi, they can obtain carbon in the range of 4–20%, which leads to resis-
tance to harmful microorganisms (Smith and Read 2010). AM fungi colonization 
greatly stimulates the macro- and micronutrient uptake in plants during the photo-
synthesis mechanism, as a result, photosynthetic production increases and thus an 
increase in the accumulation of plant biomass (Chen et al. 2017; Mitra et al. 2019). 
The inorganic nutrients can be better absorbed with the aid of AM fungi, particu-
larly phosphates (Nell et al. 2010). AM fungi encourages plants to absorb zinc and 
copper from nutrient-deficient soils (Al-Hmoud and Al-Momany 2017). It was 
found that during the scarcity of phosphorus in the soil, AM fungi improves the sup-
ply of phosphorous to the affected roots of plants (Bucher 2007). The rate of phos-
phorous uptake was significantly improved in maize plants colonized with AM 
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fungi (Garcés-Ruiz et al. 2017a, b). Photosynthetic activity and other leaf functions 
have been found to be risen, and this is linked to an increase in potato tuber growth 
and AMF-rooted potato by increasing the uptake of nitrogen, phosphorous, and car-
bon, which leads to enhanced tuber growth. AM fungi also maintains the uptake of 
phosphorous and nitrogen from the soil during photosynthesis especially in 
drought condition (Liu et al. 2018). For example, Gomez-Bellot et al. (2015) and 
Amiri et al. (2017a, b) showed that AM fungi increased the nitrogen, phosphorous, 
and iron concentrations in aromatic plants like Pelargonium graveolens under 
drought conditions. The improvement of phosphorous, calcium, and potassium lev-
els during photosynthesis was demonstrated in Euonymus japonica plants under the 
influence of salinity. In another study, pistachio plants inoculated with AM fungi 
showed high levels of phosphorous, potassium, zinc, and manganese under drought 
conditions (Bagheri et al. 2012). AM fungi are believed to improve the absorption 
of nearly all essential nutrients and reversibly reduce sodium and chlorine absorp-
tion, thereby stimulating plant growth during photosynthesis (Evelin et al. 2012). 
Highly rooted fungus (ERM) can boost plant development through enhancing nutri-
ent uptake (Lehmann and Rillig 2015). Soil nutrition is mostly dependent on nitro-
gen, and several investigations have demonstrated that AM fungi have a significant 
role in absorbing and transferring nitrogen from soil to the host (Hodge and Storer 
2015; Battini et al. 2017; Turrini et al. 2018a, b). Several studies have found that 
between 20 and 75 percent of total N absorption can be transferred from AM fungi 
to the host plant especially during photosynthesis (Ahanger et al. 2014a, b; Hameed 
et al. 2014; Hashem et al. 2018a). Increasing the rate of nitrogen uptake from the 
soil containing AM fungi leads to higher chlorophyll content in the plant, because 
chlorophyll molecules have the ability to effectively store nitrogen (De Andrade 
et al. 2015).

9.4.4	� Antagonism

It has yet to be proven that AM fungi produce some antimicrobial compounds that 
can inhibit the microorganisms reproduction or populations. The AM fungi aid in 
the absorption of mineral nutrients by the plant, whereas the plant provides carbon 
to the AM fungi. This is considered a symbiotic relationship between the AM fungi 
and the host plant. AM fungi was discovered to have a biocontrol effect against a 
variety of plant infections conveyed through the soil; hence it was used as part of a 
biological control strategy. AM fungi has been observed to have anti microbial 
compounds against some fungal diseases (Whipps 2004). For example, AM fungi 
is used to combat fungal diseases in various crops, such as Rhizoctonia solani (Yao 
et  al. 2002), Phytophthora species, and Pythium ultimum (Cordier et  al. 1996). 
Several methods have been used to control soil-borne pathogens using AM fungi to 
reduce infection with pathogens and increase crop resistance (Azcón-Aguilar and 
Barea 1997). In 2002, Azcon-Aguilar et al. demonstrated that the symbiotic inter-
action between AM fungi and the plant reduces the harm caused by soil-borne 
diseases. AM fungi have been combined with beneficial microbes in several 
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experiments to get  enhanced plant disease resistance (Grosch et  al. 2005). AM 
fungi reduces plant diseases by boosting host plant resistance and creating food 
and space competition between. Thus, AM fungi are used in the biological control 
of plant diseases with these microbes (Berg et al. 2007). Cordier et al. (1996) found 
that applying Glomus mosseae in tomato roots reduced infection with Phytophthora 
parasitica compared to tomato roots that had not been treated with AM fungi. AM 
fungi help plants secrete phosphate, which reduces the incidence of fungal diseases 
in tomatoes (Trotta et al. 1996). In another example, AM fungi reduced Ganoderma 
boninense infection in oil palm seedlings, and the seedlings were more resistant to 
G. boninense infection (Rini 2001). Peanut root and pod rot diseases were greatly 
reduced when Glomus  spp. were applied to soil and the number of pods and fresh 
weight were significantly higher than in non-treated soil (Ahmed et al. 2013).

Iron is a necessary component in practically all living organisms. Iron will be 
unavailable in adequate quantities unless organisms discover a mechanism of solu-
bilization. The major siderophores released by the ericoid mycorrhizal fungi are 
ferricrocin and fusigen (Haselwandter and Winkelmann 2007). The ectomycorrhi-
zal fungi, Cenococcum geophilum and Hebeloma crustuliniforme have also been 
shown to produce ferricrocin. When AM fungi are present, Fe absorption rates 
increase in plants that are connected to them, implying that undiscovered mycor-
rhizal siderophores are involved. Orchid mycorrhizal fungi have been found to pro-
duce both well-known ferrichrome-type siderophores and the unique linear 
trishydroxamate basidiochrome as the major siderophores. Mycorrhizal fungi, 
which are found in both natural and cultivated soils, have shown improved plant 
uptake of nutrients including trace metal ions.

9.5	� AM Fungi-Mediated Plant Disease Resistance

Induced resistance (IR) can be considered an alternative eco-friendly promising 
approach for controlling plant diseases as it can provide a natural defense mecha-
nism for plants (Riad et al. 2021). Recently, IR of the plant by the action of AM 
fungi has become an attractive topic in chemo-ecological study and plant disease 
biocontrol (Huang et al. 2003; Powell and Rillig 2018). Many studies have shown 
AM fungi colonization protects plants from microbial pathogen infections in differ-
ent plant systems (Hao et al. 2019; Miozzi et al. 2019). IR does have not a direct 
activation of defense mechanisms; also it comes from tissue sensitization in response 
to suitable stimulation, allowing basal defense mechanisms to express a lot effi-
ciently after a future attack of the pathogen. This activation of a plant’s innate 
immune system occurs frequently when it interacts with useful microorganisms, 
and it has significant benefits compared with the direct activation of defenses (Van 
Wees et al. 2008; Chen et al. 2021). Firstly, the fungus faces the plant’s immune 
system, and it has to overcome the defense mechanisms for effective host coloniza-
tion (Kloppholz et al. 2011; Zamioudis and Pieterse 2012). Upon its establishment, 
the level of fungi proliferation in the roots is regulated by the plant to control carbon 
and over-colonization discharge and therefore keep interaction at mutual levels. For 
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example, the plant inhibits the activity of fungi from growing and proliferating in 
the roots under high conditions of exogenous phosphate supply (Breuillin et  al. 
2010; Kumaresan et al. 2020). The plant interacts with the existence of AM fungi in 
earlier stages of the interaction by activating some defense-related responses 
(García-Garrido and Ocampo 2002). Rapid but transient increment in the level of 
endogenous salicylic acid (SA) was observed remarkably in the roots with simulta-
neous accumulation of defense compounds, such as activation of the phenylpro-
panoid pathway, specific isoforms of hydrolytic enzymes, and reactive oxygen 
species (de Roman et al. 2011).

When a plant interacts with AM fungus, other plant hormone levels related to 
defense such as ABA, ET, and JA are significantly influenced (Hause et al. 2007; 
Ludwig-Müller 2010; López-Ráez et al. 2010). With the correct functioning of AM 
symbiosis as colonization improves, the regulation of JA levels acquires a major 
role (Hause et  al. 2007; Hause and Schaarschmidt 2009). Generally, IR appears 
obviously when AM symbionts are established successfully. The modifications in 
signaling related basically to robust-established mycorrhiza are probable mediating 
MIR (Slezack et al. 2000; Pozo et al. 2002). The reliance of the successful mycor-
rhizal fungi on the control of SA and JA signals explained the protection range 
offered by this symbiosis (Pozo and Azcón-Aguilar 2007). AM fungi plants showed 
significant resistance to nematodes, and target aggressors through JA relied on 
defensive responses; they are more sensitive to biotrophs, targeted by SA-regulated 
defense systems. Such type is associated with the activation of JA relying on 
defenses and suppression of salicylic acid relying on one of the well-established 
AM fungi. The synthesis of defensive proteins and toxins was the outcome of JA 
signaling, resulting in an internal imbalance that reduced the insect’s development 
and survival (Giang et al. 2020; Howe and Jander 2008).

9.5.1	� AM Fungi in Nematodal Disease Management

Altered root exudation can lead to changes in the rhizosphere’s microbial diversity, 
which can harm plant-pathogen interactions (Schouteden et al. 2015). Some reports 
showed that AM fungi colonization caused an increase in the population of faculta-
tive anaerobic bacteria, fluorescent pseudomonads, actinobacteria, and chitinolytic 
microorganisms (Nuccio et al. 2013; Philippot et al. 2013). These microorganisms 
have antagonistic activity against phytonematodes, either directly by nematode 
trapping or egg parasitism or indirectly by triggering the plant defense mechanism 
(Zamioudis and Pieterse 2012). Rodriguez-Heredia et al. (2020) indicate that AMF 
inoculated with roots of pepper and tomato plants caused a marked reduction in the 
multiplication of Meloidogyne incognita. Different species of AM fungi such as 
Glomus mosseae and Gigaspora gigantea maximize the production of antioxidant 
compounds and increase the plant fiber content. The use of AM fungi with 
solubilizing-phosphate bacteria like Pseudomonas fluorescens has a significant 
improvement in the morphological and biochemical characters of eggplant in 
infested plants with M. javanica (Sharma et al. 2021).
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Gough et al. (2020) reported that the degree of AM fungi colonization affects the 
population densities of Pratylenchus spp. Inoculation with low levels of AM fungi 
was linked to an increase in the population of Pratylenchus spp. in the soil, while 
high levels of AM fungi colonization suppressed Pratylenchus population. The pen-
etration of tomato root by Nacobbus aberrans was inhibited successfully by the 
application of different mycorrhizal species  like Rhizophagus intraradices and 
Funneliformis mosseae (Marro et al. 2018). In another work, Calvet et al. (2001) 
found that application of Glomus etunicatum, G. intraradices, and G. mosseae sig-
nificantly reduced Meloidogyne javanica development infecting peach roots. Brito 
et  al. (2018) showed heavy colonization of the root with Rhizophagus clarus, 
Claroideoglomus etunicatum, Gigaspora margarita, G. rosea, Scutellospora het-
erogama, and S. calospora, positively correlated with Pratylenchus brachyurus 
population infecting maize roots, which is the inverse of the mycorrhizal coloniza-
tion effect in cotton (Ferreira et al. 2018).

Plant roots are targeted by both nematodes and AM fungi as a source of space 
and food (Ansari and Mahmood 2017b, 2019a, b). The numbers of Meloidogyne 
spp. were affected negatively by mycorrhizal fungi colonization more than cyst 
nematodes (Ansari et al. 2020a). Moreover, root-knot nematodes belonging to the 
genus Meloidogyne spp. are sedentary endoparasites that are responsible for dis-
eases and economic losses in important crops. The interactions between Meloidogyne 
and AM fungi are complex and relied on plants, nematode species, fungi, and soil 
conditions. AM fungi is considerably affected by sedentary nematodes (Meloidogyne 
spp.) than any other migratory nematodes (Table 9.1; Francl 1993).

9.5.2	� AM Fungi in Fungal Disease Management

The cell wall of AM fungi is composed mainly of chitin oligosaccharides that can 
promote the plant immune system via, lysine motif receptor-like kinases (LysM-
RLK) and so play a dual role in pathogenic and symbiotic interactions (Kaku et al. 
2006; Miya et  al. 2007; Shimizu et  al. 2010). Application of Glomus spp. was 
reported as a biotic agent for the management of F. oxysporum f. sp. sesami (Zap.), 
which causes wilt and root-rot diseases in sesame. This treatment stimulated bacte-
rial colonization on sesame rhizospheres in a selective manner and showed a posi-
tive impact on the morphological characters of both root and shoot systems (Ziedan 
et  al. 2011). Furthermore, the simultaneous application of AM fungi under field 
conditions triggered the expression of genes linked to pathogenesis and synthesis of 
lignin in the plant, which have significant effects on the protection of cotton against 
fungal diseases (Zhang et al. 2018). Tahat and Al Momany (2019) demonstrated the 
efficiency of G. fasciculatum and G. mosseae in controlling Verticillium wilt on 
cucumber under greenhouse conditions due to improvements in morphological root 
characteristics. Moreover, AM fungi and olive cake are able to prevent plant dis-
eases by encouraging plant development and enhancing root and soil properties, 
according to Tahat et al. (2020). As a result, they saw G. mosseae in combination 
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Table 9.1  Examples of the use of AM fungi in the suppression of plant diseases

S. 
no. AM fungi

Mechanisms 
of action Pathogens/diseases Host References

1. Glomus mosseae and 
Gigaspora gigantea

Root 
exudates

Meloidogyne 
incognita (root-knot 
of tomato disease)

Pepper 
and 
tomato

Sharma et al. 
(2021)

2. Glomus mosseae, G. 
intraradices, G. 
clarum, Gigaspora 
gigantean, and G. 
margarita

Root 
exudates

Fusarium solani 
(fusarium root-rot)

Barley Gernns et al. 
(2001)

3. Glomus intraradices Root 
exudates

Pythium 
aphanidermatum 
(root rot of 
pawpaw)

pawpaw Olawuyi 
et al. (2013)

4. Glomus deserticola Root 
exudates

Verticillium dahlia 
(wilt disease of 
Solanaceae plants)

Tomato, 
pepper, 
and 
eggplant

Demir et al. 
(2015)

5. Glomus intraradices Root 
exudates

Phytopthora 
nicotianae

Tomato Lioussanne 
et al. (2008)

6. Gigaspora margarita Root 
exudates

Ralstonia 
solanacearum 
(bacterial wilt of 
tomato)

Tomato Tahat et al. 
(2012)

7. G. mosseae Root 
exudates

Ralstonia 
solanacearum 
(brown rot disease)

Potato Tahat et al. 
(2010)

8. G. margarita Altering root 
architecture

Pratylenchus spp.
root-lesion 
nematode

Maize Gough et al. 
(2020)

9. Rhizoglomus 
intraradices 
andFunneliformis 
mosseae

Altering root 
architecture

Nacobbus aberrans
false root knot

Tomato Marro et al. 
(2018)

10. Glomus intraradices, 
G. mosseae, and G. 
etunicatum

Altering root 
architecture

Meloidogyne 
javanica (root-knot 
disease)

Peach Calvet et al. 
(2001)

11. G. margarita Altering root 
architecture

Pratylenchus 
brachyurus
root-lesion 
nematode

Maize Brito et al. 
(2018)

12. Glomus spp. Altering root 
architecture

Fusarium 
oxysporum
wilt disease of 
sesame

Sesame Ziedan et al. 
(2011)

13. Glomus mosseae
and Glomus 
fasciculatum

Altering root 
architecture

Verticillium
wilt disease of 
cucumber

cucumber Tahat and Al 
Momany 
(2019)

(continued)
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Table 9.1  (continued)

S. 
no. AM fungi

Mechanisms 
of action Pathogens/diseases Host References

14. G. mosseae Altering root 
architecture

Rhizoctonia solani
root rot of chili

Chili 
pepper

Tahat et al. 
(2020)

15. Glomus versiforme
and G. mosseae

Altering root 
architecture

R. solanacearum
bacterial wilt

Pepper Agoncillo 
(2018)

16. Glomus 
macrocarpum

Induced 
resistance

Meloidogyne spp.
root knot

Soybean Francl 
(1993)

17. Glomus clarum Induced 
resistance

Aphelenchus, 
Aphelenchoides, 
Bursaphelenchus, 
and Ditylenchus
root-rot diseases

Cotton Francl 
(1993)

18. Glomus sp. Induced 
resistance

Heterodera and 
Globodera spp.
Cyst nematode

Potato Giannakis 
and Sanders 
(1990) and 
Francl 
(1993)

19. G. margarita Induced 
resistance

M. incognita
root-knot disease

Tomato Francl 
(1993)

20. Funneliformis 
mosseae and 
Rhizophagus 
irregularis

Induced 
resistance

F. oxysporum
Fusarium wilt of 
tomato

Tomato Jaiti et al. 
(2008) and 
Ahmed et al. 
(2013)

21. Glomus mosseae, 
Glomus etunicatum, 
Glomus 
fasciculatum, and 
Gigaspora margarita

Induced 
resistance

Phytophthora
root rot of pepper

Pepper Ozgonen and 
Erkilic 
(2007)

22. Glomus etunicatum 
and Glomus 
intraradices

Induced 
resistance

Rhizoctonia spp.
black stem

Potato Yao et al. 
(2002)

23. Glomus Induced 
resistance

Clavibacter 
michiganensis
bacterial canker of 
tomato

tomato Jung et al. 
(2012) and 
Abo-elyousr 
et al. (2014)

24. Glomus Competition Phytophthora
root rot of tomato

Tomato Cordier et al. 
(1998)

with olive cake as a viable biological strategy for combating chili pepper damping 
off caused by Rhizoctonia solani.

The beneficial impact of colonized roots AM fungi may be related to the remark-
able alternation in primary and secondary metabolism of the plant, resulting in the 
reduction of pathogenic filamentous fungus development (Mayer et  al. 2019). 
Al-Askar and Rashad (2010) reported that the application of a mixture of Glomus 
clarum, G. intraradices, G. mosseae, Gigaspora gigantean and G. margarita was a 
successful technique to control fusarium root-rot disease as there was a significant 
reduction in disease severity and incidence in infected plants. Olawuyi et al. (2013) 
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indicated that Glomus mosseae and Glomus deserticola significantly reduced foot 
rot disease of pawpaw seedlings caused by Pythium aphanidermatum and promoted 
the seedling growth parameters. The results of Lioussanne et al. (2008) recorded 
that root colonization with the early stage of AM fungi decreases the proliferation 
of Phytophthora nicotianae. Pre-inoculation AM fungi combined with humic acids 
reduced wilt disease severity caused by Verticillium dahlia Kleb. and microsclerotia 
population in tomato, pepper, and eggplant (Demir et al. 2015).

The colonized carrot’s roots with AMF showed a stronger defensive reaction at 
the sites of infection caused by Fusarium oxysporum f. sp. chrysanthemi (Benhamou 
et al. 1994). Also, in tomato plants, colonization of AM fungi conserves roots sys-
temically from Phytophthora infection (Pozo et al. 2002). The formation of phenol 
contents in the date palm trees infected with AM fungi was also linked to protective 
biochemicals against F. oxysporum (Jaiti et al. 2007). Several pieces of research on 
the protection impact of AM fungi against soil-borne diseases recorded great inhibi-
tion in the incidence of root rot and wilting diseases caused by fungal pathogens like 
Fusarium, Rhizoctonia, or Verticillium, and root rot caused by oomycetes including 
Aphanomyces, Phytophthora, and Pythium (Table 9.1; Whipps 2004).

9.5.3	� AM Fungi in Bacterial Diseases

The pathogenicity of Ralstonia solanacearum was reduced effectively as a result of 
G. mosseae spore germination (Tahat et al. 2010). Tahat and Sijam (2012) tested the 
effects of three species of AM fungi (Gigaspora margarita, Glomus mosseae, and 
Scutellospora sp.) against Ralstonia solanacearum. The results indicated that no 
disease symptoms were detected when G. mosseae and R. solanacearum were 
applied together. Application of AM fungi in combination with some rhizobacterial 
species such as Pseudomonas spp., Bacillus spp., and Azotobacter spp. reduced the 
bacterial wilt caused by R. solanacearum in potatoes and improved plant growth as 
compared to the control (Aguk et al. 2018).

AM fungi have antagonistic activity against Ralstonia solanacearum in pepper 
(Aseel et al. 2019; Zhu and Yao 2004). AM fungi induces phenol production locally 
or systemically, which has a role in the inhibition of R. solanacearum (Zhu and Yao 
2004). Colonization of root tissue by both G. versiforme and R. solanacearum 
enhanced both soluble phenols and cell-wall-bound phenol contents. G. versiforme 
preferred to promote the content of soluble phenol, and R. solanacearum preferred to 
increase the cell-wall-bound phenol content. The results observed by Tahat and 
Sijam (2012) confirmed that the colonization of G. mosseae can change the anatomi-
cal and morphological characters of the root. For example, G. mosseae could maxi-
mize root volume, length, size, and weight significantly. The reduction of 
R. solanacearum infection by the effect of endophytic fungi G. mosseae may be due 
to the modification of root structure that helps in the prevention of bacterial invasion. 
The mycorrhizal colonization increased plant resistance against pathogenic bacteria 
such as Clavibacter michiganensis subsp. michiganensis (Cmm) that caused wilt and 
canker disease in tomatoes (Jung et al. 2012). Plant defense responses are reliant 
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mainly on its hormones to coordinate a complex defense system to resistance patho-
gens successfully. Ethylene (ET) is a key player in the control of plant immunity 
(Adie et al. 2007) and is important in the interactions between microbes and plants 
(Khatabi and Schäfer 2012). ET played a central role in the development of canker 
and wilting symptoms (Balaji et al. 2008). It was also observed in another set of 
experiments that different AM fungi isolates can induce systemic resistance to Cmm 
in tomato plants (Nguyen Hong and Posta 2018). Bagy et al. (2019) showed that 
mycorrhiza and Epicoccum fungi-inoculated plants increased potato growth and 
reduced black leg disease in potatoes. It was found that the high rate of growth of 
potato plants as well as the severity of disease was reduced in potatoes by using a 
combination of (Mycorrhiza + Epicoccum nigrum). Plant resistance is increased by 
AM fungi and Epicoccum by lowering active peroxide, phenyl alanine ammonia 
lyase, and lignin levels (Table  9.1). In potato-enhanced phenolics, super oxidase 
deaminase, catalase, ascorbate peroxidase, and glutathione peroxidase were recorded 
as antioxidant enzymes in mycorrhiza-supplemented plants.

9.6	� Factors Affecting Successful Mycorrhization

9.6.1	� Environmental Factors

Environmental factors play an undeniable role in plant-mycorrhiza interaction 
(Cotton 2018; Fitter and Garbaye 1994). Hence, any changes in the environmental 
factors can introduce shifts in the interaction between mycorrhiza and their associ-
ated plants, affecting mycorrhiza’s efficacy as a bio-protector (Linderman 1991). 
The exact mechanism by which the environment contributes to mycorrhiza perfor-
mance is not fully understood yet. However, in a majority of cases, the environment 
possesses a direct or/and indirect mechanism to regulate this process (Hoeksema 
et al. 2010; Jamiołkowska et al. 2018). Factors including soil pH, drought condi-
tions, and climate changes are well known to have a direct effect on mycorrhizal 
growth, penetration, and community composition (Bonfante and Perotto 1995). At 
the same time, the same factors might indirectly stimulate metabolic and physiolog-
ical changes in host plants and therefore threaten mycorrhiza efficacy (Jamiołkowska 
et al. 2018; Shi et al. 2014). One of the recent changes in environmental factors that 
strike mycorrhiza performance is the elevation of CO2 concentration due to climate 
changes (Cheng et al. 2012). This increase in CO2 concentration proved to directly 
influence mycorrhizal symbioses through a major shift in microbial communities. 
For instance, changing the abundance of Glomeraceae and Gigasporaceae families 
of AM fungi caused by the increase in CO2 badly impacted nutrient uptake and 
increased sensitivity to pathogens in associated mycorrhiza plant hosts (Cotton 
2018). Since both families play an important role in carbon allocation into the host 
roots, mineral uptake, and defense response against pathogen attacks, soil chemical 
and physical properties are another driver for AM fungi composition (Cotton 2018; 
Duponnois et al. 2001). It was shown before that high levels of soil phosphorus can 
lead to less AM fungi colonization and diversity in both plant and soil habitats 
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(Haynes and Swift 1985). When soil acidity fell below 4.5, there was a significant 
drop in mycorrhizal spores and colonization (Guo et al. 1996). In view of the fact, 
mycorrhiza prefers the soil’s pH between 4.5 and 5.7 (Bücking and Kafle 2015). 
Soil agrochemical treatment applications were also reported to add selection pres-
sure on native AM fungi that led to the increase of some AM species/groups over 
others and caused a change in the AM fungi community assembly and function over 
time. Soil management practices are also a big promoter of mycorrhiza’s success 
(Rillig 2004). Management practices such as crop rotation, low soluble fertilizer, 
and reduced biocides proved to build up mycorrhiza propagules in soil and increase 
its diversity and colonization (Gosling et al. 2006), while other practices such as the 
excessive use of copper-based products, soil tillage, and growing non-mycorrhizal 
hosts eventually declined AM fungi colonization and abundance in soil and associ-
ated plants and turn down its beneficial effects (Gosling et al. 2006). Geographical 
and climatic factors such as temperature, drought, and light conditions have been 
reported to have an undeniable effect on mycorrhiza interactions (Khalil et al. 1994; 
Kilpeläinen et al. 2020). Most of the mycorrhiza species have optimum tempera-
tures for infection and colonization (Kilpeläinen et al. 2020). These optimum tem-
peratures are crafted by the origin of where mycorrhiza evolved and the adaptation 
process that they take (Heinemeyer and Fitter 2004). Shifting of mycorrhizal fungi 
from their climate zones results in a diminishing in hyphae infectiveness and growth. 
However, some mycorrhizal species succeeded in adapting to new conditions if not 
extreme (Al-Karaki et al. 2004). While all of the above factors showed direct influ-
ence the mycorrhizal interactions and most of them were theorized to have an indi-
rect impact on successful mycorrhization, taking light as a potential instance can 
directly affect mycorrhizal symbiosis in the production and colorization of AM 
fungi spores (Al-Karaki et al. 2004). Nevertheless, it can indirectly affect the same 
relation by promoting photosynthesis and transporting assimilates to the roots 
(Jamiołkowska et al. 2018; Konvalinková and Jansa 2016). It was also reported that 
changing the geographical zone for growing plants can directly affect mycorrhiza 
colonization and growth due to the associated change in climate among different 
geographical zones (Pile et al. 2017). However, moving Triadica trees from China 
to the United States indirectly also enhances the colonization levels of mycorrhiza 
fungi (Yang et al. 2013, 2014). The relocation to the United States was associated 
with a higher production level of flavonoids in the host, which promotes higher 
mycorrhizal establishment (Pile et al. 2017; Shah and Smith 2020; Tian et al. 2021). 
The environmental factors are trusted to hold a significant role in mycorrhiza-plant 
interaction and its predicted beneficial outcomes.

9.6.2	� Cultural Factors

Since the same mycorrhizal species growth varies from one plant species to another, 
plant species differ in their dependency on mycorrhiza (Hoeksema 2005). The mag-
nitude of mycorrhiza’s beneficial effect on their host under the same environment is 
theorized to be regulated by differences among plant and mycorrhizal species 
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(Grman et al. 2012; Hoeksema 2005). In a number of studies, large variations in 
plant growth variables were reported when the same plant species were treated with 
different AM fungi isolates (Owusu-Bennoah and Mosse 1979). The increase in 
host biomass was reported to leap from 79% to 600% when the same plant associa-
tion changed from mycorrhizal isolate to another (Hart and Reader 2002; Mensah 
et al. 2015; Van Der Heijden et al. 1998). The observed differences in mycorrhiza 
effects were independent of their colonization rate variation (Van Der Heijden et al. 
1998). While in both examples the mycorrhizal variation led to differences in ben-
eficial responses, in most cases, host selection is assumed to have a stronger impact 
on this co-dependency relation (Bever 2002; Molina et al. 1997; Rasmussen et al. 
2018). The selection by host for certain species of mycorrhizae over others is related 
to the host’s ability to sense and differently allocate resources that can be used by 
mycorrhizae into its root (Jansa et al. 2008; Verbruggen et al. 2012). For instance, in 
Medicago truncatula, higher beneficial AM species were correlated with higher car-
bon allocation in roots by the host (Jansa et al. 2013; Werner and Kiers 2015b). The 
driving force of host selection remains an open question (Werner and Kiers 2015b). 
Some plant traits such as the degree of root coarseness and decreased fine-scale host 
selection for mycorrhiza (Verbruggen et al. 2012) suggest that host traits contribute 
to mycorrhiza selection (Werner and Kiers 2015a, b). The host needs are theorized 
to regulate host microbial selective recruitment (Abdelrazek et al. 2020a, b; Johnson 
and Graham 2013; Werner and Kiers 2015b). It was previously reported that more 
mycorrhization was observed in a phosphorus-deficient not in a rich phosphorus 
condition (Johnson and Graham 2013). As host phosphorus starvation in phosphorus-
deficient soil leads to host recruitment of more phosphorus-fixing mycorrhiza to 
cover their needs (Johnson and Graham 2013), similar to host plant selection, 
mycorrhiza also selects the host to benefit the most from its own maximum benefits 
(Kiers et al. 2011; Werner and Kiers 2015a, b). In root culture experiments, mycor-
rhiza preferentially transports phosphorus to root clusters that support it with the 
highest carbon amount, while other roots that produce lower levels of carbon are left 
without any mycorrhizal aid (Kiers et al. 2011). Although this is the most common 
strategy for mycorrhiza in host selection, some plants do not follow the same pattern 
(Walter et al. 2012); for example, mycorrhizal symbiosis in flax (Linum usitatissi-
mum) and sorghum (Sorghum bicolor) as a potential host. Sorghum always invested 
more energy and pumped more carbon into mycorrhizal symbiosis than flax. 
However, mycorrhiza in return transported more nutrients to flax than sorghum 
(Walter et  al. 2012), which contradict the host selection theories. In addition to 
selection, the beneficial effect provided by mycorrhiza to their host is also affected 
by very fine morphological variation within mycorrhiza species. For example, dif-
ferences in mycorrhiza size among different mycorrhiza species reported to affect 
host benefits by mycorrhiza in many plants. Mycorrhizal species that own larger 
internal mycelia provided the host with greater plant growth support than ones with 
smaller internal mycelia (Hart and Reader 2002). Even differences in mycorrhizal 
mycelial structures such as arbuscules, vesicles, coils, and absorptive, infective, and 
spore-producing hyphae abundance among different mycorrhizal taxa proved to 
affect mycorrhiza’s beneficial support to their host (Hart and Reader 2002). As a 
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conclusion, small or big differences in mycorrhizal species or host plant will always 
control the size of the beneficial effect provided by mycorrhizae to their host. 
Mycorrhiza size differences among species reported to determine host benefit in 
many plants. Mycorrhiza with larger internal mycelia showed to grant greater host 
benefit (Hart and Reader 2002). Growing evidence that even differences in abun-
dance of mycelial structures such as arbuscules, vesicles, coils, absorptive, infec-
tive, and spore-producing hyphae among mycorrhiza taxa can influence their 
beneficial response (Hart and Reader 2002). Whether host or mycorrhiza contribu-
tions to their interaction outcomes rely on their big or small variations, they will 
always be identified as the main drivers for this relation and its backbone.

9.6.3	� Surrounding Microbiome

To facilitate the co-existence of microbes in the same niche, mechanisms such as 
microbe-microbe interactions were evolved (Scherlach and Hertweck 2018). In this 
mechanism, the growth and behavior of each microbe are regulated through their 
interaction with other microbes within the same environment (Scherlach and 
Hertweck 2018). Mycorrhiza as any other micro-organism is synergistically inter-
acting with soil and host niche. Successful mycorrhizosphere also relies on their 
microbial communities with which they are directly or indirectly associated. AM 
spore’s germination was totally suppressed under sterilized soil, which represented 
a good example of how surrounding microbes are playing a central role in mycor-
rhizal establishment (Fitter and Garbaye 1994). In recent study, increase in rhizo-
sphere microbe’s diversity of maize proved to increase root colonization by 
beneficial mycorrhiza (Ferreira et al. 2020, 2021). Inculcating Lolium multiflorum 
grass with leaf endophytes, Neotyphodium occultans increased the colonization of 
Glomus in host and neighbor plants (Omacini et  al. 2006). The exact return of 
mycorrhiza interaction with surrounding microbiome is unpredictable. For exam-
ple, in some cases, leaf endophytes prove to reduce mycorrhizal sporulation and 
colonization of host roots (Müller and Kleinschmidt 2003). The instability of this 
relation associated with the high complexity of mycorrhiza-microbe interaction 
model might be due to the involvement of so many factors such as soil, environ-
ment, and plant. Looking at the underlying mechanism behind this interaction, both 
rhizosphere and plant microbes are theorized to possess similar procedures when it 
comes to influencing AM fungi (Johansson et al. 2004): manipulating root recogni-
tion and receptivity of the root, modifying rhizosphere soil chemistry, and altering 
mycorrhiza growth and germination (Johansson et  al. 2004). For instance, 
Corynebacterium and Pseudomonas rhizosphere bacteria were reported to enhance 
the spore germination of Glomus versiforme through the inactivation of Glomus 
versiforme spore inhibitors (Johansson et  al. 2004). Bacteria isolated from the 
mycorrhizosphere were reported to boost the germination and growth of AM spore 
and colonization of roots (Giovannetti et al. 2010; Xavier and Germida 2003). In 
another study, Paenibacillus rhizosphaerae and Rhizobium etli rhizosphere bacteria 
increased the growth of G. intraradices and Rhizophagus irregularis. However, the 
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significant increase in IAA production by these bacteria could not support this as a 
mechanism (Ordoñez et al. 2016; Turrini et al. 2018a, b). In another example, ecto-
mycorrhiza showed to colonize and protect plant roots more effectively than endo-
mycorrhiza, which is owing to the accumulation of pathogenic fungi within AMF 
sphere. This activates the production of negative feedback toward associated plants 
(Kadowaki et al. 2018; Tedersoo et al. 2020; Teste et al. 2017). The phrase “mycor-
rhiza helpers” refers to a bacteria group that supports mycorrhizae throughout its 
life cycle (Turrini et al. 2018a, b). Although, in mycorrhizal interaction networks, 
“mycorrhiza helpers” bacteria are well established (Turrini et al. 2018a, b). It is not 
clear yet, if these helpers gain any reward from supporting AM fungi. AM fungi 
were reported to compete with rhizobacteria, in pre-mycorrhiza symbiotic phase. 
However, in later stages of symbioses, the rapid establishment of AM fungi in host 
roots was associated with improved nodulation (Smith et al. 1979). The interaction 
between mycorrhiza and surrounding microbes is very complicated. Understanding 
more about the interaction chemistry and language will help maximizing the bene-
fits of mycorrhiza as bio-protectors (Finkel et al. 2017).

9.7	� Conclusions and Future Outlooks

With the uncontrolled growing increase in human folk around the globe and limited 
food production, mycorrhizal fungi may be used in sustainable agriculture, which 
can significantly help to enhance plant productivity to meet the high demand of vari-
ous food commodities. The formal information about mycorrhiza-host interactive 
mechanisms as a bio-protector and its interfering factors in a logical manner for the 
better understanding of mycorrhiza-pathogen interactions and exploiting its poten-
tial benefits in agriculture usage has been documented. Future mycorrhiza research 
work should focus on identifying genes and gene products that trigger mycorrhiza 
crosstalks with plant pathogens and host microbiome, more specifically, picturing 
mycorrhiza-host microbiome-pathogen interactions holistically through relevant 
omics’ techniques and meta-analysis. In addition, identifying factors that modulate 
mycorrhiza-plant symbiotic association and metabolic networks associated with 
various stress conditions is also a potential aspect to be unraveled in upcoming 
research.
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Abstract

The application of arbuscular mycorrhizal fungi stands out as a pivotal element 
for advancing soil biology and health. The strategic inoculation of plants with 
these symbiotic fungi significantly improves the resilience of plants to a myriad 
of biotic and abiotic stressors, exhibiting the diverse protective roles played by 
these fungi in fostering plant fitness under different agro-climatic zones. In a 
phosphorus-limited environment, the inoculation of AM fungi proves to be par-
ticularly advantageous. This agricultural practice extends benefits beyond merely 
enhancing overall soil health. It plays a crucial role in rendering phosphorus 
accessible to plants, especially in cases where such nutrients would otherwise be 
unavailable. This dual impact, addressing both soil health enhancement and 
improved nutrient availability, serves to underscore the nuanced and multifac-
eted importance of mycorrhizal interactions in the context of sustainable agricul-
ture. Harnessing the potential of AM fungi in an appropriate manner offers a 
holistic and sustainable approach to addressing various challenges caused by 
biotic and abiotic stressors. This chapter endeavours to scrutinize the coevolution 
of crop maturation and progression with mycorrhizal interactions amidst chal-
lenging agroecological environs, with a particular emphasis on the role of such 
synergies in fostering food security.
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10.1	� Introduction

The contribution of agriculture to sustain the worldwide economy must be noticed. 
The crowded population relies so much on agriculture in several ways, which 
includes but not limited to food supply, and the provision of raw materials for the 
development of the industrial sector, which serves as a source of employment, con-
sequently generating foreign exchange earnings (Gollin et al. 2002). The agricul-
tural sector also affords a market for industrial products, thus summarizing that 
agriculture is of much significance in the economy of nations especially developing 
ones (Ogundipe et  al. 2019). Broadly, agriculture could be divided into forestry, 
fisheries, livestock and crop production. Microorganisms including mycorrhizal 
fungi play a pivotal role in sustaining natural ecosystems, thereby contributing to 
improving sustainable agriculture (Godfray et al. 2010). Key components like crop 
health, nutrient acquisition, and growth, as well as functional development, are 
markedly influenced by mycorrhizal fungi and their application. A majority of plant 
taxa on the land have customary symbiotic associations with AMF, which are bio-
trophic obligate organisms (Philippot et al. 2013). A diverse array of plants, consist-
ing of cereals, fruit trees, and vegetables has been notably found to develop 
associations with mycorrhizal fungi (Philippot et al. 2013).

AMFs own extra-radical mycelium (ERM), encompassing from the roots of host 
plants into the soil to absorb nutrients and water for the host plants (Smith and 
Smith 2011a). The interconnectedness, extent, and structure of the ERM critically 
impact nutrient flow to the host, helping as a critical component of the fungal body 
and a significant factor in the symbiotic alliance (Smith and Smith 2011a). The 
ERM harbours genes which is exclusively dedicated to nutrient translocation from 
the soil to the host roots, enabling the transport of nutrients from the host’s rhizo-
sphere (Smith and Smith 2011a; Puschel et al. 2016). In addition to nutritional sta-
tus, AMFs also contribute to the achievement of biogeochemical cycles, enhance 
the tolerance of host plants to abiotic as well as biotic stress, increase the plant phy-
tochemical compounds, enhance soil aggregation, and facilitate carbon sequestra-
tion, giving considerable care during different environmental stressors (Puschel 
et al. 2016). Research has proven that the various benefits consulted by AMF are 
intricately connected to the synergistic interactions of multiple bacterial communi-
ties in the mycorrhizosphere (Rouphael et al. 2015). These bacteria, in association 
with extra-radical mycelium and spores, play significant roles in improving plant 
growth, ranging from the production of antibiotics, siderophores, and indole acetic 
acid to mineralization, phosphorus solubilization, and nitrogen fixation (Rouphael 
et al. 2015). Bacterial strains associated with AMF have the ability to act as bio-
stimulants and bio-fertilizers for sustainable crop production (Turrini et al. 2018). 
Discovering the complex web of plant-microorganisms interactions reveals that 
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managing these microbial communities is a paramount importance. This guides 
toward agricultural approaches that are both environmentally friendly and support 
the long-term health and crop health resilience. Exploring these sides provides a 
chance to shape microbial interactions, paving the way for a more sustainable and 
environmentally approachable future in agriculture. This chapter aspires to collect 
robust information on mycorrhizal plants and their forbearances under hostile envi-
ronment. This chapter helps us find knowledge relating to common stressors and 
mycorrhizal role in their amelioration.

10.2	� Arbuscular Mycorrhizal Fungi: A Good Plant Symbionts

AMF belongs to the phylum Glomeromycota comprising families like Gigasporaceae, 
Acaulosporaceae, Glomeraceae, Ambisporaceae, Pacisporaceae, Archaesporacea, 
Paraglomeraceae, Claroidoglomeraceae, Sacculosporaceae, and Diversisporaceae 
(http://www.amf-phylogeny.com/, accessed on August 7, 2021). The life cycle of 
AMF is exclusively within a host plant because of their obligatory nature. During 
the asymbiotic phase of development, many short-lived mycelia are formed through 
spore germination, influenced by physical factors such as pH, temperature and 
moisture (Kiers et al. 2011). The pre-symbiotic phase takes place in the presence of 
the host plant’s root exudates (Kiers et al. 2011). At this event, the germling hyphae 
undergo morphogenesis, reorient, and develop branching patterns (Jiang et  al. 
2017). After that, physical contact is established between hyphae and roots of the 
host plant leading to appressoria differentiation, intracellular hyphal growth in the 
root cortex, penetration of root cells, and the formation of tree-like structures known 
as arbuscules (Bonfante and Genre 2008), which is considered as primary organs for 
nutrient exchange in the mycorrhizal symbiosis (Wipf et al. 2019). The arbuscules 
play a pivotal role in nutrient exchange, where AMF obtains carbon and lipids from 
the host, and in return, releases and translocate absorbed mineral nutrients through 
extra-radical mycelium (ERM) (Luginbuehl et al. 2017). There are two mycorrhizal 
formation types such as the Paris and Arum types, which has been encountered. The 
Paris type involves the direct growth of fungus from cell to cell in the root cortex, 
forming intracellular hyphal coils and intercalary arbuscules (Luginbuehl et  al. 
2017). Conversely, Arum-type arbuscules are formed terminally on hyphal intercel-
lular branches, spreading symbionts in an intercellular manner in root cortical cells 
(Jiang et al. 2017). Arum type mycorrhizal fungi are significantly prevalent in natu-
ral habitats and widespread in agricultural systems (Jiang et al. 2017). AMF com-
monly feature intra-radical vesicles that serve as storage structures filled with lipids, 
distinct from arbuscules. Once carbon is collected from the host, the symbiont’s 
ability to develop extra-radically begins, leading to complete colonization of the 
surroundings. The host receives nutrients regularly, and AMF interacts with micro-
organisms in the soil rhizosphere. Nearby plant roots are also colonized, fostering 
nutrient exchange between different hosts, irrespective of species, families, or gen-
era (Luginbuehl et al. 2017). Subsequently, asexual spores are developed by ERM, 
marking the closure of the AMF life cycle, reliant on soil surroundings and fertility 
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(Luginbuehl et al. 2017). Later, asexual spores are formed by the ERM, depending 
on how the soil can maintain the growth of mycorrhiza and also consequent upon 
the fertility of the soil, and this stage then closes the life cycle of the AMF.

The association between AMF and plants is widespread, encompassing various 
plant phylogenies that have evolved on terrestrial landscapes over the course of 
approximately 475 million years (Field et al. 2015). Micronutrients such as zinc, 
nitrogen, copper, and other important elements like phosphorus derived from the 
soil, are efficiently acquired through the ramification of mycelia in an extraradical 
manner (Liu et al. 2000). Extraradical hyphae exhibits the ability to acquire phos-
phorus from organic sources like DNA and proteins by secreting acid phosphatases. 
(Sato et  al. 2015). The Mucoromycota and Glomeromycota exhibit a consistent 
pattern as they form intracellular symbiotic association with majority of the crops 
(Smith and Smith 2011a; Spatafora et  al. 2016). The evident benefit of AMF in 
enhancing crop growth through nutrient supply has recently garnered significant 
attention for its capacity to reduce dependence on inorganic fertilizers without 
negotiating with the crop yield (Berruti et al. 2016a, b). The nutrients taken up by 
AMF is also markedly influenced by factors like the CO2 concentration in the air, 
nutrient availability, and fungi and host involved (Field et al. 2012). The substantial 
variability in the outcomes arising from the involved factors poses a substantial 
impairment to the widespread application of AMF in improved agriculture. The 
symbiotic association between plants and fungi shows advantageous by expanding 
the range of available nutrient resources for plant growth and development (Johnson 
2010). Mycorrhizal plants exhibit enhanced growth in phosphorus-depleted soils 
compared to plants without such symbiotic associations (Bender et  al. 2016). 
Moreover, nitrogen transfer to plant by AMF via extraradical hyphae has been 
extensively examined (Hodge and Fitter 2010), revealing an associated increase in 
plant growth and development (Thirkell et al. 2016). These revelations indicate that 
AMF possess the capability to supplement the sources of nutrients accessible for 
host plants and increase their uptake. However, the extent to which plants harness 
the benefits of AMF symbiosis hinges upon various agronomic practices like fertil-
izer application and other land management (Johnson 2010). The response of cereal 
crops may vary. The growth of cereals remains unaffected by AM fungi in soils 
where phosphorus concentration equals that achieved through application of 
phosphorus-based fertilizer (Li et al. 2016). This finding implies a crucial balance 
between fertilizer utilization and the benefits derived from the symbiotic relation-
ship with AMF. However, few plants have demonstrated diminished growth when 
symbiosed with AM fungi. It is assumed that substantial transfer of phosphorus by 
fungi results in the release of plant carbon to the fungi, leading to a carbon defi-
ciency in the plant, thus causing sluggish and restrained growth of plants (Kiers 
et al. 2011). Walder et al. (2012) reveal that the nutrients and minerals acquisition 
through a shared mycelium is contingent upon host specificity, independent of car-
bon availability in the mycelium network. Moreover, The conventional pathway for 
phosphorus uptake by the roots of plant facilitated by the inherent transporters of 
phosphates, is typically hampered and reduced in the presence of AMF (Smith and 
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Smith 2011b). The phosphorus uptake in plants associated with AMF is consider-
ably reduced when the phosphorus delivery mechanism of AMF fails to compensate 
for the plant’s lower phosphorus utilization (Smith and Smith 2011b). The variation 
regarding phosphorus uptake routes and their relative contributions may be liable 
for the differences in phosphorus utilization. The positive impact of AMF on the 
growth of plants within the Solanaceae, Alliaceae, and Fabaceae families has grown 
appreciably while the response within other crop families, mainly cereals, remains 
undefined (Li et al. 2005). Variations in the response to AMF association are evident 
even among cultivars of the similar species (Tawaraya 2003). This kind of inconsis-
tency has been observed in wheat, where some cultivars demonstrate a positive 
response to AMF associations (Hu et  al. 2014), while others exhibit a negative 
response (Li et al. 2016). The precise cause of this divergence present a significant 
problem to the widespread application of AMF in cereal production on a wider 
scale. The physiological, morphological, and inherent features of plant roots likely 
influence the extent and efficiency of nutrient attainment in AMF (Navarro-
Fernandez et  al. 2016). For instance, widely branched roots in cereals enable a 
methodical nutrient uptake, obviating the necessity for AMF alliance, as the roots 
are inherently adapted to complete functions analogous to those of AMF (Smith and 
Smith 2011a). To optimize nutrient integration for crop development and growth, a 
comprehensive consideration of various factors is the need of hour. These include, 
plant’s genetics, the consistent supply of nutrients, understanding of the root char-
acteristics, their quality, pivotal factors of root architecture, inclination for symbi-
otic associations, and the influence of pathogens (Li et al. 2016). 

The communities of AMF in the subsoil show distinctive characteristics and are 
plentiful (Higo et al. 2013; Sosa-Hernández et al. 2018). Their contributions to the 
functioning of the ecosystem and plant growth are unappreciated. The characteris-
tics of the subsoil like compaction, large bulk density, limited pore spaces and mini-
mal concentration of oxygen in totality provide a semi-optimal habitat for plant 
roots (Moll et al. 2016). The presumption is that AMF are well adapted to the sub-
soil, although there is no validated evidence regarding the specific characteristics of 
subsoil AMF. It is predictable that AMF existing in the subsoil will exhibit stress 
tolerance, following the CSR context (Chagnon et  al. 2015). The phylotypes are 
expected to exhibit efficient resource consumption, leading to long-lasting biomass 
that results in cost-effective rewards for the plant. While mycelium growth may be 
initially slow without immediate assistances, it is likely to serve as a carbon sink for 
the host plants. However, immediately the network of mycelium is entrenched, the 
services provided to the plant will be long-lasting without any cost (Säle et  al. 
2015). The dispersal of AMF spores could be by arthropods, earthworms, small 
mammals or wind (Egan et al. 2014), but these vectors are not likely to be germane 
in the subsoil with the earthworm being a deviation. The development of fungal 
mycelium is advantageous for the host plant, as AMF spores act as storage for car-
bohydrates and lipids (Walder et al. 2012). In the symbiotic association, the host 
contributes energy and carbon, the mycelium explores the soil, extract the nutrients 
for the cause of the plant. AMF are considered for their pivotal role in soil formation 
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and its improvement (Liu et al. 2016). AMF actively contribute in weathering of 
rocks (Berruti et al. 2016a, b). It will be very challenging for the plants to survive in 
nutrient depleted soil without mycorrhizal fungi (Leake and Read 2017). AMF have 
the ability to release low molecular weight organic chelators that help in mineral 
weathering. Howbeit, the AMF contributes to weathering of minerals through indi-
rect routes like improved soil stabilization and respiration plus intensified exudation 
and evapotranspiration (Verbruggen et al. 2021). The anticipated differences in the 
weathering patterns between different group of mycorrhizal fungi are not readily 
apparent (Koele et al. 2014). The subsoil contains plenty amount of minerals, how-
ever, does not actively support biological activity. The mycorrhizosphere, supports 
microbial activity in the subsoil that contributes to a sizable soil volume. This con-
joint activity involves AMF, roots and the associated soil microorganisms that 
enhance soil expansion leading to enhanced and substantial soil formation (Higo 
et al. 2013).

The functions of mycorrhizal associations may undergo various changes due to 
intensive agricultural activities, in addition to positive impact of AMF on host plant 
growth and nutrition. The introduction of wide array of chemical fertilizers has also 
been found influential to mycorrhization (Chagnon et al. 2015; Johnson et al. 2015). 
Rillig et al. (2015) reported that historical aspects and crop cultivations before intro-
ducing AMF as inoculum should also be considered. For instance, addition of AMF 
may prove beneficial for wheat, but its effects may considerably vary depending on 
the species, as observed in the case of barley (Navarro-Fernandez et al. 2016). The 
utilization of AMF in mixed cultivations may also develop a considerable constraint. 
The quantification of nutrient exchange for carbon among symbionts remains 
incomplete, particularly with regard to arable crops for profitable drives. These gaps 
in knowledge hinder research on the application of AMF for the cultivation of vari-
ous food crops. It is important to focus on the explicit roles of AMF in cropping 
systems especially their response to application of mycorrhizal fungi (Li et  al. 
2016). Research should also encompass cocktail communities, and all these factors 
are significant in the performance of AMF inoculation on plants as regards nutrient 
uptake, development and growth. There is no information on tracking crops from 
emergence to harvest, meaning that it is laborious to come about any document in 
literature, which infers the quantity and total yield to AMF application rates and 
doses. The effect of the environment on AMF alliance with crops cannot be over-
looked, though we may say that it is not so significant a factor in nutrient exchange. 
The level of importance of AMF to the host could be measured via the carbon 
received. Also, carbon, phosphorus and nitrogen exchange in the AMF plant rela-
tionship measurement is hardly recorded in the literature, and this is another gap in 
the mycorrhizal research. Saturation of the atmosphere with CO2 reduces the 
exchange of carbon and nutrients between AMF and host plants (Field et al. 2012). 
However, this phenomenon for agricultural crops remains uncertain as significant 
research has not been performed. Intergovernmental Panel on Climate Change 
(IPCC) revealed that atmospheric CO2 undoubtedly impact the agricultural crops. 
The effect of elevated CO2 on mycorrhizal symbiosis has also been unravelled and 
such experiments gave very nice information. Comprehending the response of these 
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symbionts to climate change, especially as regards increased atmospheric CO2 is 
necessary. The effect of AMFs on crop yield globally and their prospective ability 
to assuage environmental fuss in the future should be of prime concern (Challinor 
et al. 2016). The AMF have potential applications in connection with anticipated 
environmental challenges, especially those that are easily expectable or region-
specific. Recognition of the plant attributes both below and above ground is very 
important for analysing the functional adaptability of mycorrhizal fungi and crop 
interactions in connection to various environmental conditions. This change enables 
the maintenance of crop yields in the face of climates change. The carbon exchange 
evaluation for nutrients among different crop can be also compared similarly to soil 
types under various field conditions. These unfamiliar attributes possess the poten-
tial to function optimally within changing surroundings, making them suitable sub-
jects for future research. When spotted, they could be included in breeding research 
for commercial purposes. The available information on AMF and their relationships 
with different crops, especially in the context of food production has been derived 
from temperate regions. This underscores a significant gap in knowledge concern-
ing plant interactions with AMF in tropical climates, chiefly in underdeveloped 
nations (Bhantana et al. 2021). Understanding the mechanisms involved between 
AMF and specific plant species at the physiological and molecular levels should be 
explained through the simple experimental model. The mycorrhizal effects at eco-
system, landscape, or field levels, where the dynamics of the ecosystem and the 
complex connections between fungi and plants occur in complex ways. Integration 
of a new ecological approaches into farming requires a detailed understanding of 
the involved practices and complexities Cabral et al. (2015). This underscores the 
necessity for ongoing field experiments to measure nutrient exchanges, understand 
fungal connections, and observe their responses to changing climate. These efforts 
are important for establishing AMF in sustainable agriculture. The measurement of 
carbon, phosphorus, and nitrogen outflow among plant symbionts, especially under 
normal and elevated levels of CO2, is a significant aspect that demands consider-
ation. The influence of the symbiotic relationship on plant defence, soil function and 
structure appears to be a significant gain from the association.

10.3	� AM Fungi and Their Role in Stressor Ameliorations 
and Plant Fitness

10.3.1	� AM Fungi as Alleviator of Biotic Stressors

10.3.1.1	� Mycorrhizal Fungi and Their Effects on Plant 
Nematode Management

Fungi symbionts form an alliance with the roots of the majority of plants, providing 
them a range of benefits, such as increased nutrient uptake, improved water uptake, 
and enhanced resistance to various biotic and abiotic stresses. Besides, AM fungi 
either in solo or in combination with other microorganisms play a pivotal role in 
plant disease control (Ansari et al. 2020b; Ansari and Mahmood 2019a, b). Beneficial 
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microorganisms of different groups improve plant health including crop production 
and productivity (Aghale et al. 2017; Ansari and Mahmood 2017a, b; Ansari et al. 
2017a, b, 2019a, b; Fabiyi et al. 2023).

AM fungi can indirectly suppress plant diseases by improving plant health and 
promoting growth, thereby reducing plant susceptibility to pathogens. This is 
achieved through the mycorrhizal-induced resistance mechanism, which involves 
priming plant defence responses against potential pathogens (Solanki et al. 2020; 
Rizvi et al. 2015). The AM fungi can enhance the expression of pathogenesis-related 
(PR) genes, which are involved in the production of antimicrobial compounds and 
other defence mechanisms (Campos-Soriano et al. 2012). AM fungi can compete 
with pathogens for nutrients and space, further reducing their ability to infect plants 
(Goltapeh et al. 2008). AM fungi can reduce the severity of various plant diseases 
caused by fungal, bacterial and viral pathogens. For example, studies have demon-
strated that AM fungi can reduce the severity of fusarium wilt in tomato plants, 
powdery mildew in cucumber plants and root rot in bean plants (Srivastava et al. 
2010; Liu et al. 2018; Al-Askar and Rashad 2010).

The AM fungi in controlling plant diseases can be affected by a wide range of 
factors that includes the type of plant and pathogen, environmental conditions and 
AM fungal diversity. AM fungi and their significance in plant disease control and 
developing effective strategies for utilizing these fungi in sustainable agriculture are 
also important aspects.

The plant parasitic nematode, including Meloidogyne incognita, is a major para-
site of different crops (Fabiyi and Olatunji 2021a, b). The AM fungi have been 
reportedly to be phenomenal in the management of different plant diseases (Ansari 
et al. 2020a; Sumbul et al. 2017; Solanki et al. 2020; Rizvi et al. 2015; Ansari and 
Mahmood 2019a). According to a study conducted by Singh et al. (2016), inocula-
tion of tomato plants with G. fasciculatum resulted in a significant reduction in the 
number of M. incognita juveniles in the roots, as well as a decrease in the number 
of galls and egg masses produced by the nematodes. The study also reported an 
increase in plant growth characters markedly. Another study by Siddiqui and 
Mahmood (2012) reported similar findings, where the application of G. fascicula-
tum reduced the population density of M. incognita, and enhanced the plant health 
contributing variables. The mechanism by which G. fasciculatum suppresses 
M. incognita is not fully understood, but it has been observed that AM fungi can 
induce systemic resistance in plants against a wide array of plant pathogens through 
the activation of defense mechanisms, as well as through the direct competition for 
nutrients with the nematodes.

Pozo and Azcon-Aguilar (2007) showed that the inoculation of tomato plants 
with AMF induced the expression of defense-related genes, such as pathogenesis-
related proteins and enzymes involved in the production of reactive oxygen species. 
This activation of plant defences was somehow related to a poor number of M. incog-
nita juveniles in the roots.

Similarly, a study by Jung et al. (2012) observed the introduction of AM fungi to 
cucumber plants increased the activity of defence enzymes and the production of 
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phytohormones (jasmonic acid and salicylic acid) that results in a reduction of root-
knot nematodes in the soil.

Regarding the second hypothesis, a study by Stirling and Roper (2010) demon-
strated that the inoculation of maize plants with AM fungi reduced the population 
density of M. incognita and increased plant growth parameters such as shoot bio-
mass and leaf area. The authors suggested that this effect was due to the ability of 
AMF to extract soil nutrients more efficiently than the nematodes, thus reducing the 
availability of nutrients for the nematodes and limiting their growth. Overall, these 
studies provide support for the hypotheses that AMF can induce plant defences and 
compete with nematodes for nutrients, thus playing a role in the suppression of 
M. incognita nematodes.

Likewise, Heterodera spp. is a genus of plant-parasitic nematodes, commonly 
known as cyst nematodes, that cause significant damage to crops worldwide (Fabiyi 
et  al. 2018a, b; Fabiyi et  al. 2020; Fabiyi 2021a, b, c, d). While there is limited 
research on the effects of Glomus fasciculatum on Heterodera nematodes, some 
studies have suggested that AMF may have potential as a biological control agent 
against these pests.

Goswami et  al. (2013) investigated the impact of AM fungi inoculation on 
Heterodera cajani, a cyst nematode that infects pigeon pea plants. The researchers 
found that the inoculation of pigeon pea plants with Glomus fasciculatum impaired 
the population of H. cajani cysts in the soil, also the juvenile population was 
decreased over uninoculated plants. The authors suggested that AMF may suppress 
H. cajani by inducing plant defences and by competing with the nematodes for 
nutrients. The mechanisms by which G. fasciculatum suppressed H. cajani in this 
study are not fully understood, but there are several possible explanations. One 
mechanism may involve the activation of plant defences. The studies have shown 
that the inoculation of plants with AM fungi can induce the expression of defence-
related genes and enzymes, which may help protect the plant from nematode infec-
tion (Pozo and Azcon-Aguilar 2007). It is possible that the inoculation of pigeon 
pea plants with G. fasciculatum in this study resulted in the activation of defence 
mechanisms that prevented H. cajani from infecting the plant roots. Another possi-
ble mechanism is competition for nutrients. G. fasciculatum forms symbiotic asso-
ciations with plant roots, allowing it to extract nutrients such as phosphorus and 
nitrogen from the soil more efficiently than non-mycorrhizal plants. By competing 
with H. cajani for nutrients, G. fasciculatum may have impaired the multiplication 
and development of plant nematodes.

 Saberi-Riseh et  al. (2016) investigated the effect of AMF inoculation on 
Heterodera schachtii, a cyst nematode that infects sugar beet plants. The research-
ers found that the inoculation of sugar beet plants with G. fasciculatum showed a 
significant reduction in H. schachtii in the roots and soil, as well as a decrease in the 
number of cysts produced by the nematodes. The authors suggested that AMF may 
suppress H. schachtii by altering the nematode’s life cycle and by enhancing plant 
growth and nutrient uptake. The authors suggested that AMF may suppress 
H. schachtii through several mechanisms. Firstly, the AMF may alter the nema-
tode’s life cycle by reducing its ability to hatch and infect plants. This effect may be 
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due to the production of compounds by the AMF that are toxic to the nematode or 
that interfere with its chemosensory abilities. Secondly, the AM fungi may enhance 
plant growth and nutrient uptake, making the plants more resistant to nematode 
infection. This effect may be due to the ability of the AM fungi to develop special-
ized network of hyphae in the soil, which can access nutrients that are not available 
to the plant roots. The enhanced nutrient uptake by the plants leads to an accelera-
tion in the production of some defence molecules, which can inhibit nematode 
growth and development.

10.3.1.2	� Fungal Disease Management Through AM Fungi
The reciprocal association between AM fungi and plants is known to improve plant 
health and provide plants with enhanced protection against various biotic and abi-
otic stresses. In the case of plant diseases, AM fungi can play a significant role in 
mitigating disease severity and preventing disease spread. Several studies have 
reported the beneficial effects of G. fasciculatum on the management of Fusarium 
wilt disease in various crops. For example, in tomato plants, the application of 
G. fasciculatum registered a significant reduction in the severity of Fusarium wilt 
disease, in addition to increasing plant growth and productivity (Ansari et al. 2019a, 
b; Khalid et al. 2019; Zhang et al. 2018). Similarly, in banana plants, the use of 
G. fasciculatum exhibited reduced Fusarium wilt disease incidence, also enhance 
the plant growth characters (Luo et al. 2018; Singh et al. 2017). In cotton plants, the 
application of G. fasciculatum was found to decrease the incidence of Fusarium wilt 
disease, in conjunction with increase plant growth and yield (Fakher et al. 2016). 
Finally, in melon plants, the use of G. fasciculatum was found to diminish the sever-
ity of Fusarium wilt disease, coupled with improvement in plant growth and fruit 
quality (Abdel-Salam et al. 2019).

The mechanism of action of G. fasciculatum in the management of Fusarium 
wilt disease is not well understood, but it is thought that the induction of systemic 
resistance in plants is one of the important mechanisms. This induction of systemic 
resistance is mediated by the synthesis of various defence-related compounds, such 
as phytohormones, enzymes and secondary metabolites, which are triggered by the 
presence of AM fungi in plant roots. These defence-related compounds act as sig-
nalling molecules that activate the plant’s defence system against the invading 
pathogen, thereby reducing the severity of disease symptoms.

In addition to the induction of systemic resistance, the presence of Glomus fas-
ciculatum in the soil also promotes the multiplication of beneficial soil microorgan-
isms, which can contest with Fusarium oxysporum for nutrients and space, thereby 
reducing the pathogen’s ability to establish itself in the soil. Furthermore, AM fungi 
can enhance the uptake of nutrients, particularly phosphorus, by plants, which can 
improve plant health and increase plant resistance to disease.

10.3.1.3	� Bacterial Disease Management Through AM Fungi
Some studies have shown that AM fungi, including G. fasciculatum, can alleviate 
plant diseases, especially those caused by plant pathogenic bacteria by enhancing 
plant growth and stimulating the plant’s defence mechanisms.
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One mechanism by which AM fungi enhances plant defence against bacterial 
diseases is by induced systemic resistance. The colonization of roots by AM fungi 
can trigger the plant’s systemic acquired resistance (SAR) pathway, leading to the 
accumulation of defence-related compounds such as phytohormones, enzymes and 
secondary metabolites, which can activate the plant’s defence against bacterial 
pathogens. Another mechanism is the direct competition between AMF and bacteria 
for nutrients and space in the rhizosphere. AM fungi can compete with bacteria for 
the available nutrients and create a hostile environment for bacterial growth by 
releasing antifungal compounds and stimulating the plant’s production of phyto-
alexins and other antimicrobial compounds (Smith and Smith 2019).

Liao et  al. (2014) reported that G. fasciculatum inoculation to tomato plants 
reduced the incidence of bacterial wilt, which is caused by virulent strain of 
Ralstonia solanacearum, which seems to be due to the induction of systemic resis-
tance in the plants and the competition for nutrients in the rhizosphere. In a study by 
Berruti et al. (2016a, b), G. fasciculatum inoculation reduced the incidence of bacte-
rial canker in tomato caused by Clavibacter michiganensis subsp. michiganensis. 
The researchers proposed that reduced disease incidence was due to the stimulation 
of the plant’s defence mechanisms and the competition for nutrients in the rhizo-
sphere. In a study by Wu et al. (2019a, b), inoculation with G. fasciculatum reduced 
the incidence and severity of bacterial leaf blight in rice (Causal agent, Xanthomonas 
oryzae pv. oryzae). The researchers attributed the reduced incidence of the disease 
seems to be due to the increased expression of defence-related genes and the com-
petition for nutrients with the pathogen. Although direct evidence on the effect of 
G. fasciculatum on bacterial plant disease management is limited, the available 
studies suggest that it can indirectly affect bacterial disease incidence and severity 
through the stimulation of plant defence mechanisms and the competition for nutri-
ents in the rhizosphere.

10.3.1.4	� Viral Disease Management Through AM Fungi Application
AM fungi have exhibited remarkable phytoviral disease resistance-enhancing prop-
erties. The intricacies of the underlying mechanisms responsible for these effects 
remain obscure and poorly comprehended, but there is evidence that mycorrhizal 
fungi may accelerate the induction of systemic resistance, improve the plant growth 
and nutrient uptake capability and modulate plant hormone signalling pathways, all 
of which can contribute to increased plant resistance to viral diseases. The scholarly 
inquiry conducted by Cao et  al. (2020) delved into exploring the impact of AM 
fungi on the fortitude of cucumber plants against the pernicious cucumber mosaic 
virus (CMV). The researchers found that AM fungi improved the resistance of 
cucumber plants to CMV infection by regulating plant hormone signalling and 
SAR. The researchers inoculated cucumber plants with AM fungi and then infected 
the plants with CMV. They found that the AM fungi treatment impaired the disease 
incidence and severity of CMV symptoms in the cucumber plants. The AM fungi 
treatment also increased the activity of defence-related enzymes and the expression 
of defence-related genes in plants. AM fungi treatment increased the levels of plant 
hormones, salicylic acid and jasmonic acids in the plants, which are important plant 
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hormones involved in defence mechanisms against pathogens. The researchers also 
found that the AM fungi treatment enhanced SAR in the plants, which is a long-
lasting defence response that provides broad-spectrum resistance against a range of 
pathogens.

Wang et al. (2019a, b) investigated the effect of AM fungi on the resistance of 
maize plants to maize chlorotic mottle virus (MCMV). The researchers found that 
AM fungi enhanced the resistance of maize plants to MCMV infection by improving 
plant growth and modulating plant defence responses. The researchers inoculated 
maize plants with AM fungi and then infected the plants with MCMV. They found 
that the AM fungi treatment significantly lowered incidence and severity of MCMV 
symptoms in the plants. The AM fungi treatment also increased plant height, shoot 
biomass and root biomass over non-inoculated plants. AM fungi treatment increased 
the activity of defence-related enzymes such as peroxidase and phenylalanine ammo-
nia lyase and increased the accumulation of phenolic compounds in the plants Aseel 
et al. (2019). These are all important components of the plant defence response 
against viral infections. They also opined that the AM fungi treatment upregulated 
the expression of defence-related genes in the plants, such as pathogenesis-related 
protein genes and genes involved in phytohormone signalling pathways.

Marquez-Garcia et al. (2020) reviewed the role of beneficial soil microorganisms 
and their interactions with the plant immune system for the biological control of 
plant viral diseases. They revealed that beneficial soil microorganisms can induce 
systemic resistance in plants and enhance their ability to resist viral infections. 

The study focused on the interactions between plants and three groups of beneficial 
soil microorganisms: AM fungi, plant growth-promoting rhizobacteria (PGPR) and 
Trichoderma species Ramasamy et al. (2011). AM fungi were found to enhance the 
production of defence-related compounds in plants and to induce systemic resistance 
against viral infections. PGPR were found showing stimulated the plant immune sys-
tem by producing signalling molecules that activate defence pathways, and by com-
peting with viral pathogens for nutrients and space. Trichoderma species were found 
to produce antiviral compounds and to induce the expression of defence-related genes 
in plants Dey et al. (2006). The researchers also highlighted the potential for combin-
ing different types of beneficial soil microorganisms to enhance their effectiveness in 
controlling plant viral diseases. For example, AM fungi and PGPR can work together 
to induce systemic resistance in plants and enhance their growth and health.

10.3.2	� AM Fungi as Alleviator of Abiotic Stressors

10.3.2.1	� AM Fungi and Its Significance in Heavy 
Metals Amelioration

AM fungi, being integral to the sustenance of plant nutrition and soil vitality, have 
demonstrated auspicious potential for employment in the amelioration of soils 
tainted with toxic heavy metals Chen et al. 2007. The AM fungi have been found to 
impact heavy metal remediation include Rhizophagus, Funneliformis, 
Claroideoglomus and Gigaspora (Fernandez and Nair 2018). These genera have 

O. A. Fabiyi et al.



239

shown accumulation of heavy metals in their hyphae and spores, reducing their 
bioavailability in the soil and promoting their immobilization (Feng et al. 2013). 
Some key examples of AM fungi that have been found to impact heavy metal reme-
diation include Rhizophagus intraradices, Funneliformis mosseae, Claroideoglomus 
etunicatum and Gigaspora margarita (Khan 2005; Fernandez and Nair 2018). 
Rhizophagus intraradices have been shown to reduce cadmium (Cd) concentration 
in maize and sorghum by up to 70% in contaminated soils (Huang et  al. 2018). 
Funneliformis mosseae has been found to reduce lead (Pb) uptake in tomato plants 
by up to 50% in Pb-contaminated soils (Singh et al. 2018). Claroideoglomus etuni-
catum has been shown to reduce zinc (Zn) uptake in maize by up to 50% in 
Zn-contaminated soils (Wang et  al. 2017). The discovery has been made that 
Gigaspora margarita can promote the growth of Brassica juncea vegetation while 
simultaneously mitigating their copper (Cu) concentration by an impressive margin 
of up to 80% in Cu-laden soils (Wu et al. 2019a, b). The important mechanisms 
involved in heavy metal reduction by AM fungi include

Adsorption and Sequestration
AM fungi can adsorb heavy metals onto their cell walls or sequester them within 
their hyphae, reducing their bioavailability in the soil and promoting their immobi-
lization (Garget al. 2017).

Precipitation
AM fungi can help reduce the effect of heavy metals and thus well balanced ecosys-
tem may be maintained.  in the form of insoluble metal sulphides, which reduces 
their solubility and mobility in the soil (Miransari 2017).

Complexation
AM fungi possess the capability of producing complexes with heavy metals, thereby 
facilitating the reduction of their phytotoxicity whilst concurrently instigating their 
immobilization within the soil (Li et al. 2017).

Bioaccumulation
AM fungi have the competence to amass heavy metals within their tissues, conse-
quently diminishing their bioaccessibility within the soil and fostering their immo-
bilization (Szada-Borzyszkowska et al. 2021).

Ma et al. (2020) conducted an inquiry into the ramifications of the AM fungi on 
the augmentation of growth and uptake of cadmium (Cd) in Solanum nigrum 
L. thriving in a multifariously tainted soil encompassing lead (Pb) and zinc (Zn). 
Results showed that inoculation with AM fungi significantly improved plant growth, 
photosynthetic pigment content and antioxidant enzyme activity. Moreover, AMF 
significantly increased the Cd concentration in the roots and shoots of the plants, 
indicating that they can enhance Cd uptake. The researchers also investigated the 
mechanisms implicated in AMF-mediated Cd uptake. They found that AM fungi 
colonization increased the expression of genes involved in Cd transport and accu-
mulation, such as the ABC transporter genes and the metallothionein gene. The AM 
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fungi enhanced the activity of enzymes phenomenal in Cd chelation and detoxifica-
tion, like glutathione reductase and superoxide dismutase. The findings of Ma et al. 
(2020) suggest that AM fungi can be a useful tool for phytoremediation of Cd, Pb 
and Zn multi-contaminated soils. The mechanisms implicated include increased 
expression of genes involved in Cd transport and accumulation, enhanced activity 
of enzymes involved in Cd chelation and detoxification.

Li et al. (2019) conducted a study to find out the beneficial role of AM fungi on 
Cu uptake and its distribution in tomato plants. The researchers found that AM fungi 
exhibit the capacity to enrich the growth and biomass of tomato vegetation within 
copper (Cu)-impaired soil, thus signifying their potential to enhance plant fortitude 
against Cu-related duress. Additionally, the results showed that AM fungi can 
enhance Cu uptake and gathering in tomato plants. The Cu content in the roots of 
tomato plants colonized with AM fungi was expressively more advanced than that 
of non-mycorrhizal plants. Furthermore, the scientists ascertained that the inocula-
tion of AM fungi led to a surge in the translocation of copper (Cu) from roots to 
shoots, as evidenced by the markedly elevated Cu content discerned in the shoots of 
mycorrhizal flora in comparison with the non-mycorrhizal counterparts.

The mechanisms implicated in the AM fungi-mediated Cu uptake and transloca-
tion in tomato plants involve several processes. First, AMF can increase the surface 
area of roots by forming a dense network of hyphae, which increases the interaction 
of plant roots and soil particles, leading to increased uptake of Cu Zhou et al. (2017). 
Second, AM fungi can release organic acids and enzymes that solubilize insoluble 
Cu compounds in the soil, making them available for plant uptake (Fomina et al. 
2005). Third, AMF can regulate root membrane permeability and transporters, 
which affects the uptake and translocation of Cu in plant tissues Andrade et al. 
(2010). Lastly, AMF can increase the production of phytochelatins (PCs) in plant 
tissues, which bind to and detoxify Cu ions, reducing the toxicity of Cu in the plant. 
The mechanisms implicated in this process involve several physiological and bio-
chemical processes that are regulated by AMF colonization. These discoveries have 
unveiled salient revelations regarding the prospective utility of AMF AM fungi in 
the rectification of copper (Cu)-tainted soil Riaz et al. (2021). In essence, the capac-
ity of AM fungi to curb heavy metal bioaccessibility while simultaneously spurring 
their immobilization within the soil renders them an encouraging instrument for the 
amelioration of heavy metal-laden soils.

10.3.2.2	� AM Fungi and Its Role in Different Environmental Factors 
(Temperature, Soil Texture, Sulphur Dioxide and Other 
Environmental Gas Elevation) 

AM Fungi and Temperature Reduction
Diverse AM fungal genera have been documented to exert an influence on the ambi-
ent temperature of their corresponding host plants’ rhizosphere. Liu et al. (2023) 
demonstrated that inoculation of AM fungus significantly improved the growth of 
cucumber seedlings under high-temperature conditions by enhancing nutrient 
acquisition and reducing oxidative damage. There are some important mechanisms 
that are involved in thermo tolerance studies. For example, AM fungi can enhance 
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the availability of nutrients such as phosphorus and nitrogen to their host plants, 
which can help plants to cope with high-temperature stress (Kumar et al. 2021), AM 
fungi are proficient in eliciting the generation of heat-shock proteins within their 
host plants, which partake in shielding the plants against the deleterious effects of 
high-temperature duress. (Wang et al. 2019a, b), Plant symbionts increase antioxi-
dant activity that can help to scavenge reactive oxygen species and prevent oxidative 
damage under high-temperature stress conditions (Wang and Qiu 2006). AM fungi 
can augment the hydrological status of their corresponding host plants via fortifica-
tion of water absorption and minimization of water leakage, thus culminating in the 
facilitation of plant resilience towards high-temperature stress (Wang et al. 2005).

AM Fungi and Soil Texture
Soil textural composition stands out as a key influencer in shaping the constitution 
and efficacy of mycorrhizal interactions, and numerous research endeavours have 
delved into the linkage between these factors. Research has shown that AM fungal 
diversity and population can vary with different soil texture. Chen et  al. (2018) 
reported the richness and diversity of AM fungi in different soil types followed the 
order of loamy soil > sandy soil > clayey soil. Liu et al. (2020) found that AM fungi 
colonization was greater in sandy loam soil than the clay soil where tomato plants 
were cultivated. Effects of soil texture on the functioning of mycorrhizal associa-
tions have also been investigated. Lehnert et al. (2017) reported that AM fungi inoc-
ulation enhanced the growth of grasses in sandy soil, but had no effect in clayey soil. 
Wang et  al. (2015) observed that mycorrhizal inoculation increased phosphorus 
uptake and plant growth characters production rate in sandy loam soil, but had no 
effect in clayey soil. Furthermore, the relationship between soil texture and mycor-
rhizal associations can also vary depending on the type of mycorrhizal fungi. 
Klironomos et al. (2000) found that the effects of soil texture on AM fungi were 
stronger than on EM, which were more affected by soil chemistry.

10.4	� Conclusions and Future Outlooks

The strategic application of AM fungi is a comprehensive tactic to raise the overall 
well-being of soil. This includes a triad of developments in biological, physical, and 
chemical properties of soil leading to resilient and fertile soil. The symbiotic asso-
ciation with AM fungi clarifies a significant role in pathogen suppression, deploying 
a range of mechanisms that actively reduce the impact of infections. The scalability 
of AM fungi in sustainable agriculture is still a challenging task. This includes a 
delicate balance, ensuring that the application of AM fungi is not just a local remedy 
but a complete shift in farming practices. This way natural resilience of plants can 
be improved through mycorrhizal associations not only, but also curtail the reliance 
on chemical pesticides, contributing to a more sustainable and eco-friendlier agro-
ecosystem. The application of mycorrhiza is practicable, for future research route 
projections, the focal point should be mycorrhizal inoculated seedlings for sizable 
and substantial agricultural production. Future research is expected to concentrate 
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on the optimization of nutrient uptake with the effect on yield actualization and 
dependable output. By recognizing optimally, the traits relevant to AM fungi flexi-
bility in plant species, crucial progress can be achieved towards food security in 
supportable systems of agriculture.
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