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Abstract. With the development of brain activity detection andmachine learning,
as a new technology ofman-machine-environment system engineering (MMESE),
brain-computer interface (BCI) has been applied to human life. At present, the BCI
using functional near-infrared spectroscopy (fNIRS) to obtain neural activity has
developed rapidly. However, there is still a problem that the data dimension is too
large for feature extraction. In this paper, we propose a feature extraction method
based on neural synchronization, and verify our method based on the experimental
data. Our results show that the neural synchronization between two brain regions
(rTPJ and the rDLPFC) encodes the effective information of decision-making
behavior. Based on the neural synchronization, decision-making behavior can be
accurately decoded and predicted. This paper provides a reference for feature
extraction of brain-computer interface.
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1 Introduction

With the development of functional brain imaging technology and electrophysiological
technology, researchers have discovered the cerebral cortex and subcutaneous structures
involved in social decision-making and value judgment [1]. In the cerebral cortex, the
dorsolateral prefrontal cortex (DLPFC) and the temporo-parietal junction (TPJ) are two
brain regions related to decision-making. Neural imaging studies found that DLPFC
participated in cognitive functions such as working memory, rule learning, planning,
attention andmotivation [2]; TPJ is amultimodal brain area related to cognitive functions
such as “Theory of Mind”, moral judgment and empathy [3]. In addition, there exists
functional connection between the DLPFC brain area and the TPJ brain area, forming a
neural circuit related to decision-making function [4].

In recent years, the fields of machine learning and deep learning have developed
rapidly. Based on the neural activity of the brain, neural activity signals can be decoded
by using relevant algorithms. On the one hand, it is helpful to understand the complex
cognitive activity process, andon the other hand, the construction of the transmission path
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between the nervous systemand the external information is conducive to the development
of the brain-computer interface (BCI) field [5, 6]. BCI is being applied to our lives,
especially in the medical field, helping patients recover sensory and perceptual functions
or control artificial limbs [6]. BCI use invasive and non-invasive technology to collect the
neural activity of the brain. Based on the advantages of high time resolution and low cost,
functional near-infrared spectroscopy (fNIRS) is widely used in BCI field [7]. fNIRS
generates multi-dimensional data through multiple measurement channels. Therefore,
how to extract the key features of neural activities is conducive to promoting the further
development of BCI.

In this paper, we explored the feature extractionmethod of fNIRS-BCI system.Based
on the behavioural data and fNIRS data of relevant study [8], we use support vector
machine to find that synchronization of neural activities between the right temporo-
parietal junction (rTPJ) and the right dorsolateral prefrontal cortex (rDLPFC) encodes
the effective information of the decision process and can be used as a key feature in
fNIRS-BCI system.

2 Preliminary

2.1 Functional Near-Infrared Spectroscopy (fNIRS)

After decades of exploration, researchers have developed a variety of methods to mea-
sure brain activity to comprehensively understand the potential neural mechanisms and
signal pathways of the nervous system. Among them, fNIRS is a relatively new non-
invasive technology, which uses two or three wavelengths of near-infrared light to record
the neural activity of the brain by measuring the changes in the concentration of oxy-
hemoglobin (HbO) and deoxyhemoglobin (HbR) [9] simultaneously. fNIRS system is
composed of light source, electronic driving device, optical detector, signal processing
device and recording device. The light source and detector form the measurement chan-
nel of fNIRS together: the light source emits near-infrared light and reaches the detector
through scattering (Fig. 1).

2.2 FNIRS-BCI System

A typical BCI system consists of five main parts: signal acquisition, preprocessing, fea-
ture extraction, classification and application interface [6]. The signal acquisition stage
is mainly to acquire brain nerve activity through invasive and non-invasive technology
[5]. Due to the risk of surgery and the decline of signal quality, non-invasive methods
are more convenient to serve human than invasive technology. Compared with other
non-intrusive technologies, fNIRS has many advantages such as low cost, high spatial
and temporal resolution [10].

In the BCI system based on fNIRS (fNIRS-BCI) (Fig. 2), the pre-processing stage
is mainly to remove global noise and motion artifacts in the signal through principal
component analysis (PCA), independent component analysis (ICA) orwavelet denoising
[10]. In the process of feature extraction, classification and application, BCI mainly
extracts relevant features based on the time series of de-noised blood oxygen signal
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Fig. 1. The schematic diagram of fNIRS.

or its corresponding statistical indicators such as mean, median, standard deviation,
slope and skewness, and uses machine learning or deep learning algorithms to predict
behaviour or control external devices [10, 11].

Fig. 2. fNIRS-BCI system

3 Methods

We use fNIRS data and behavioural data of individuals in multi-round game to carry out
our research [8]. In each round of game, individuals determine the degree of cooperation
(a number from 0 to 100, the greater the number, the higher the degree of cooperation),
and use fNIRS technology to record the neural activities of individual rTPJ and rDLPFC.
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3.1 Neural Synchronization Between Brain Regions

Based on the fNIRS data of relevant experiments, we conduct data preprocessing. First,
the principal component analysis (PCA) and wavelet domain denoising are used to
remove the global noise and motion artifacts of the data. Then, we use the bandpass filter
to extract the data of the frequency band we care about and remove the frequency band
related to physiological noise, including: low-frequency fluctuations and high-frequency
physiological noise.

After data pre-processing, we calculate the Pearson correlation coefficient between
individual rDLPFC and rTPJ brain regions to measure the neural synchronization
between brain regions. As shown in the Fig. 3, each subject’s rDLPFC and rTPJ brain
area has 7 measurement channels (CH). By calculating the Pearson correlation coeffi-
cients of all channel pairs in different brain regions of individuals and converting them
into Fisher z-value, we can obtain 7 × 7 (rDLPFC-rTPJ) synchronization value matrix.

Fig. 3. The neural synchronization between rTPJ and rDLPFC.

3.2 Decoding of Neural Synchronization

We use neural synchronization to decode behaviour. First, in order to facilitate training
and prediction, we convert the strategy value into the label. According to the strategy
value in the behaviour data (the strategy value is a number from 0 to 100), we define
a classification threshold (CTH) and divide it into cooperation (C) and defection (D).
Specifically, when the value is greater than the threshold value CTH, the label is C,
otherwise it is D. Then, we divide the data set composed of neural synchronization data
and behavioural data into two parts: training set and test set (training set: test set= 8:2).
Finally, based on the data set, we use support vector machine to train and predict.
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4 Results

Here, we introduce four evaluation criteria of classification performance to measure the
decoding effect of SVM:Accuracy, Precision, Recall and F1-Score. In order to determine
the optimal threshold CTH of the classifier and test the stability of the decoding effect,
we traverse the threshold CTH in the range of 50 to 95 (for example, CTH= 95 indicates
that the strategy is Dwhen it is less than 95, and Cwhen it is greater than 95). Then, based
on the data set obtained under each CTH, we train the SVM classifiers respectively, and
use the corresponding classifiers to predict the behaviour.

Fig. 4. The result of behavior prediction based on SVM

As shown in the Fig. 4, blue, red, yellow and purple dotted lines represent the
accuracy, accuracy, recall and F1-Score corresponding to the SVM model when the
CTH is at different values. The results show that under different classification threshold
CTH, the four evaluation indicators of SVM model based on synchronization value are
relatively stable and the performance of classification is relatively good. Our results
show that prediction of behaviour can be realized only according to the synchronization
value between individual rTPJ and rDLPFC brain regions.

5 Conclusion

In conclusion, based on the above results,wefind that the neural synchronization between
rTPJ and rDLPFCencode the effective information of behaviour,which can be accurately
decoded by machine learning.

In the field of BCI, feature extraction of neural signals is the key to achieve behaviour
prediction. Neural synchronization signals between brain regions reflect the relationship
between neural signals at different locations in the brain, and can be used as the key fea-
ture of decoding and prediction behaviour. On the premise of achieving dimensionality
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reduction of data structure and reducing training costs, the high-precision prediction is
guaranteed. Our work provides a new perspective for research in related fields.
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