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Over the years, the relationship between environment and disasters has received 
significant attention. This is largely due to the emerging recognition that environ-
mental changes-climate change, land-use and natural resource degradation make 
communities more vulnerable to disaster impacts. There is a need to break this nexus 
through environment based and sustainability inclusive interventions. Science – 
technology and economic measures for disaster risk management, hence, need to 
adapt more integrated approaches for infrastructure and social resilience. Environ-
mental and anthropogenic factors are key contributors to hazard, risk, and vulnera-
bility and, therefore, should be an important part of determining risk-management 
solutions. 

Green growth approaches have been developed by emphasizing sustainability 
inclusion and utilizing the benefits of science-technology interventions along policy-
practice linkages with circular economy and resource efficiency. Such approaches 
recognize the perils of traditional material-oriented economy growth models that 
tend to exploit natural resources, contribute to climate change, and exacerbate 
disaster vulnerabilities, Green growth integrated approaches are rapidly becoming 
as preferred investment avenue for mitigating climate change and disaster risks and 
for enhancing resilience. This includes ecosystem-based and nature-based solutions 
with potential to contribute to the resilience of infrastructure, urban, rural and peri-
urban systems, livelihoods, water, and health. They can lead to food security and can 
further promote people-centric approaches. 

Some of the synergistic outcomes of green growth approaches include disaster 
risk reduction, climate change mitigation and adaptation, resilient livelihoods, cities, 
businesses and industry. The disaster risk reduction and resilience outcome of green 
growth approaches deserve special attention, both for the academic and policy 
communities. Scholars and professionals across the domains of DRR, CCA, and 
green growth are in need of publications that fulfill their knowledge needs 
concerning the disaster resilience outcomes of green growth approaches. Keeping 
the above background in view, the book series offers comprehensive coverage 
combining the domains of environment, natural resources, engineering, management 
and policy studies for addressing disaster risk and resilience in the green growth 
context in an integrated and holistic manner. The book series covers a range of 
themes that highlight the synergistic outcomes of green growth approaches. 

The book series aims to bring out the latest research, approaches, and perspectives 
for disaster risk reduction along with highlighting the outcomes of green growth 
approaches and including Science-technology-research-policy-practice interface, 
from both developed and developing parts of the world under one umbrella. The 
series aims to involve renowned experts and academicians as volume-editors and 
authors from all the regions of the world. It is curated and developed by authoritative 
institutions and experts to serve global readership on this theme.
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Foreword 

River, Sediment and Hydrological Extremes: Causes, Impacts and Management 
provides a comprehensive exploration of the intricate relationship between rivers, 
sediment dynamics, and hydrological extremes. This multidisciplinary work delves 
into the causes, impacts, and management strategies associated with these critical 
natural phenomena. 

This book brings together leading experts from various disciplines to shed light 
on the complex interplay between rivers, sediment transport, and hydrological 
extremes. It covers a wide range of topics, including the role of climate change, 
land-use practices, and natural hazards in shaping hydrological patterns. The book 
also examines the impacts of hydrological extremes on ecosystems, infrastructure, 
and human communities, emphasizing the need for adaptive and resilient manage-
ment approaches. 

Moreover, River, Sediment and Hydrological Extremes delves into the intricate 
dynamics of sediment transport within river systems, exploring the linkages between 
sedimentation, erosion, and hydrological events. It highlights the significance of 
sediment as a valuable resource, while also addressing the challenges posed by 
excessive sedimentation, such as increased flood risk and reduced water quality. 

One of the remarkable aspects of this work is its focus on management strategies. 
The authors present a range of approaches aimed at mitigating the impacts of 
hydrological extremes, managing sediment transport, and fostering sustainable 
river basin management. These strategies encompass both engineering solutions 
and ecosystem-based approaches, recognizing the need for integrated and adaptive 
management frameworks.
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Overview of Book 

The natural hazards posed by hydrologic events and river systems depend on the 
uncertainty of hydrological events. This ability is affected by change in climatic 
conditions. Climate change studies have revealed that the frequency of extreme 
weather phenomena with increasing damage to human assets has gradually grown 
worldwide. As a consequence, rainfall events concentrated in time and space are 
expected to lead to serious local flooding and sediment transport in many parts of the 
world. Floods are remarkable hydro-meteorological phenomena and forceful agents 
of geomorphic evolution in most physical geographical belts and, from the view-
point of human society, among the most important environmental hazards. 
According to the Indian Environment Agency, floods rank as number one on the 
list of natural disasters in India over the past decade. 

Floods and excess rainfall also change the patterns of erosion and deposition that 
are ultimately determined by base level, the lowest elevation to which the river can 
flow. Base level, in turn, is set by the interplay between tectonic deformation of the 
land surface and sediment supply—quantities that can vary in space and time. The 
above concept has serious implications for understanding the recent development of 
the major river systems. Large rivers with high sediment load flow south from the 
Himalayas into a series of narrow valleys that run parallel to the mountain front. 

South Asia is one of the most risk-prone countries for river and sediment hazards. 
The geo-climatic variations of the region make the population vulnerable to flood 
and sediment and river-related disasters in varying degrees, intensities, and patterns. 
Sediment transport in rivers is one of the main causes of scouring and deposition and 
is always responsible for the failure of hydraulic structures and riverbank erosion. 
Therefore, precise estimation of erosion and scour is essential to reduce the hazards. 
Lack of preparedness and appropriate adaptation strategy makes people more risk-
prone. The South Asia region needs to be concerned about the impacts of flood, 
sediments, and river hazards because a large portion of its population depends on 
sensitive sectors like agriculture and forestry for livelihoods and several other 
reasons. Because of this, the book River, Sediment and Hydrological Extremes: 
Causes, Impacts and Management will cover such aspects.
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viii Overview of Book

This book provides a platform for knowledge sharing in all areas related to rivers, 
sediment, and hydrological extremes. It will explain the hypothesis that river flow 
and sediment transport are intimately linked to erosion, scour, and sediment depo-
sition. Sediment transport, erosion, and deposition are driven by local base-level 
changes and are highly variable in space and time. 

This book is divided into three parts: (1) introduction and overview, (2) causes 
and impacts, and (3) river restoration, hydraulic structure stability, and flood risk 
management. 

Under the Introduction and Overview part, Khundrakpam and Devi studied the 
Multi-Influencing Factor (MIF) (geospatial model), which is used for mapping and 
assessment of the flood-affected areas in the Iril River catchment of Manipur, India, 
for the period 2015–2021. The flood-affected area was observed to be highest in 
2015, at 33.6 km2 (1.13%), followed by 32.5 km2 (1.09%) in 2017. Sudardeva and 
Pal studied the loss in Ecosystem Service Value (ESVs) under anthropogenic 
influences for Chennai and Hyderabad. They summarized the loss in ecosystem 
services that need urgent measures to enhance the sustainability of urban ecosystems 
through the restoration of waterbodies and effective land management practices. 
Bidyapati and Devi concluded that the vulnerability index of the Imphal East ranges 
from 130 to 173 (DRASTIC_AGRI) and 120 to 182 (DRASTIC_LU), indicating 
moderate to high vulnerability to groundwater contamination. Kiba et al. revealed 
that GIS can accurately predict the extent of flooding and produce flood maps, as 
well as flood damage estimation maps and flood hazard maps. Srikanth and Pal 
indicated that the spatiotemporal dynamics of meteorological variables could be 
used for long-term heatwave prediction, and both Support Vector Regression (SVR) 
and Random Forest (RF) models have the potential for reliable usage in this context. 
Kumari et al. suggested that Multi-Source Weather (MSWX) can be used in various 
climatic studies and hydrological modelling for areas or river basins where data are 
lacking or missing. Shukla focused on the behaviour of weakly nonlinear waves in 
mixed nonlinear fluids and further investigated the effect of van der Waals variables 
on wave evolution. Sharma and Swami presented a detailed study of the effects of 
measurement scale on temporal and spatial soil moisture analyses. The optimal 
measurement strategy for soil moisture measurement based on the optimal design 
for the study of spatiotemporal analysis will always be a trade-off between the 
accuracy and the cost of measurement. Patel and Sarkar concluded that the 
entropy-based approach could be utilized to determine the streamflow at any 
ungauged station on the Brahmani River, given the streamflow and stage at the 
upstream and downstream sites, respectively. Karna et al. observed that the deposi-
tion of fine sediments within the surface layer of bed material significantly impacts 
the aquatic life in the bed substrate. They utilized a numerical model to quantify the 
loss in the porosity of the surface layer bed material induced by this process. 

In the second part, Goodarzi et al. studied river water flow prediction, which has 
been made by two GEP and Random Forest (RF) machine learning algorithms. The 
results of the two models were compared using five statistical indices. Hussain and 
Pal evaluated spatiotemporal variations in drought and assessed its risk over



Telangana using satellite data. The comparison of the Standardized Soil Moisture 
Index (SSMI) with SPI and SPEI shows that SSMI, when compared with the 
Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotrans-
piration Index (SPEI), performs well in monitoring agricultural drought and can be 
used to develop effective drought warning and risk management. Okram and Devi 
studied drought-affected zones using satellite data and geographical information 
system (GIS) techniques in Thoubal district, Manipur (northeastern India), for the 
period 2013–2021. From the results, the study area was classified into five classes 
(severely dry, moderately dry, near normal, mildly wet, and moderately wet), and 
most of the study area experienced two drought conditions: moderate drought and 
near normal. Poonia et al. suggested that drought events across central and western 
parts of the country are severe and longer, whereas river basins in the southern part 
experience droughts more frequently but with low severity. The outcomes of this 
research offer crucial insights into drought hotspots with longer and more severe 
drought events across the study area and thus provide useful insights for 
policymakers to formulate comprehensive national drought mitigation and preven-
tion strategies to safeguard a sustainable ecosystem. Barbhuiya et al. concluded that 
non-stationarity needs to be incorporated in the flood risk assessment framework for 
addressing the likely impacts of potential future climate change in water resources 
management. A comprehensive review of the different approaches for 
non-stationary flood frequency analysis is presented in this section. Gupta et al. 
quantified that the connection between extreme precipitation to moisture transport 
might help in the early prediction of extreme precipitation events over the Indian 
subcontinent. They evaluated the association between moisture transport and multi-
day extreme precipitation events by quantifying moisture transport during the 
identified top-ranked multi-day extreme precipitation events. Deeksha et al. inves-
tigated that the emphasis of modern urban studies is changing from interpretation to 
information collection for effective decision-making, which will help readers grasp 
the issues associated with the existing system and the way forward to achieve 
sustainable development. This study will assist stakeholders and policymakers in 
taking necessary actions to preserve the present ecological equilibrium. Gajulapalli 
et al. studied sustainable land and water management in urban areas, along with 
emerging challenges. The active incorporation of new decentralized technologies, 
green infrastructure, and low-impact development to ensure the long-term reliability 
and resilience of our water resources must be prioritized. Ojha et al. investigated 
three-dimensional octant analysis used to clarify the function of bursting events in 
the particle entrainment process. The outcomes of this study provide an important 
and detailed view of turbulent flow structures in vegetation and non-vegetation 
zones in open channel flow. Barman et al. studied about recirculation region control 
behind a partially submerged cylinder due to wave against current. Moreover, the 
mean flow, fluctuating velocity, and velocity derivatives interact and exchange 
energy in a complex manner in the lock-on case. 

Overview of Book ix

Under river restoration, hydraulic structure stability, and flood risk management, 
Mishra and Tiwari obtained results that 4.106 mm3 or 11.93% of storage volume had 
been lost from the usable storage volume of the Kaliasote reservoir. The rate of



sedimentation in the reservoir was also correlated with the empirical relationship of 
Varshney and Joglekar. Arjun et al. revealed better management of water resources 
in the Brahmaputra and Barak valleys in the Assam region needs detailed data and 
information about the river systems. However, the existing river database has a 
coarser resolution and lacks information, except for a few major rivers in Assam. 
Abhash et al. used Computational Fluid Dynamics (CFD) to simulate flow around a 
linear weir. The simulation results were compared with experimental results from the 
literature. The head-discharge relationship of the weir was also compared to the 
standard equations available in the literature. This study confirms the use of CFD as a 
tool for accurately predicting the flow patterns around hydraulic structures. Rathod 
et al. used an AI-based flood map generation tool for disseminating information and 
alerts to people in flood-prone areas. The system comprises several components, 
including hydrological and hydraulic models, AI-based flood map generation, and a 
mobile application for real-time alerts and geolocation-based messaging. This 
approach is scalable, cost-effective, and allows real-time monitoring for immediate 
responses to changing conditions, reducing the impact of floods and mitigating the 
risk of property damage and loss of life. Amin et al. studied extreme events that are 
part of the natural environment, creating diverse habitats through erosion and 
deposition processes. Human-induced climate change is predicted to increase aver-
age temperatures, leading to an increase in variables; therefore, a well-developed 
sustainable approach to managing risks is needed for the integrity of nature.

x Overview of Book
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Chapter 1 
Flood Modeling Using MIF Method 
with GIS Techniques: A Case Study of Iril 
River Catchment, Manipur, India 

Sandhip Khundrakpam and Thiyam Tamphasana Devi 

Abstract In the present study, a multi-influencing factor (MIF) (geospatial model) 
is used for mapping and assessment of the flood-affected areas in the Iril River 
catchment of Manipur, India, for the period of 2015–2021. The study region is in the 
plain valley part of the state, which is frequently prone to flooding due to its 
topographical landscape and rapid urbanization in recent years. In the MIF method, 
a major and minor influence is used to inter-relate the parameters and weight is 
calculated by using MIF score formula. Six parameters were used in MIF method, 
that is , slope, soil type, drainage density, rainfall, topographical wetness index 
(TWI), and NDVI (normalized vegetation index). Then each parameter is reclassified 
into five subclasses and ranking of 1–5 (low to high) is assigned to each subclass of 
the parameters. The predicted flood-affected areas were divided into four categories: 
very low, low, moderate, and high. The study region was found to be mostly affected 
by low to moderate flood (approximately 97%) in every year of the study period 
(2015–2021), which may not be a cause for concern. However, in terms of the 
magnitude of flood caused by the high category (as compared to the other flood 
classes), it was observed that the flood-affected area was highest in 2015, at 33.6 km2 

(1.13%), followed by 32.5 km2 (1.09%) in 2017. And lower flood risk is thus 
observed in 2019 (0.74%) and 2021 (0.79%), respectively. Particularly, the 
predicted results for the year 2015 were compared and validated with literature 
and collected data, and a similar flood pattern was observed in this year. 

Keywords GIS technique · MIF method · Weighted overlay · Iril catchment · GIS 
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1.1 Introduction 

Rivers, sediment, and hydrological extremes are interlinked components of the 
Earth’s natural systems that have significant impacts on the environment and 
human societies (Das and Umamahesh 2022). The causes of river sedimentation 
and hydrological extremes, such as floods (Saikumar et al. 2022) and droughts, are 
complex and can be influenced by various natural and human-induced factors, 
including climate change (Sinha et al. 2020; Das and Umamahesh 2018), land use 
changes, and water management practices. These processes can have significant 
impacts on river ecosystems, water quality, infrastructure, and human livelihoods. 
Understanding the drivers and impacts of river sedimentation and hydrological 
extremes is crucial for effective management strategies. Integrated approaches that 
consider the interactions between rivers, sediment, and hydrological extremes are 
essential for sustainable river basin management. This may involve measures such as 
river channel modifications, sediment trapping structures, floodplain zoning, and 
effective water resource management to mitigate the adverse impacts of these 
processes on the environment and society. Additionally, incorporating local knowl-
edge, stakeholder engagement, and participatory approaches are critical for devel-
oping robust management plans that account for the diverse needs and perspectives 
of communities living in riverine areas. 

Flooding is a primary natural disaster (Khan et al. 2011) and an event of 
hydrological extremes that has been occurring in all parts of the world. Excess 
water overflows the rivers and lakes to cause flooding, and several forms of sediment 
are transported along with the excess flow. Sediments deposited on the downstream 
side of the river is the major cause of disturbance in the ecosystem of water resource 
management (Jonkman and Dawson 2012; Kondolf et al. 2014). To solve most of 
the problems faced in management of hydrological extreme events such as flood or 
drought is the rightfully management of siltation and sediment deposition of river 
environment (Hauer et al. 2018). When a flood occurs, it not only takes the lives of 
humans and animals, but it also has long-term impacts on the ecosystem of living 
things. The infrastructure damage caused by the flood cannot be revived to its normal 
life expectancy, which again interrupts the various policies and programs planned by 
the government or other stakeholders and, therefore, significantly affects the overall 
economy of the region or state (Lechowska 2018). 

Timely management and frequent monitoring with preventive measures for 
flooding are becoming crucial in areas where flood events are common (Behera 
and Devi 2022). With advanced technology, tools, and techniques along with the 
satellite imagery, flood events can be predicted or modeled (Munawar et al. 2022). 
And one of the techniques for flood modeling is using GIS tools with satellite data, 
and within this GIS platform (Sinha et al. 2008; Khan et al. 2011; Ajin et al. 2013; 
Ouma and Tateishi 2014; Hamdi et al. 2019; Hammami et al. 2019; Dash and Sar 
2020), there are several multi-criteria decision-making methods (MCDM) such as 
AHP (analytic hierarchy process) (Danumah et al. 2016; Souissi et al. 2020; Senan 
et al. 2023) and MIF (multi-influencing factors) (Taheri et al. 2020; Singh et al.



2021; Singh and Devi 2022) which are commonly used for modeling of hydrological 
extreme events (flood and drought). The impacts of the multi-influencing factor 
(MIF) method on river, sediment, and hydrological extremes (Das and Umamahesh 
2017; Bronstert et al. 2018; Jarajapu et al. 2022) are manifold. It helps in identifying 
the vulnerabilities of river and sediment systems to different factors and their 
interactions. It can also provide insights into the cascading effects of changes in 
one factor on other factors, allowing for more informed decision-making in river and 
sediment management. Additionally, the MIF method aids in identifying potential 
mitigation measures and interventions to reduce the negative impacts of human 
activities on rivers and sediment systems. MIF method enables a better understand-
ing of the underlying causes of floods, such as changes in precipitation patterns due 
to climate change, alterations in land use and land cover, and modifications to river 
channels and floodplains. This understanding can help in identifying areas that are 
more vulnerable to floods and areas where flood risk may be increasing due to 
human activities. This information can inform flood mapping efforts (Mangukiya 
and Sharma 2022) and help in prioritizing resources for flood management. 
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Mitra et al. (2022) conducted an assessment on the performance of the GIS-based 
AHP method for flood modeling in the Dinajpur District of West Bengal. In their 
study, it was observed that 20% is categorized as high flood-risk and 27% as medium 
flood-risk zone in the district. They concluded that the limitations of MCDM can be 
improved using high-resolution satellite data, selecting suitable methods for a 
specific region, conducting sensitivity analysis, and applying machine learning 
techniques. Despite having such limitations, MCDM can be used successfully and 
reliably for flood modeling in any region. MIF method is mostly used for drought 
modeling (Pandey et al. 2021), groundwater modeling (Magesh et al. 2012; 
Anbarasu et al. 2020; Borah and Deka 2022), and very few in other areas such as 
suitability assessment for urban settlement (Singh et al. 2021). As the concept of 
MIF method is similar with other MCDM, there will be no exponential error in 
applying this method for flood modeling. Therefore, in the present study, an attempt 
is made to check the performance of MIF method in flood modeling. Thus, in this 
study, flood risk mapping and assessment (for the years 2015, 2017, 2019, and 2021) 
using the MIF method in a GIS environment is conducted in the Iril River catchment 
of Manipur (the north-eastern part of India). 

1.2 Study Area 

The study area (Iril catchment) is located in the districts of Senapati, Imphal east and 
west, and Ukhrul of Manipur state (northeastern part of India) shown in Fig. 1.1. 

Geographical area lies between latitude 24°40′ N  to  25°25′ N and longitude 93° 
55′ E  to  94°20′ E. The catchment area is estimated to be around 2985.5 km2 . The 
pour point to delineate the catchment area is taken at the Lamboikhul Tiger Camp 
(on the riverbed under the Eereima Suspension Bridge) having latitude 24°55′58.38″



N and longitude 94°2′46.41″E which is marked in Fig. 1.1. As the study region is 
valley area of the state, the ecosystem of water resource management is affected by 
major rivers and its tributaries. In the state, there are 15 major rivers and streams 
(166.77 km2 which is around 0.75% of the total geographical area). 
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Fig. 1.1 Study area (Iril River catchment) 

The Barak river basin (Barak valley) to the west, the Manipur river basin in 
Central Manipur, the Yu river basin in the east, and a portion of the Liyai river basin 
in the north are the major river basins of the state, and urban drinking water supply is 
mostly (90%) from these rivers. 

1.3 Data Used and Method 

The collected data and its sources are provided in Table 1.1. The collected data are 
DEM (digital elevation model), Landsat 8/9 (2017, 2019, 2021) from USGS 
(US Geological Survey), Earth Explorer, rainfall (Directorate of Environment and 
Climate Change, Government of Manipur), and ESDAC (European Soil Data 
Centre). The Landsat 8/9 data were taken for the month of October of the studied 
period. 

The data collected from different sources (Table 1.1) is utilized and processed 
through image processing for the required format using GIS tools (ArcGIS10.3® ). In 
order to generate the secondary data from the primary data, IDW (inverse distance 
weighting) algorithm is used which is within the GIS platform. Then, the generated 
parameters, that is, rainfall, slope, soil type, drainage density, TWI (topographic 
wetness index), and NDVI (normalized difference vegetation index) are converted to



Data Source Resolution Extracted data

raster format and the MIF score is calculated and overlaid by giving their respective 
weights to generate the flood risk map (for the years 2015, 2017, 2019, and 2021). 
The flowchart of methodology is provided in Fig. 1.2. 
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Table 1.1 Data used with its source 

Sl. 
No. 

1. DEM USGS, Earth Explorer Spatial (30 m) Slope, drainage 
density 

2. NDVI USGS, Earth Explorer 
Landsat 8/9 

Temporal (2015, 
2017, 2019, 2021) 

NDVI 

3. Rainfall Directorate of Environment 
and Climate Change 

Temporal (2015, 
2017, 2019, 2021) 

Rainfall 

4. TWI USGS, Earth Explorer Spatial (30 m) TWI 

5 Soil 
type 

ESDAC (European Soil Data 
Centre) 

Spatial (30 m) Soil type of study 
Iril catchment 

Fig. 1.2 Flowchart of methodology
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1.4 MIF Method 

Prediction and mapping of flood-affected zones in the study region using MIF 
method includes collection of required data from different sources, generation of 
database (selection of input parameters), and finally developing flood risk map. MIF 
method is used by computing the interrelationship between the influencing factors 
which are categorized by two factors, that is, major (B) and minor (A) influence, and 
MIF score or weight is calculated by using Eq. 1.1. Influential factors are considered 
to assign the weight to each parameter. Figure 1.3 shows the interrelationship 
between these effects and their factor. 

Major effect represents direct influence of one factor over another, and minor 
effect represents indirect influence. The major and minor effects are classified based 
on their holding capacity and the characteristics of the surface and subsurface 
features. The major factor is assigned a value of 1 and minor factor is assigned as 
0.5. These values are combined to calculate the MIF score of each layer (parameters) 
using the following equation: 

MIF score= 
Aþ Bð Þ  
A þ Bð Þ  × 100 ð1:1Þ 

1.5 MIF Weights 

The major purpose of MIF method is to give the weightage to the given parameters 
which is affecting to cause flood. The effectiveness of the quality of prioritization has 
a direct impact on the available resources. In most situations, the decision-maker’s 
primary judgment is used. In this study, experts’ and decision-makers’ “technical 
skills and know how” to solve the problems are considered. Several field surveys

Fig. 1.3 Interrelationship 
of parameters by MIF 
method



were conducted in and around the study area interacting with the people of local 
communities. With the understanding resulted from the community interaction and 
consultation with them, the weights are assigned to the selected input parameters on 
the scale of 1–5 (very low to very high class).
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Table 1.2 Effect of different influencing factors and their corresponding scores 

Factor Minor effect (A) Major effect (B) (A + B) Weight 

NDVI 0.5 0 0.5 4 

Slope 0 1 1 8 

TWI 0.5 1 1.5 12 

Drainage density 0.5 1 + 1 2.5 21 

Soil type 0.5 + 0.5 1 + 1 3 25 

Rainfall 0.5 1 + 1 + 1 3.5 30 

∑ = 12 ∑ = 100 

Table 1.2 shows the effect caused by different influencing factors (minor 
effect, A, and major effect, B), and the weight is calculated by using Eq. 1.1. The 
calculated weights are provided in Table 1.3 and each parameter is reclassified into 
five classes. Using the assigned ranks and weights, these thematic layers (input 
parameters) are overlaid by using weighted overlay method, and finally a flood risk 
map (flood-affected area) is generated for the years 2015, 2017, 2019, and 2021. 

1.6 Input Parameters: Theoretical Background 

Six input parameters are considered for the flood modeling in this study, and the 
theoretical concept of each parameter is provided in the following section. 

1.6.1 Slope 

The slope of a terrain is a critical aspect in determination of its dependability and is a 
measure of its steepness of any plane. The direction and quantity of surface runoff or 
subsurface drainage which reaches an area are determined by the slope. The contri-
bution of rainfall to stream flow is dominated by slope. It regulates the length of 
overland flow, infiltration, and subterranean flows which are all examples of flow. 
Slope is presented in percentage and calculated as “rise” divided by “run” multiplied 
by 100. Slope is also generally expressed in degrees.
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1.6.2 Drainage Density 

The physical characteristics of a catchment area are described through drainage 
density. Thus, the potential of water carried over by the landscape is related to 
drainage density and is an important parameter for understanding the ecosystem of 
water resource management in that region. If the density is high, the catchment 
region will be more prone to degradation, ending in deposition on the deeper 
grounds. It is calculated as stream length divided by basin area and its unit is 
km/km2 . 

1.6.3 Soil Type 

Soil texture is an essential component and property of soils. Based on soil texture, 
soil types are classified primarily as sand, silt, and clay. Clay soils are far less 
transparent and hold water for a greater amount of time than sandy soils. It demon-
strates that the locations with clay soils are more prone to flood. When measurements 
are unavailable, the feel and appearance of the soil can be used to infer soil moisture. 
Soil moisture serves as the boundary between the land surface and atmosphere, and it 
is important in the division of rainfall into runoff and water storage in groundwater. 

1.6.4 TWI 

Topographic wetness index (TWI) is commonly used to quantify topographic control 
on hydrological processes. TWI (Nsangou et al. 2022) indicates the amount of water 
that is accumulated on a specific area and expressed as index. Its high value gives 
high potential and low value gives low potential of water accumulation. It ranges 
from -3 to 30 and it is calculated as 

TWI= ln 
Uas 

tan β
ð1:2Þ 

where Uas is the area contributing to its upstream side and β is slope gradient. 

1.6.5 Rainfall Distribution 

Heavy rains, which prohibit natural watercourses from channeling surplus water, are 
the most prevalent primary cause of flood. The amount of runoff generated by a 
catchment is related to the amount of rain received in that catchment. Heavy rains



raise the level of water in rivers and lakes abruptly. When the water level exceeds the 
riverbanks or dams, the water begins to overflow, resulting in river-based flood. 
Volume of flood is contributed by the overflows from all the water bodies during 
heavy and continuous rainfall. 
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1.6.6 NDVI 

The NDVI index analyzes and assesses the presence of live greenery using reflected 
light in the visible (VIS) and near-infrared wavelengths (NIR). Simply, NDVI is a 
gauge of the greenness of vegetation, as well as its richness and health. Thus, NDVI 
is calculated as 

NDVI= 
NIR-VISð Þ  
NIRþ VISð Þ ð1:3Þ 

1.7 Result and Discussion 

In this section, the generated input parameters with the finally modeled flood risk 
map will be presented and accordingly will discuss the result. 

1.7.1 Result 

1.7.1.1 Generated Input Parameters 

Generated slope (%, which is “rise” divided by “run” multiplied by 100) and 
drainage density (km/km2 ) map is provided in Fig. 1.4. 

Drainage density is high for the major streams (Iril river) and nearby to the river 
and its tributaries. Soil type (Fig.1.5a) was generated using ESDAC (European Soil 
Data Centre) data and classified as clay loamy soil, and TWI is shown in Fig.1.5b. It  
is observed that the entire study region is covered by clay loam soil, which has the 
combined properties of low drainage capacity, moderate fertility, and good water-
holding potential. 

By IDW method, the rainfall ranges of the given study area are derived and 
provided in Fig. 1.6 for the years 2015, 2017, 2019, and 2021, respectively. High 
rainfall is concentrated mostly in northern part of the study region in all the studied 
years. Highest rainfall goes up to around 2230 mm in a year which is observed in the 
year 2017 followed by 1309 mm in the year 2015. Medium rainfall is observed in 
2019 and 2021; and lowest is observed in the year 2015 (60 mm per year) followed



by in the year 2017 which is around 83 mm. So there is a large uneven distribution of 
rainfall in these years which suggest uncertain climatic conditions. However, in the 
years 2019 and 2021, the minimum rainfall observed is around 761 mm–1040 mm
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Fig. 1.4 (a) Slope and (b) drainage density 

Fig. 1.5 (a) Soil type and (b) TWI



and maximum is 1240 mm–1250 mm, respectively, which indicates moderate 
climate conditions as per web report of the Indian Meteorological Department 
(IMD 2022).
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Fig. 1.6 Rainfall for the years (a) 2015, (b) 2017, (c) 2019, and (d) 2021 

Then, the NDVI (range of -1–0) of these years have been calculated and found 
that it has less vegetation at the month of October (Fig. 1.7) which is the month of 
every year taken (temporal scale) in this study.
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Fig. 1.7 NDVI for the years (a) 2015, (b) 2017, (c) 2019, and (d) 2021 

1.7.1.2 Prediction of Flood 

The predicted flood risk map for the years 2015, 2017, 2019, and 2021 is 
shown in Fig.1.8a–d. Flood-affected zone is classified as very low, low, moderate, 
and high.
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Fig. 1.8 Flood risk map for the years (a) 2015, (b) 2017, (c) 2019, and (d) 2021 

Table 1.4 shows the predicted flood area in km2 and percentage (%) for the years 
2015, 2017, 2019, and 2021. Northwest side of the study region are more prone to 
flood as compared to southeast side. 

From Fig.1.8, in all the years (2015, 2017, 2019, and 2021), it is affected by low 
to moderate flood and very small areas by high flood. Figure 1.9 shows the area of



Flood class

predicted flood in percentage (%). But the high category flood is the most significant 
to cause damage to agricultural activities as well as to properties. Thus, it is effective 
to study further, selecting only the flood-affected areas classified as high risk in the 
present study. Therefore, the flood-affected area in 2015 is observed to be the 
highest, at 33.6 km2 (1.15%), followed by the year 2017 at 32.5 km2 (1.28%) in 
the category of high flood as compared with other years, which is shown in Fig. 1.9. 
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Table 1.4 Predicted flood-affected area 

Flood-affected area 

(km2 ) (%) 

2015 2017 2019 2021 2015 2017 2019 2021 

Very low 39.2 49.00 72.00 58.30 1.32 1.64 2.41 1.95 

Low 1941.9 1900.3 1973.2 1957.9 65.04 63.66 66.09 65.58 

Moderate 970 1003.7 918.3 945.7 32.49 33.62 30.76 31.68 

High 33.6 32.5 22 23.6 1.15 1.08 0.74 0.79 

Fig. 1.9 Predicted flood affected area (%) 

1.8 Discussion 

By considering multiple influencing factors such as NDVI, TWI, rainfall, slope, 
drainage density, and soil type, we can create a more comprehensive flood mapping 
model that takes into account various hydrological, topographic, and environmental 
factors that affect flood dynamics. Integrating these factors into a combined 
approach can provide a more accurate and holistic understanding of flood-prone 
areas, which can be valuable for flood risk assessment, preparedness, and manage-
ment. It was found out that flood is affected mostly by rainfall with MIF score of 
30 which gives more weightage to it and NDVI is less affected with a score of 4.
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Moreover, the study region is in the valley plain part of the state where its terrain 
is 90% hilly. Soil erosion or soil loss from the sloppy hills is a frequent phenomenon 
during rainy seasons, and these sediment particles flow down to the plain valley 
through streams, rivers, and its tributaries as river discharge. High-intensity rainfall 
causes heavy landslide as most of the soil types in the state is alluvial soil (a type of 
loose soil) and can be easily disturbed by a slight continuous rainfall. Thus, 
sediments come along with the river discharge deposited in the low-lying areas, 
and therefore, the space occupied by the excess river water becomes smaller and then 
flood occurred. Such phenomenon create disturbance to the ecosystem of water 
resource management. There are several factors for soil erosion such as deforesta-
tion, human encroachment, climate change, and development activities. It is impos-
sible to mitigate all these factors affecting to soil erosion, but it is always possible to 
minimize or slow down the process of soil erosion which includes monitoring the 
cutting down of trees and agricultural practices in hilly areas and application of strict 
laws for conservation of forest area while taking place of any developmental 
activities (road development, infrastructure planning, etc.). If these provisions are 
in place, flood occurrence can be minimized effectively. 

1.9 Validation 

The predicted (present study), simulated result (literature) and ground data (IFCD) 
were compared for the respected years (2015, 2017, 2019, and 2021). For the year 
2015, the predicted area inundated by flood water is 39.4km2 with the simulated 
discharge of 2452.87 m3 /s which is very high compared with the other years in both 
the cases (predicted and simulated). The collected ground data is also highest 
(2414.15 m3 /s) in the year 2015 as compared with other years. Thus, this very 
high flood classification for the year 2015 is compared with the simulated SWAT 
model (Behera and Devi 2022) result and ground data, and it has been found out that 
they match the same result (high flood class) (Table 1.5). 

1.10 Conclusion 

The predicted flood affected is highest in the year 2015 followed by 2017, 2021, and 
2019. Thus, it is concluded that throughout the year, this study region is affected by 
low to high flood intensity. Indeed MIF method can be effectively used for flood 
modeling apart from the common application in drought modeling. Therefore, 
further wide application of MIF method in flood modeling is encouraged so that 
its effectiveness could be improved. As the study region is in the valley plain part of 
the state which is frequently subjected to flooding, and as evidenced in recent years 
of flood events in the region, it is suggested that the agricultural activities as well as 
other infrastructural services should be well planned and monitored.



Year
SWAT
modela

Ground
datab

– – – –

– – – –

– – – –
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Table 1.5 Flood class based on predicted, simulated, and observed data 

Present 
study 
(high 
flood, 
km2 ) 

Predicted discharge
(SWAT model)a

(m3/s)

Observed 
discharge
(IFCD)b (m3/s)

Validation remarks 

Present 
study (MIF 
model)

2013 – 907.981 922.863 – No 
flood 

No 
flood 

2014 – 929.45 914.9501 – No 
flood 

No 
flood 

2015 33.6 2452.87 2414.15 Very high 
flood 

Very 
high 
flood 

Very 
high 
flood 

2017 32.5 High flood 

2019 22 High flood 

2021 23.6 High flood 
a Predicted discharge (swat model), result taken from Behera and Devi (2022) 
b Observed discharge (IFCD) or ground data, result collected from Irrigation and Flood Control 
Department (IFCD), Government of Manipur 

1.11 Future Scope 

As GIS technology continues to advance and become more accessible, and with 
increasing concerns about climate change and flood hazards, the MIF method can 
provide valuable insights for flood mapping and mitigation efforts. The MIF method 
allows for the integration of multiple influencing factors, such as elevation, slope, 
land use, rainfall, and proximity to rivers or coastlines, which can result in more 
accurate flood mapping compared to single-factor methods. With the availability of 
high-resolution data and improved algorithms, the accuracy of flood mapping using 
the MIF method is expected to increase, aiding in better flood prediction and 
planning. As climate change continues to affect weather patterns and precipitation 
levels, flood risks are projected to increase in many regions. The MIF method can be 
used to assess the vulnerability of different areas to flooding under changing climate 
conditions. By incorporating climate change scenarios into the MIF method, it can 
help in identifying areas that may be more prone to flooding in the future, facilitating 
proactive measures for climate change adaptation and resilience planning. Therefore, 
the scope of the application of the MIF method can be achieved with one of the 
following objectives in future studies for flood modeling and assessment: 

1. Integrated Decision Support System: The MIF method can be integrated into 
decision support systems that provide real-time flood monitoring and early 
warning systems. By combining MIF-based flood mapping with real-time data 
on precipitation, river levels, and weather forecasts, decision-makers can have 
access to up-to-date information for flood response and emergency management. 
This can enable more effective and timely decision-making in flood-prone areas.
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2. Urban Planning and Infrastructure Development: Urban areas are often at higher 
risk of flooding due to impervious surfaces and inadequate drainage systems. The 
MIF method can be used in urban planning and infrastructure development to 
identify flood-prone areas and guide the location of critical infrastructure such as 
roads, buildings, and utilities. This can help reduce the exposure and vulnerability 
of urban areas to floods and support sustainable urban development. 

3. Community Engagement: The MIF method can involve local communities in 
flood mapping efforts, allowing them to contribute their knowledge and experi-
ence of local flood hazards. Community engagement can enhance the accuracy 
and relevance of flood mapping results and also raise awareness and understand-
ing of flood risks among local residents. This can promote community resilience 
and preparedness and facilitate participatory decision-making in flood risk 
management. 

4. Insurance and Risk Assessment: Flood mapping using the MIF method can 
support insurance companies and risk assessment agencies in determining flood 
risk zones and calculating insurance premiums. Accurate flood mapping can help 
in estimating potential losses due to floods, assisting in risk management, and 
underwriting decisions. Insurance companies can also use flood mapping results 
to promote risk reduction measures among policyholders, leading to more resil-
ient communities. 
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Chapter 2 
A Case Study on Estimating the Ecosystem 
Service Values (ESVs) Under 
Anthropogenic Influences for Chennai 
and Hyderabad 

Sudardeva and Manali Pal 

Abstract Ecosystem services are inevitable to all biota on the earth and possess a 
value of approximately 125 trillion USD. Although the complete valuation of 
ecosystem services in monetary terms is uncertain, they are sine qua non to frame 
policies regarding the utilization of resources in a sustainable way. Moreover, the 
continuous urban growth imparts variations to the urban ecological land use and land 
cover (LULC) and urban ecosystem functions that possess serious challenges. 
However, studies on quantifying ecosystem services and assessing them under 
anthropogenic influence are scarce, especially for the metropolitans in India. In 
this scenario, we selected Chennai metropolitan area (CMA) and the Greater Hyder-
abad Municipal Corporation (GHMC), two rapidly urbanizing metropolitan areas 
with increasing anthropogenic activities observed since last decade, for quantifying 
the ecosystem service value (ESV). The study applied the approach proposed by 
Costanza R et al. (Nature, 1997;387:253–260) that uses the spatiotemporal varia-
tions of LULC to compute the ESV. The LANDSAT data products are used to 
generate LULC for the CMA and GHMC for each decade since 1995–2022 (to mark 
the economic transition for the country), for example, for the years 1995, 2005, 2015 
and 2022. The study reveals the drastic changes in the area of individual classes. 
Vegetation has shrunken noticeably between 1995 and 2022, followed by 
waterbodies for both the areas. Due to urbanization, the builtup is found to be 
increased in an unregulated way that reduces ESV. The substantial loss in ESV 
questions the resilience of the study areas, and this trend continues till the end of the 
observation period. The findings summarize the loss in ecosystem services that need 
urgent measures to be taken to enhance the urban ecosystem sustainability through 
the restoration of waterbodies and effective land management practices. 
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Anthropogenic activities · Urbanization 
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2.1 Introduction 

The ecosystem is a biophysical system, defined by the complex interaction of biotic 
and abiotic components in a physical environment to form a new bubble in life form. 
The interdependency of biotic components among themselves and with the abiotic 
components defines the behaviour of a biological organism in the ecosystem. The 
behaviour of these components results in ecosystem functioning through which 
ecosystem services are derived in the form of goods and services. These ecosystem 
services (ES) are inevitable for the existence of life forms; they are direct and indirect 
benefits drawn from nature and enjoyed by humans for their livelihood. Even though 
all biotic components influence ecosystem functioning, human beings influence the 
system on a greater scale due to the large-scale utilization of services offered by the 
ecosystem. Hence, the quantification of the association between rapid urban growth 
and ecosystem services plays an essential role for the urban sustainability and 
development related to planning and policies. A study by Costanza et al. (1997) 
listed 17 ecosystem services that are derived from a single or a combination of two or 
more ecosystem functions. Another study by Rudolf S. de Groot categorized eco-
system functions into the regulation function (maintenance of essential ecological 
process and life support system), habitat functions (providing habitat for plants and 
animal species), production functions (provision of natural resources) and informa-
tion functions (providing opportunities for evolution). The definitions of individual 
ecosystem services offered under each categorization are as follows: 

1. Regulation functions: Those functions which regulate the essential ecosystem 
process through which basic life system is supported are termed as regulation 
functions. The services that are derived from bio-geochemical cycles and other 
bio-spheric processes to the ecosystem include gas regulation, climate regulation, 
disturbance prevention, water regulation, water supply, soil formation, soil reten-
tion, nutrient regulation, waste treatment, pollination and biological control. 

2. Habitat functions: The ecosystem services that enable the life forms to get 
habituated with normal living in order to reproduce and proliferate among 
themselves such that there is a conservation in biodiversity and genetic diversity 
are known to as habitat functions. 

3. Production functions: The livelihood of human is supported by intake of 
biomass which is a direct result of synthesis from primary producers and second-
ary producers. They include food, raw materials, genetic resources, medicinal 
resources and ornamental resources. 

4. Information functions: These functions provide essential reference function that 
is transferred as information to humans in the process of evolution. The services 
generated provide values to life and help us in understanding the need for 
existence of ecosystem. They include recreation, aesthetic information, cultural 
and artistic information, spiritual and historic information, science and education. 

The above listed services may not be able to catalogue all the ecosystem services, 
since there are a lot of unidentified benefits used by human in the ecosystem. The



dynamics of ecosystem along with the human influence urges us to look into the idea 
of ecosystem sustainability. To implement them in the society, the resources and 
services availed so far have to be utilized in a sustainable manner. There is a need for 
an account of the ecosystem services in terms of monetary value for prioritising 
human made decisions over development and conservation. The value of the world’s 
ecosystem services and natural capital are estimated based on willingness to pay by 
the resource utilizers (Costanza et al. 1997, 2008, 2014). The study by De Groot 
et al. (2002, 2010, 2012) and by Kreuter et al. (2001), Liu et al. (2012) created 
ecosystem service valuation database by analysing the previous work on the valu-
ation in monetary terms. The values of ecosystem services are updated from his 
earlier work by Costanza et al. (2011), considering consumer price index, and 
provided the factor of conversion as 1.38 from the year 1997 to 2011. A limited 
number of studies have been found on this problem statement, particularly for India, 
and the examples are as follows: Das and Das (2019) studied the impacts of 
urbanization and its dynamics on ecosystem services for Malda town in West 
Bengal, India. Sannigrahi et al. (2019) assessed the spatiotemporal variation in 
ESV for a natural reserve Sundarbans region, derived from spatiotemporal data of 
land use and land cover (LULC). Hence the valuation of ecosystem services depends 
on LULC Sannigrahi et al. (2020a, 2020b), and Sannigrahi et al. (2017, 2019) 
compared different supervised machine learning classification techniques to derive 
ecosystem service values (ESVs). 
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The study aims to present the trend in LULC of each category for a period of four 
decades (1995–2022) since the introduction of major economic reforms (1991) in 
India (Vikramani 2006). The change in the area occupied by each ecosystem class 
significantly impacts the functioning of the ecosystem, which further affects the 
extraction of ecosystem services. The more the natural element persists in the 
ecosystem, the least it is disturbed. But the needs of humans heavily influence 
LULC. It is essential to view and plan developmental initiatives in a sustainable 
way that alters the ecosystem of an urban area such that it should be a balance 
between resource utilization and extraction of ecosystem services. The study will 
state the current state of ecosystem functions and ESV derived from LULC. It will 
aid us to formulate indices that will help the local government to monitor and frame 
policies to achieve Sustainable Development Goal (SDG) concerning the urban area 
to make cities and human settlements inclusive, safe, resilient and sustainable. 
Furthermore, the change in LULC deteriorates the ecosystem and makes them 
prone to hazards. Since the increase in builtup area is associated with the increase 
in population, which in turn results in increase in demand of resources of water and 
energy, this additional demand in the existing system increases the stress on ground-
water through extensive drafting, thus resulting in reduced baseflow component of 
the stream and may disturb the perennial nature of the stream. Additionally, the 
relationship between builtup and impervious surfaces is related to the increase in 
flood scenarios and land surface temperature (LST) that can affect the hydrological 
extremes. The valuation of ES would help in framing policy in an urban area for 
sustainable land use management practices. However, as mentioned earlier, the 
studies concerning the assessment of ES for urban region in India are limited.



Hence, this study has taken up to estimate the ESV for two metropolitans, namely, 
the Greater Hyderabad Municipal Corporation (GHMC) and Chennai Metropolitan 
Area (CMA) which has undergone rapid unregulated urbanization. The major 
objectives of the study are as follows: 
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1. To investigate the changes in LULC due to urbanization for the study area, that is, 
GHMC and CMA, over the last two decades, that is, 1995–2022 

2. To estimate and detect the trends in ESVs offered by individual LULC classes 
and individual ecosystem functions 

2.2 Rational of the Study 

Industrialization and its associated urbanization have made lives of human being 
more comfortable than ever before, and they significantly impacted human way of 
consuming and utilizing resources. This anthropogenic utilization has brought 
severe degradation of the ecosystem and reduced the services offered by the 
ecosystem (Chopra et al. 2022). Since this is the age of sustainable development, a 
prior knowledge on services offered by the ecosystem is needed to draft policies for 
optimal and environment-friendly utilization of resources. This study attempts to 
estimate the ecosystem service values of two Indian metropolises and analyse the 
trend in the services between two decades, that is, 1995–2022. It also attempts to 
highlight the impacts of change in LULC triggered by economic opportunities on 
ecosystem service values. 

2.3 Limitation of the Study 

Valuation of ecosystem services involves the process of identifying the ecosystem 
services and assigning a monetary value to them. This study considers only a list of 
17 ecosystem services based on a study performed by Costanza et al. (1997). The 
study excludes some of the services from the process limiting the idea of valuing the 
entire ecosystem. The values of ecosystem services are considered in terms of US 
Dollar (USD) and are not converted to Indian Rupee (INR) according to the present 
consumer price index.
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2.4 Materials and Methods 

2.4.1 Study Area 

2.4.1.1 Greater Hyderabad Municipal Corporation 

Hyderabad is the capital city and most populous city in the Indian state of Telangana. 
The Greater Hyderabad Municipal Corporation (GHMC) is an urban conglomeration 
comprising of two main cities, that is, Hyderabad and Secunderabad, along with its 
suburbs shown in Fig. 2.1. The study area is holding 9.7 million human habitants and 
spreads over an area of 550 km2 , which is further divided into 6 zones and 30 circles 
for administration convenience. It extends between 17°20′N to 17°60′N latitude and 
78°23′E to 78°68′E longitude and receives an average precipitation of 840mm 
(Agilan et al. 2015). The river Musi which originates in Vikrabad flows in the city 
that acts as natural carrier to drain the water. The GHMC experiences an arid climate 
with mean monthly temperature varying 22.6°C in January and 32.3°C in May 
(Warrier et al. 2011). The average elevation is 580m above mean sea level and is 
located in Deccan plateau. 

The study area serves as an industrial hub for pharma and life sciences, food 
processing and service sector, since it is stressed with 27% of state’s population 
living in 0.8% of state’s area. It shares almost half (43.5%) of total gross state 
domestic product (GSDP) of Telangana. The economic growth attracted population 
inside and outside the state of Telangana that resulted in unregulated land use 
practices. 

2.4.1.2 Chennai Metropolitan Area 

Chennai is one of the oldest municipal corporations in the world and serves as the 
capital of the Indian state of Tamil Nadu. The Chennai Metropolitan Area (CMA) 
comprises Greater Chennai Corporation, Avadi Corporation, Tambaram Corpora-
tion and its suburbs, which accounts for 12 million people spread over 1182 km2 and

Fig. 2.1 Location of study area – (a) GHMC and (b) CMA



shown in Fig. 2.2. The study area experiences a tropical wet and dry climate and is 
highly humid because of its location. It receives rainfall on an average of about 
1400 mm where 60% of it occurs between October and December, that is, due to 
northeast monsoon (Devi et al. 2019). Three rivers Cooum, Adayar and 
Kosasthailayar flow in the study area and drains into the Bay of Bengal. Buckingham 
Canal once served as a navigational channel runs parallel to the coast. Heavy 
industrialization and urbanization in post-independence period sound the need for 
ecosystem valuation.
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Fig. 2.2 Trend in LULC variation for GHMC from 1995 to 2022 

2.4.2 Data Source and LULC Classification 

The estimation of ESVs depends on the accurate measurement of proportionate area 
that falls under each ecoregion, since an ecoregion offers unique ecosystem services. 
Remote sensing data products are reliable source for quantifying area under each 
ecoregion. For the study, geometrically and radiometrically calibrated Landsat data 
are obtained from the US Geological Survey (USGS) Earth Explorer that is for 
different time periods. The detail description of Landsat data used in the study is 
given in Table 2.1. The data for the month of January (with cloud cover less than 
10%) are considered for the analysis for the years 1995, 2005, 2015 and 2022, in 
order to eliminate the seasonal variation and to maintain consistency in 
classification. 

The data are classified into five LULC classes, that is, waterbodies, vegetation, 
builtup, cropland and barrenland, using a supervised machine learning algorithm, 
namely, support vector machine (SVM). The LULC classification using SVM has 
produced better accuracy (Sannigrahi et al. 2019) comparing with other techniques



like Artificial Neural Network, Decision Tree and Maximum Likelihood Classifica-
tion. Google Earth Engine is used to classify the images, since it reduces the tedious 
task of data handling. The cloud-based setup helps us to derive and store the output 
without need for handling many temporary data. 
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Table 2.1 Description of the record of Landsat data for different years used in the study 

Year Data Sensor Month of image acquisition Spatial resolution (m) 

1995 Landsat 5 TM January 1995 30 

2005 Landsat 5 TM January 2005 30 

2015 Landsat 8 OLI January 2015 30 

2022 Landsat 9 OLI January 2022 30 

The platform’s code editor is used to obtain the Landsat data and filtered for 
minimal cloud cover. An average of 200 training point is considered for individual 
class, that is, waterbodies, cropland, vegetation, builtup and barrenland, and Support 
Vector Machine (SVM) classifier (libsvm) is used for the supervised classification. 
The classified data for the years of 1995, 2005, 2015 and 2022 are used to obtain the 
proportionate area under each class and are analysed for spatiotemporal variations in 
an individual classed over the time period of study. The year 1995 was taken as 
reference period to define the variation in LULC classes and estimated as follows: 

△LULCi = 
LULCfinal -LULCinitial 

LULCinitial 
× 100 

where △LULCi is the change in an individual LULC observed during the time 
frame and LULCfinal and LULCinitial is the particular LULC unit at the beginning and 
ending of the study. The average overall accuracy assessment of supervised classi-
fication for the study areas of CMA and GHMC is 73% and 55%, respectively. The 
accuracy can be enhanced by a more apparent distinction between cropland and 
barrenland, as non-cultivable areas are classified as barrenland. The flaws in the 
classification limit the study. 

2.4.3 Estimation of Ecosystem Service Values 

Ecosystem service value is estimated as the summation of product of the ecosystem 
coefficient (for LULC classes and ecosystem services) with proportionate area of 
LULC classes. We considered 17 ecosystem services offered by individual LULC 
classes and the value for ecosystem service coefficient obtained from Sannigrahi 
et al. (2019) are listed in Table 2.2. And the ESV can be mathematically computed 
with the following equation:
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Table 2.2 Ecosystem service value for different LULC classes in US$/ha/year 

Ecosystem services Waterbodies Vegetation Cropland Barrenland Builtup 

Gas regulation 0 0 0 10.06 0 

Climate Regulation 13 6 215 0 26 

Disturbance Regulation 81 0 0 0 0 

Water regulation 166 0 0 15.1 1 

Water supply 12 10 234 0 0 

Erosion control 88 8 74 10.06 0 

Soil formation 0 0 370 0 0 

Nutrient cycling 51 0 0 0 0 

Waste treatment 82 11 208 50.32 0 

Pollination 0 5 12 0 0 

Biological control 26 5 17 0 0 

Habitat service 66 184 0 10.06 0 

Food production 17 181 1269 0 0 

Raw material 15 8 115 0 0 

Genetic service 3 184 546 0 0 

Recreation 60 4 43 0 161 

Cultural service 54 25 0 5.03 0 

ESVi = 
17 

j= 1 

aV ck ×Ai 

where ESVi is the ecosystem service value offered by an individual class and Vck 

is the ecosystem service coefficient for individual ecosystem service in US$/ ha/year: 

ESVtotal = 
5 

i= 1 

aESVi 

ESVtotal in a year is the total ecosystem service value offered by all individual 
LULC classes from their services. The change in ESV (△ESVi) is calculated as 
follows: 

△ESVi = 
ESVfinal -ESVinitial 

ESVinitial 
× 100
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2.5 Results and Discussion 

2.5.1 Classification and Spatiotemporal Changes of LULC 

2.5.1.1 GHMC 

In the year 1995, the LULC class vegetation and builtup are found to be the 
predominant land cover category (46.5% and 46%) followed by waterbodies (4%), 
and then cropland and barrenland are the least ones. The dominance of builtup in 
LULC is found in 2005, and vegetation class is found to have considerable loss in 
proportion of area as shown in Fig. 2.2. 

During the years 1995–2022, builtup area has increased 33% at the cost of 
vegetation and waterbodies changing the study area landscape with builtup as the 
dominant category. 

The spatiotemporal changes in the study area are presented in Fig. 2.3. Even 
though the reduction in area of waterbody is observed, the rate of decrease in the area 
from 2015 to 2022 is very low compared to the rate of decrease from 2005 to 2015. 
The area under waterbodies, vegetation and cropland has shrunken to 36.05%, 
38.69% and 75.13%, respectively, during the period of study between 1995 and 
2022. Meanwhile the area under builtup and barrenland are found to increase 
32.98% and 218.02% during the study. The decade of 2005–2015 has witnessed 
sharp transition in area under each LULC class, that is, the area under waterbodies, 
cropland and vegetation has been transformed into other LULC classes. 

2.5.1.2 CMA 

The Chennai Metropolitan Area had builtup as the dominant land category occupy-
ing 32.48% of total area followed by cropland, vegetation, barrenland and then 
waterbodies (29.62%, 14.91%, 13% and 10.14%), respectively, in 1995. The areas 
under builtup and barrenland are found to increase during the study period of 
1995–2022 amounted to 36.46% and 42%, respectively, as seen in Fig. 2.4. Vege-
tation, cropland and waterbodies are found to follow decreasing trends throughout 
the study period, and estimated percentage losses in the area compared with the 
reference year are 24.8%, 30% and 45.96%, respectively. The increasing area under 
builtup and barrenland could be attributed with the decrease in the area associated 
with the LULC class of vegetation, cropland and waterbodies (Fig. 2.5).
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Fig. 2.3 Spatiotemporal variation of LULC observed in GHMC (1995–2022) 

2.5.2 Ecosystem Service Values 

2.5.2.1 GHMC 

Figure 2.6 depicts the ESV derived from each LULC in GHMC. Waterbodies 
provide 14 ecosystem services out of 17 considered for this study, and it contributes 
to 1.8 million US Dollars (USD) in the year 1995 (Costanza et al. 1997) and 
gradually reduced to 1.7 million USD in 2005, 1.8 million USD in 2015 and 1.14 
million USD in 2022. Vegetation provides 12 ecosystem services and contributed 
18.16 million USD in the year 1995. It is the highest contributed LUCC class to ESV 
and then decreasing throughout the study period as 16.95 million USD in 2005,



14.31 million USD in 2015 and 10.23 million USD in 2022 indicating the rate of 
decrease in ESV increasing as the time progressed. 
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Fig. 2.4 Trend in LULC variation for CMA from 1995 to 2022 

Climate regulation, water regulation and recreation are the services provided by 
the builtup class. The valuation of these services is estimated around 4.5 million 
USD in 1995 and found to be a decreased till the end of the study period (4.9 million 
USD in 2005, 5.88 million USD in 2015 and 7.1 million USD in 2022). The rate of 
increase in ESV was found to be increased during later time period of study 
(2005–2015, 2015–2022). Though builtup is a dominant land use category, the net 
ecosystem services derived from it were less compared with another existing natural 
ecosystem. From this study, it is evident that there is a linkage between LULC and 
ecosystem service values. The reduction in the area of waterbodies (37.67%) has 
reflected in ESV, that is, the share in total ESV dropped from 6.45% in 1995 to 
5.73% in 2022. Vegetation has drastically minimized in area by 43.6% where almost 
half of the area are converted into other eco-class. The contribution of vegetation to 
ESV dropped from 74% to 55% indicating the overall loss to the study area. The 
ecosystem services provided by vegetation have been following a decreasing trend 
throughout the period. The area under builtup found to be increased 33% during the 
period 1995–2022, the share to the total area calculated as 46.13% in 1995, 55.9% in 
2005, 57.8% in 2015 and 61.8% in 2022. 

The ESVtotal is estimated 28.87 million USD in the year 1995 and 18.49 million 
USD in the year 2022 showing decreasing trend with an overall loss of 28.52% 
(10.38 million USD). The primary contribution of ESV is derived from vegetation 
followed by builtup, cropland and waterbodies, and this order continued even 
though there is net decrease in contribution from the individual classes except 
builtup. Production functions contribute higher share in ESV followed by informa-
tion functions, habitat functions and regulation functions throughout the study as



shown in Fig. 2.7. The fivefold increase of area in barrenland observed between 
2005 and 2015 has found to be decreased 20% during 2015–2022, along with the 
increase in builtup. This could be reasoned as the barrenland serves as an interme-
diate transition class towards the conversion of vegetation and cropland into builtup. 
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Fig. 2.5 Spatiotemporal variation of LULC observed in CMA (1995–2022) 

2.5.2.2 CMA 

Cropland holds the highest share in contributing services to the ecosystem and is 
estimated to be 109 million USD in the year 1995, 94.9 million USD in 2005, 87.5 
million USD in 2015 and 76.5 million USD in 2022 as shown in Fig. 2.8. Though 
cropland shares higher ESV among other eco-classes, there is constant decrease in



ESV (30%) during the study period. The increase in ESV derived from the builtup 
does not significantly increase the total ESV as shown in Fig. 2.8. 
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Fig. 2.6 The ESVs derived from LULC for GHMC 

Fig. 2.7 The ESV derived from ecosystem functions for GHMC 

This is a result of significant reduction in the area occupied by the cropland. 
Vegetation is the next highest contributor of ES in the CMA accounting 11.18 
million USD, 10.56 million USD, 9.4 million USD and 8.4 million USD, and this 
eco-class too followed the decreasing trend in ESV as cropland during the study. 
Contradictorily, ESVs derived from builtup on the barrenland are found to be 
increasing throughout the study. This is reflected from decreasing trend in the area



occupied by the waterbodies and increasing trend in area occupied by the buildup 
and barrenland during the study. 

36 Sudardeva and M. Pal

Fig. 2.8 The ESV derived from LULC class for CMA 

The ESV for the CMA is estimated as 138.03 million USD in the year 1995 and 
found decreased as 123 million USD in 2005, 112.91 million USD in 2015 and then 
101 million USD in 2022. The loss incurred in ESV amounts during the study of 
36.24 million USD (26.25%) is attributed to the increase in the builtup and 
barrenland whose ecosystem services contribution is minimum. Figure 2.9 clearly 
shows that the production function dominates other ecosystem functions in gener-
ating ESV but follows decreasing trend throughout the study. This trend is followed 
by regulation functions and habitat functions except information function, where 
ESV contribution is found with increasing trend throughout the study. Regulation 
functions that regulate and maintain the ecosystem through its services (climate 
regulation, water regulation and supply, disturbance regulation and waste Treat-
ment) are found to have subsequent decrease in generation of ESVs between 1995 
and 2022. This fact questions the resilience of the study area in climate change-
induced extremes. The decrease in regulation function indicates loss in basic life 
support services derived from the ecosystem. 

2.6 Conclusion 

In this study, we have calculated the spatiotemporal ESVs of Greater Hyderabad 
Municipal Corporation (GHMC) and Chennai Metropolitan Area (CMA) from the 
different LULC data for the period 1995–2022. The monetary values for



17 ecosystem services are calculated using ecosystem service coefficient values 
obtained from Sannigrahi et al. (2019). At instant builtup is the dominant land use 
category in the study, followed by vegetation and waterbodies, respectively. Due to 
the expansions in builtup, the ecosystem services such as climate regulation and 
recreation have increased during 1995–2022, whereas the decrease in ESV such as 
water regulation, water supply, erosion control, nutrient cycling, raw material 
and genetic services is observed due to shrinkage in the area under waterbodies 
and vegetation. It also describes the impact of human interference on ecosystem and 
natural capital. The study reveals that the area of our interest has undergone 
unregulated land use practices due to anthropogenic activities, since builtup is the 
only class found increased throughout the period of study. The study concludes that 
anthropogenic activities on LULC have severe impact on ecosystem functions and 
its derived ecosystem services. It is observed that years between 2005 and 2015 
witnessed sharp transition in LULC and it could be reasoned with flowering eco-
nomic activities. However, the reason has to be validated with further studies. The 
change detection analysis study on LULC would be able to quantify the transfor-
mation of one class into another and it limits the present study. Lastly, the study 
points that there is an overall loss in ESV derived from ecosystem services due to 
anthropogenic activities, 6 (clean water and sanitation, good health and well-being, 
sustainable cities and communities, climate action, life below water, life on land) out 
of 17 Sustainable Development Goals are more affected. The result of this study 
would be helpful in understanding the LULC dynamics and its associated changes in 
the ESV values to frame policies to attain ecosystem sustainability. 
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Fig. 2.9 The ESV derived from ecosystem functions for CMA
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Chapter 3 
Groundwater Vulnerability Mapping Using 
Modified DRASTIC Model: A GIS-Based 
Case Study of Imphal East District, 
Manipur, India 

Haobam Bidyapati and Thiyam Tamphasana Devi 

Abstract In this study, modified DRASTIC models (DRASTIC_AGRI and 
DRASTIC_LU models, AGRI stands for agriculture and LU stands for landuse) 
with GIS (Geographical Information System) tools were used to evaluate the vul-
nerability of groundwater (contamination and quality) in Imphal East District, 
Manipur, India, for the recent period (2021–2022). For the DRASTIC_AGRI 
model, seven input parameters (depth of water, net recharge, types of aquifer 
media, types of soil media, topographical slope, impact of the vadose zone and 
hydraulic conductivity) were used, and additionally, one more parameter (land 
use/land cover) is used in the DRASTIC_LU model. Out of these parameters (except 
hydraulic conductivity), data were collected from different government organisa-
tions, and for hydraulic conductivity, field measurements were performed using a 
field instrument (a Mini Disc Infiltrometer) at different locations within the study 
area. In order to construct the modified DRASTIC indexes, weights (1–5) and ratings 
(1–10) are assigned to these input parameters, and finally, using weighted overlay 
analysis, the indexes are derived. A Delphi method (Aller et al. 1985) is used to 
determine these ratings and weights. The results reveal that the vulnerability index of 
Imphal East ranges from 130 to 173 (DRASTIC_AGRI) and 120–182 
(DRASTIC_LU), which indicates moderate to high vulnerability to groundwater 
contamination. The predicted index values are validated (R2 = 0.948, R2 = 0.934) 
using TDS (total dissolved solids), which is one of the major contributing parameters 
to groundwater pollution. It is concluded that even though the study region is not 
industrialised, urbanisation and human activities (including the use of pesticides in 
agricultural practises) may escalate the contamination of groundwater in this region, 
which needs to be checked regularly as well as widely to reduce the contamination 
further. 
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Highlights
• First study on the application of DRASTIC_AGRI model and DRASTIC_LU 

model with GIS techniques for groundwater vulnerability mapping in the study 
region and very few in entire North East India 

3.1 Introduction 

The relationship between rivers, sediment, hydrological extremes and groundwater 
is complex and interconnected (Gupta et al. 2023). The ecosystem of water resources 
is disturbed by several factors, and its two major extreme events (floods and 
droughts) are significant. River plays a major role for source of water as well as 
sweeping away the overflow discharge of the catchment which controls and reduces 
the amount of flood in the region (Saikumar et al. 2022). Groundwater can play a 
critical role in maintaining river flow during periods of drought, as it can act as a 
natural storage reservoir and slowly release water into the river over time (Saikumar 
et al. 2022). However, excessive sediment accumulation in the riverbed can reduce 
the rate of groundwater recharge and lead to a decline in water table levels, which 
can in turn exacerbate drought conditions (Saikumar et al. 2022). Hydrological 
extremes, such as floods, can also impact groundwater quality by introducing 
contaminants into the subsurface, which can then migrate and impact nearby drink-
ing water wells (Gupta et al. 2023). Effective management of river sediment and 
hydrological extremes can help to maintain healthy groundwater resources by 
reducing sedimentation and the risk of groundwater contamination (Saikumar et al. 
2022). Additionally, groundwater management strategies, such as recharge wells 
and aquifer storage and recovery, can help to increase groundwater storage and 
recharge rates, providing a buffer against hydrological extremes and supporting 
healthy river ecosystems (Gupta et al. 2023). In case of drought (scarcity or 
non-availability of surface water), the main source of water is groundwater (Singh 
and Devi 2022). Due to natural (laterals seepage of polluted water, siltation and 
sedimentation, etc.) as well as anthropogenic activities, that is , the use of pesticides 
in agricultural practice (Farooqi et al. 2009; Urseler et al. 2022) and in animal 
farming, conversion of native land to agriculture (Novotny 1999) and dumping of 
sewage on the ground without treatment (Reynolds et al. 2007; Dregulo and Bobylev 
2021), groundwater is polluted. Siltation and sedimentation of river caused by soil 
erosion and loss lead to contamination of groundwater (Pal et al. 2022; Raju 2022; 
Wang et al. 2022). Various chemicals (pharmaceuticals and personal care products) 
present and flows along with the sediment are potential risks to groundwater and 
eventually to human health and aquatic life (Xie et al. 2022). Thus, assessment on 
groundwater vulnerability to contamination and pollution becomes an essential part



for monitoring as well as for preventive measures to the groundwater pollution. The 
use of satellite data with GIS (Geospatial Information System) techniques is a well-
known approach for modelling the groundwater vulnerability (Indulekha et al. 2019; 
Ahirwar et al. 2022). And one the commonly used GIS based model is DRASTIC 
(each letter represents the major factors affecting the transfer of contamination) for 
modelling of groundwater vulnerability (first time introduced by Aller et al. (1985), 
Ersoy and Gultekin (2013), Machdar et al. (2018), Malik and Shukla (2019) and 
Bera et al. (2021)). Then with the development of technology as well as the data 
source, DRASTIC model has been revised/modified (Wang et al. 2022; Khosravi 
et al. 2021; Pal et al. 2022) in many forms: (i) DRASTICA which includes the 
anthropogenic influence (Singh 2015) and gives the highest importance to that 
influencing factor (in the present study, agriculture is considered as anthropogenic 
influence, and soil type is the most affecting factor to agriculture and therefore 
highest weight is given to soil types and model is named as DRASTIC_AGRI); 
(ii) DRASTIC_LU in which an additional parameter, land use (LU), is used (present 
study; Saha and Alam 2014); (iii) pesticide_DRASTIC which is a pollutant’s 
oriented model (Barbulescu 2020); (iv) DRASTICM which includes the lineament 
influence denoted by M (Mendoza and Barmen 2006); and (v) and in general 
CDRASTIC model where C denotes composite model (Malakootian and Nojari 
2020), etc. to improve the accuracy of results. 
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Sarkar and Pal (2021) applied agricultural DRASTIC_AGRI and modified 
DRASTIC (which uses additional parameters such as LU and other composite 
parameters) to assess the groundwater vulnerability of the Malda area in West 
Bengal, India. Standard weights (1–5) are used to indicate the use of pesticides in 
agricultural activities (Aller et al. 1985). Pesticide applications were said to occur in 
agricultural DRASTIC_AGRI, and it is utilised in agricultural regions, while the 
original DRASTIC is employed in industrial and urban locations. They justified that 
DRASIC_AGRI was used because most of the study area is covered by agriculture 
land. In the result they observed that 43.16% of areas have low vulnerability 
(ranging from 95 to 143), and 20.51% of areas have high vulnerability (ranging 
from 170 to 197). Baghapour et al. (2016) applied DRASTIC_LU to assess the 
groundwater vulnerability (nitrate pollution) in the Shiraz aquifer located in Fars 
province, Iran. It was observed that the nitrate index ranged from 6.4 to 185 and was 
classified as very low (70), low (70–110) and medium (110–145). Further, it was 
interpreted that 6.45% of the total area is under moderate vulnerability, and the 
remaining 81.9% are under very low to low vulnerability. They concluded that 
nitrate concentration is high with a high volume of agricultural activities (use of 
pesticides) and shallow groundwater depth (rise of groundwater level), and to 
overcome the nitrate pollution of groundwater, they suggested some measures, 
which include an effective drainage system (improvement of the existing drainage 
system) in the region as well as improvements in fertiliser management (plantation 
of crops with high nitrate use efficiency). 

In the present study region, where the major rivers are prone to siltation and 
sedimentation due to several factors (primarily soil erosion and loss due to urbani-
sation, landslides and pesticides from agricultural practises), it is very likely that the



groundwater is contaminated. Therefore, in this chapter, an assessment of the 
groundwater vulnerability (in terms of contamination) of Imphal East district, 
Manipur, is conducted using a modified DRASTIC model (DRASTIC_AGRI and 
DRASTIC_LU) with GIS techniques. 
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3.2 Study Area 

Imphal East district (Fig. 3.1) is one of the districts of Manipur (northeastern state of 
India) that has a total population of 4,52,661 people (Census, 2011) and geograph-
ical area of around 709 km2 . It is located at an altitude of 790 m above sea level 
Imphal East, Manipur, India is located at latitude 24.780654 N and longitude 
93.967437 E. A subtropical to temperate climate may be found there and the 
temperature is between 0 °C and 40 °C. The southwest tropical monsoon’s effect 
is a phenomenon that the region encounters. The monsoon season’s heaviest rain 
falls between May and August of every year. The region resembles a flat, long, 
narrow valley with solitary hills that rise up towards the south. 

Fig. 3.1 Imphal East district map (MARSAC, Government of Manipur)
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3.3 Methodology 

DRASTIC model has different modified versions, and the models in this study are 
two of them IDRASTIC_AGRI and DRASTIC_LU. The data used and equations of 
DRASTIC_LU model and DRASTIC_AGRI model with theoretical background to 
assess the groundwater vulnerability in this study are presented in this section. 

3.3.1 DRASTIC Model 

DRASTIC model is used to evaluate vertical vulnerability mapping, and each letter 
in this model represents the required input parameters to get the final output. 
Therefore, D represents depth to water, R as net recharge, A as aquifer media, S as 
soil media, T as topography, I as impact of vadose zone and C as hydraulic 
conductivity. It is presumed that all these input parameters significantly affect the 
health of groundwater (pollution or contamination of groundwater) and play an 
important role in the overall results. In this model, each component (input parame-
ters) is given a weighting multiplier to balance and enhance its importance. Thus, a 
scale of 1–5 as weight and a scale of 1–10 as ratings normally are assigned to each 
input parameter and are provided in Table 3.2 in the Result and Discussion section. 
After weights and rank are assigned to these input parameters, weighted overlay 
analysis is performed, and the weighted total of the seven elements results in the final 
vulnerability index as the DRASTIC index (Di) is given as 

Di =DrDw þ RrRw þ ArAw þ SrSw þ TrTw þ IrIw þ CrCw ð3:1Þ 

where Di is the DRASTIC index for a mapping unit w weighting factor for each 
parameter r rating for each parameter D, R, A, S, T, I and C, the seven parameters, 
that is, D is the depth of water, R is the net recharge, A is the aquifer media, S is 
the soil media, T is the topography, I is the vadose zone impact and C is the hydraulic 
conductivity, respectively. 

3.3.2 DRASTIC_AGRI Model 

In this modified model, vulnerability index is generated with different weights from 
the original DRASTIC model. Since weights are assigned according to the impor-
tance of the particular model, highest weight is assigned to the parameter that is 
important to the agriculture.
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Fig. 3.2 Structure of data used in DRASTIC_AGRI and DRASTIC_LU models 

3.3.3 DRASTIC_LU Model 

In this modified model, vulnerability index is generated by adding land use/land 
cover (LULC) to the original DRASTIC model having assigned weights and rating 
for different parts of LULC. Then, weighted overlay analysis is performed with the 
eight parameters in GIS platform. DRASTIC_LU vulnerability index is given as 

DLU =DrDw þ RrRw þ ArAw þ SrSw þ TrTw þ IrIw þ CrCW þ LrLw ð3:2Þ 

where L represents land use/land cover (Fig. 3.2). 

3.3.4 Data Used 

The data used (input parameters) with its sources and mode of derivation and 
extraction is provided in Table 3.1. The description of these input parameters pro-
vides the insight meaning of the characteristics possessed. The collected data 
retrieved from different sources were again processed through GIS tool (ArcGIS® ). 

Field work is conducted to calculate the hydraulic conductivity. Mini disk 
infiltrometer (MDI) is used for the measurement (Fig. 3.3). It has a suction tube on



top (7 cm) of suction regulation tube (10.2 cm) followed by mariotte tube (28 cm) 
and stainless steel porous disk (4.5 cm diameter, 3 mm thick). Water should be 
poured in regulation tube up to 10 cm and suction tube is inserted according to soil 
porosity nature. Volume of the mariotte tube in initial time is noted and volume is 
noted every 30 s. It can be continued until the difference of the initial and final 
volume is less than 30 ml. Then the cumulative is calculated by difference of initial 
and final volume divided by area of the infiltration. Thereafter, hydraulic conduc-
tivity is calculated by cumulative infiltration divided by area (from the Van 
Genuchten parameters according to the suction type and soil type). Different loca-
tions were selected for the measurement of hydraulic conductivity in the study 
region, and Fig. 3.3 shows the MDI at measurement site, that is, Napet Pali (local 
name). 
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Table 3.1 Sources of data used 

Parameters (data) Mode Sources 

Depth to water Interpolation Collected data (depth to water table) from the booklet issued 
by CGWB (Central Groundwater Board), Imphal East, 2018 

Net recharge Integration Rainfall data collected from CGWB, 2018, as per IMD 
(Indian Meteorological Department) from 2013 to 2017 

Aquifer media Digitisation Aquifer data From booklet – East District by CGWB, 2018 

Soil Digitisation Soil data from Groundwater Information Booklet Imphal 
East District, Manipur, by the Ministry of Water Resource, 
2013 

Topography 
(slope) 

Spatial ana-
lyst tool 

Developed from SRTM data in ArcGIS using spatial analyst 
tool with resolution30 

Impact of vadose 
zone 

Digitisation Collected the lithology data from booklet – Imphal East 
District by CGWB, 2018 

Hydraulic 
conductivity 

Digitisation Collected the data by using the mini disk infiltrometer 
(MDI), performing the experiment in different locations of 
Imphal East and calculated the hydraulic conductivity value 
using graph in excel sheet 

Land use/land 
cover (LULC) 

Spatial ana-
lyst tool 

Developed from ESRI data (Sentinel-2 10m,) in ArcGIS 
using spatial analyst tool for 2021 

3.4 Result 

In this section, the derived input parameters in the form of raster and vector from the 
collected ground data will be provided along with the final weighted overlay result of 
groundwater vulnerability map. All the input parameters were derived using IDW 
(inverse distance weighting) method in ArcGIS® . The assigned weights and ranks of 
the parameters are also provided in table.
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Fig. 3.3 Measurement of hydraulic conductivity using MDI at site 

3.4.1 Input Parameters 

3.4.1.1 Depth of Water 

For mapping of parameter, D, depths (m) of certain locations of the study area are 
collected from CGWB (2018). Depth ranges from 0 to 9 m. Then using the 
coordinates of the locations, interpolation is done by IDW shown in Fig. 3.4 and 
classified as per Table 3.2. 

3.4.1.2 Net Recharge 

Next parameter, R, is calculated by the summation of rainfall for the year 2021. After 
the summation, the data is added in the tool, and then net recharge mapping is done



through IDW using the coordinates of the study area, hence providing the map in 
Fig. 3.5. The sum of annual rainfall is about 1099 mm in the study area. 
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Fig. 3.4 Depth of water (m) map



Parameters Range

9 7 7

6 9 9

– –
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Table 3.2 Weight and rank assigned to the input parameters of DRASTIC-LU model and 
DRASTIC_AGRI models (Aller et al. 1985) 

DRASTIC-LU Agriculture DRASTIC 

Weight Rating Weight Rating 

Depth of water (m) 0–1.5 5 10 5 10 

1.5–4.5 9 9 

4.5– 

Net recharge (mm) 10–99 4 9 4 9 

Aquifer media Sand, medium 3 10 3 10 

Sand, coarse 9 9 

Sand, gravel 8 8 

Gravel 7 7 

Soil media Loamy sand 2 6 5 6 

Topography (%) slope) 0–2 1 10 3 10 

2– 

6–12 5 5 

12–18 3 3 

>18 1 1 

Impact of vadose zone Shale and siltstone 5 6 4 6 

Sand, silt and clay 3 3 

Hydraulic conductivity (m/d) 0–4.1 3 1 2 1 

Land use/land cover (LULC) Water body 5 1 

Barren land 1 – 

Wet land 1 – 

Agriculture 8 – 

Built-up 7 – 

Crop land 7 – 

3.4.1.3 Aquifer Media 

Aquifer media is the medium that is beneath the water table of the ground, and 
Imphal East is mostly covered by sand and gravel (CGWB 2018). Like the other 
parameters, mapping is done through IDW shown in Fig. 3.6 for aquifer media. 

3.4.1.4 Soil Media 

Soil media data is collected from CGWB (2018) & Ground water Information (2013) 
and interpolated using IDW. Soil type of the study area is mostly covered by loamy 
sand. The map of the soil type is shown in Fig. 3.7.
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Fig. 3.5 Rainfall (mm) map 

3.4.1.5 Topography 

Topography is the percentage slope. The DEM (digital elevation model) is 
downloaded from earth explorer website. 

Using the slope tool in ArcGIS, the percentage has been calculated and further 
classified as per Table 3.2. The map in Fig. 3.8 represents the slope in percentage of 
the area ranges from 0 to >18.
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Fig. 3.6 Aquifer media map 

3.4.1.6 Impact of Vadose Zone 

Impact of vadose zone is the zone just beneath the soil surface which is followed by 
the aquifer media. For Imphal East, sand silt and clay and shale and siltstone 
constitute the vadose zone which are shown in Fig. 3.9.
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Fig. 3.7 Soil type map 

3.4.1.7 Hydraulic Conductivity 

Hydraulic conductivity is calculated using the mini MDI at different locations of the 
study area. In the field work, the volume change is the tube of the mini disk 
infiltrometer noted in the time interval of 30 s. Then, the collected data is analysed 
in excel sheet and value of hydraulic conductivity is provided in m/d. Interpolating 
the values of it, map is generated provided in Fig. 3.10.
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Fig. 3.8 Slope (%) map 

3.4.1.8 Land Use/Land Cover 

Another parameter for DRASTIC-LU model, LULC, is included with the seven 
parameters. And the weight assigned to this parameter is 5 which is the highest range 
of the assigned weight in DRASTIC model. Different parts of LULC include water 
body, barren land, wet land, agriculture, built-up and crop land as shown in 
Fig. 3.11. This parameter is prepared from ESRI data in spatial analyst tool for



2021. After generating all the required parameters, the respective weights and ranks 
are assigned which are shown in Table 3.2. 
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Fig. 3.9 Vadose zone map
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Fig. 3.10 Hydraulic conductivity (m/d) map 

3.4.2 DRASTIC_AGRI Vulnerability Index 

Using the above seven maps (Figs. 3.4, 3.5, 3.6, 3.7, 3.8, 3.9 and 3.10), a weighted 
overlay analysis is performed and generated a final map (Fig. 3.11). After 
reclassifying the seven maps according to their relative rates from 1 to 10 which 
was given in Table 3.2, the maps are layered over to the raster calculated in spatial 
analyst tool. As per the assigned weights in Table 3.2, the weights are multiplied 
with their rates, and then, the DRASTIC_AGRI vulnerability index is calculated and



is given in Fig. 3.12. It shows different levels of vulnerable area in the study region 
and is classified into three levels as low vulnerability (8%), moderate vulnerability 
(12%) and high vulnerability (80%) presented in Fig. 3.11. It is observed that the 
index ranges from 130 to 173 and the northern part of the district is comparatively 
high from other parts of the district. 
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Fig. 3.11 LULC map
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Fig. 3.12 DRASTIC_AGRI vulnerability index map 

3.4.3 DRASTIC-LU Vulnerability Index 

Using the eight parameters (Figs. 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10 and 3.11) which are 
included in the LULC map, an overlay map is performed and a final map is generated 
(Fig. 3.12). And procedure is repeated as same as the above index, but in this index, 
LULC is included and the weights assigned to the eight parameters which are 
different from DRASTIC_AGRI model because the importance of the parameter 
to the corresponding index is different. But the rating is same as shown in Table 3.2 
and DRASTIC-LU index ranges from 120 to 182 (Fig. 3.13).
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Fig. 3.13 DRASTIC_LU index map 

3.4.4 Validation 

Total dissolved solid (TDS) is the presence of different qualities which include salts, 
minerals, metals and other dissolved substances in a given volume of water. It is 
considered to be one of the parameters for health of water. To validate the vulner-
ability of the study area, the presence of chemical in groundwater like nitrate, ph, 
TDS, etc. can prove the pollution of groundwater if the index and chemical value is 
linearly correlated. In thus study, the predicted DRASTIC_AGRI and 
DRASTIC_LU indexes are plotted with TDS data collected from the Central Ground



Water Board (CGWB), Government of India, for the year 2018 and are shown in 
Fig. 3.14a and b, respectively. Both the figures depicted that the predicted indexes 
(it directly indicates the quality of groundwater) are linearly correlated (R2 = 0.934, 
R2 = 0.948) with the collected ground data of TDS (mg/l) and are considered 
reasonable for modelling and simulation studies. 
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Fig. 3.14 Comparison of modelled DRASTIC indices and TDS value: (a) DRASTIC_AGRI and 
(b) DRASTIC_LU model 

Table 3.3 Predicted ground-
water vulnerability of 
DRASTIC_AGRI and 
DRASTIC_LU model 

Vulnerability 
category 

DRASTIC_AGRI DRASTIC_LU 

Area % Area % 

Low 7.236 1.895 12.351 3.240 

Medium 18.278 4.787 19.201 5.038 

High 100.491 26.320 83.949 22.026 

Very high 255.794 66.997 265.638 69.696 

Fig. 3.15 Comparison of 
groundwater vulnerability 
between DRASTIC_AGRI 
and DRASTIC_LU models 

3.5 Discussion 

The predicted groundwater vulnerabilities of DRASTIC_AGRI and DRASTIC_LU 
are compared and presented in Table 3.3. The area-wise predicted vulnerability is 
also plotted in Fig. 3.15. Out of the four classified categories (low, medium, high and



very high) of groundwater vulnerability, in both models, the very category is the 
highest in area (67%). This is a clear indication that the study region is significantly 
affected by groundwater contamination and is a warning sign to all concerned 
stakeholders. Even the high vulnerability category has reached up to 22% 
(DRASTIC_LU) or 26% (DRASTIC_AGRI). From Fig. 3.15, it depicts that the 
two methods predict equal amount of vulnerability. 
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As the purpose of the two models is different, they give different ranges of 
vulnerability. As the R2 value is higher in the DRASTIC_AGRI model when 
compared with the TDS value than in the other model (DRASTIC_LU), it can be 
interpreted that DRASTIC_AGRI is slightly more efficient in predicting groundwa-
ter vulnerability in this study region. Therefore, DRASTIC_LU is over predicting, 
which can also be understood from the higher predicted index range by this model, 
that is, the index range predicted by DRASTIC_LU (index range is 120–182) is 
higher than that predicted by DRASTIC_AGRI (index range is 130–173), which 
means that the assumption of this model by giving more emphasis on LULC can be 
unsuitable. This also indicates that there is no significant effect of LULC in this study 
region. Farmers and local people can use this data to grow and select suitable crops 
in the region. 

3.6 Future Scope 

DRASTIC_LU and DRASTIC_AGRI are modified from the original DRASTIC 
model, which is a more accurate and better version. Likewise, different modified 
models are available in GIS technology, and these are the future scope of the model. 
For advanced technology, the AHP (analytic hierarchy process) method can also be 
used in this model with different weights and ranks for different parameters of 
the model. The AHP model considers the effect of each DRASTIC factor on the 
vulnerability cycle and provides a comparison of the values of the variables, the 
normalisation and the computing consistency ratio (CR). When applying the AHP 
method, the power of significance (as per Saaty’s scale) between the two variables is 
filled in a matrix format using ground truth data, field characteristics and subject 
matter specialists’ views, which may make the approach more efficient than the other 
models. Such values have been simplified to reflect the influence of the subjectivity 
involved in the weight assignment process. In any model, seven parameters will 
remain the same, which act as base parameters, and in a modified (new model) 
model, the required parameter, which is more weighted to the contamination of 
groundwater, is added. Similarly, different methods, that is, (i) overlay and index-
based methods (applied in this present study), (ii) process-based simulation models, 
(iii) statistical methods and (iv) hybrid methods, can be applied and compared for an 
efficient result that can be completely relied upon for any management planning. 
Another future scope would be expanding the study area to other districts of the state 
so that a larger scenario of groundwater can be understood in the state, which will 
help in efficient planning of groundwater vulnerability monitoring strategies.
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3.7 Conclusion 

As the DRASTIC_AGRI index ranges from 130 to 173, it indicates high vulnera-
bility to groundwater pollution and contamination in the region, which may affect 
agricultural practises and yield. Similarly, the calculated DRASTIC_LU index 
ranges from 120 to 182, which indicates that groundwater contamination is high 
and may affect the overall ecosystem of water resource management in the region. 
Therefore, agricultural practices should be monitored, especially in terms of crop and 
fertiliser management (reducing or avoiding pesticides), and proper zoning should 
be done for low vulnerability (pesticides allowed with conditions) and high vulner-
ability (pesticides free). Then, zone-wise and its agricultural practices may be 
adopted. It is also not recommended to use the groundwater directly before it is 
treated, and further to confirm its chemical presence, a laboratory test may be 
conducted. 
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Chapter 4 
Flood Hazard Mapping Using Hydraulic 
Models and GIS: A Review 

Liza G. Kiba, Grace Nengzouzam, and Prem Ranjan 

Abstract Floods are a natural event and are among the most frequent and destruc-
tive disasters, causing major infrastructure losses and disrupting livelihoods around 
the world. Floods are most often caused by extreme hydro-metrological and natural 
forces, but over the past decade, climate change and human response have added 
new dimensions. There is a wide array of flood risk management methods that can 
reduce this destruction, which requires estimating flood risks and their impacts. 
Preventive measures such as efficient land use planning, flood mapping, and imple-
mentation of other agronomical and engineering structures are essential in mitigating 
the hostile impacts of flood. Flood hazard estimation and mapping can be carried out 
using various methods depending on data, resources, and time availability. In 
contrast, flood assessment with the creation of the Geographic Information Systems 
(GIS) database for the flood zone and hydraulic modelling software such as 
HEC-RAS and HEC-HMS has proven to be useful for flood assessment. GIS can 
accurately predict the extent of flooding and produce flood maps, as well as flood 
damage estimation maps and flood hazard maps. Flood hazard maps can be analysed 
to provide advance warnings for general preparation and, if needed, evacuation. It is, 
therefore, one of the most significant tools for flood risk management. 
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4.1 Introduction 

Flood, a natural catastrophe, affects several regions of the globe, both developed and 
developing countries. Any natural phenomenon can be defined as a hazardous event 
if it occurs with the likelihood of causing loss or damage settlements. Flood hazards 
are among the most common and destructive disasters, causing extensive damage 
and disrupting livelihoods worldwide. The impact of floods can vary worldwide due 
to geographical, agricultural, and economic reasons. Although flood calamities are 
primarily caused by natural events, their repercussions have been increased as a 
result of human activities. Urbanisation in developing countries and the rapid growth 
of the associated population lead to the increase of uncontrolled and unplanned 
development activities (Shah et al. 2020). The development activities involve floods, 
and flood in plain areas in the cities can potentially increase loss of life and damaging 
properties. Thus, to minimise the risk of flooding and associated hazards and losses, 
it is essential to disseminate accurate and reliable information to the public in the 
form of flood inundation maps. The primary purpose of flood risk assessment is to 
gain a good understanding of the likelihood of floods of a given intensity occurring 
over a long period of time. Through this approach, individuals can implement 
precautionary measures and actions to minimise the impact of floods. 

The mixture of human vulnerability and physical exposures results in flood 
hazards. It is difficult to control floods, but we can take measures to minimise their 
impact. Identifying the right measures to deal with floods is a difficult task. The 
stages involved in flood disaster management include prediction, preparedness, 
prevention, reduction, and damage assessment. The flood peril areas can be identi-
fied by flood hazard assessment and mapping. It also improves flood risk manage-
ment and disaster preparedness. The anticipated degree and depth of flooding in a 
particular site under different scenarios can be assessed through flood hazard assess-
ments and mapping. 

Changing land use planning, creating emergency response plans, implementing 
specific flood protection measures, etc. are measures that can improve flood man-
agement preparedness. Flood risk assessments can be broadened to assess specific 
risks, taking into account the socio-economic characteristics of exposure areas. 

The generation of flood inundation map is greatly promoted from the develop-
ment of modelling and remote sensing (RS) and geographic information system 
(GIS) techniques (Bera et al. 2012). The flood risk areas can be identified by 
combining hydrologic models with RS and GIS by using hydrological models 
such as Hydrologic Engineering Centres-River Analysis System (HEC-RAS) and 
Hydrologic Engineering Centres-Hydrologic Modelling System (HEC-HMS). Apart 
from the identification of areas under flood hazard, floods can also be predicted. 

For flood hazard assessment and mapping, the key components required are 
digital elevation models (DEMs) for generating the topographical features of the 
region and hydrological models for simulating several flood events and its effects. 
Generating flood inundation maps is greatly influenced by the resolution of the 
DEM, as higher-resolution DEMs tend to produce more reliable and precise maps



compared to lower-resolution DEMs (Ogania et al. 2019). Apart from DEM, various 
dataset such as land cover data, soil data, and meteorological data are also needed. 
GIS software such as ArcGIS, QGIS, and IGIS may be required for generation of 
maps. This software can also act as a visualisation tool. 
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Topographic data may be gathered (satellite data) or existing topographic datasets 
may be used. The use of GIS software enables the mapping of the depth and extent of 
flooding by measuring local land elevations in response to extreme water levels. 
Hydrological and historical data on floods, precipitation patterns, and climate data 
are required to simulate flood modelling, and these variables are used to estimate 
flooding depth and extent in various scenarios. This identification of high-risk flood 
zones allows planners to improve awareness and response. Integrated approaches 
that incorporate flood hazard assessments and associated maps can be implemented 
by land use and development planners to improve flood preparedness, enhance land 
developments, and increase community awareness. 

This paper has presented the different case studies related to flood disaster 
management and successful implementation of GIS for mapping hazard maps. 
This work reflects the effectiveness and applicability of different flood hazard 
mapping methodologies. Successful implementation of flood hazard mapping will 
not only provide essential information on flood hazards but also enhance manage-
ment and land use planning measures by limiting development in flood-prone areas. 

4.2 Methodology 

Flood hazard management is a critical task that involves identifying potential flood-
prone areas and taking preventive measures to minimise flood risk. The following 
three phases can explain the methodology involved in developing a flood 
hazard map: (a) preparing/acquiring a DEM using ArcGIS, (b) simulating flood 
flows for various return periods using hydraulic models, and (c) producing flood risk 
maps by integrating the output from phase (a) and phase (b). 

The initial phase is creating a flood hazard map (FHM) consisting of collecting 
and organising appropriate data. This involves acquiring data on the study region, 
topography, hydrology, land use, rainfall patterns, and climate data, from a range of 
sources, such as satellite imagery, ground surveys, and existing databases. The 
collected data is then processed and structured into an appropriate format for use 
in flood hazard modelling. 

The second phase involves the utilising of the collected data to establish a flood 
hazard model. RS and GIS techniques are utilised to process the data and create a 
hydrological model that can forecast water behaviour in the area. The main objective 
of the model is to define and predict the higher-risk area of flooding. 

The third phase incudes the generation of FHM based on the second phase which 
shows the areas at higher risk of flooding and the potential degree of the flood. The 
map can also be used to identify areas where flood mitigation measures are needed, 
such as constructing flood walls or implementing land use changes. The map can



also be used for emergency planning and response, as it helps authorities to identify 
areas that are most at risk and to develop appropriate measures to mitigate the impact 
of flooding. The steps involved in flood hazard management using remote sensing 
(RS)-GIS and hydrological modelling are shown in Fig. 4.1. 
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Fig. 4.1 Flowchart of flood hazard management 

4.3 HEC-RAS and HEC-HMS Model 

The hydraulic model HEC-RAS, developed by the US Army Corps of Engineers 
(USACE), is commonly utilised to estimate the hydraulic characteristics of streams 
and rivers; this model allows the user to input data and obtain output on the screen 
and conduct further investigations. Besides the energy conservation equation, 
HEC-RAS needs data on river cross-sections and upstream flow rate to determine 
the depth and mean velocity of the river (Fan et al. 2009). By using GIS, the variation 
of water levels along the channel, which can be superimposed on a DEM of the 
region, can be computed by HEC-RAS to determine the extent and depth of 
flooding. 

The hydraulic model of flood-prone areas using HEC-RAS in RS and GIS was 
created to generate the flood hazard maps for northern Thailand’s Ping River Basin 
(Duan et al. 2012). The flood-inundated areas and flood depths of Chiang Mai 
province for the year 2005 were prepared by employing the HEC-RAS



one-dimensional flood model. The accuracy of model was validated by cross-
checking the model outputs with the RS image. 
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In another study carried out for Greece, the flood-inundated area maps were 
generated for different areas, where both the similarities and differences were 
showed (Panagoulia et al. 2013). The hydrologic processes for the given return 
period were simulated by using HEC-HMS software, and hydrographs were pre-
pared. Several simulations related to the hydraulics of open channel flow were 
conducted using ArcGIS-compatible HEC-RAS software. They concluded that 
prioritising and planning flood protection measures in the early phase are vital in 
generating flood inundation maps. 

HEC-RAS model along with GIS was used for the Mert River Basin, Turkey, to 
prepare the flood hazard maps (Demir and Kisi 2015). They employed ArcGIS 
software to digitise the topographical data and finally generate DEM. Using 
HEC-RAS software, simulation of flood values was performed. Their output was 
integrated to prepare the flood risk maps. 

HEC-RAS was integrated with GIS to delineate flood depths and degrees for Nam 
Phong River in northeast Thailand (Nut and Plermkamon 2015). The steady flow 
simulated flood along 148 km of the river and floodplain mappings for different 
return periods were derived. The researchers concluded that incorporating hydraulic 
simulation with GIS could improve the efficiency and accuracy of floodplain 
mapping and management. Moreover, ArcGIS and HEC-RAS provide powerful 
tools for planners and decision-makers. 

Romali et al. (2018) evaluated the competence of the HEC-HMS model in flood 
risk assessment by comparing the observed historic data with the simulated result for 
certain flood events of Segamat Town, Malaysia. Using Nash-Sutcliffe model 
efficiency as a performance indicator, both model calibration and validation were 
carried out. The calibration and validation periods were evaluated using Nash-
Sutcliffe efficiency values of 0.90 and 0.76, respectively. 

The one-dimensional HEC-RAS model in combination with GIS was also used to 
create FHM of Ajay River basin, where parts of Jharkhand and West Bengal 
contribute to the drainage basin (Chakraborty and Biswas 2020). They classified 
FHM in five distinct categories based on various return periods, that is, very low, 
low, moderate, high, and very high. The damage to land use and population was 
quantified in detail with the aid of the map produced based on distinct classifications. 

Multispectral data from Landsat-8 OLI and Sentinel-2, as well as DEM data from 
Aster (30 m) and Cartosat (10 m), were used in HEC-RAS and RAS mapper to make 
flood inundation maps of the sub-watershed Imphal River Basin in Manipur 
(Bipinchandra et al. 2019). The study’s results gave a good look at how floods affect 
the area where the study was done. 

A framework was made to use GIS, HEC-HMS, and HEC-RAS to model floods 
on a regional scale in the Indian city of Hyderabad (Rangari et al. 2019). Flood 
inundation maps were made based on three floods that happened in the city: one in 
July 1989, one in August 2000, and one in August 2008. Flood inundation maps 
were made that showed both the areas at risk and the places where flooding was 
likely to happen.
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HEC-RAS 5.0.7 and Global Flood Monitoring System (GFMS) tools were 
employed to identify flood risk zones and delineate flood extent in Prayagraj, 
India, at the conjunction of River Gange and Yamuna (Sangam) (Kumar et al. 
2020). When compared, the estimated data was found to be in close proximity to 
the observed data indicating the applicability of HEC-RAS and GFMS data/tools 
together. 

4.4 Other Methods 

Flood risk maps for the Guwahati Municipal Corporation (GMC) Area, Assam, were 
prepared by performing field surveys and contacting several governmental bodies to 
collect information and identify the major causes of the flood (Barman and Goswami 
2009). Using Erdas and ArcGIS, they generated the FHM by integrating the col-
lected information and presented the flood-vulnerable areas of the study area. 

Another study was carried out for Dikrong River Basin in Arunachal Pradesh 
where flood-prone areas were mapped using GIS (Bhadra et al. 2011). A comparison 
was made between the generated inundation maps with already published maps 
under Brahmaputra Board Master Plan for the study area. They observed a very low 
differences (<5%) between modelled and reported map inundation areas, indicating 
successful application. They also determined that using GIS techniques is a cost-
effective and dependable approach for producing flood inundation maps in areas 
with undulating topography such as Dikrong. 

In order to create composite flood hazard index for Ghana, an additive model was 
proposed where topographical, land cover, and demographic data were used (Forkuo 
2011). A district-level map of flood-prone areas and maximum flood hazard zones 
were generated using GIS. The study further reconfirms the conclusion made by 
other researchers (Barman and Goswami 2009; Bhadra et al. 2011) on the applica-
bility of GIS in flood hazard mapping. 

Flood inundation maps were developed for the Dep River Basin, Nigeria, where 
flood occurs at different severities every year (Daffi et al. 2014). Using GIS software, 
they generated flood-inundated area maps based on different return periods for the 
river basin. They found that area under agriculture sector was affected the maximum 
(68.82–146.10 km2 for return periods of 2–1000 years). 

To create a high-resolution FHM, Giustarini et al. (2015) created a high-
resolution hazard map by using a global inundation model from the European Centre 
for Medium-Range Weather Forecasts and a large collection of ENVISAT ASAR 
imagery. Their study showed that the combination of these methods was more 
beneficial than the conventional numerical modelling approach for producing 
high-resolution flood hazard maps. 

As an advancement in the flood inundation mapping using Landsat-7 and Google 
Earth images along with extensive field survey, Ullah and Zhang (2020) delineated 
the inundated areas of the Panjkora River Basin, eastern Hindu Kush, Pakistan. The 
study involved locating 154 flood stations, where 70% of them were used for



constructing the model and the remaining 30% for validation purposes. Flood-prone 
areas were identified based on eight parameters, including elevation, slope, drainage 
density, rainfall, normalised difference vegetation index (NDVI), land use, 
and topographic wetness index (TWI). The correlation between flood occurrences 
and each parameter was analysed, resulting in a reliable model with a success and 
prediction rate of more than 82%. 
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4.5 Conclusion 

In the present study, different kinds of literature have been reviewed where different 
hydrological models and software have been used to identify flood-inundated areas 
and flood hazard mapping. Usage of hydrological models can explicitly account for 
the role of hydraulic structures and provide additional information, such as flow 
depth, velocity, and volume of flow which can be useful for other applications. 

The increase in flood frequency throughout the world is a major concern. 
Identifying the flood-vulnerable areas is the preliminary step for comprehensive 
flood risk management. A better understanding of the return period and flood extent 
and the adoption of mitigation policies are necessary to minimise the risk. Lack of 
use of flood modelling techniques and faulty land use has worsened the flood 
situation in most parts of the world. Further, rapid urbanisation and deforestation 
vastly contribute to the increased flood hazards. A clear understanding and aware-
ness of current and potential flood risks result in society mobilising local energies in 
building resilience. Therefore, knowledge of flood hazards is vital for taking pre-
ventive measures. 

A careful, sustainable urban planning, redirection measures on flood risk man-
agement, and monitoring programmes are essential to improve flood preparedness 
and thereby enhance land developments and promote community awareness. While 
flood hazard mapping does not reduce the risk of flooding, it will certainly increase 
awareness to the community. Flood hazard mapping complements and reinforces 
other adaptive strategies including emergency planning, flood protection, and evac-
uation planning. For any flood control and mitigation measures, there is a need to 
take human behaviour into consideration to better respond to flood risk. A lack of 
understanding of the benefits of flood hazard mapping may also be an impediment to 
implementation. In addition, flood mitigation strategies cannot be restricted to the 
construction of infrastructure or the development of plans using a top-down 
approach. Local governments and policymakers need to adopt integrated risk man-
agement strategies that can be much more effective when local communities are 
involved.
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Chapter 5 
A Case Study on the Prediction of Heatwave 
Days Using Machine Learning Algorithms 
over Telangana 

B. Srikanth and Manali Pal 

Abstract This study aims to develop a heatwave prediction models for 7-, 15-, and 
30-day lead times using machine learning algorithms, that is, support vector regres-
sion (SVR) and random forest (RF) for Telangana, a semiarid region vulnerable to 
heatwaves. The study uses five meteorological variables, namely, geopotential 
height, U-wind, V-wind, air temperature, and relative humidity for four atmospheric 
pressure levels (1000, 925, 850, and 700 hPa) from 1990 to 2019 as predictors. The 
input data is obtained from ECMWF Reanalysis Version 5 (ERA5), and the spatially 
averaged daily maximum temperatures of summer (i.e., for the months of April, 
May, and June) are obtained from the India Meteorological Department (IMD) as 
predictand. The Principal Component Analysis is used on spatially averaged mete-
orological variables to reduce the number of closely related variables for different 
pressure levels. The study shows significant accuracy in predicting the total number 
of annual heatwave days (HWDs) for Telangana for seven-day lead time, but model 
performances decrease with increasing lead time. Despite spatiotemporal variations 
in the connections between heatwaves and predictors, the models are satisfactory, 
and SVR outperforms RF in predicting HWDs. The study’s findings indicate that the 
spatiotemporal dynamics of meteorological variables could be used for long-term 
heatwave prediction, and both SVR and RF models have the potential for reliable 
usage in this context. 
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5.1 Introduction 

Heatwaves (HWs) are days for a particular place experiencing abnormally high 
temperature that exceeds its long-term normal value that is calculated based on the 
maximum average temperature for a given base period of 30 years. These extreme 
heat events have serious and deadly consequences for various systems such as 
human health, agriculture, energy demand, and forest ecosystems and also signifi-
cant impact on hydrological extremes, particularly in regions with already limited 
water resources. During a heatwave, high temperatures can increase evaporation 
rates, leading to decreased soil moisture and lower water levels in rivers, lakes, and 
reservoirs. This can exacerbate existing drought conditions, leading to a greater risk 
of water scarcity and water-related conflicts (Afroz et al. 2022). Additionally, high 
temperatures can increase the likelihood of intense rainfall events, leading to flash 
floods and landslides in areas with insufficient drainage capacity. These hydrological 
extremes can have significant economic, social, and environmental consequences, 
including damage to infrastructure and buildings, loss of crops, and increased risk of 
waterborne diseases. Therefore, it is essential to consider the potential impacts of 
heatwaves on hydrological extremes in planning for future water management and 
adaptation strategies. In recent years, heatwaves have become more common glob-
ally and have resulted in many fatalities. For instance, in 2003, a severe heatwave in 
Western Europe led to the death of over 70,000 people (Coumou and Rahmstorf 
2012). Similarly, the 2010 heatwave in Russia, which lasted for a month (Dole et al. 
2011; McMichael and Lindgren 2011) and the 2009 heatwave in Southeastern 
Australia caused the death of 54,000 and 374 people, respectively. In India, 
heatwave is a significant concern, particularly in the northern and central regions 
(Das and Umamahesh 2022; Das et al. 2022). The country experiences heatwaves 
every year, and they have become more frequent and severe in recent years, with 
temperatures regularly exceeding 45 °C in many regions. This extreme heat can 
cause heatstroke, dehydration, and other health problems, especially among vulner-
able populations such as the elderly, children, and those with pre-existing medical 
conditions and who also experienced many fatalities due to various occurrences of 
these HWs. For example, the HW occurred in 1988 killed approximately 1300 
people (De and Mukhopadhyay 1998) and in 1998 and 2003 killed approximately 
2042 (Jenamani 2012) and 3054 people, respectively; and the toll was 2248 across 
different parts of the country, in the HWs that occurred in 2015 (Guha et al. 2016). 
Heatwaves in India also have a significant impact on the agricultural sector, as they 
can cause crop failures, loss of livestock, and damage to infrastructure. This, in turn, 
can lead to food shortages and price hikes, affecting the livelihoods of many farmers 
and their families. Thus, it can have a negative impact on the overall economy, as 
they can disrupt transportation and energy systems, and reduce productivity in 
various sectors. In addition, the increased demand for electricity during heatwaves 
can put a strain on the power grid, leading to power outages and blackouts. 

Based on scenario-based projection studies, it is expected that global tempera-
tures will increase by 1.4–5.8 °C (De Perez et al. 2018), which could result in a



significant rise in the number of heat-related deaths and illnesses (Meehl et al. 2009; 
Zhang et al. 2017). The Intergovernmental Panel on Climate Change (IPCC) assess-
ment suggests that the frequency and length of warm days have been increasing 
since the 1950s and that most of Asia will experience more temperature extremes. 
Over recent decades, areas with high population density, particularly urban regions, 
have been more severely affected by these extreme temperatures (Christidis et al. 
2015; Mishra et al. 2015). Heatwaves in India typically occur from March to May, 
which is the pre-monsoon season, and have varying levels of intensity, duration, and 
negative impacts on different parts of the country (Pai et al. 2013; Basha et al. 2017). 
A study by Rohini et al. (2016) and Das et al. (2020) used a gridded dataset to 
investigate the “excessive heat factor,” which included both the “excess heat index” 
and “heat stress index” from 1961 to 2013. The research found that while the 
frequency and duration of heatwaves are increasing in some parts of central and 
northwestern India, there were no significant trends in the rest of the country. Khan 
et al. (2019) suggest that heatwaves could cause even more harm in the coming 
decades, not just in Asia but also in neighboring regions. To address the challenges 
posed by heatwaves in India, it is crucial to take steps to mitigate their effects. 
Therefore in implementing early warning systems, there is a need for the develop-
ment of a robust model for forecasting heatwaves as a potential climate change 
mitigation measure. 
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In general, there are two main approaches commonly used for predicting 
heatwaves: (a) dynamic climate models and (b) statistical models. Dodla et al. 
(2017); Ahsan Khan et al. (2020); Naveena et al. (2021) employed the Weather 
Research and Forecasting (WRF) model, a type of dynamic climate model, to predict 
heatwaves up to 72 h in advance. Their study found that the root mean square error 
(RMSE) values ranged from 0.8 to 2.24 K. Similarly, Amna et al. (2013); 
Mandal et al. (2019) used a multi-model dynamical ensemble prediction system 
for heatwave prediction but found that the system’s accuracy decreased for extreme 
forecast probabilities beyond a one-week lead time. Although dynamic climate 
models can capture complex interactions between the atmosphere, land, and ocean 
due to their physical basis, they are computationally demanding, requiring signifi-
cant investment in data assimilation and a longer time for model building and 
parameterizations. Recently, a few studies have started to use machine learning 
(ML) algorithms for the same (Das and Nanduri 2018; Pandey et al. 2020, 2022). 
Khan et al. (2019) applied quantile regression forest (QRF) and random forest 
(RF) models in Pakistan, using synoptic climate variables to predict heatwaves at 
different time lags. The QRF model demonstrated accuracy in predicting heatwave 
triggering and departure dates for lead times of 1–10 days. Similarly, Khan et al. 
(2021) developed a climate change resilient heatwave prediction model using 
support vector regression (SVR), RF, and artificial neural network (ANN). The 
study found that SVR performed better than RF and ANN in predicting heatwave 
days and has the potential to provide accurate forecasting in the context of climate 
change (Sharma and Goyal 2017; Das and Nanduri 2018; Pandey and Md 
Azamathulla 2021; Singh et al. 2022). Further, in a study by Jacques-Dumas et al. 
(2022), a convolutional neural network was trained using 1000 years of climate



model outputs to forecast extreme heatwave occurrences. The model demonstrated 
the ability to predict heatwaves at three different levels of intensity as early as 
15 days ahead of the event. Asadollah et al. (2021) utilized decision tree (DT), 
random forest (RF), and AdaBoost regression and decision tree (ABR-DT) to predict 
heatwaves and found that ABR-DT outperformed the other models even when one 
or multiple variables were removed. Imran Khan and Maity (2022) used a combi-
nation of one-dimensional neural network (Conv 1D) and long short-term memory 
(LSTM) neural network and found that the model’s efficiency decreased to 50% 
when predicting more than five days ahead. These machine learning algorithms are 
efficient in recognizing highly nonlinear relationships between predictors and 
predictands and have been used extensively to predict various climate variables, 
such as wind, evapotranspiration, and extreme events. Therefore, considering the 
benefits of using these ML algorithms, along with the limited number of studies 
performed using them, the present study aims to predict heatwaves using support 
vector regression (SVR) and random forest (RF) for the state of Telangana and 
evaluate the models’ performance for the same. 
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5.2 Materials and Methods 

5.2.1 Methodology 

Two ML algorithms, namely, SVR and RF, are used in this study to predict heatwave 
days (HWDs) for the study area. HWDs are defined as the daily maximum temper-
ature exceeding the 95th percentile of the maximum temperature for at least five 
consecutive days, using the maximum temperature of the base year as a reference 
(Khan et al. 2019). The study focused on the months of April, May, and June (AMJ) 
and analyzed the HWDs for the period between 1990 and 2019 in the study area. In 
order to predict heatwaves, this study uses five climatic variables, namely, 
geopotential height, U-wind, V-wind, air temperature, and relative humidity, for 
four pressure levels, that is, 1000, 925, 850, and 700 hPa, for the time period of 
1990–2019, thus concluding with 20 input variables as predictors. The redundancy 
due to these many numbers of predictors is avoided by the use of the principal 
component analysis (PCA) that helps to discard the effect of multidimensionality. 
Figure 5.1 depicts the steps of the overall methodology used in this study. 

5.2.1.1 Support Vector Regression (SVR) 

The nonlinearity is addressed by the SVR by mapping them into a higher-
dimensional space using kernel functions such as polynomial, radial, sigmoid, and 
linear (Manali Pal et al. 2020). The polynomial and radial kernels are commonly 
used in SVR-based prediction models. The mathematical representation of SVR



involves finding a regression function, ( f(x) = (w, x) +  b), that describes the 
observed output y with an error tolerance of 2. Here, [(x1, y1), (x2, y2). . . . (xi, yi). . .  
(xl, yl)] represent a training dataset with xi and yi as input and output vectors, 
respectively, and l is the number of data pairs. To achieve this, the original input 
domain is mapped to a higher-dimensionality space where the function underlying 
the data is assumed to be linear. The transformed SVR problem in this space is 
solved by optimizing the following equation (Wang et al. 2007): 
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Fig. 5.1 The flowchart of overall methodology
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C is the capacity parameter cost, which is a positive constant that determines the 
degree of penalized loss when a training error occurs to tune the trade-off between 
model complexity and tolerance to empirical errors; εi, ε�i are the slack variables, 
which measure the distance (in the target space) of the training samples lying outside 
the insensitive tube from the tube. The equation below represents the functional 
dependency: 

f xð Þ= 
K 

j- 1 

wjxj þ b 

where K is the number of support vectors. The optimization problem is solved using 
the dual formulation subject to constraints in the loss function and introducing the 
Lagrange multipliers, αi and αi 

* . By solving the optimization problem, the final 
prediction function is 

f 0 xð Þ= 
i2N 

αi - α�i k xi, xð Þ þ  b 

where k(. . .) is kernel function which computes nonlinear dependence between the 
two input variables xi and x where xi are the “support vectors” and b is the bias. In the 
present study, the radial basis function (RBF) kernel is used in the prediction of 
HWDs, and it can be mathematically represented with kernel width - γ, as, 

k xi, xð Þ= exp - γ x- xik k2 , γ > 0 

5.2.1.2 Random Forest (RF) 

RF is a collection of learning methods that generates several decision trees collec-
tively used to execute a classification or regression. It is a decision tree-based ML 
algorithm that consists of many individual decision trees that operates as an ensem-
ble. In RF, many uncorrelated trees will outperform any of the individual trees; the



low correlation being important as a better result can be achieved. There are two 
known ensemble methodologies, boosting and bagging (Asadollah et al. 2021). 
Bagging and boosting are two techniques that are often used in conjunction with 
RF to improve its performance. 
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Here is a summary of the steps taken in RF to construct a regression model: 
(1) bootstrapping samples from training data and random selection of m (< p) 
variables at each split, n number trees T(θt) are constructed, where θt denotes the 
parameter. It controls the growth of the tth tree (2). The prediction is produced from 
the nth single tree’s average output as 

f xð Þ=E Y jX = xð Þ= 
n 

i= 1 

ωi xð ÞYi ð5:1Þ 

where 

ωi xð Þ= 

ntree 

t= 1 
ωi k, θtð Þ  
ntree 

,ωi x, θð Þ= 
1 xi 2 Rl k, θð Þð Þ  
j : xj2R1 x, θð Þ ð5:2Þ 

The random selection of m (<p) predictors at each split is a key concept of RF, 
which provides an enhancement over bagging (Khan et al. 2019). 

5.2.1.3 The Performance Metrics 

The accuracies of the predictions of the models are assessed by the root mean square 
error (RMSE), mean square error (MSE), and Pearson’s coefficient of correlation 
(R), between the observed and the predicted values. The mathematical expressions of 
the metrics are provided as follows. 

The RMSE is computed by the following equation: 

RMSE= 
1 
N 

N 

i= 1 

xi - xið Þ2 

where N is the number of observations, xi is actual value, and xi is predicted value. 
MSE is the average squared difference between the predicted values and the 

actual values in a dataset. MSE is calculated by taking the difference between the 
predicted value and the actual value for each data point, squaring the difference, and 
then taking the mean of these squared differences. A smaller MSE indicates a better 
fit of the model to the data, and it can be computed by the following equation:
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MSE= 
yi - . . . yð Þ2 

n 

where yi = predicted value and . . . y = actual value. 
The Pearson’s correlation coefficient (R) is a measure of the strength and direction 

of a linear relationship between two variables. It is commonly used to assess the 
degree to which one variable is related to another and can be used to identify trends 
or patterns in data. The values of coefficient of correlation vary between -1 and 
1, where -1/1 indicates a perfect negative/positive correlation, and a value of 
0 indicates no correlation. Coefficient of correlation (R) is given by below equation: 

R= 

N 

i= 1 
yi - yð Þ  yi - yÞ 

1 
N 

N 

i= 1 
yi - yð Þ2 yi - y 

2 

where yi is the actual value, y is the predicted value of y, and y and y are the mean 
values of the actual and predicted values, respectively. 

5.2.2 Study Area and Data Source 

5.2.2.1 Telangana 

Telangana, a state located in the southern part of India, is known for its hot and dry 
climate and state stretches between 15°46′N to 19°47′N latitude and 77°16′E to 81° 
43′E longitude. Telangana is one of the regions in India that is highly susceptible to 
heatwaves due to its geographical location, which makes it prone to the scorching 
heat of the sun. The state has been witnessing an increase in the frequency and 
intensity of heatwaves in recent years, which is a cause for concern. According to the 
India Meteorological Department (IMD), in 2019, the state witnessed over 
200 heatwave days, which is significantly higher than the previous years (Fig. 5.2). 

5.2.2.2 Data Collection 

The study utilizes the Indian Meteorological Department’s (IMD) data, that is, 
maximum daily temperature during summer (April, May, June) from 1990 to 
2019. The data has a spatial resolution of 1o × 1o . To predict the temperature, the 
study employs a daily time series of five meteorological variables – geopotential 
height, U-wind, V-wind, air temperature, and relative humidity. These variables 
were extracted from the European Centre for Medium-Range Weather Forecasts 
Reanalysis Version 5 (ERA5) for four pressure levels – 1000, 925, 850, and



700 hPa – for the same time period of 1990–2019. ERA5 provides a comprehensive 
record of the global atmosphere, land surface, and ocean waves since 1950 
(Table 5.1). 
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Fig. 5.2 The study area 

Table 5.1 Atmospheric vari-
ables used for the selection of 
heatwave predictors 

Atmospheric variables Symbol Pressure level (hPa) 

Air temperature Air 1000, 925, 850, and 700 

Geopotential height hgt 1000, 925, 850, and 700 

Relative humidity rhum 1000, 925, 850, and 700 

U-wind uwnd 1000, 925, 850, and 700 

V-wind vwnd 1000, 925, 850, and 700 

5.3 Results 

5.3.1 SVR Model Development 

The SVR model developed by using the 21 years of data, that is, from a period of 
1990 to 2010 (training period), and remaining 9 years of data, that is, from 2011 to 
2019, is used for testing the models. The model is fitted without loss of the generality 
by selecting the optimal kernel function, that is, the Gaussian kernel with optimal 
parameter. It is tuned generally with three parameters, that is, box constraint, kernel 
scale, and epsilon. The epsilon values represent the error tolerance, and the box 
constraints are positive numeric values that aid to prevent overfitting. Kernel scale 
represents the width of kernel. Estimated box constraint, kernel scale, and epsilon 
values for the developed model are 9.81, 3.36, and 0.0043, respectively, for 30-day



lead time; 11.23, 1.71, and 0.21 for 15-day lead time; and 9.08, 3.43, and 0.93 for 
7-day lead time. 
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5.3.2 RF Model Development 

The RF model is constructed using 21 years of data spanning from 1990 to 2010 as 
the training period. The model was then tested using the remaining nine years of 
data, covering the period from 2011 to 2019. Random forest is generally defined by 
number of decision trees that model can generate, maximum number of splits that 
can be made in each decision tree, and number of variables that are randomly 
sampled for each split in the decision tree. To get the optimum combination of 
above three parameters, the RF has optimized hyperparameters which randomly 
selects all three parameters and establish an objective function. The parameters with 
minimum error in objective function are declared as optimum parameters, and model 
will be developed using those parameters. The parameters that are optimized in 
model are as follows: The number of variables to sample is the number of predictors 
to select at random for each split, which is taken as 2 for regression. Maximum 
number of splits is maximum number of decision splits (or branch nodes) per tree, 
and default value is considered as number of observations – 1. It is useful for 
controlling the complexity of the trees in the model. The number of learning cycles 
is the number of times that each tree in the model will be trained on the data which is 
taken as 100 for fitting the model. 

5.3.3 Prediction of Maximum Temperature 
and Annual HWDs 

This study aims to evaluate the predictive capabilities of SVR and RF models for 
predicting heatwaves in Telangana for the months of April, May, and June with 
different lead times of 7, 15, and 30 days. Spatially averaged temperature time series 
were generated using observed temperature data from the IMD, which are then 
predicted using SVR and RF models with the abovementioned lead times. 
Figures displaying time series plots of both observed (IMD) and predicted temper-
atures with SVR and RF during the training and testing periods are presented below 
(Figs. 5.3, 5.4, 5.5, 5.6, 5.7, and 5.8): 

According to observed IMD data, HWDs were observed in the years of 1995, 
1998, 2003, 2005, 2010, 2012, and 2015. The SVR and RF models, on the other 
hand, can only capture HWDs in the years 1995, 1998, 2003, and 2015. The year 
2015 has the maximum numbers of HWDs (13 days) for the state calculated from 
IMD observed temperature, during the months of April, May, and June. A number of 
spatially averaged HWDs predicted by SVR and RF for the same year and time



period (AMJ) are 6 and 8 for seven-day lead time, respectively. The comparison 
between the numbers of observed and predicted HWDs from both the models has 
been presented in Fig. 5.9. 
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Fig. 5.3 Time series plot of observed and predicted temperature by SVR with seven-day lead time 

Fig. 5.4 Time series plot of observed and predicted temperature by SVR with 15-day lead time 

To evaluate the performance of SVR and RF models in predicting temperature, 
three performance metrics – correlation coefficient (R), root mean square error 
(RMSE), and mean square error (MSE) – are used. During the training periods, 
the ranges of R for all three lead times are found to be 0.64–0.78 and 0.88–0.89 for 
SVR and RF, respectively. During model testing periods, the same range is from 
0.5–0.67 for SVR and 0.49–0.66 for RF. The ranges of RMSE for all three lead times



s

during training periods are 2.01–2.53 and 1.55–1.70 for SVR and RF, respectively. 
During model testing periods, the same are 2.35–2.70 for SVR and 2.37–2.78 for 
RF. It is observed that the RMSE values changed in the range of 2.7 °C and 2.78 °C 
for SVR and RF, respectively, for lead times 7–30 days. The average values of 
performance metrics for both models are presented in Tables 5.2 and 5.3. It  i  
observed that the model performance decreases with the increase in lead time for 
both SVR and RF. While comparing between the two models, it is observed that the
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Fig. 5.5 Time series plot of observed and predicted temperature by SVR with 30-day lead time 

Fig. 5.6 Time series plot of observed and predicted temperature by RF with seven-day lead time



RF tends to overfit as the lead time increases whereas although the performance of 
SVR decreases, it does not show model overfitting.
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Fig. 5.7 Time series plot of observed and predicted temperature by RF with 15-day lead time 

Fig. 5.8 Time series plot of observed and predicted temperature by RF with 30-day lead time 

Figure 5.10 shows the spatial distribution of observed and predicted temperature 
from SVR and RF, respectively, for seven-day lead times for the date June 4, 1995, 
that had experienced the heatwave (according to the definition mentioned above). It 
shows that both the models are not able to capture the highest observed temperature, 
that is, 41 °C.



86 B. Srikanth and M. Pal

Fig. 5.9 The comparison between the numbers of observed and predicted HWDs from SVR 
and RF 

Table 5.2 Performance metrics of SVR model for the lead times of 7, 15, and 30 days 

CC train CC test RMSE train RMSE test MSE train MSE test 

7 0.78 0.67 2.02 2.35 4.11 5.50 

15 0.78 0.53 2.02 2.73 4.09 7.48 

30 0.57 0.50 2.68 2.74 7.21 7.51 

Table 5.3 Performance metrics of RF model for the lead times of 7, 15, and 30 days 

Lead CC train CC test RMSE train RMSE test MSE train MSE test 

7 0.88 0.66 1.55 2.37 2.43 5.62 

15 0.89 0.58 1.59 2.58 2.54 6.69 

30 0.89 0.49 1.71 2.78 2.91 7.76 

5.4 Discussion 

In this study, SVR and RF models are employed to predict the maximum temper-
ature and forecast the number of HWDs in Telangana during summer (April to June). 
These two machine learning techniques have proven to be highly effective in solving 
a range of intricate problems. The outcomes have demonstrated the ML models’



capability to predict the maximum temperature and fluctuation of HWDs from year 
to year. Both the models are able to predict maximum temperature and HWDs 
accurately up to a lead time of seven days. However, beyond that, the models’ 
performance decreases, that is, it is not able to accurately predict the temperature or 
HWDs. The evaluation comparing both the models is done by using three perfor-
mance metrics – correlation coefficient (R), root mean square error (RMSE), and 
mean square error (MSE) – and these performance metrics demonstrated that SVR 
possesses a high degree of accuracy in predicting temperature and HWDs compared 
to RF. 
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Fig. 5.10 The spatial distribution of (a) IMD observed, (b) SVR, and (c) RF predicted temperature 
for seven-day lead time on June 4, 1995 

5.5 Conclusions 

In this study, the heatwave prediction capabilities of SVR and RF are investigated 
for Telangana, spanning from 1990 to 2019. The study aims to assess the models’ 
performances for lead times of 7, 15, and 30 days during April, May, and June. The 
observed temperature data from the IMD are utilized to calculate a time series of the 
average cumulative annual heatwave days. The same was predicted for SVR and RF 
models with lead times of 7, 15, and 30 days. The SVR model is able to capture the



five heatwave events out of seven whereas the RF model is able to capture four 
heatwave events. The results of the study suggest that SVR and RF machine learning 
algorithms can be used to predict heatwave days for Telangana by employing 
meteorological variables such as air temperature, relative humidity, geopotential 
height, u-wind, and v-wind as predictors. However, performance metrics indicate 
that the models’ performance decreases with increasing lead times. The study found 
that both SVR and RF models demonstrated acceptable performances for up to 
seven days of lead time, with RMSE values of 2.36 °C and 2.37 °C for SVR and 
RF, respectively, during testing periods. In comparing the performance of the two 
models, SVR is found to be more efficient for this specific study. 
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5.6 Future Scope 

The limitations of the current study can lead to future scope in terms of enhancing the 
model. For example, the model development has not considered the temporal 
variation of spatial correlation between the predictors and predictand along with 
the influences of teleconnections and that can be incorporated in future studies. 
These gaps in the study indicate potential areas for future research to address the 
abovementioned limitations. Additional research can be undertaken to compare the 
predictive capabilities of SVR and RF with other machine learning models when it 
comes to forecasting heatwaves. The efficacies of SVR, RF, and other statistical 
models can be contrasted with that of dynamical models to highlight their respective 
strengths and weaknesses. 
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Chapter 6 
Quantifying the Reliability of Reanalysis 
Precipitation Products Across India 

Alka Kumari, Akash Singh Raghuvanshi, and Ankit Agarwal 

Abstract For conducting hydroclimatological investigations, consistent time series 
of climate datasets are required. Precise measurement of precipitation is crucial for 
numerous purposes, including climate and land use change studies, environmental 
and agricultural research, the management of natural hazards, and the planning of 
water resources and hydrological systems. Reanalysis products have been released 
worldwide to investigate the validity of reanalysis on a global and regional basis. In 
this study, we investigated the ability of various reanalysis products to simulate 
spatiotemporal precipitation patterns over India from 1980 to 2021. We compared 
different precipitation reanalysis products, namely, the fifth generation of ECMWF 
global atmospheric reanalysis (ERA5), modern-era retrospective analysis for 
research and application, Land version 2 (MERRA-2-Land), climate forecast system 
reanalysis (CFSR), Japanese global atmospheric reanalysis project (JRA55), and 
Multi-Source Weather (MSWX) with gridded Indian Meteorological Department 
dataset using various descriptive indices and found that MSWX was a better 
representative of IMD data than other reanalysis products. ERA5 and MERRA2-
Land showed satisfactory results for PBias, RMSE, and correlation coefficient. 
However, further studies are necessary to validate these findings on a basin scale. 
Overall, this research suggests that MSWX can be used in various climatic studies 
and hydrological modeling for areas or river basins where data is lacking or missing. 
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6.1 Introduction 

Precipitation data is a crucial input for hydrological models that simulate river 
discharge, sediment transport, and other hydrological extremes. Accurate precipita-
tion data is necessary for managing water resources, mitigating floods and droughts, 
and assessing the impact of climate change on the water cycle. However, precipita-
tion measurements are often limited by the number and location of rain gauges, 
leading to uncertainty in precipitation estimates, particularly in remote and poorly 
instrumented areas. This uncertainty can result in inaccurate estimates of river flow, 
sediment transport, and other hydrological processes, which can lead to inadequate 
water resource management and increased vulnerability to floods and droughts. To 
manage this problem, we have to first find most reliable alternate dataset for 
accuracy. The hydroclimatological investigation, including climatic trend analysis, 
agro-hydrological modeling, and atmospheric and climatic studies demand consis-
tent time series of climate datasets across the globe/region (Hordofa et al. 2021; Saini 
et al. 2022). For many applications, such as climate and/or land use change studies, 
agricultural and environmental research, and natural hazard and hydrological and 
water resources planning, reliable precipitation measurements are essential 
(Saikumar et al. 2022). Precipitation measurements play a major role as important 
input data for hydrologic, climatological, and agricultural studies, particularly focus-
ing on precipitation-induced natural disasters such as droughts, floods, and land-
slides (Aragão et al. 2007; Habib et al. 2012; Hong et al. 2006; Wu et al. 2012; 
Sharma and Goyal 2016). They provide important information to hydrologists, 
meteorologists, climatologists, and other decision-makers regarding magnitude, 
frequency, and impact (Wong et al. 2017). This data is also helpful in water resource 
planning and management, which is directly or indirectly related to agriculture, 
disaster mitigation, and preparedness. Despite having utmost importance in hydro-
logical and climatological studies, the scientific community continues to have 
difficulties measuring rainfall at fine resolution scales due to its significant spatio-
temporal variability (Guo et al. 2015). 

Conventionally, precipitation data is measured through rain gauge networks. And 
these networks measure accurate precipitation amounts for specific locations, but 
their usage is restricted for regional and global applications due to their inhomoge-
neous distribution and small sampling areas (Anagnostou et al. 2010; Gupta et al. 
2023). However, there is typically a shortage of temporally consistent ground-based 
observed precipitation data in mountainous and underdeveloped/developing nations 
(Viney and Bates 2004). Owing to high spatiotemporal variability in precipitation 
across India, it is quite challenging to have reliable homogeneous distributed pre-
cipitation data available for a long period (Zambrano et al. 2017). Climate datasets 
can be obtained from observations, satellite measurements, and reanalysis. In order 
to bridge the disadvantages of conventional and weather radar systems, numerous 
reanalysis and satellite-derived precipitation products have been developed. Satellite 
precipitation products have outstanding spatial coverage but also contain errors, 
mostly due to instrumental errors, temporal sampling errors, sensor calibration



errors, and algorithm errors (Gebremichael et al. 2005). In that case, reanalysis 
precipitation products can be used as an alternative to satellite precipitation products 
for studying the Earth’s hydroclimatic system (Hodges et al. 2011). Reanalysis 
datasets are created by combining data from various sources, including satellites, 
radiosondes, and ground observations, and predictions made using climate and land 
surface models (Ghodichore et al. 2019). ERA5 (the fifth generation of ECMWF 
global atmospheric reanalysis), MERRA-2-Land (modern-era retrospective analysis 
for research and application, Land version 2), CFSR (climate forecast system 
reanalysis), JRA55 (Japanese global atmospheric reanalysis project), and MSWX 
(Multi-Source Weather) are some of the reanalysis datasets. 
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The reanalysis products use data assimilation techniques to blend past atmo-
spheric and surface observations to create homogenous four-dimensional variables 
that are an integral part to numerical weather prediction systems. They provide 
improved understanding of weather patterns, aid in the identification of long-term 
trends, improve weather forecasting, enhance climate and hydrological modeling, 
and improve disaster preparedness. These reanalysis precipitation products are 
developed on global scale, and their applicability varies spatially as well as tempo-
rally. Therefore, numerous studies have been conducted evaluating the performance 
of the existing reanalysis products in India. Ghodichore et al. (2018) evaluated 
variability for the timescale of seasonal and annual to check the spatial and temporal 
patterns along with the temperature and precipitation trends using IMD gridded data 
of duration 34 years. This was done for six global reanalyses, best of all found was 
MERRA-land product for precipitation. On the other hand, for temperature datasets, 
JRA-55 and ERA-interim were found to be better performing. Ghodichore et al. 
(2019) evaluated six different reanalysis datasets to determine their ability to capture 
precipitation and moisture patterns over India. They used statistical metrics to 
analyze datasets from a 34-year period and found that all reanalyses captured the 
overall precipitation pattern over India but struggled with orographic rainfall over 
mountainous areas. MERRA-Land and ERA-Interim were identified as the two 
datasets that performed the best over India. Mahto and Mishra (2019) conducted 
an evaluation of reanalysis products for streamflow and annual water budget in two 
basins located in diverse climatic settings in India. They found that during the 
monsoon season, ERA-5 outperforms other reanalysis products for precipitation, 
maximum temperature, evapotranspiration, and soil moisture. 

With the development of new data assimilation techniques and advancements in 
model parameterizations, numerical weather prediction systems continue to advance 
(Kalnay and Cai 2003). The recent addition of MSWX reanalysis data, which is 
believed to be the improved version of ERA5 (Beck et al. 2022), requires revaluation 
of the datasets for their performance in India. Therefore, it is crucial to investigate if 
the recent improvements and developments of reanalysis products are suitable for 
hydrological applications, as well as their accuracy and limitations, and thoroughly 
scrutinize their applicability to different world regions (Hodges et al. 2011). 

In this study, we compare different reanalysis precipitation products with IMD 
dataset on a national scale by using various descriptive indices, including maximum 
precipitation, mean precipitation, skewness, standard deviation, PBias (percent bias),



RMSE (root mean square error), CDF (cumulative distribution function), and cor-
relation coefficients. Our work of evaluating reanalysis data at a national scale can 
have important implications for better understanding of historical weather patterns in 
India, including the variability and trends of different weather variables such as 
temperature, precipitation, and wind. It can also be used as an input to climate 
models, improving the accuracy and reliability of climate projections that help 
policymakers and decision-makers plan for the potential impacts of climate change. 
So the aim of this study is to evaluate different reanalysis datasets with IMD dataset 
using descriptive indices. 
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6.2 Study Area and Data Used 

The Indian subcontinent is the seventh largest country in the world with a total area 
of 3,287,590 km2 , spanning from 7°N to 38°N latitude and 64°E to 98°E longitude. 
The Arabian Sea borders India on the southwest and the Bay of Bengal on the 
southeast. The Himalayas are located in the northeast, northwest, and north. 
According to annual data from the Meteorological Department, India receives an 
average rainfall of 118 cm (Fig. 6.1). India’s climate varies greatly across the 
country, with a predominantly tropical climate characterized by varying tempera-
tures and rainfall. The northern region experiences a subtropical climate, with hot 
summers and cold winters, while the central and western parts are arid and receive 
minimal rainfall. On the other hand, Southern India has a tropical wet climate with 
substantial rainfall during the monsoon season from June to September. Coastal 
areas are susceptible to cyclones and storms during the monsoon season, and the 
northeast region, particularly the state of Meghalaya, receives the highest amount of 
precipitation. 

We compared five reanalysis products: ERA5, MERRA-2-Land, CFSR, JRA55, 
and MSWX. These products cover the time period from 1980 to 2021 and are 
detailed in Table 6.1. To validate the accuracy of the datasets, we used the IMD 
gridded data with a spatial resolution of 0.25° × 0.25°, which has a daily temporal 
resolution. The IMD gridded data was generated using Shepard’s interpolation 
technique to interpolate daily rainfall data collected from approximately 6955 
hydrometeorological stations across India. The IMD gridded data is widely used 
as a reference dataset for comparison with other gridded rainfall datasets in India and 
is known for its ability to capture precipitation amounts in the Western Ghats and 
Himalayan orographic belts (Yumnam et al. 2021). 

ERA-5 is the latest atmospheric reanalysis developed by the European Centre for 
Medium-Range Weather Forecasts and covers the period from 1979 onward. It has 
recently been utilized in hydroclimatic applications and assessments and includes 
improvements over ERA-Interim, such as enhancements in horizontal and vertical 
resolutions, an upgraded radiative transfer model, and analysis based on a 
ten-member ensemble 4D-Var. CFSR, developed by NCEP, is a third-generation 
product that utilizes a coupled climate atmosphere-ocean-land surface system



featuring interactive sea ice components. The data assimilation process of CFSR is 
executed through a three-dimensional VAR method and it assimilates satellite 
radiance data. MERRA-2 includes significant improvements compared to the orig-
inal MERRA reanalysis, incorporating observation-based precipitation data products 
to rectify precipitation on the land surface. MERRA-2 has two distinct types of 
precipitation estimates: M2AGCM, produced by the atmospheric general circulation 
model, and M2CORR, corrected precipitation perceived by the MERRA-2 land 
surface. JRA-55, developed by the Japanese Meteorological Agency, is a global 
atmospheric reanalysis project that uses advanced four-dimensional VAR data 
assimilation and variance bias correction techniques for satellite data. It offers data 
from 1958 to the present and is an improvement over the previous Japanese 25-year 
reanalysis. Finally, MSWX is a comprehensive worldwide gridded meteorological 
dataset that provides highly detailed 0.1° resolution readings on near-surface 
weather conditions. It incorporates bias-correction techniques and offers medium-
range and long-range forecast ensembles. The historical portion of the MSWX
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Fig. 6.1 A map illustrating the average annual rainfall across India (Reddy et al. 2015)



S. no. Reanalysis products Variable Organization

record relies on ERA5 data that has been bias corrected and downscaled using high-
resolution reference climatology.
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Table 6.1 Detailed information about various datasets used. Here acronyms are defined as follows: 
ERA5 (the fifth generation of ECMWF global atmospheric reanalysis), MERRA-2 Land (modern-
era retrospective analysis for research and application, Land version 2), CFSR (climate forecast 
system reanalysis), JRA55 (Japanese global atmospheric reanalysis project), and MSWX (Multi-
Source Weather) are some of the reanalysis datasets 

Spatial resolution/ 
coverage 

1. MERRA-2 Land 
(period—1980–present) 

(0.5° × 0.625°)/ 
global 

Total precipita-
tion from 
atm model 
physics 
(kg m-2 s-1 ) 

NASA 

2. CFSR 
(period—(CFSR: 1979–2010) 
and (CFSv2: 2011–present)) 

(0.5° × 0.5°)/ 
global 

Total precipita-
tion (kg m-2 ) 

NCEP 

3. JRA55 
(period—1959–present) 

(0.563° × 0.562°)/ 
global 

Total precipita-
tion (mm/day) 

JMA 

4. ERA5 
(period—1979–present) 

(0.25° × 0.25°)/ 
global 

Total precipita-
tion (mm) 

ECMWF 

5. MSWX 
(period—1979–present) 

(0.1° × 0.1°)/ 
global 

Precipitation 
(mm/day) 

– 

6.3 Methods and Methodology 

For the study period from 1980 to 2021, multiple datasets with varying spatial 
resolutions (IMD, ERA5, CFSR, MERRA-2, JRA5, and MSWX) were acquired 
from different sources. These datasets were preprocessed by clipping them to the 
study area and then resampling them to a standard spatial resolution of 0.25° using a 
first-order conservative remapping technique. The purpose of this was to facilitate 
comparison with the reference dataset (IMD). 

To evaluate the accuracy of the reanalysis datasets, various descriptive indices 
such as Pbias, RMSE, correlation coefficient, and extreme precipitation (95th per-
centile) were used. Pbias measures the average deviation of the simulated datasets 
from the reference dataset, with an ideal value of 0. A positive value indicates 
underestimation, while a negative value indicates overestimation. RMSE indicates 
the concentration of data around the line of best fit, while the correlation coefficient 
represents the relationship between two variables. A value of 1 represents perfect 
correlation, 0 indicates no correlation, and - 1 indicates a negative correlation. The 
results of these indices are summarized in Table 6.2 (Prakash 2019; Prakash et al. 
2012, 2015; Setti et al. 2020).
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Table 6.2 Formulae used for various descriptive indices 

Descriptive indices Formulae 

Skewness (Cs) n 
n 

i= 1 
Yi - Y 

3 

Percent bias (PBias) n 

i= 1 
Y ref 
i - Ysim 

i 

2 
× 100 

Root mean square error (RMSE) 1 n ref sim 2 

Correlation coefficient (R) n 

i= 1 
Y ref 
i - Y 

ref 
Ysim 
i - Y 

sim 

where Yi,Y ,  Yref , Ysim ,Y 
ref 

and Y 
sim 

represents the precipitation, mean precipitation, reference 
precipitation (IMD), simulated precipitation (reanalysis), mean reference precipitation, and 
mean simulated precipitation. 

Table 6.2 presents several descriptive indices used to evaluate the accuracy of the 
simulated datasets (reanalysis datasets) against the reference dataset (IMD dataset). 
These indices include mean precipitation, maximum precipitation, standard devia-
tion, skewness, Pbias, RMSE, and correlation coefficient. Pbias measures the aver-
age capability of the simulated datasets to overestimate or underestimate the 
reference dataset, with an ideal value of 0. Values greater than 0 indicate underes-
timation, while values less than 0 indicate overestimation. RMSE represents the 
standard deviation of predicted errors and shows how well the data is concentrated 
around the line of best fit. The correlation coefficient indicates the degree of 
correlation between two variables and can range from -1 to 1, with 1 representing 
the best correlation, 0 indicating no correlation, and -1 representing a negative 
correlation. For the evaluation of extreme precipitation, we used 95th percentile 
criteria for comparing different reanalysis datasets with IMD dataset (Choi, 2004). 

6.4 Results and Discussion 

In this study, we first computed descriptive indices such as maximum precipitation, 
mean precipitation, standard deviation, percent bias (PBias), skewness, root mean 
square error (RMSE), and correlation. In the box-plot of maximum precipitation, 
Fig. 6.2a shows that CFSR tends to slightly overestimate the maximum precipitation, 
while ERA5 and MSWX slightly underestimate it. On the other hand, MERRA2-
Land and JRA55 significantly underestimate the maximum precipitation. Moving on 
to mean precipitation in Fig. 6.2b, CFSR and JRA55 showed a slight overestimation, 
while ERA5, MERRA2-Land, and MSWX exhibited mean precipitation levels close 
to those of the IMD dataset. Figure 6.2c reveals that ERA5 and MERRA2-Land tend 
to underestimate the standard deviation, while CFSR overestimates it. On the other 
hand, MSWX and JRA55 provide standard deviations that are similar to those of the 
IMD dataset. In Fig. 6.2d, MERRA2-Land and JRA55 are found to underestimate



skewness, while ERA5, CFSR, and MSWX exhibit skewness levels that are com-
parable to the IMD dataset. Moving on to the evaluation of Pbias, root mean square 
error, and correlation, as displayed in Fig. 6.2. E, F, and G, it is clear that MSWX 
performed the best compared to the other reanalysis products. However, MERRA2-
Land and ERA5 also produced satisfactory results in these metrics. 
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Fig. 6.2 Box-plot of various descriptive indices viz maximum precipitation (a), mean precipitation 
(b), standard deviation (c), and skewness (d), PBias (e) RMSE (f) and Correlation (h) of different 
reanalysis products of ERA5, CFSR, MERRA2, JRA55, and MSWX for Baitarani River Basin 

Further, five datasets were used to calculate the daily precipitation distribution for 
the cumulative density function (CDF) from 1980 to 2021. The CDF plot of daily 
precipitation for MSWX closely resembles the IMD product, while MERRA2-Land 
overestimates and the other reanalysis precipitation products underestimate it. These 
results suggest that MSWX is a better representation of the IMD dataset, as depicted 
in Fig. 6.3. The daily precipitation distribution for percent bias (PBias) was plotted 
for the five datasets from 1980 to 2021. Based on Fig. 6.4, the PBias spatial map 
indicates that MERRA2-Land and MSWX outperform other reanalysis products, as 
they demonstrate consistently low values of PBias across the entire country. In 
contrast, the Pbias maps for CFSR, ERA5, and JRA55 exhibit high values of 
PBias for certain pixels. Specifically, ERA5 displays high PBias values in the 
northeast region, CFSR shows high values in certain parts of the northeast and 
south India due to high rainfall in those areas, and JRA55 displays high values in 
some portions of the north and northwest due to less rainfall in those areas. Thus, 
MERRA2-Land and MSWX are more preferable. 

The daily precipitation distribution for root mean square error (RMSE) from 1980 
to 2021 was plotted for the five datasets (as shown in Fig. 6.5). RMSE is the standard 
deviation of residuals (predicted errors), and it tells us how our data is concentrated 
around the line of best fit. All reanalysis precipitation products exhibited a high value



of root mean square error in the northeastern regions and Western Ghats due to 
higher rainfall in these areas. Among the five reanalysis products, MERRA2-Land 
gives better results (as shown in Fig. 6.5). In southern Peninsular India as well as in 
western regions, all the reanalysis products show low RMSE values, whereas in 
Meghalaya, RMSE values are very high. 
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Fig. 6.3 Cumulative distribution function (CDF) curve for all reanalysis precipitation products, 
namely, the fifth generation of ECMWF global atmospheric reanalysis (ERA5), modern-era 
retrospective analysis for research and application, Land version 2 (MERRA-2 Land), climate 
forecast system reanalysis (CFSR), Japanese global atmospheric reanalysis project (JRA55), and 
Multi-Source Weather (MSWX) and IMD product for comparison 

The daily precipitation distribution for the correlation coefficient (R) was visual-
ized for the five datasets from 1980 to 2021. The correlation coefficient describes 
how two variables are related to one another, whether they are increasing, decreas-
ing, or increasing and decreasing. The correlation coefficient ranges from -1  to  
1, where 1 represents the best correlation, 0 indicates no correlation, and - 1 
signifies a negative correlation. The spatial map of correlation indicates that 
MERRA2-Land performed the best, showing good correlation across India. ERA5 
and MSWX also demonstrated good correlation in many regions of India, such as 
Central India, the Western Ghats, and some parts of northeast India. On the other 
hand, CFSR and JRA55 exhibited good correlation in certain parts of the eastern 
region and Western Ghats but low correlation in some parts of the north and south. 
Notably, the Western Ghats demonstrated the highest correlation, while the northeast 
part of the country displayed the lowest correlation because northeast part of India, 
situated in Himalayan region, has higher elevation, complex terrain, with many 
mountains and valleys affecting the precipitation patterns. The Western Ghats is a 
mountainous region, having lower elevation than former that receives a lot of rainfall 
due to its location in the path of monsoon winds, while the northeast part of India is 
not located directly in the path of monsoon winds. The Western Ghats experiences 
monsoon seasons that are more predictable, whereas the northeast region of India



may encounter more irregular and unpredictable precipitation patterns, possibly 
caused by regional climate variability. It may be difficult to capture these patterns 
accurately which could be a cause of reduced correlation between the observed and 
reanalysis data, as illustrated in Fig. 6.6. 
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Fig. 6.4 Spatial map of Pbias for five reanalysis products, namely, the fifth generation of ECMWF 
global atmospheric reanalysis (ERA5), modern-era retrospective analysis for research and applica-
tion, Land version 2 (MERRA-2 Land), climate forecast system reanalysis (CFSR), Japanese global 
atmospheric reanalysis project (JRA55), and Multi-Source Weather (MSWX) 

Spatial distribution for extreme precipitation (95th percentile) was visualized for 
the five datasets from 1980 to 2021 in Fig. 6.7. For northeastern region and Western 
Ghats, we find that ERA5 and CFSR overestimate whereas MERRA2 land, JRA55, 
and MSWX underestimate the extreme precipitation. All the five reanalysis datasets 
are underestimating the extreme precipitation in Jammu and Kashmir regions. 
JRA55 overestimate the extreme precipitation over the western semiarid region, 
while remaining other reanalysis datasets are giving results close to IMD dataset. 
Moreover, MERRA2 land, ERA-5, and MSWX perform better for extreme precip-
itation in India than the other reanalysis products (Mahto and Mishra 2019).
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Fig. 6.5 Spatial map of RMSE for five reanalysis products, namely, the fifth generation of 
ECMWF global atmospheric reanalysis (ERA5), modern-era retrospective analysis for research 
and application, Land version 2 (MERRA-2 Land), climate forecast system reanalysis (CFSR), 
Japanese global atmospheric reanalysis project (JRA55), and Multi-Source Weather (MSWX) 

6.5 Conclusion 

The purpose of this study was to assess the reliability of five reanalysis precipitation 
products in comparison to the IMD dataset as the reference data, at a national scale in 
India. We examined various descriptive indices and CDF plots of the different 
datasets to evaluate their performance. Our results indicate that MSWX performed 
the best in terms of maximum precipitation, mean precipitation, standard deviation, 
and skewness. However, MERRA2-Land had slightly better results than MSWX in 
terms of PBias, RMSE, and correlation. Nevertheless, MSWX remained the best 
performing dataset overall. ERA5 performed satisfactorily but was slightly less 
accurate than MSWX, and CFSR and JRA55 performed poorly. Regarding the 
CDF plot, MSWX had the best results, followed by ERA5. In terms of the spatial 
maps of PBias, RMSE, and correlation, MERRA2-Land outperformed the other 
reanalysis precipitation products. In conclusion, our study found that MERRA2-
Land, MSWX, and ERA5 were the most reliable reanalysis precipitation products 
for national scale analysis in India. However, more studies on smaller scales should



be conducted to verify these findings, as evaluating reanalysis datasets at the basin 
scale is crucial for effective water resources management, agriculture, hydrological 
modeling, and climate change impact assessment. Precise precipitation datasets are 
required for accurate calculation of irrigation needs, crop yields, and drought 
management. Effective water resources management on a basin scale can help 
protect biodiversity and maintain ecosystem services. Further, these results are 
considered as an input to various climate and hydrological models as future study 
for improving the accuracy and reliability of projections that help policymakers and 
decision-makers plan for the potential impacts. 
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Fig. 6.6 Spatial map of correlation coefficients between IMD products and five reanalysis prod-
ucts, namely, the fifth generation of ECMWF global atmospheric reanalysis (ERA5), modern-era 
retrospective analysis for research and application, Land version 2 (MERRA-2 Land), climate 
forecast system reanalysis (CFSR), Japanese global atmospheric reanalysis project (JRA55), and 
Multi-Source Weather (MSWX) 
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(JRA55), and Multi-Source Weather (MSWX) 
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Chapter 7 
Dynamics of Weakly Nonlinear Waves 
Propagating in the Region with Mixed 
Nonlinearity 

Triveni P. Shukla 

Abstract Our research focuses on the behavior of weakly nonlinear waves in mixed 
nonlinear fluids. We use a multiple-scale approach together with the equation of state 
for a van der Waals fluid to obtain a transport equation from the Navier-Stokes 
equations. Using the resulting transport equation, we further investigate the effect of 
van der Waals variables on wave evolution. 

Keywords Asymptotic expansion · Evolution equation · Expansion shock · Double 
sonic shock · Non-ideal fluid 

7.1 Introduction 

The degree of natural hazards associated with hydrologic events and river systems is 
dependent on the uncertainty of hydrological events, which can be affected by 
changes in climatic conditions (Das et al. 2022; Gupta et al. 2022). According to 
climate change research, the frequency of extreme weather phenomena has been 
increasing worldwide, leading to more damage to human assets. Shock waves often 
play a significant role during water hazards (Saikumar et al. 2022). The study of 
waves and nonlinear dynamics is relevant to a wide range of physical systems, 
including rivers and other fluid flows. Understanding the dynamics of weakly 
nonlinear waves is crucial for analyzing sediment transport, or studying the interac-
tion between different types of waves, such as surface waves and internal waves. 

Perturbation expansions with multiple scales are often used to study nonlinear 
systems of partial differential equations (PDEs) for which a discussion of approxi-
mate solutions is of considerable interest. Nonlinear waves in real fluids have been 
the subject of many theoretical and experimental studies, starting from the work of 
Colonna et al. (2007), Thompson (1971), and Thompson and Lambrakis (1973) 
which have attracted the attention and their collaborators among several others
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(Colonna et al. 2007; Cramer 1989, 1991; Cramer et al. 1986; Kluwick 1991, 2001; 
Kluwick and Meyer 2010).
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There has been widespread interest in the nonlinear wave phenomena mainly 
through the so-called evolution equations, derived from a large system of PDEs, 
representing an important aspect of the original system (Cramer and Sen 1992; 
Cramer and Webb 2007; Kluwick and Cox 1998). The pioneering work on the 
evolution equations in which both quadratic and cubic nonlinearities are present has 
been carried out by Cramer and Sen (1992) and Kluwick and Cox (1998); these 
works are mainly based on the fact that the fundamental derivative (Thompson 1971) 
is the following: 

~Ξ ρ, sð Þ � 1 þ ρ 
c 

∂c 
∂ρ s 

, ð7:1Þ 

where ρ is the fluid density, s the entropy, and c the local speed of sound, which lies 
close to ~Ξ= 0 and may change sign in a single pulse for the fluids with high specific 
heat (Cramer et al. 1986; Cramer and Kluwick 1984; Kluwick 1991, 2001; Kluwick 
and Cox 1998). 

In recent years, much attention has been paid toward the study of wave propaga-
tion in van der Waals fluids (Colonna and Guardone 2006; Taniguchi et al. 2010; 
Zhao et al. 2011). Shock formation and conditions under which such discontinuous 
solutions are admissible are of particular interest in nonideal fluids. This becomes 
more interesting because some discontinuous solutions which cannot be accounted 
for by the ideal fluids make their appearance in nonideal fluids (for instance, due to 
violation of second law of thermodynamics, expansion shocks are not admissible in 
ideal fluids but such shocks are allowed as admissible discontinuities in a non-ideal 
case provided that ~Ξ< 0 (Thompson and Lambrakis 1973)). It would be interesting 
to know how the quadratic and cubic nonlinearity parameters, and subsequently the 
evolutionary behavior of waves, are influenced by the real gas effects; this analysis, 
however, remains missing in the literature. 

Here, using the related procedures, referred to as above, we study weakly 
nonlinear waves in a van der Waals fluid in which ~Ξ changes sign in the transition 
region. The chapter is organized as follows: basic equations and formulation of the 
problem are given in Sect. 7.2; the unperturbed medium ahead of the wave is 
governed by the usual Navier-Stokes equations with viscosity and thermal conduc-
tion supplemented by the equation of state for a van der Waals fluid. In Sect. 7.3, the 
methodology presented in Cramer and Sen (1992) and Kluwick and Cox (1998) 
remains fundamental to all that follow, and it is desirable to discuss it anew at this 
time in the present setup, emphasizing the features we wish to use and develop. A 
nonlinear parabolic equation is derived that governs the evolution of small distur-
bances on unperturbed states; the evolution equation contains both quadratic and 
cubic nonlinearities inherent in the system. Using van der Waals equation of state, 
explicit expressions for these parameters are obtained. In Sect. 7.4, Riemann’s 
solutions of the associated kinematic equation are presented with a rectangular



pulse initial distribution; the wave evolution exhibits different wave patterns involv-
ing sonic expansion and sonic compression shocks, in which an extreme edge of an 
expansion or compression fan is a shock wave, the precursor waves, and their 
interaction with wave-fans. It may be pointed out that the shock-related phenomena 
studied here cannot be accounted for by the ideal gas model. Indeed, in the present 
study, the expansion shocks, across which there is a decrease in pressure, sonic 
shocks which propagate with a speed identical to either the upstream or downstream 
convected sound speed, and precursor waves that leave the shock tangentially make 
their appearance unlike the ideal fluid formalism. The interaction times of shocks 
and wave-fans, strengths and speeds of shocks, widths of wave-fans, and the 
eventual decay rate of the amplitude of merged shocks are investigated under the 
influence of the van der Waals parameters. Finally, in Sect. 7.5, a numerical 
treatment of the parabolic equation is presented in the hyperbolic limit using a 
weighted essentially non-oscillatory (WENO) scheme (Jiang and Shu 1996). The 
viscous solution is compared with the solution of the associated inviscid equation; 
effects of the van der Waals parameters upon the evolution of signal profiles, their 
interaction, and decay behavior are presented. 
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7.2 Problem Formulation 

The basic equations governing the unsteady, one-dimensional flow of a real fluid 
obeying the van der Waals equation of state are the Navier-Stokes equations: 

ρt þ uρx þ ρux = 0, 

ut þ uux þ pρ 
ρ 
ρx þ ps 

ρ 
sx = 

4 
3 
μ 
ρ 
uxx, 

st þ usx = 
1 
ρT 

4 
3 
μ uxð Þ2 þ kTx x 

, 

ð7:2Þ 

where u is the particle velocity, p= p ρ, sð Þ the pressure, T = T ρ, sð Þ  the temperature, 
k the coefficient of heat conduction, and μ the coefficient of viscosity. The variables x 
and t denote, respectively, the space coordinate and time; the subscripts denote the 
partial derivatives. 

For a van der Waals fluid, the pressure and the temperature are given by 
Quartapelle et al. (2003): 

p=K0δ 
ρ1þδ exp δs=Rð Þ  

1- bρ 
1þδ - aρ2 , T =K0δ 

ρδ exp δs=Rð Þ  
1- bρ 

δ , ð7:3Þ 

where K0 is a constant and δ = R/cv with R as the specific gas constant and cv the 
specific heat at constant volume; the value of δ lies in the interval 0 < δ ≤ 2/3 with



p

δ = 2/3 for a mono-atomic fluid. The parameter a represents a measure of attraction 
between each particle that leads to added pressure due to intermolecular forces of 
attraction, and the parameter b denotes the effective volume of each particle. 
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Introducing the non-dimensional variables, 

x= 
x 
L 
, p= 

p 
p0 

, ρ= 
ρ 
ρ0 

, t= 
t p0=ρ0 

L 
, u= 

u 

p0=ρ0 
, s= 

s 
s0 
,T = 

T 
T0 

, a 

= 
aρ2 0 
p0 

, b= bρ0, ð7:4Þ 

system 7.2 can be written using vector matrix notation as 

Ut þ A Uð ÞUx = 
1 
Re 

M Uð ÞUxx þ 1 
Re 

N Uð Þ  W Uð Þ½ �xUx, ð7:5Þ 

where U = (ρ, u, s)tr and M, N, and W are square matrices of order 3 with compo-
nents denoted by Aij, Mij, Nij, and Wij, respectively, whose non-zero entries are given 
below: 

A11 =A22 =A33 = u, A12 = ρ, A21 = 
pρ 
ρ 
, A23 = 

ps 
ρ 
, 

M22 = 
4 
3ρ 

, M31 = 
1 
Pr 

RTρ 

Tρs0 
, M33 = 

1 
Pr 

RTs 

Tρs0 
, 

N31 = 
1 
Pr 

R 
Tρs0 

, N32 = 
4 

3Tρ 
p0 

T0ρ0s0 
, 

W11 = Tρ, W13 = Ts, W22 = u, 

ð7:6Þ 

with Re≔ 
ρ0L p0=ρ0 

μ and Pr≔ μR 
k as the Reynolds number and Prandtl number, 

respectively. 

7.3 Derivation of Evolution Equation 

We look for asymptotic solutions of the system 7.5 of the form 

Ui =U 0ð Þ  
i þ EU 1ð Þ  

i þ E2 U 2ð Þ  
i þ O E3 , ð7:7Þ 

where U(0) = (1, 0, 1)tr refers to a constant background state and E is a small 
parameter, 0 < E <  <  1, which may be regarded as the strength of the perturbed 
disturbance. The coefficient matrices A, M, N, and W can be expanded about the 
constant state U = U(0) as
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Yij Uð Þ= Y 0ð Þ  
ij þ Y ′ ijk EU 1ð Þ  

k þ E2 U 2ð Þ  
k þ Y ′ ′ ijklE2 U 1ð Þ  

k U 
1ð Þ  
l þ O E3 , ð7:8Þ 

where i,j, and k vary from 1 to 3 and Y may denote any of the matrices A, M, N, and 
W. Further, we consider the following expansions: 

Y ′ ijk = Y ′ ijk0 þ EY ′ ijk1 þ O E2 , 
Y ′ ′ ijkl = Y ′ ′ ijkl0 þ EY ′ ′ ijkl1 þ O E2 : ð7:9Þ 

In the sequel, as pointed out in Cramer and Sen (1992) and Kluwick and Cox 
(1998), we refer to the critical points in the neighborhood where the quadratic 
steepening parameter ~Γ is O(E) that is, 

~Γ � LiA ′ ijkRjRk 

L:R 
=O Eð Þ, ð7:10Þ 

and consider the situation when the nonlinear distortions of disturbance, with 
perturbed strength O(E), make their appearance noticeable over time scale of order 
O(E-2 ); accordingly, we look for a far-field description near the wavefront and 
introduce the reference system ξ = x - λt and τ = E2 t with λ as an eigenvalue of 
A(0) . The new reference system achieves the purpose of shifting attention to the 
vicinity of the wavefront for large time. For small dissipative effect, we consider the 
Reynolds number Re = O(E-2 ). In terms of the transformed variable ξ and τ, system 
Eq. 7.5 takes the form: 

E2 
∂U 
∂τ 

þ A- λIð Þ∂U 
∂ξ 

= 
1 
Re 

M Uð ÞUξξ þ 1 
Re 

N Uð Þ  W Uð Þ½ �ξUξ: ð7:11Þ 

In view of the development, Eqs. 7.7 and 7.11 yield the following systems of 
PDEs at order O(Ek ), k=1,2,3: 

O Eð Þ  : GijU 
1ð Þ  
jξ = 0, 

O E2 : GijU 
2ð Þ  
jξ = -A ′ ijk0U 

1ð Þ  
jξ U 

1ð Þ  
k , 

O E3 : GijU 
3ð Þ  
jξ = -U 1ð Þ  

iτ -A ′ ijk0U 
1ð Þ  
jξ U 

2ð Þ  
k -A ′ ijk0U 

1ð Þ  
k U 

2ð Þ  
jξ -A ′ ijk1U 

1ð Þ  
jξ U 

1ð Þ  
k

-A00
ijkl0U 

1ð Þ  
jξ U 

1ð Þ  
k U 

1ð Þ  
l þ 1 

E2 Re 
M 0ð Þ  

ij U 
1ð Þ  
jξξ , 

ð7:12Þ 

where Gij =A 0ð Þ  
ij - λδij. 

The solvability condition for Eq. 7.12 requires that



112 T. P. Shukla

det Gð Þ= 0; ð7:13Þ 

the eigenvalue λ takes the values,-c0, 0, and +c0, where c0≔ ∂p 
∂ρ 0 

is the speed of 

sound in the medium; hereafter, we will study the right moving wave which 
corresponds to the eigenvalue c0. For c0 to be real and nonzero, the term inside the 
square root must be positive, which in view of equation of state (Eq. 7.3) 1 
requires that 

1þ δð Þ  1þ að Þ  
1- b

- 2a> 0; ð7:14Þ 

it may be noticed that the inequality (Eq. 7.14) holds true in the domain {a, 
b, δ : 0  < a ≤ 1, 0 < b < 1, 0 < δ ≤ 2/3}. The left and the right eigenvectors of 
A(0) corresponding to the eigenvalue c0 are 

L= c0, 1, ps0=c0ð Þ,R= 1=c0, 1, 0ð Þtr : ð7:15Þ 

Equation (7.12) implies that the solution vector U(1) is collinear to the right 
eigenvector R, that is, 

U 1ð Þ  =V ξ, τð ÞR, ð7:16Þ 

where V(ξ, τ) is the wave amplitude function, which is determined at the next order. 
The solvability conditions for U 2ð Þ  

i and U 3ð Þ  
i require that the RHS of (12) 2 and 

(12) 3 be orthogonal to the left eigenvector L; this, indeed, imposes the conditions 

LiA ′ ijk0RjRk 

L:R 
= 0, ð7:17Þ 

and 

L � Rð  ÞV τ þ LiA ′ ijk0RkU 
2ð Þ  
j,ξ V þ LiA ′ ijk0RjU 

2ð Þ  
k V ξ þ LiA ′ ijk1RjRkVV ξ 

þLiA ′ ′ ijkl0RjRkRlV
2 V ξ -

1 
E2 Re 

LiM 0ð Þ  
ij RjV ξξ = 0, 

ð7:18Þ 

where the terms containing U 2ð  Þ  
j,ξ and U 

2ð  Þ  
k can be determined in terms of V2 and V, 

respectively (see Cramer and Sen (1992) and Kluwick and Cox (1998)), and the 
resulting transport equation turns out to be of the following form:
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Table 7.1 Behavior of Γ and Λ under the influence of van der Waals parameters a and b 

Increases with b Decreases with a 

Γ 0 < a ≤ 1, 0 < b < 1, 0 < δ ≤ 2/3 0 < a ≤ 1, 0 < b < 1/9, 0 < δ ≤ 2/3 

Λ 0 < a ≤ 1, 0 < b < 1, 0 < δ ≤ 2/3 0 < a ≤ 1, 0 < b < 1/12, 0 < δ ≤ 2/3 

V τ þ f Vð Þð Þξ = νV ξξ, ð7:19Þ 

where f V  = Γ 2 V
2 Λ 

6 V
3 with 

Γ= 
~Γ 
E 
= 

~Ξ0 

E 
= 

1 
2E 

1þ δð Þ  2þ δð Þ  1 þ að Þ- 6a 1- bð Þ2 
1 þ δð Þ  1þ að Þ  1- bð Þ- 2a 1- bð Þ2 =O 1ð Þ, ð7:20Þ 

Λ= 
1þ δð Þ  2þ δð Þ  1þ að Þ  6bþ δ- 3ð Þ þ  12a 1- bð Þ3 

2 1þ δð Þ  1þ að Þ  1- bð Þ- 2a 1- bð Þ2 
3=2 

=O 1ð Þ, ð7:21Þ 

being the quadratic and cubic nonlinearity parameters, and 

ν= 
1 

E2 Re 
4 
3
þ 1 
Pr 

δ2 1þ að Þ  
1þ δð Þ  1þ að Þ- 2a 1- bð Þ  =O 1ð Þ; ð7:22Þ 

here ~Ξ0 is the value of ~Ξ evaluated at the unperturbed state. Using basic calculus 
tools, the behavior of Γ and Λ, influenced by the van der Waals parameters a and b, 
with the constraints given by Eq. 7.14, can be summarized in Table 7.1. 

We restrict our discussion for the values of a, b, and δ lying in the intervals 
0 < a ≤ 1, 0 < b < 1/12, and 0 < δ ≤ 2/3 for which Γ and Λ are monotonic. 

It may be remarked that no analytical representation of the solution of Eq. 7.19 is 
feasible (Crighton 1986); however a few solutions of the associated kinematic 
equation, which appear to be novel, have been discussed in Cramer and Kluwick 
(1984) and Cramer et al. (1986). In the following section, using the related method-
ologies, we study the associated kinematic equation analytically to investigate the 
effects of the van der Waals parameters on the evolutionary behavior of waves that 
finally develop and obtain the numerical solutions, in Sect. 7.5, of parabolic 
Eq. 7.19, which is more amenable for numerical study.
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7.4 Kinematic Shocks Associated with the Evolution 
Equation 

In this section, we analyze the wave patterns evolving as solutions of the Cauchy 
problem for the kinematic equation associated with Eq. 7.19, by considering that 
there is no viscous term, and using the initial data 

V ξ, 0ð Þ= 

Π ξ 2 - 1, 1ð Þ  
0 otherwise, ð7:23Þ 

where Π 2 IR. Typically two Riemann problems are solved each at ξ = - 1 and 
ξ = 1. Since the flux function is non-convex and contains an inflection point, 
solution is constructed by considering the effective flux function through a 
convex-hull (respectively, a concave-hull), which can be best described by the rest 
position of an elastic string stretched tightly below (respectively, above) the curve on 
the interval [0,Π] (or [Π, 0] if  Π<0), for instance, see Fig. 7.1 and Ref. (Zheng 
2001). The portion of the hull that agrees with the flux function represents a centered 
wave-fan, whereas the straight line segment represents a shock satisfying the 
Oleinik’s entropy condition (Oleinik 1959): 

Fig. 7.1 Illustration for the flux function and construction of convex/conclave-hull (in Case 4);
- Γ 

Λ is the inflexxion point, -
3 
2 

Γ 
Λ the point of tangency, S1 the expansion shock, S2 the expansion 

shock, S2 the sonic compression shock, and W the compression fan
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f Vð Þ- f Vlð Þ  
V -Vl 

≥ dξs 
dτ 

≥ f Vð Þ- f Vrð Þ  
V -Vr 

, ð7:24Þ 

where Vl and Vr are the left and the right states of the shock, respectively; here ξs 
denotes the position on the shock. The expression for the shock speed is then given 
by the Rankine-Hugoniot condition, and it turns out that 

dξs 
dτ 

= 
Γ 
2 

Vl þ Vrð Þ þ  Λ 
6 

V2 
l þ VlVr þ V2 

r : ð7:25Þ 

The strength σ of a shock can be defined as the magnitude of the jump: 

σ≔Vl -Vr: ð7:26Þ 

Since the flux function is cubic in V, the graph of f(V) possesses only one 
inflection point; so the equality in Eq. 7.24 holds only on one side depending upon 
the sign of Λ and the shock is reffered to as a sonic shock. For a given state V, the 
state Vt (say), which can be connected through a sonic shock at Vt , is uniquely 
determined as 

Vt = -
1 
2 

3 
Γ 
Λþ V : ð7:27Þ 

Equation 7.27, in view of Eq. 7.25, yields the sonic shock speed 

dξs 
dτ 

= 
Λ 
8 

V þ 3 Γ Λ V -
Γ 
Λ : ð7:28Þ 

Since Γ and Λ depend on the van der Waals parameters a and b (Table 7.1), the 
shock speed and consequently the interaction time of waves, width of wave-fan, and 
shock strength are also influenced. 

Several cases can be discussed depending upon the initial condition and the signs 
of Γ and 

Λ; in fact if one case is discussed, others can be explained in an analogous 
manner. Here we discuss the problem for which Γ > 0 and Λ < 0. As we increase 
Π from negative to a positive value, the solution can be classified into four cases 
depending upon some critical values of V (see Fig. 7.1); accordingly, we discuss the 
following cases: 

1ð  Þ  Π≤ -
Γ 
Λ ,  2ð  Þ- Γ 

Λ ≤Π≤ -
3 
2 
Γ 
Λ ,  3ð  Þ- 3 

2 
Γ 
Λ ≤Π≤ - 3

Γ 
Λ ,  4ð  Þ Π≥ - 3

Γ 
Λ :
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7.4.1 Case 1 (Π≤ - Γ) 

Depending upon whether Π < 0 or  Π > 0, two sub-cases may be considered. If 
Π < 0, a compression shock emanates from ξ = - 1 connecting V = 0 to  V = Π; at  
ξ = 1 a centered expansion fan connects V = Π to V = 0 continuously. However, if 
Π > 0, the wave pattern is reversed; at ξ = - 1 a centered expansion fan W, 
described by the characteristics 

ξ= ΓV þ ΛV2 

2 
τ- 1, 0≤V ≤Π, ð7:29Þ 

connects V = 0 to  V = Π, while at ξ = 1 a compression shock S1 emanates 
connecting V = Π to V = 0 (see Fig. 7.2a). In each case, the shock and the wave-
fan start interacting after some time, but their interactions are essentially the same for 
both the cases. Hereafter, we consider the situation when Π > 0; the compression 
shock S1, which emanates from ξ = 1, propagates with speed 

dξs 
dτ 

=ΓΠ 
2 
þ ΛΠ2 

6 
: ð7:30Þ 

The leading characteristic of the expansion fan W, carrying the value V = Π, hits 
the shock at 

Fig. 7.2 Case 1; (a) illustration of analytical solution in ξ - τ plane; thick and thin lines represent 
shocks and characteristics of the wave-fan, respectively; (b) numerical comparison of viscous (solid 
line) and inviscid (dashed line) solutions with a = 0.01, b = 0.01, δ = 0.4 and Π = 1, which yield 
τ01 = 1.7553; the horizontal and vertical lines, for instance, AB and BC in Profile 1, correspond to 
the constant state and a shock, respectively, whereas W corresponds to the expansion fan
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τ01 = 
12 

Π 3Γþ 2ΠΛð Þ : ð7:31Þ 

For τ > τ01, the shape and speed of the shock S1 get altered because of its 
interaction with the characteristics of the wave-fan W. Consequently, the staright 
shock S1 assumes the form of a curved shock S2, the speed of which can be 
determined with the help of Eq. 7.25 with Vr = 0 and Vl given by wave-fan 
Eq. 7.29. Since at the shock S2, ξ is a function of τ, the left state Vl can be obtained 
as a function of τ 

Vl =V ξs τð Þ, τð Þ � ϕ τð Þ: ð7:32Þ 

Thus the speed of S2, in terms of ϕ, is given by 

dξs 
dτ 

=Γϕ 
2 
þ Λϕ2 

6 
: ð7:33Þ 

Equation 7.29 also yields an expression for the shock speed as 

dξs 
dτ 

= Γϕþ Λϕ2 

2 
þ τ Γþ Λϕð Þ dϕ 

dτ 
, ð7:34Þ 

which, together with Eq. 7.33 and the condition ϕ(τ0) = Π, yields the following 
expression for ϕ(τ): 

τϕ2 3Γþ 2Λϕð Þ= 12Π: ð7:35Þ 

Equation 7.35 shows that the shock amplitude ϕ(τ) decays to zero like 

ϕ � 2 
Π 
Γ 

1 
2 

τ-
1 
2 as τ→1: ð7:36Þ 

It may be noticed from Eq. 7.31 that an increase in b shortens the interaction time 
τ01, whereas an increase in a delays the same. Indeed, an increase in b triggers the 
physical mechanism that causes the speed of the shock S1 and width of the wave-fan 
W to increase; however, the strength of the shock S2 decreases, rather than increases, 
with b. In contrast, an increase in a has exactly opposite effects. Since the curvature 
of the curved shock S2 changes for different values of a and b, dependence of the 
speed of the shock S2 upon these parameters is non-monotonic. The strength of 
shock S1 is fixed (i. e. , Π) and does not depend upon a or b. Finally the influence of 
a and b upon the eventual decay of wave profile is examined; indeed, the expression 
(Eq. 7.36) shows that the wave decays at a faster rate with an increase in b, whereas 
an increase in a is capable of counteracting the decay rate. These observations show
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that the effects of van der Waals parameters a and b, which are opposite in nature, 
can influence the wave pattern significantly. 
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7.4.2 Case 2 (- Γ ≤Π≤ - 3 Γ) 

Since - Γ 
Λ is the inflection point, the state Π> - Γ 

Λ cannot be joined with the state 
V = 0 directly with a fan; indeed, the transition requires the introduction of an 
expansion shock S1 followed by a centered expansion fan W (see Fig. 7.3a). Thus, a 
complete waveform that evolves at ξ = - 1 consists of a centered expansion fan 
W connecting V = 0 to  V = Vt with a sonic expansion shock S1 at its right edge 
joining V = Vt to V = Π; here Vt is the value of V for which the chord joining (Π, 
f(Π)) and (Vt , f(Vt )) is tangent to the graph of f(V ) at  V = Vt . A compression shock S2 
emanates from ξ = 1, connecting V = Π to V = 0. The strength and speed of the 
shock S1 are 

σ = 
3 
2 

Πþ Γ Λ , 
dξs1 
dτ 

= 
Λ 
8 

Πþ 3
Γ 
Λ Π-

Γ 
Λ : ð7:37Þ 

The expansion shock S1 collides with the compression shock S2 of strength Π 
at time 

τ02 = -
48 
Λ Πþ 3 Γ Λ

- 2 

: ð7:38Þ 

Fig. 7.3 Case 2; (a) illustration of analytical solution in ξ - τ plane, thick lines represent shocks 
and thin lines represent the characteristics of the wave-fan; (b) numerical comparison of viscous 
(solid line) and inviscid (dashed line) solutions with a = 0.01, b = 0.01, δ = 0.4 andΠ = 1.8, which 
yield τ02 = 2.3227; the vertical line segment AB in Profile 2 corresponds to the sonic expansion 
shock S1.
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The collision gives rise to a merged shock S3, beyond τ = τ02, with a reduced 
speed and strength. Shock S3 interacts with the expansion fan for τ > τ02. On account 
of this interaction, the shape and the speed of the resulting shock get altered, which 
can be obtained by invoking the Rankine-Hugoniot condition (Eq. 7.25) and the 
characteristic family (29) with 0≤V ≤ - 1 

2 Πþ 3 Γ Λ ; this leads to an evolutionary 
behavior for ϕ, namely: 

Λϕ2 ϕþ 3 
2 
Γ 
Λ = 

6Π 
τ 
, ð7:39Þ 

with ϕ(τ02) = Π. It can be seen that the speed of the resultant shock S3 is less than 
that of the shock S2; Eq. 7.39 shows that the shock amplitude ϕ decays to zero like 
τ-

1 
2 as τ → ; in fact 

ϕ � 2 
Π 
Γ 

1 
2 

τ-
1 
2 as τ→1: ð7:40Þ 

It is clearly seen from expression (Eq. 7.38) that the effects of a and b on the 
interaction time τ02 are qualitatively similar to the effects of a and b on τ01. Also, it 
follows that the speeds of shocks S1 and S2 and the width of the wave-fan W increase, 
whereas the strengths of shocks S1 and S3 decrease with an increase in b; in contrast, 
the effect of the van der Waals parameter a is just opposite to that of b. It may be 
remarked that the strength of shock S2 is not at all influenced by the van der Waals 
parameters. The final decay of the wave profile is exactly the same as in the 
previous case. 

7.4.3 Case 3 (- 3 Γ ≤Π≤ - 3 Γ 

In this case, the initial discontinuity located at ξ = - 1 splits into an expansion fan 
W1 and a sonic expansion shock S1, located on the extreme right edge of the fan W1 

(see Fig. 7.4a). Similarly at ξ = 1, because of the stability condition (Eq. 7.24), a 
single shock cannot connect V = Π to V = 0, and thus a sonic compression shock S2, 
followed by a centered compression fan W2, described by 

ξ= ΓV þ ΛV2 

2 
τ þ 1, -

3 
2 
Γ 
Λ ≤V ≤Π, ð7:41Þ 

evolves at τ = 0. The shock S1, described by Eq. 7.37, first intersects the extreme left 
characteristic of the wave-fan W 2, carrying V = Π, at time
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Fig. 7.4 Case 3; (a) illustration of analytical solution in ξ - τ plane, thick lines represent shocks 
and thin lines represent the characteristics of the wave-fan; (b) numerical comparison of viscous 
(solid line) and inviscid (dashed line) solutions with a = 0.01, b = 0.01, δ = 0.4 andΠ = 3.2, which 
yield τ03 = 0.7345, τ1 = 5.7768, and τ2 = 9.2417; the curved portion AB in Profile 2 corresponds to 
the precursor wave WP 

τ03 = -
16 
3Λ Πþ Γ 

Λ
- 2 

: ð7:42Þ 

For τ > τ03, the speed of the resultant shock S3 cannot be less than f
′(Vt ) because 

of the limitations imposed by the Oleinik condition. Indeed, for τ > τ03, the shock S3 
becomes curved on account of its interaction with the wave-fan W2. The solution in 
the region between the characteristic on the right edge of W1 and the curved shock S3 
is given by a non-centered expansion-fan, called the precursor wave WP, whose 
characteristics are tangent to the shock S3; a similar construction can be found in a 
work by Ballou (1970). So the shock S3 is a sonic shock; its interaction with the 
wave-fan W2 is described by (37) and (41) to yield 

ϕþ Γ Λ = Π þ Γ Λ 
τ 
τ0

- 3 
8 

, ð7:43Þ 

where ϕ satisfies ϕ(τ03) = Π. The shock S3 collides with shock S2 that carries the 
value ϕ= - 3 

2 
Γ 
Λ; using this value of ϕ in (43), we get the time of collision as 

τ1 = τ03 -
2Λ 
Γ Πþ Γ Λ 

8 
3 

: ð7:44Þ 

The equation of the curved shock S3 can be obtained, by invoking Eqs. 7.41 and 
7.43,  as
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σ = 
3 
2 

Π þ Γ Λ 
τ 
τ03

- 3 
2 

, ξs = 
Λ 
2 

Πþ Γ Λ 
2 τ 

τ03

- 3 
4

-
Γ2 

Λ2 τ 

þ 1, τ03 ≤ τ≤ τ1: ð7:45Þ 

The sonic compression shock S2, which was of constant strength till τ = τ1, also 
weakens on account of its interaction with S3 for τ > τ1; indeed for τ > τ1, the 
merged shock S4 interacts with the precursor wave WP. The flow in the precursor 
wave region is governed by the following equation: 

ξ τð Þ= ΓVl þ Λ 
V2 
l 

2 
τ-~τð Þ þ  ξs ~τð Þ, ð7:46Þ 

where Vl is the value of V that precursor waves carry, ξs ~τð Þ is the shock location, and 
~τ is the time when characteristics (precursor waves) leave the shock S3; the expres-
sion for ~τ can be obtained from Eq. 7.43. Finally, the equation that describes the 
precursor wave region is given by the following expression: 

ξ τð Þ= ΓVl þ Λ V
2 
l 

2 
τ- 2 

1 
3 

Πþ Γ 
Λ 

Vl þ Γ 
Λ 

2 
3 

þ 1, -
1 
2 

Π þ 3
Γ 
Λ ≤Vl ≤

-
3 
4 
Γ 
Λ , τ03 ≤ τ ≤ τ2, ð7:47Þ 

where τ2 is the time that brings an end to the interaction process between WP and S4. 
The speed of the merged shock S4, which connects the precursor wave to the 

constant density region, is given by dξs=dτ =ΓVl=2þ ΛV2 
l =6, τ1 ≤ τ≤ τ2; this, in 

view of Eq. 7.47, yields the following ODE for ϕ: 

dϕ 
dτ 

= -
ϕ 2Λϕþ 3Γð Þ  

6 τ Γþ Λϕð Þ þ χ Γþ Λϕð Þ- 5 
3 

, χ 

= 
2 

4 
3 

3 
Λ Γþ ΛΠð Þ2 3, τ1 ≤ τ≤ τ2: ð7:48Þ 

Solution of Eq. 7.48, satisfying the condition, ϕ= - 3 
2 

Γ 
Λ at τ = τ1, can be written 

in the following implicit form, describing the merged shock wave S4: 

τϕ2 ϕþ Γ Λ 
2 
3 

= -
9 

Λ8=3 
χ, τ1 ≤ τ≤ τ2: ð7:49Þ 

This interaction of precursor waves with the shock S4 ends where the character-
istic of the precursor wave, carrying the value V = - (3Γ/Λ + Π)/2, meets the 
merged shock S4 at time τ2 given by
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τ2 = - 48Λ- 1 Πþ 3
Γ 
Λ

- 2 

: ð7:50Þ 

The merged shock, after time τ2, starts interacting with the wave-fan W1; this 
interaction rule can be obtained as in Case 2, and the long time behavior is 
described by 

ϕ � 2 
Π 
Γ 

1 
2 

τ-
1 
2 as τ→1: ð7:51Þ 

An increase in the value of the parameter b causes the interaction time τ03, speeds 
of shocks S1 and S2, strength of the shock S2, and the width of the wave-fan W1 to 
increase, whereas it induces a reduction in τ1 and τ2; strengths of the shocks S1, S3, 
and S4; and width of the wave-fan W2. However, an increase in the value of the 
parameter a shows effects opposite to that of b. Again, the effects of a and b upon the 
decay behavior are qualitatively similar to the previous cases. 

7.4.4 Case 4 (Π≥ - 3 Γ) 

Unlike the earlier cases, where an expansion fan at ξ = - 1 was required, the present 
case requires no such fan. In fact, it requires only an expansion shock S1, connecting 
Vl = 0 to  Vr = Π; at  ξ = 1, a compression-fan W is headed by a sonic compression 
shock S2 (see Fig. 7.5a). Initially the shock S1, emanating from ξ = - 1, moves 
toward the left with a constant speed until it meets the characteristic located on the 
left edge of the wave-fan W2 at time 

Fig. 7.5 Case 4; (a) illustration of analytical solution in ξ - τ plane, thick lines represent shocks 
and thin lines represent the characteristics of the wave-fan; (b) numerical comparison of viscous 
(solid line) and inviscid (dashed line) solutions with a = 0.01, b = 0.01, δ = 0.4 andΠ = 5.5, which 
yield τ04 = 0.1302, ~τ1 = 0:2574, and ~τ2 = 10:3761; the curved portion AB in Profile 4 corresponds 
to the precursor wave WP, whereas S2, W, and S4 correspond to their counterparts in (a)
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τ04 = -
12 

Π 3Γþ 2ΠΛð Þ : ð7:52Þ 

The shock S1, on account of its interaction with the compression wave-fan W, 
slows down and assumes a curved shape S3; indeed, the shock S3 becomes stationary 
when it meets the characteristic of W, carrying the value V = - 3Γ/Λ, at time 

~τ1 = 
4 
9 
Λ2 

Γ3 Π: ð7:53Þ 

For τ>~τ1, the shock S3 moves to the right and assumes the form of a sonic shock 
S4 with a reduced strength. As discussed in Case 3, a non-centered wave-fan WP 

(precursor wave) needs to be introduced between the shock S4 and the constant state 
on the left. The location ξs of the curved shock S4 and its strength σ are given by 

ξs = 
Γ2 

2Λ 4 
~τ1 
τ 

3 
4

- 1 τ þ 1, σ = - 3 
Γ 
Λ 

~τ1 
τ 

3 
2 

, ~τ1 ≤ τ≤~τ2, ð7:54Þ 

where ~τ2 is the time at which shocks S2 and S4 collide. Further interaction of the 
sonic shock S4 with the wave-fan W can be obtained as in Case 3; the interaction ends 
when the shock meets the characteristic of wave-fan W, carrying the value V =  
3Γ/(2Λ), at time 

~τ2 = 
4 

11 
3 

9 
Λ2 

Γ3 Π: ð7:55Þ 

For τ>~τ2, shocks S2 and S4 merge into a single shock, referred to as the merged 
shock, which has V = 0 on one side and precursor on the other side, merging from 
behind; indeed the merged shock for τ >~τ2 is described by the following implicit 
relation: 

τϕ2 Γþ Λϕð Þ2 3 = 
4 

Γ1=3
Π, τ>~τ2, ð7:56Þ 

showing thereby that the wave eventually decays like 

ϕ � 2 
Π 
Γ 

1 
2 

τ-
1 
2 as τ→1; ð7:57Þ 

indeed, the decay behavior, influenced by the van der Waals parameters a and b, 
remains similar to the earlier cases. The new feature in this case is this that in contrast 
to Case 3, the interaction of precursor wave WP with the merged shock will never end 
in a finite time.
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In this case, an increase in b leads to an increase in interaction time τ04, speeds of 
both the shocks S1 and S2, and strengths of shocks S2, S3, and S4, whereas the 
interaction times ~τ1 and ~τ2, the strength of the merged shock, and width of the wave-
fan W decrease with an increase in b; as noted in Case 3, here also, the van der Waals 
parameter a has opposite effects on the wave evolution. 

7.5 Numerical Solution 

This section is devoted to the numerical solutions of parabolic Eq. 7.19, in the 
hyperbolic limit ν → 0, for all the four cases discussed in Sect. 7.4 using a weighted 
essentially non-oscillatory (WENO) scheme. Values of the van der Waals parame-
ters a and b are carefully taken from the intervals presented in Sect. 7.3, so that by 
varying the values of these parameters, the value of Π does not fall out of the range 
under consideration. In each of these cases, three sets of computations are 
performed; in the first set, solution is given at various times (with fixed values of 
a = 0.01 and b = 0.01) in order to provide a complete picture of the evolutionary 
behavior of the signal profile. In the second (respectively, third) set, parameter 
a (respectively, b) is varied while keeping b (respectively, a) and τ fixed. 

The numerical scheme is based on an essentially non-oscillatory (ENO) scheme. 
The key idea of ENO schemes is to use the “smoothest” stencil among several 
candidates to approximate the fluxes at cell boundaries to a higher-order accuracy 
and at the same time to avoid oscillations near shocks. The weighted essentially 
non-oscillatory (WENO) scheme uses a convex combination of all the candidate 
stencils instead of approximating the numerical flux using only one candidate stencil 
so that the order of accuracy is improved. Here we use a fifth-order WENO scheme 
(Jiang and Shu 1996) to solve parabolic Eq. 7.19 with the initial condition (Eq. 7.23) 
by treating the flux function, outlined as above, and approximating the second 
derivative by the central difference scheme. The scheme of Jiang and Shu is 
presented here for the sake of completeness. On discretizing the space into uniform 
meshes ξ1 

2 
< ξ3 

2 
< . . .  < ξN- 1 

2 
< ξNþ1 

2 
with Δξ= ξjþ1 

2
- ξj- 1 

2 
=constant, the numerical 

scheme can be described as 

V τ = -
1 
Δξ f jþ1 

2
- f j- 1 

2 
þ Vj- 1 - 2Vj þ Vjþ1 

Δξ2
, ð7:58Þ 

where f is monotonic numerical flux. Since the flux function f(V ) is non-monotonic 
(see Fig. 7.1), we split it into two monotonic parts using the global Lax-Friedrichs 
flux splitting as



þ2 þ2
þ þ2

k l

7 Dynamics of Weakly Nonlinear Waves Propagating in the Region with. . . 125

Table 7.2 Values of ar k,l and 
Cr 
k with r = 3 

= 0 l = 1 l = 2 C3 
k 

0 1/3 -7/6 11/6 1/10 

1 -1/6 5/6 1/3 6/10 

2 1/3 5/6 -1/6 3/10 

f ± Vð Þ= 
1 
2 

f Vð Þ± αVð Þ; α= max j f 0 Vð Þ j  : ð7:59Þ 

The numerical flux then takes the form f j 1 = f
þ 
j 1 f

-
j 1, where f 

± 
are given by 

f 
± 
= 

r- 1 

k = 0 

wkq
r 
k f 

± 
jþk- rþ1, . . . , f 

± 
jþk , ð7:60Þ 

with 

qr k g0, . . . , gr- 1ð Þ= 
r- 1 

l= 0 

ar k,lgl, wk = 
αk 

α0 þ . . .  þ αr- 1 
, αk 

= 
Cr 
k 

E0 þ ISkð Þ2 , 0≤ k, l≤ r- 1: ð7:61Þ 

The quantities wk defined as above are the weights, E
′ is a small positive real 

number introduced to maintain denominator nonzero, and ISk is a smoothness 
measurement of the flux function on the kth stencil. Equation 7.60 gives the fifth-
order WENO scheme, with r=3, for which ar k,l and C

r 
k are given in Table 7.2 and ISk 

are given as follows: 

IS0 = 
13 
12 

f j- 2 - 2f j- 1 þ f j 2 þ 1 
4 

f j- 2 - 4f j- 1 þ 3f j 2 , 

IS1 = 
13 
12 

f j- 1 - 2f j þ f jþ1 
2 þ 1 

4 
f j- 1 - f jþ1 

2 
, 

IS2 = 
13 
12 

f j - 2f jþ1 þ f jþ2 
2 þ 1 

4 
3f j - 4f jþ1 þ f jþ2 

2 
: 

ð7:62Þ 

For the illustration of the solution in Case 1, we take Π = 1; both inviscid and 
viscous solutions at various times are depicted in Fig. 7.2b exhibiting that at τ = 1, 
when the interaction of shock with the wave-fan has not yet started, the constant 
density region is still present and the viscous solution is in excellent agreement with 
the inviscid solution. At τ = 1.5, Profile 2 in Fig. 7.2b shows that the interaction 
process has already started for the viscous solution, while it has yet to start for the 
inviscid solution. Once the interaction starts for the inviscid solution, both the 
solutions are in excellent agreement as is evident from Profiles 3 and 4 in 
Fig. 7.2b. The decay behavior of the wave is displayed in Fig. 7.6a, showing therein



that it slowed down under the influence of the van der Waals parameter a as 
predicted by the analytical results in Sect. 7.4.1. Similarly, Fig. 7.6b displays that 
the decay rate is enhanced by an increase in van der Waals parameter b, which is 
confirmed by analytical solution presented in Sect. 7.4.1. 
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Fig. 7.6 (a) Case 1, signal profile for different values of a with b = 0.02, δ = 0.4,Π = 1, and τ = 3; 
(b) Case 1, signal profile for different values of b with a = 0.1, δ = 0.4, Π = 1, and τ = 2; dashed 
(– –  –) and solid (——) lines represent inviscid and viscous solutions, respectively 

Fig. 7.7 (a) Case 2, signal profile for different values of a with b = 0.02, δ = 0.4, Π = 1.8, and 
τ = 3; (b) Case 2, signal profile for different values of b with a = 0.1, δ = 0.4,Π = 1.8, and τ = 2.2; 
dashed (– – –) and solid (——) lines represent inviscid and viscous solutions, respectively 

Numerical solution of Eqs. 7.19 and 7.23, in the hyperbolic limit, for Case 2 with 
Π = 1.8 is depicted in Fig. 7.3b. Sonic shock is present till τ02 = 2.3227 where it 
interacts with the wave-fan; indeed both viscous and inviscid solutions are seen to be 
in excellent agreement. Again a and b have the same effect on the decay of the wave 
amplitude as in the previous case (see Fig. 7.7a and b, which validate the conclusions 
drawn in Sect. 7.4.2). 

Numerical solutions of viscous and inviscid equations, in Case 3 with Π = 3.2, 
are plotted in Fig. 7.4b; the variety of phenomena that can arise is seen through the 
signal profiles plotted therein. After the interaction time τ03 = 0.7345, precursor



waves evolve and persist in the system till time τ2 = 9.2417. At time τ1= 5.7768, the 
interaction of wave-fan W2 with the shock S1 is over; for τ > 5.7768, the precursor 
wave WP interacts with the merged shock S4 and causes it to slow down and decay in 
strength. Once again the inviscid and viscous solutions are seen to be in excellent 
agreement. Figure 7.8a and b validate the conclusions drawn in Sect. 7.4.3 relating to 
the dependence of shock speed/strength on the van der Waals parameters. 
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Fig. 7.8 (a) Case 3, signal profile for different values of a with b = 0.02, δ = 0.4, Π = 3.2, and 
τ = 5; (b) Case 3, signal profile for different values of b with a = 0.1, δ = 0.4, Π = 3.2, and τ = 5; 
dashed (– – –) and solid (——) lines represent inviscid and viscous solutions, respectively 

Finally for Case 4, the wave profiles of the numerical solution are depicted in 
Fig. 7.5b for Π = 5.5. The shock S3 moves toward the left until it becomes stationary 
at time ~τ1 = 0:2574; the shock path then reverses and the shock propagates through 
the wavefront as a sonic shock S4. For τ > 0.2574, the precursor waves evolve in 
the system and remain there forever. Shock S4 intersects the shock S2 at time 
~τ2 = 10:3761 and thereafter the precursor wave interacts with the merged shock. 
The point of intersection through which the Profiles 1–4 pass is the point where the 
characteristic of the wave-fan W is vertical carrying the value V = - 2 Γ Λ (see 
Fig. 7.5a and b). Numerical solutions, presented in Fig. 7.9a and b, confirm the 
analytical conclusions presented in Sect. 7.4.4. 

7.6 Conclusion 

In this work, we have used the method of multiple scales to derive the transport 
equation governing the amplitude of a weakly nonlinear wave in a dissipative 
medium; indeed the transport equation includes both quadratic and cubic nonline-
arities which are responsible for a complex structure of evolving waves that are 
distinctly different from the ideal gas case where only quadratic nonlinearity is 
present. Exact analytic solutions of the kinematic equation associated with the 
parabolic transport equation are obtained, evolving from an initial condition 
representing a rectangular wave pulse; these are illustrated in Figs. 7.2a, 7.3a,



7.4a, and 7.5a. The IVP of course differs from the classical Riemann problem, where 
a single discontinuity separates two different constant states; illustrative Cases 1–4 
show that the initial discontinuity suffers a partial disintegration into a sonic shock 
(expansive or compressive) followed by a centered wave-fan, which is either an 
expansion or a compression fan. Interactions of shock waves with the wave-fans are 
of particular interest; precursor waves are present as a result of interaction of the 
waves emerging from the initial line carrying values of the density function 
corresponding to different convexities of the flux function. Wave evolution, in 
particular the width of the wave-fans, shock speeds/strengths, and the shock 
decay, influenced by the van der Waals parameters, have been depicted in 
Figs. 7.2, 7.3, 7.4, and  7.5. Indeed, Figs. 7.2b, 7.3b, 7.4b, and 7.5b depict the 
numerical results in the limit of vanishing viscosity for four typical cases leading 
to sonic shocks, precursor waves, and wave-fans. 
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Fig. 7.9 (a) Case 4, signal profile for different values of a with b = 0.02, δ = 0.4, Π = 5.5, and 
τ = 0.2; (b) Case 4, signal profile for different values of b with a = 0.1, δ = 0.4, Π = 5.5, and 
τ = 1.0; dashed (– –  –) and solid (——) lines represent inviscid and viscous solutions, respectively 

The effects of van der Waals parameters are investigated on shock strengths, 
shock speeds, widths of wave-fans, interaction times, and the decay of the wave 
profiles. The interaction times, depending on the initial data, increase/decrease with 
an increase in van der Waals parameter b. Speeds of straight shocks and widths of 
expansion fans increase, whereas widths of compression fans decrease with an 
increase in b. Shocks get strengthened/weakened, with an increase in b, depending 
upon the initial data, whereas the eventual decay of wave becomes faster with an 
increase in b in all the cases. In contrast the effects of van der Waals parameter a on 
the wave evolution are just opposite to that of b. 

The parabolic equation is solved numerically using the fifth-order WENO 
scheme; the numerical results are in excellent agreement with the analytical solu-
tions. Indeed, the inviscid theory predicts the correct behavior of viscous solution 
when the dissipation coefficient is small; the numerical results confirm our conclu-
sions relating to the crucial role played by the van der Waals parameters and the 
manner in which they influence the overall evolutionary and decay behavior of wave 
profiles.
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Chapter 8 
Spatial and Temporal Variability of Soil 
Moisture, Its Measurement and Methods 
for Analysis: A Review 

Sahil Sharma and Deepak Swami 

Abstract The review article here presents a detailed study of the effects of the 
measurement scale on temporal and spatial soil moisture analysis. The dynamism of 
soil moisture remains critical in its application in agronomy, climate, environment 
and hydrology. The variations of soil moisture (spatially and temporally) are cap-
tured by various measurement techniques from the point scale to the continental 
scale. The robust sampling strategies are of great importance as it helps in the 
identification of the variability and study of the effects of heterogeneities. A com-
prehensive comparison of the methods for assessing variability in soil moisture for 
its spatial and temporal stability is carried out. The soil moisture variability methods’ 
applicability and advantages and disadvantages are discussed. The scale of the study 
determines the statistical measurement methods to be applied. The factors affecting 
soil moisture variability are accurately determined using correlation analysis. Ulti-
mately, the feel campaign strategy for soil moisture measurement based on optimal 
design for the study of spatiotemporal analysis will always be a trade-off between the 
accuracy and the cost of measurement, considering the scales of the study. 

Keywords Watershed soil moisture · Field campaign strategy · Spatial and temporal 
stability · Scale of measurement · Correlation · ANOVA 

8.1 Introduction 

The dynamics of the near-surface soil moisture is an essential information to assess 
the soil moisture interaction with its surroundings. Though the soil moisture is 
minimal (Western et al. 2002), its contribution to the various natural phenomena is 
invaluable. The study of soil moisture is important to understand and maintain a 
balance between water energy interactions between the surface and atmosphere
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(Vereecken et al. 2014). The understanding of soil moisture is fundamental for the 
study of the following fields:
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1. Meteorology: soil moisture assists in maintaining the fluxes between the litho-
sphere and atmosphere (Famiglietti et al. 1998; Teuling et al. 2007; Hu and Si 
2014a; b). 

2. Hydrology: by quantifying the distribution of the precipitation into runoff, infil-
tration, groundwater recharge and pedogenesis in catchments (Aubert et al. 2003; 
Tyagi et al. 2013). 

3. Agriculture: soil moisture variations determine the irrigation patterns, forecasting 
the yield, estimating evapotranspiration and forecasting flood and drought con-
ditions (Brocca et al. 2010; Heathman et al. 2011). 

4. Soil microbiology: the microbial cycles and their processes are controlled by the 
variations in soil moisture (Rodriguez-Iturbe et al. 1999; Schjønning et al. 2003; 
Lin et al. 2005). The consequent effect of these processes can further be associ-
ated with agronomy. 

The dynamics of soil moisture have high importance; hence it is necessary to be 
understood. The dynamics can be defined as the capacity of the soil to regulate 
freshwater (precipitation) into surface and subsurface flow. Numerous studies iden-
tified behavioural characteristics of soil moisture. Spatiotemporal studies are 
conducted at various measurement scales to conceptualise soil moisture variability. 

The scale of measurement of soil moisture is divided into the meteorological scale 
(which considers the larger areas) and small catchment scales (which considers the 
smaller field scales and small plots) (Brocca et al. 2007). Further, the scales of soil 
moisture studies have been divided into the field or local scale (Nielsen et al. 1973; 
Bell et al. 1980; Pandey and Pandey 2010; Heathman et al. 2011; Hu et al. 2010), 
catchment or the watershed scale (Western et al. 2002; Brocca et al. 
2011; Rosenbaum et al. 2012; Hu and Si 2014a, b; Zucco et al. 2014), regional 
scale (Fernández-Martinez and Ceballos 2005; Brocca et al. 2007; Brocca et al. 
2009) and continental scale (Reynolds 1974; Entin et al. 2000; Wagner et al. 2008; 
Li and Rodell 2013; Shouqin et al. 2014). 

Based on the several field components and different study scales, most studies 
majorly concentrate on spatiotemporal behaviour of soil moisture and associated 
physical controls. The physical controls affecting soil moisture can be classified as 
physiographic factors (topography, climate), soil characteristics (texture, classifica-
tion), cropping patterns and types, quality (method of measurement) and quantity 
(spatial and temporal extent) of measurement. 

In estimating spatiotemporal characteristics of soil moisture, enormous measur-
ing efforts are required. The techniques’ applicability depends on the measurement 
scale and the required study accuracy. Gravimetric method, time domain reflectom-
eters and sensor-based soil moisture measurements have applicability from field 
scale to lower catchment scales (Mohanty et al. 2000; Vereecken et al. 2014). For 
larger catchment areas and regional scales, geophysical methods like ground pene-
trating radars are best suited (Vereecken et al. 2014). The remote sensing technique 
has profound applicability for continental-scale studies (Wigneron et al. 2003; Loew



et al. 2006; Vereecken et al. 2014). The study’s accuracy depends on the soil 
moisture measurement method and the study’s scale. The increase in the study 
scale reduces the in-depth study of the area; as a result, the measurement accuracy 
decreases with the scale (Jonard et al. 2018). Methods like gravimetric and sensor-
based methods are found to be the most accurate. The remote sensing-based tech-
nology requires field validation with the in situ soil moisture observations to arrive at 
conclusive results (Gasch et al. 2017). Based on the in situ results, modelling 
techniques are being developed to reduce the cost of obtaining soil moisture values 
(Woods et al. 1997; Lidard et al. 2001; Ursulino et al. 2019). Further, other methods 
based on land properties (terrain attributes) and pedological properties (texture) can 
be used to predict soil moisture variation (Zhu et al. 2012). Another new method 
developed to understand soil moisture dynamics is the wireless sensor network at 
various depths. 
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Weather extremes cause immense loss to flora and fauna, including human 
habitats. The weather extremes cause floods and droughts on a large scale, both 
locally and globally. Soil moisture is an important indicator of hydrologic extremes, 
as lower soil moisture values indicate drought conditions, while floods can be caused 
by saturation conditions in the field. The upper soil moisture layers show high 
variability, while the lower layers are better indicators of droughts and floods. 
Further, studies identified that the temperature extremes can be identified based on 
the antecedent soil moisture values. The soil moisture conditions of the spring season 
can influence the extreme temperatures of the summer season. 

The spatial and temporal soil moisture values are analysed using various statis-
tical measures. The statistical measures are subdivided into the following categories 
(Brocca et al. 2007): 

1. Statistical analysis: to evaluate the probability density function and obtain the 
variability 

2. Geostatistical analysis: to obtain the variation of soil moisture values based on the 
study distance (continuous or erratic) 

3. Regression analysis: to determine the factors affecting the soil moisture 
variability 

The numerous field campaigns comprehended that analytical analysis is essential 
for both spatial and temporal extents (Brocca et al. 2011). Studies have been 
conducted for longer temporal patterns and limited spatial extent (Teuling et al. 
2006; De Lannoy et al. 2007; Hu et al. 2010; Brocca et al. 2011) and shorter 
temporal studies and larger spatial extents (Jacobs et al. 2004; Choi and Jacobs 
2007; Jacobs et al. 2010; Famiglietti et al. 2008; Merlin et al. 2008; Panciera 
et al. 2008). 

The specific objective of this study is to provide a comprehensive evaluation of 
the available literature on the techniques available for evaluating the spatiotemporal 
variability of soil moisture. This understanding is useful for increased crop growth, 
managing irrigation strategies and utilising the surface and subsurface flow. The 
review paper is divided into the following sections: 

Section 8.2 presents an overview of the database.
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Section 8.3 provides insight into various soil moisture measurement techniques. 
Section 8.4 highlights the techniques for estimating the optimal sampling loca-

tions for computing spatial and temporal data. 
Section 8.5 describes the methodology of spatiotemporal analysis used to eval-

uate the effect of the various factors on the soil moisture evaluations. 
Section 8.6 outlines a detailed conclusion from the literature. 

8.2 Overview of Reviewed Articles 

Various peer-reviewed journals were considered for preparing a detailed review of 
soil moisture studies. The list of the articles is published in Table 8.1. The list of 
journals mentioned is recognised and cited by researchers worldwide. The following 
articles are selected to explain the methods involved in soil moisture measurement 
and the various statistical tools associated with computing soil moisture variability 
and stability studies. The articles further give an insight into the various physio-
graphic factors affecting soil moisture stability. The articles thus effectively explain 
the statistical tools used in the spatiotemporal soil moisture analysis. 

Figure 8.1 details the number of papers considered in the study yearly. The study 
increased in soil moisture since 2000, with the maximum number of publications on 
the spatiotemporal study of soil moisture in 2011 and 2014. Figure 8.2 plots a bar 
chart between the research article’s study topic and the number of papers on the same 
topic. The graph depicts that the maximum weightage is given to spatiotemporal soil 
moisture studies, which consider the complete understanding of measurement tech-
niques to factors affecting the stability and variability of soil moisture. At the same 
time, fewer research articles are considered case studies for the basic concepts of soil 
moisture and measurement techniques, factors affecting soil moisture variability and 
stability and study domains considering spatial and temporal patterns individually. 
This is because the complete spatiotemporal study comprehensively evaluates the 
other four cases of basic concepts, factors, spatial study and temporal study. Thus 
limited articles are selected for the basic concepts, factors affecting soil moisture and 
the studies of spatial and temporal distribution patterns of soil moisture. 

8.3 Techniques for Measurement of Soil Moisture 

During the previous 50 years, considerable progress has been made in soil moisture 
measurement techniques (Robinson et al. 2008; Vereecken et al. 2008). The soil 
moisture measurement techniques can be divided into two basic categories: direct 
and indirect measurements. The gravimetric method is the only direct and basic 
method for soil sampling wherein soils are weighed before and after oven drying. 
The temperature will be maintained at 105 °C for 24 h, and soil moisture is expressed 
in units of the ratio of m3 of water to m3 of soil. The calculations of the gravimetric



S. No. Name of journal

(continued)
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Table 8.1 List of journals selected for review 

19/20 impact 
factor 

Number of 
papers 

1 Journal of Hydrology 4.540 63 

2 Water Resources Research 4.270 38 

3 Hydrological Processes 3.160 16 

4 Geophysical Research 3.360 12 

5 Remote Sensing and Environment 8.430 12 

6 Geoderma 4.848 9 

7 Hydrology and Earth System Sciences 4.540 9 

8 Advances in Water Resources 4.020 8 

9 Journal of American Society of Soil Sciences 2.020 6 

10 Catena 4.270 7 

11 Journal of Vadose Zone 3.450 7 

12 Eco Hydrology 2.767 3 

13 Environmental Earth Science 2.000 3 

14 Soil and Tillage Research 5.180 3 

15 Water Research 9.130 3 

16 Agricultural Sciences 0.290 2 

17 Agricultural Water Management 3.990 2 

18 Journal of Agronomy 3.050 2 

19 Canadian Journal of Soil Sciences 1.171 2 

20 Environmental Geology 0.110 2 

21 International Journal of Agriculture and Biological 
Engineering 

1.620 2 

22 Soil Science 1.560 2 

23 Geosciences 12.210 2 

24 Transaction of Geoscience and Remote Sensing 6.120 2 

25 Sensors 3.510 2 

26 American Society of Agricultural Engineers 1.381 2 

27 Australian Journal of Soil Research 1.690 1 

28 Earth Planet Science 4.823 1 

29 Environmental Modeling and Software 4.870 1 

30 European Journal of Soil Science 2.800 1 

31 Forest Ecology and Management 3.170 1 

32 Great Plains Research – 1 

33 Hilgardia – 1 

34 Hydrological Sciences 2.186 1 

35 IEEE Journal on Geoscience and Remote Sensing 2.48 1 

36 Irrigation Science 3.04 1 

37 Journal of American Water Resources Association 2.472 1 

38 Journal of Arid Environments 1.830 1 

39 Journal of Arid Land 1.444 1 

40 Journal of Climate 5.707 1 

41 Journal of Earth System Sciences 1.423 1



S. No. Name of journal

method are easy to perform, but the method is time-consuming and destructive. The 
indirect methods are classified based on the measurement mechanism: contact 
(invasive) and contact-free (proximal). Where sensors are in direct contact with the 
soil are termed contact-based methods and in which no direct contact is made are 
categorised as contact-free methods. Further, gradually with time, the modelling and 
simulation techniques have been developed to obtain the values of soil moisture 
based on the other physical parameter involved. The methods involved in soil 
moisture measurements are as follows:
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Table 8.1 (continued)

19/20 impact 
factor 

Number of 
papers 

42 Journal of Forestry Research 1.689 1 

43 Journal of Hydrologic Engineering 1.56 1 

44 Nonlinear Process in Geophysics 1.650 1 

45 Observation and Measurement of Eco Hydrological 
Processes 

– 1 

46 Physics and Chemistry of Earth 2.308 1 

47 Plos One 2.740 1 

48 Procedia Engineering 0.970 1 

49 Remote Sensing and Special Information Sciences 0.930 1 

50 Reviews of Geophysics 21.45 1 

51 Scientia Agricola 1.680 1 

52 Soil Research 1.670 1 

Fig. 8.1 Papers list year wise
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Fig. 8.2 Number of papers 
based on study area 

8.3.1 Point Scale Measurement Methods 

The most common soil moisture measurement techniques apply the principle of 
electromagnetics. Soil moisture is the principal factor on which soil dielectric 
permittivity depends, which is fundamental to electromagnetic wave propagation 
in the field (Jonard et al. 2018). The field of influence of these methods is generally in 
the range of 1 cm. Following are the types of point scale measurement equipments: 

8.3.1.1 Time Domain Reflectometer (TDR) or Frequency Domain 
Reflectometer 

The TDR introduced by Topp et al. (1980) works on the principle of propagation of 
velocity of electromagnetic waves using the probe by inserting the probe inside the 
soil surface. The waves are emitted from a pulse generator, and the travel time is 
measured in the available length of the probe. The electromagnetic properties of the 
soil (Robinson et al. 2003) affect travel time. The applicability of TDR is large as 
much of the previous works of literature (Brocca et al. 2007, Brocca et al. 2009, 
2011; Lawrence and Hornberger 2007; Hu and Si 2014a, b; Zucco et al. 2014) have 
made use of the field campaigns. The TDR probes are inserted directly into the soil 
for in situ measurements at the desired soil depth. The permittivity of soil is strongly 
related (Fig. 8.3) to the water content. The TDR measures the velocity of propaga-
tion of a high-frequency signal. The velocity is calculated using the following 
equation:



c
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Fig. 8.3 Soil moisture measurement techniques 

v= 
k

p ð8:1Þ 

where c is the velocity of light and k is the dielectric constant of soil. 
The apparent dielectric constant gives the volumetric water content based on 

Topp et al.’s (1980) equation by determining the travel time in the available length 
wave guide. 

The TDR is independent of soil texture, temperature and salt content. The TDR 
can further be used for long-term measurements. The biggest disadvantage of TDR is 
that the instrument is highly costly.
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8.3.1.2 Capacitance Sensors 

Capacitance-based sensors are a very common instrument to measure soil moisture 
based on the resistivity of the soil medium surrounding the sensor prong. Based on 
capacitance, these sensors capture the dielectric constant variation of dry soil and 
water. The charging time between the starting voltage and the applied capacitor is 
used to evaluate soil permittivity. The available frequency for the operating range is 
50–150 MHz. The soil’s dielectric permittivity and electrical conductivity govern 
the sensor output (Kelleners et al. 2005; Kizito et al. 2008). 

The capacitance sensors are low in cost, sensitive to small changes, simple in 
construction and adjustable. Remote instruments can read the readings, and water 
content can be determined at any depth. The disadvantage is that they are sensitive to 
changes in environmental conditions such as temperature and humidity, that is, their 
long-term stability is inadequate. 

8.3.1.3 Time Domain Transmission (TDT) or Frequency Domain 
Transmission 

In the case of TDT sensors, the electromagnetic waves propagate in a loop or a 
closed transmission line. It measures the time from the start to the end of the loop. 
TDT is considered to be accurate as compared to TDR and capacitance sensors. The 
TDT work at higher frequencies resulting in better measurement quality (Blonquist 
Jr et al. 2005). The TDT sensors measure the transmission compared to TDR, which 
measures the reflections. The TDT sensors, compared to TDR, fare well, as existing 
multiple reflections do not influence them. Furthermore, the TDT sensors can 
measure delay time based on the TDR methodology. 

8.3.1.4 Neutron Probes 

It is based on estimating the number of hydrogen nuclei in the soil. It consists of a 
nuclear unit suspended from a cable with a neutron as the source and detector. 
Detecting the slow neutrons returning to the probe estimates the amount of hydrogen 
present (Kachanoski and de Jong 1988; Reichardt et al. 1997; Grant et al. 2004;  Hu  
et al. 2010). The neutron comprises a nuclear unit, suspension cable, neutron source 
and detector, housing for receptors and shield for transportation of the radioactive 
device. The nuclear unit is lowered to known depth intervals. The source starts 
scattering and deflected, and this deflection is related to soil moisture. Measurements 
using the neutron probe are accurate for soil moisture determination, and it has a 
large sphere of influence; also, the measurements are not affected by temperature, 
soil type and pH. The disadvantages are that as it is a radioactive source, licenses are 
required, equipment is costly and the equipment is properly calibrated.
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8.3.1.5 Heat Pulse Sensors 

The heat pulse sensor method applies the principle of soil thermal properties. The 
heat pulse method can either be a single or dual probe. The dual probe method is 
most widely applicable, and it consists of two parallel probes made of a stainless 
tube, one of which consists of the heating element and the other thermocouple. As 
the source of heat and the travel distance are known, temperature fluctuations 
provide heat capacity (Heitman et al. 2003). The dual probe method is most widely 
applicable for obtaining thermal conductivity and diffusivity of soil, while the single 
probe only measures the conductivity. 

8.3.1.6 Fibre Optic Sensors 

It is based on the principle of reflection of light signal or attenuation. The instrument 
is based on a thermal hygrometer made of a polymeric membrane which assists in 
avoiding direct contact with the soil (Leone et al. 2007). The fibre optic sensors can 
detect soil moisture in various soil types and variable ground conditions. The 
advantages of fibre optics are that they are inexpensive and can measure the water 
over longer distances; further, the losses due to leakages are minimised. 

8.3.1.7 Wireless Sensor Networks 

In this case, an ensemble of soil moisture measuring sensors is used in the field; the 
wireless technology transmits signals to the main server. These sensors have appli-
cability for studies in regions of high temporal resolution and large areas, particularly 
in monitoring eco-hydrological processes (Bogena et al. 2010; Jin et al. 2014). The 
wireless sensors have applicability in the field of agriculture, horticulture, etc. These 
sensors do not reveal the local information well because of the spacing requirements. 

8.3.1.8 Tensiometer 

A tensiometer is used to measure the soil water or soil suction. It consists of a water-
filled tube and ceramic through which water movement occurs. The movement of 
water to and from the cup determines the suction pressure. A zero reading indicates 
fully saturated soil; the more the soil is drier, the higher the reading. 

The tensiometer is a low-cost instrument most applicable for continuous mea-
surement at a particular location, assisting irrigation scheduling. Most of the tensi-
ometers work from 0 to 100 kPa, which helps measure the saturated condition but 
not the drier conditions. Further, the instrument requires a regular check.
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8.3.2 Field Scale Hydro-geophysical Methods 

This methodology utilises the applicability of geophysics to determine the hydro-
logical parameters. Further, to overcome the cost-intensive multiple-point measure-
ments, geophysical methods have been employed. The hydro-geophysical methods 
are the following: 

8.3.2.1 Ground Penetrating Radar (GPR) 

The GPR is based on the principle of propagation of electromagnetic waves in the 
subsurface explained by Maxwell’s equation. The GPR works using two antennas, a 
transmitter and a receptor antenna. The velocity obtained is based on the material 
property and is utilised to get dielectric permittivity. Various forms of GPR can be 
used, like surface GPR, cross hole GPR and off-ground GPR (Huisman et al. 2003). 
The advantages of using a GPR are that it enables a high recording speed, is easy to 
handle and can be operated at various frequencies. The disadvantage of using a GPR 
is that the higher frequencies have limited penetration compared to lower frequen-
cies; further, the performance is not good in clay; the terrain should not be undulating 
while using the GPR. 

8.3.2.2 Ground-Based Microwave (L Band) Radiometry 

The principle associated with the method is the radiance emitted from a terrestrial 
body at the horizontal and vertical polarisations, which depend on the soil’s tem-
perature (Schmugge et al. 1986). The brightness temperature depends on the effec-
tive permittivity of the soil, which evaluates the soil moisture content. 

8.3.2.3 Electromagnetic Induction 

This method works on the principle of a transmitter and receiver induction coil 
placed at the opposite ends of the instrument. The transmitter coil generates a 
magnetic field on supplying current, and the receiver coil detects the currents 
generated within the soil. The apparent soil conductivity of soil depends on the 
various soil attributes (Kachanoski and de Jong 1988; Sheets and Hendrickx 1995; 
Reedy and Scanlon 2003; Sherlock and Mcdonnell 2003). 

8.3.2.4 Electrical Resistivity Tomography 

This method works on the principle of measuring electrical conductivity differences 
by using electrodes. In the initial stages, the method was used for large explorations



in geology and groundwater, but Samouëlian et al. (2005) started its applicability in 
vadose zone studies. 
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8.3.2.5 Cosmic Ray Neutron Probes 

Appropriate spatiotemporal soil moisture monitoring per the scale differences is 
difficult (Bogena et al. 2015). Cosmic ray neutron probes have been used to fill this 
void (Desilets et al. 2010; Zreda et al. 2008). The principle of the technique is based 
on the relative changes of fast neutrons, which has a strong correlation to soil 
moisture, and soil moisture has associated hydrogen. 

8.3.2.6 Global Navigation Satellite System Reflectometry (GNSS-R) 

GNSS-R works on measuring the reflections received from the Earth’s surface 
signals using global navigation satellite systems such as GPS. GNSS-R is an 
all-weather worldwide applicable technology. GNSS sensors are inexpensive and 
lightweight and have low power consumption (Jonard et al. 2018). 

8.3.2.7 Nuclear Magnetic Resonance 

The principle of NMR is based on the observance of nuclei in a magnetic field. The 
presence of H protons in the soil is related to soil water. Thus NMR is used to 
evaluate soil moisture, porosity and pore size distribution (Jonard et al. 2018). 

8.3.3 Remote Sensing Technique 

The remote sensing method includes satellites, microwaves and other non-contact 
techniques. Remote sensing techniques allow measurements to be taken from a 
remote location, and the overall coverage of the area can be vastly increased. The 
disadvantage of the remote sensing technique is that the system is complex and 
costly. Further, the application of remote sensing is generally applicable to the top 
surface soil moisture. 

8.3.3.1 Passive Microwave Remote Sensing 

In this method of remote sensing, thermal radiance emitted from the Earth’s surface 
is captured by radiometers, particularly at the frequency of 1–12 GHz (Njoku and 
Entekhabi 1996). Since thermal emission is a direct function of the thermodynamic 
temperature of surface soil emissivity, it is later processed to estimate soil



reflectivity. The penetration depth in this method depends upon the availability of 
surface soil moisture and the frequency of radiation; for a higher frequency, the 
penetration depth is short. 
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8.3.3.2 Airborne and Space-Borne Active Microwave Remote Sensing 

Active microwave methods are based on radar techniques, and the resolution 
depends on the antenna size, incidence angle and pulse length (Ulaby et al. 1996). 
Advanced Synthetic Aperture Radar (ASAR) TerraSAR-X, Radarsat-2 and 
European Remote Sensing (ERS 2) are a few of the satellites used extensively. 
Scattering matrix data is ensembled to calculate the backscattering coefficient and 
later expressed in decibels. The active remote sensing techniques’ accuracy is based 
on measured surface roughness (Dobson and Ulaby 1985; Hallikainen and Ulaby 
1985). 

8.3.4 Modelling Approaches 

Numerous modelling techniques have been developed over the years. To overcome 
the complex interactions, modelling approaches have found applications with 
reduced evaluation time and costs. As per the literature, various modelling 
approaches have been used to estimate soil moisture. The modelling approach is 
based on solving the Richards equation: 

∂θ 
∂t 

= 
∂
∂z 

K  hð Þ  ∂h 
∂z 

þ 1 - S hð Þ ð8:2Þ 

where h is the water pressure head, θ is the volumetric water content, t is the time, 
K(h) is the hydraulic conductivity and S(h) is the sink term, generally the root water 
uptake or evapotranspiration losses. 

The first-generation method of soil moisture modelling was based on a simplified 
dynamic model for estimating spatial variability, where a wetting front model was 
used (Clapp et al. 1983). Later, Leonard et al. (1987) used groundwater loading 
effects of agricultural management systems on the movement of chemicals in the 
root zones (GLEAMS). Rodriguez-Iturbe et al. (1991) modelled soil moisture using 
nonlinear dynamics. Entekhabi and Rodriguez-Iturbe (1994) used an analytical 
framework to characterise soil moisture, and this model used noise represented by 
rainfall and losses represented by runoff, percolation and evapotranspiration. Barling 
et al. (1994) use a quasi-dynamic wetness approach for moisture content determi-
nation. Verburg et al. (1996) used a soil water infiltration and movement model for 
measuring water movement (SWIM). Vancloster et al. (1994) used water and 
agrochemicals in the soil, crop and vadose movement for soil water movement.



Woods et al. (1997) based the modelling approach based on the topographic index. 
Dam et al. (1997) used soil water atmosphere plants to simulate water, solute and 
heat transport in the soil-atmosphere-plant environment. Avissar (1998) used soil 
vegetation atmosphere transfer schemes for soil moisture predictions. Walker et al. 
(2001) used retrieval algorithms based on direct insertion and the Kalman filter that 
uses the profile updates that are abused on the covariance. Lidard et al. (2001) used 
TOPMODEL based on the energy-water balance to understand the structure and 
scaling properties. Ridolfi et al. (2003) used a stochastic soil moisture dynamic 
approach to consider soil moisture balance. Buttafuoco and Castrignano (2005) 
studied the spatial variation in soil moisture by multivariate geostatistics. Cai et al. 
(2017) used a hyper-resolution land surface model, Hydroblocks, for upscaling the 
in situ point measurement data to the remote sensing level. The most widely and 
commonly used method is the Hydrus one-dimensional model, which uses the 
inverse method to estimate the soil parameters and simulate the data set to obtain 
the soil moisture values (Ursulino et al. 2019). 
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8.4 Optimal Locations for Spatial and Temporal Study 

To understand the spatial and temporal variation of the soil moisture in a watershed, 
the optimality of the sampling locations must be studied. The researchers have 
adopted the following two basic methods for obtaining optimal locations. For the 
study of spatial data, the optimal locations are found using the student’s 
t-distribution test. In the temporal study, the most commonly applied method is 
random sampling. 

8.4.1 NRL Estimate for Watershed Mean Soil Moisture 

Statistical approaches capture the spatial variability of mean watershed soil moisture. 
Gilbert (1987) gave the estimation of the specific value of absolute error based on the 
following equation, which uses an iterative procedure: 

NRL= t1-/=2,NRL- 1 
σE 
AE 

2 
ð8:3Þ 

where σE is the standard error, AE represents the absolute error in percentage, t1 - / / 
2, NRL - 1 is the students t distribution and/ is the significance level. If the standard 
error value is not available, CV is used to estimate NRL; in that case, the relationship 
between CVk is also investigated. The relationship is given for evaluations of soil 
moisture and employed for soil moisture campaigns (Brocca et al. 2007; Famiglietti 
et al. 2008):
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CVK =K1,e
-K2θk ð8:4Þ 

where k1 and k2 are model fitting parameters and where θk is the watershed mean soil 
moisture on any day kth day. 

8.4.2 NRL Estimate for Temporal Pattern 

Temporal evaluation of watershed means soil moisture within defined accuracy 
levels uses a random combination method (Brocca et al. 2010). The steps involved 
in the random combination method are the following: 

1. Randomly selected soil moisture measurements at n sampling locations (n ≤ N ) 
from the available N observations for Nr replicates. 

2. The time series of watershed mean soil moisture is estimated and results in the Nr 

time series. 
3. The coefficient of determination, R2 , and root mean square difference for the Nr 

time series against benchmark time series based on total N locations are computed 
for the entire watershed. 

4. The mean and standard deviation of the performance statistics are estimated. 
5. The above steps are repeated till n = N: 

RMSD= 

M 

k = 1 

1 
n 

n 

i= 1 
θik - θK 

2 

M
ð8:5Þ 

where k represents days, n is the number of locations, M is the number of field 
campaign days, θik is the mean moisture at i point and kth day and θk is the watershed 
mean moisture on a particular day k. 

8.5 Methods of Spatiotemporal Analysis of Soil Moisture 
and Evaluating the Effects of Physiographic Factors 

Various spatial and temporal analysis methods have been used to identify the effect 
of factors affecting soil moisture variations. The methods given below evaluate the 
soil moisture variation concerning the physiographic factors. The soil moisture 
variables, the relative difference and the comprehensive evaluation criteria method 
are used for temporal stability analysis. The semi-variograms, correlation coefficient 
methods, empirical orthogonal functions and ANOVA (analysis of variance) identify



the weightage of the various physiographic factors and how soil moisture varies with 
the variation in physiographic factors. 
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8.5.1 Descriptive Statistics 

Descriptive statistic methods describe the basic features of the data obtained during 
the study. They give an idea of the simple measures and representation of the 
particular population sample and summarise the data set. The basic descriptive 
statistic measures used are maxima, minima, mean, standard deviation, coefficient 
of variation and skewness to represent the data set’s variation and to identify 
probability distribution and random variables. 

8.5.2 Soil Moisture Variables 

Several component mechanisms are applied to observe the spatiotemporal charac-
teristics of the observed soil moisture. Soil moisture measurements in the field are 
divided based on the spatial and temporal extent. Following are the common terms 
associated with spatial measurements; a point is defined as the location where the 
measurements are taken. The site represents the mean of the group of points under 
observation. A combination of sampling sites forms a sampling location, also called 
the study area. A combination of sampling locations collectively forms a watershed. 
The terms associated with the temporal measurements are sampling day, a particular 
day on which sampling is carried out for any sampling location. A campaign is 
defined as the complete set of observations for the complete duration of time. 

The basic terminologies associated with soil moisture evaluation concerning 
depth and locations are the following: 

8.5.2.1 Based on Depth 

Ma = 
1 

N lN t 

N t 

b= 1 

Nt 

c= 1 

Mabc ð8:6Þ 

Mb = 
1 

NsNt 

Ns 

a= 1 

Nt 

t= 1 

Mabc ð8:7Þ



N

8 Spatial and Temporal Variability of Soil Moisture, Its Measurement. . . 147

Mab = 
1 
N t 

t 

k = 1 

Mabc ð8:8Þ 

VPac = 
N l 

Nl 

b= 1 
Mabð Þ2 -

N l 

b= 1 
Mab 

2 

N l N l - 1ð Þ ð8:9Þ 

VTa = 
N t 

N t 

c= 1 
Ma c -

N t 

c= 1 
Ma c  

N t N t - 1ð Þ ð8:10Þ 

VSb = 

Ns 

Ns 

a= 1 
Mabð Þ2 -

Np 

a= 1 
Mab 

2 

Ns Ns - 1ð Þ ð8:11Þ 

Ga = 
Ma3 -Ma1 

1:5
ð8:12Þ 

where a is the moisture measurement site (point), b is the moisture measurement 
layers, c is the moisture sampling day, Ns is the number of observation sites, Nt is the 
number of sampling events, Nl is the number of sampling layers, M is the soil 
moisture, VP is the profiling variability of time-averaged soil moisture content, 
VT is the temporal variability of layer averaged, VS is the spatial variability and 
G is the profile gradient (Venkatesh et al. 2011a, 2011b). 

8.5.2.2 Based on Location 

The notations used in the following equations are i, soil measurement at a point; j, 
soil measurement at a location; k, soil measurement sampling day; Np, point mea-
surements at the sampling location j; N, total number of sampling locations in the 
watershed; and M, total number of field campaign days (Singh et al. 2019).
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1. Mean soil moisture of a particular location j on a particular day: k 

θjk = 
1 
Np 

Ns 

i- 1 

θijk ð8:13Þ 

2. Watershed mean soil moisture on any day kth day: 

θk = 
1 
N 

N 

j= 1 

θjk ð8:14Þ 

3. Temporal mean for each sampling location: 

θj = 
1 
M 

M 

k= 1 

θjk ð8:15Þ 

4. Coefficient of variation of kth sampling day: 

CVk = 
σk 
θk 

= 

1 
N- 1 

N 

j- 1 
θjk - θk 

2 

θk 
ð8:16Þ 

8.5.3 SEMI: Variograms 

Semi-variogram depicts the spatial autocorrelation of the measured values. Each pair 
of locations is plotted, and the model is fitted through them. The semi-variograms are 
of the following types: linear, spherical and exponential models. A particular model 
type is selected based on the goodness of fit. The semi-variance is given by Υ(h), 
where n(h) is the number of samples, and h represents the distance h and z represents 
the property of the crop (Bhatti et al. 1991; Charpentier and Groffman 1992; Cosh 
and Brutsaert 1999; Anctil et al. 2002; Huisman et al. 2003; Kaleita et al. 2005; 
Bosch et al. 2006; Hu et al. 2011):



ð Þ þ ð Þ

h i
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Υ hð Þ= 
1 

2n hð Þ  
n hð Þ  
i= 1 

z xið Þ- z xiþhð Þ½ �2 ð8:17Þ 

Υ hð Þ=C0 þ C1 1:5 
h 
a

- 0:5 
h 
a 

3 

, 0< h< a, ð8:18Þ 

Υ h =C0 C1, h≥ a 8:19 

where parameter ‘a’ is known as the range, C1 parameter represents the difference 
value of sill and nugget and C0 is known as the nugget and is a model parameter. 

Nugget is an effect associated with measurement errors or spatial sources of 
variation. A nugget effect is observed as the lag increases to an infinitesimally small 
separation distance because a semi-variogram gives a value greater than zero. 

The range is defined as the critical distance after which there would be no 
correlation between the sample pairs. 

Sill: The increase in the distance beyond which the value of semi-variance will 
remain constant. 

For a random distribution of samples in space, the separation distance between 
the samples does not play any role. For correlated samples, the semi-variance will be 
increased with the increasing distances. Further, it may be noted that samples 
separated at a distance greater than the range show a random variation (Bhatti 
et al. 1991). 

8.5.4 Relative Difference 

Introduced by Vachaud in 1985, the method compares one value with another and 
further helps determine the percentage increase or decrease. 

RDij = 
θij - θj 

θj 
ð8:20Þ 

where RDij is the relative difference, θij is the soil moisture at i location and j time 
and θj is the spatial average of θij at time j. 

1. Mean relative difference: the ratio of relative differences to the number of 
observation times: 

MRDi = 
1 
N 

N1 

1 

RDij ð8:21Þ
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2. Variance of relative difference is the average of the squared differences from the 
relative difference means: 

σ RDij 
2 = 

1 
N t - 1 

Nt 

1 

RDij -MRDi 
2 ð8:22Þ 

where Nt are the number of relative differences. 

3. Standard deviation of relative difference is the square root of the variance of 
relative differences: 

SDRDi = 
1 

N t - 1 

j=N t 

j= 1 

RDij -MRDi 
2 ð8:23Þ 

4. Standard deviation of mean relative difference is defined as the square root of the 
variance of mean relative difference to mean of mean relative difference: 

SDMRD= 
1 

Ns - 1 

Ns 

i= 1 

MRDi -mMRDð Þ2 ð8:24Þ 

where Ns is the number of locations and mMRDis the mean of the mean 
relative differences. 

8.5.5 Spearman Rank Correlation 

The coefficient is used to assess the spatial stability of a soil moisture field. As the 
name suggests, it is a correlation coefficient used to evaluate the correlation of the 
ranking of sites of one day with the next day. Therefore, evaluating the soil moisture 
distribution of the entire area of study (Vachaud et al. 1985; Rolston et al. 1991; 
Cosh et al. 2004; Schneider et al. 2008; Hu and Si 2014a; b; das Neves et al. 2016) is  
obtained by 

rs = 1-
6× 

n 

i= 1 
Ri,j -Ri,j0 

2 

n  n2 - 1ð  Þ ð8:25Þ



where R is the rank of soil moisture and S at location i and day j and n is the total
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i, j i,j 

number of days. The obtained coefficient value indicates 0 and 1, where 0 is for no 
stability and 1 is for a stable soil moisture area. 

8.5.6 Correlation Coefficient 

Another method for assessing spatial stability is obtaining the correlation coefficient 
value. The range is similar to Spearman’s rank, whereby 1 represents closely 
correlated while 0 gives uncorrelated patterns (Cosh et al. 2004): 

rj,j ′ = 
i 

Si:j - S:,j 
i 

Si:j0 - S:,j0 

i 
Si:j - S:,j 

2 

i 
Si:j0 - S:,j0 

2
ð8:26Þ 

where Si,j and Si,j’ are the soil moistures at times j and j’ and S:,j represents the 
average soil moisture for that across all sampling locations. 

8.5.7 Comprehensive Evaluation Criteria (CEC) 

The CEC is evaluated to identify the locations which are most time stable and 
identify these locations. Jacobs et al. (2004) considered the combination of mean 
relative difference and variance of relative difference. Further, the temporally stable 
locations which are to be used for soil moisture content are identified on the 
following basis: 

CEC= MRDið Þ2 þ σ RDij 
2 ð8:27Þ 

where MRDi is the mean relative difference and σ(RDij)
2 is the variance of relative 

difference: 

1. Location with the value of mean relative difference closest to zero (Vachaud et al. 
1985). 

2. The lowest standard deviation of relative difference is the highest temporally 
stable location (Starks et al. 2006; Heathman et al. 2009; Pan 2012). 

3. Hu et al. (2010) stated that the location to temporally stable is based on mean 
absolute error. 

4. The idea of root means square error after offset application was given (Gao et al. 
2013).
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8.5.8 Empirical Orthogonal Functions (EOFs)/Principal 
Components 

The method is applied to large multidimensional data sets. The method can reduce 
the observed variability by breaking it into empirical orthogonal functions, invariant 
in time and principal components invariant in space (Yoo and Kim 2004; Perry and 
Niemann 2007). The EOFs identify the variability sources in the data, and based on 
those variables affecting variability, the data set is compressed (Preisendorfer and 
Mobley 1988). The applicability of EOFs is to identify both spatial and temporal 
anomalies. 

8.5.8.1 Spatial Anomalies 

It is evaluated by subtracting average soil moisture for a given observation from all 
the observations collected at that time. The steps involved in utilising the EOF 
analysis are the following: 

1. Calculating the covariance matrix. The covariance matrix for the spatial anomaly 
is spatial covariance: 

Zi tð Þ= Si tð Þ- 1 
m 

m 

j- 1 

Sj tð Þ, ð8:28Þ 

where Si(t) is the soil moisture observation at any time t and location 
i, m denotes the number of observations and Zi(t) denotes the spatial anomaly: 

Vtτ = 
1 
m 

m 

i= 1 

Zj tð ÞZi τð Þ: ð8:29Þ 

where Vtτ represents the spatial covariance at times t and τ. 

2. The second step is diagonalising the covariance matrix (at m sampling locations 
and n sampling times):



Z Z Z

ð Þ

ð Þ
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Z = -
11 12 ... 1n 

Z21 Z22 ⋮ 
⋮ ⋱  ⋮  
Zm1 ⋯ ⋯  Zmn 

ð8:30Þ 

V = 
1 
m 
ZT Z ð8:31Þ 

where V represents the spatial covariance matrix. 

3. The coordinates of the spatial anomalies can be found by projecting the anomalies 
onto the rotated axis. 

4. The original data set of spatial anomalies can be obtained by solving the follow-
ing equation: 

Pj = 
ljj 

n 

k- 1 
lkk 

, ð8:32Þ 

where l denotes the eigen values, Pj gives a portion of the variance in the j
th 

column and E is the Eigen vector. 

F = ZE ð8:33Þ 
Z =FET 8:34 

8.5.8.2 Temporal Anomalies 

The long-term average soil moisture at every location is subtracted to obtain the 
temporal anomalies. Here the analysis is done to get the soil moisture variations in 
time rather than space. After this, the same steps are repeated for the spatial 
anomalies: 

Z 0 
i tð Þ= Si tð Þ- 1 

n 

n 

τ = 1 

Si τð Þ ð8:35Þ 

where Z 0 
i t is the temporal anomaly and τ is an index of sample dates.
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8.5.9 Analysis of Variance 

The ANOVA tests whether statistical differences exist between mean group values. 
Analysis of variance test is used to identify the statistically significant parameters 
among the various physical and meteorological factors (Jacobs et al. 2004). The 
ANOVA test is used to differentiate between two or more data sets. One-way 
ANOVA test identifies significant differences of temporally stable values among 
the groups like soil depths, growth ages, etc. These groups are divided based on the 
degree of successive data (precipitation, insolation, air temperature, ground temper-
ature, wind speed and elevation) and category data (soil, texture, land use types). The 
standardisation method standardises the value of any raw variable x; μ is the mean, 
and σ is the standard deviation: 

Xstandardized = 
X- μ 
σ

ð8:36Þ 

EOF identifies dominant physical controls of soil moisture, and ANOVA assists 
in determining the ranges of these physical control parameters, which leads to the 
optimal design of an area soil moisture campaign. 

8.5.10 Wavelet Analysis 

The concept of wavelet analysis is based on the hypothesis that time series is a 
combination of c small blocks like wavelets in frequency ranges. Wavelet analysis is 
comparable to Fourier transforms, only for wavelet analysis’s error from high- and 
low-frequency components is minimal. This analysis has found its application in the 
field of hydrology: soil moisture variations (Redding et al. 2002; Lauzon et al. 2004; 
Tang and Piechota 2009; Biswas and Si 2011; Gaur and Mohanty 2016), runoff 
studies (Labat et al. 2000a; b; Anctil and Tape 2004), El Nino studies (Torrence and 
Webster 1999), etc. 

Continuous wavelet transform of soil moisture spatial series with an equal 
increment can be given as 

WY 
i sð Þ= 

δX 
s 

N 

i- 1 

Yjψ j- ið Þ δX 
s

ð8:37Þ 

where ψ [ ] is the mother wavelet function, δX is the incremental distance and N is the 
spatial series length: 

ψ ηð  Þ= π- 1=4 eiωη- 0:5η2 ð8:38Þ



ω is the dimensionless frequency and represents dimensionless space. The cross
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wavelet between two soil moisture sample series Y and Z is given by 

WYZ 
i sð Þ= WY 

i sð ÞWZ 
i sð Þ ð8:39Þ 

WY 
i and W

Z 
i are wavelet coefficients 

R2 
1 sð Þ= 

S s- 1WYZ 
i sð Þ  2 

S s- 1 WY 
i sð Þ  2 S s- 1 WZ 

i sð Þ  2
ð8:40Þ 

S is a smoothing operator 

S Wð Þ= Sscale Sspace W s, τð Þð Þ ð8:41Þ 

where τ denotes the location and Sscale and Sspace denote the smoothing. 

8.6 Discussion 

Soil moisture serves as an input to meteorological, hydrological, agricultural and soil 
microbiological processes. The soil moisture measurement studies are helpful in 
describing soil moisture variation patterns over variable study scales ranging from 
point to watershed and further to continental scale. The preceding sections identified 
dielectric techniques as the most reliable measurement methods. The most common 
method is the TDR-based measurement technique, which is based on Topp’s 
equation. The equation is said to be insensitive to porosity, saturation and mineral 
percentage. The disadvantages associated with the dielectric techniques are related to 
the accuracy range, sensitivity and necessary validations. Modern techniques require 
cumbersome mechanisation, and the instruments should be in direct contact with the 
soil without leaving any air gaps. The study identified that neutron probes are the 
most accurate, sensitive and effective for soil moisture measurement compared to the 
other techniques. The modelling approach provides a less time-consuming measure-
ment technique, though the accuracy associated with it is comparatively lower. 
Beyond the measurement of soil moisture, the various techniques involved in 
understanding the spatiotemporal variation of soil moisture are identified. The 
statistical method is best suited to identify spatial optimal sampling, while random 
combination and bootstrapping give better results for temporal optimal sampling. 
The correlation methods help in identifying the relationship of soil moisture on one 
day with another day of the next month or next based on the study requirement. 
Similarly, the comprehensive evaluation criteria method identifies the temporal 
stable locations that are required for future soil moisture monitoring.
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8.7 Future Scope 

The soil moisture measurement techniques used to obtain the soil moisture values 
require huge field effort. Further, the obtained values are needed to compute the 
spatiotemporal soil moisture variations. The study focused primarily on field-scale 
soil moisture measurements. Limited literature mentions soil moisture modelling 
approaches; different modelling approaches based on the pedotransfer functions 
provide an efficient method compared to field-based observations. The modelling 
approach requires one-time-filed data to validate the computed soil moisture values 
based on the modelling study. Further, the methods used for computing the spatio-
temporal analysis are generic, and many more approaches can be used to compute 
the spatial and temporal stability and variability patterns. 

8.8 Conclusions 

This study conducted a comprehensive literature survey to define the sampling 
strategy while highlighting the methodologies and factors affecting the soil moisture 
analysis. The field campaign must be organised with a fixed gridded pattern in the 
entire area for robust analysis, and the left-over area should be less than the size of a 
unit grid. Post-field sampling and identifying stable temporal locations are prereq-
uisites to mapping spatiotemporal variations in soil moisture. The random combi-
nation method requires fewer input variables than statistical and bootstrap methods 
to identify stable temporal locations for the same accuracy. Temporally stable 
locations prominently depend on the percentage of clay and sand, rather than silt 
or gravel or texture class, and locations at higher elevations were found to be 
temporally stable compared to the valley. For temporal stability, the standard 
deviation of relative difference is a more suitable measure for the field with a 
dryer of mean, whereas mean absolute bias error is useful for the wetter mean soil 
moisture value. 

The governing factors for soil moisture variations are meteorological factors, 
topographic features, land use, land cover and soil texture class. The literature states 
no particular ranking mechanism of a factor as combined effects of the governing 
factors are of more importance. For example, soil moisture variability may decrease 
with a few passive factors, such as the age of forests and vegetation growing period. 
However, for land cover, the soil moisture variability ranking from literature can be 
agricultural land > forest > grassland > shrubs, and among the soil hydraulic 
factors, hydraulic conductivity is the most sensitive parameter to account for the 
soil moisture variability. 

A semi-variogram better represents the spatial variation in the soil moisture at a 
scale larger than a field. While correlating soil’s spatial and temporal variation, 
empirical orthogonal functions were more useful than the regression-based method. 
Principal component analysis and correlation results show that the soil moisture
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variations are higher than the mean value for landforms with small leaf area index 
and crop height. This literature review concludes that topography and evapotrans-
piration are correlated for wetter and dryer periods, respectively. Further, the sam-
pling density should be higher for wetter than dryer areas, and soil organic content 
better predicts soil moisture. There is no steady relationship between temperature 
and surface soil moisture; however, the literature review indicates that spatial 
variation is more sensitive to ground temperature than air temperatures. Spatial 
anomalies are extremely useful to capture the local to field scale variation of soil 
moisture, whereas temporal anomalies identify the wet and dry conditions relative to 
their long-term tendency. 
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Additionally, to the several factors discussed above, the soil moisture values can 
be affected by dew, grazing, depth to moisture sample, sunshine hours, radiations 
and precipitation. These factors are important and should be cautioned while starting 
the field campaign. For spatiotemporal variability analysis, at least one complete 
seasonal cycle data (one year) is required. 

The most accurate measurement method would be a thorough investigation of the 
area, but the same is labour-intensive. Remote sensing provides the remedy for the 
discussed cumbersome process, but accuracy decreases. The modelling approach 
minimises the labour cost of soil moisture field investigation, but the accuracy of 
modelled values is comparatively less compared to field data. Thus, there should be a 
trade-off between cost-effectiveness and accuracy based on the importance of the 
work under consideration. 
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Chapter 9 
Streamflow Estimation Using 
Entropy-Based Flow Routing Technique 
in Brahmani River, Odisha 

Pooja Patel and Arindam Sarkar 

Abstract The accurate streamflow measurement is crucial for designing hydraulic 
structures, for sediment transport studies and for flood management. The direct in 
situ streamflow measurement using velocity measuring devices involves huge cost 
and affects the safety of workers. Thus, indirect flow measurement techniques are the 
need of the hour to avoid these limitations and to obtain an accurate estimation of 
streamflow. This study makes use of a flow routing technique to determine a 
streamflow hydrograph at a downstream station on a reach, where only the water 
elevations are monitored, and the streamflow is measured at a river section lying 
upstream of it. The model is capable to incorporate a significant lateral inflow from 
tributaries even in the absence of monitored discharge on the tributaries. The flow 
routing method makes use of the entropy theory – a probabilistic approach – and is 
only applicable under a condition of constant entropy parameter obtained at the two 
most extreme river sections on a river reach. The entropy parameter is a cross-
sectional representative constant, the variation of which indicates the changes in 
cross-sectional hydraulic and geometrical characteristics. The method has proven to 
provide accurate discharge estimation on Indian rivers in past studies; thus, it is 
applied to route the flow from station Jaraikela to Panposh on the Brahmani River 
with significant inflow from tributaries. The predicted flow hydrograph at Panposh is 
compared with the observed monthly mean flow hydrograph and numerically 
simulated flow hydrograph using two-dimensional (2D) Hydrologic Engineering 
Centre’s River Analysis System (HEC-RAS). The two-dimensional HEC-RAS 
solves the flow continuity and momentum equation using inputs such as upstream 
flow hydrograph, calibrated channel bed roughness, river bathymetry, and down-
stream stage hydrograph. The obtained results showed high prediction accuracy of 
the entropy-based approach with advantages over a numerical model in terms of 
eliminating the iterative calibration of bed roughness and requiring lesser input data.
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The results inferred that the entropy-based approach can be utilized to determine 
streamflow at any ungauged station on the Brahmani River, given the streamflow 
and stage at upstream and downstream sites, respectively.
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9.1 Introduction 

The greatest civilizations of the world have risen around the great rivers such as 
Indus and Nile; thus, rivers are regarded as the lifelines of the world. With time, the 
rapid growth in population and increased human intervention around the rivers has 
polluted the rivers, disturbed aquatic life, and increased the fluvial hazards. Flood is 
the most common fluvial hazard/disaster which has been observed frequently across 
the country (such as Uttarakhand flood in 2013, Chennai flood in 2015, and Kerala 
flood in 2018) causing huge loss of life, property, and environmental damages 
(Saikumar et al. 2022). The rapidly changing climate in conjunction with the 
human intervention led to increased frequency of extreme flood events in rivers. 
To enhance the flood preparedness, the non-structural measures involving flood 
forecasting and early warning system are being adopted in recent times. Flood 
forecasting implies the precise and reliable estimation of discharge at the river 
sites for flood warning, flood control planning, and evacuation of people from 
risk-prone areas. Moreover, the discharge estimation is required for other aspects 
of water resources and its management such as water allocation, design and opera-
tion of hydraulic structures and water quality and aquatic habitat assessment 
(Agarwal et al. 2016; Sharma et al. 2022). In India, discharge is still being measured 
using area velocity method employing the point velocity measured using current 
meter. The measurement of discharge in rivers using current meter involves a lot of 
difficulties, especially on inaccessible sites, which can lead to measurement uncer-
tainties. During high flows, the discharge measurement using flow measuring 
devices is difficult and dangerous for the operators. Other than that, the traditional 
measurement techniques require a huge amount of effort, time, and cost, leading to 
reduced frequency of measurement at a number of gauging stations, which can have 
a negative impact on water resources management studies. Therefore, the new 
methods are required to reduce the cost and increase the frequency of measurements, 
offering a nearly accurate estimation of discharge. 

One of the most commonly used indirect flow estimation techniques is hydrologic 
Muskingum flow routing method. It considers the linear relationship between 
storage and discharge, which is not true for natural channels. Additionally, the 
comparison of hydraulic and hydrologic flow routing showed the former predicts 
streamflow with higher accuracy (Roohi et al. 2020). The hydraulic routing solves 
full continuity and momentum equation (St. Venant equation) to route the flow 
considering the temporal and spatial variation of flow along the river. The St. Venant



equation is a partial differential equation; thus, the determination of its exact solution 
is quite difficult and requires high computation platforms. The numerical softwares 
such as HEC-RAS, MIKE 11HD, and LISSFLOD-FP give its approximate solution 
with some assumptions using finite difference method. Previous studies indicate a 
rapid use of these models to determine the streamflow and to study the flood 
inundation in rivers (Parhi et al. 2012; Kumar et al. 2017). The advancement in 
computational hydraulics shows the coupling of GIS with the hydraulic model like 
HEC-RAS, where a remotely sense data – digital elevation model (DEM) – is used to 
extract the river bathymetric information to define the geometry of the river. Despite 
these advantages, HEC-RAS cannot be applied on the river having ungauged 
tributaries due to the absence of input boundary condition. In addition to that, the 
HEC-RAS is very sensitive to bed roughness, which is determined iteratively by 
matching the predicted and observed water levels at the downstream station. 
Moramarco and Singh (2001) developed a flow routing technique where the down-
stream discharge was determined using recorded upstream discharge, downstream 
water levels, and area of the cross-section at both the stations. Unlike HEC-RAS, it 
eliminated the iterative calibration of the bed roughness coefficient for a channel. 
The flow routing technique was derived using the entropic velocity distribution by 
Chiu (1991), where the entropy signifies the uncertainty accompanied with a random 
variable (say, point velocity in river cross-section). The entropy theory was used in 
many previous studies, recently, to solve various problems in hydrology (Agarwal 
et al. 2016, Li and Zheng 2016) and hydraulics (Singh 2015). The proposed entropic 
flow routing offered a quick discharge estimate; however, its application was limited 
to the reaches without any tributaries and a constant entropy parameter (M ) 
throughout the reach. The M parameter is a non-dimensional parameter which 
reflects the change in geometric and hydraulic characteristics (Moramarco and 
Singh 2001) at a river cross-section. Later, the entropy-based routing technique is 
modified to extend its application on a river network with tributaries (Moramarco 
et al. 2005) having no measured data on it. Thus, the inflow from tributaries was 
approximated as the function of the length of the reach, travel time, and difference in 
the cross-sectional area of the downstream and upstream sections. Despite 
unmeasured upstream flow at tributaries, the modified entropy-based routing pro-
vided reasonable flow simulation on the river reaches with tributaries having signif-
icant lateral contribution to the most downstream station. The method is tested on the 
Mahanadi and Godavari Rivers for the reaches with and without tributaries (Patel 
and Sarkar 2022). The obtained results excellently matched with the observed flow 
at the downstream stations on the three considered reaches. Consequently, this study 
presents a case study where the entropy-based technique is applied on a reach on the 
Brahmani River. The obtained discharge hydrograph at the downstream station is 
validated with the observed downstream discharge record. Moreover, the numerical 
model HEC-RAS is also adopted for the same reach to approximate the discharge at 
the downstream station. Further, the prediction accuracy of both techniques is 
compared using different goodness-of-fit indices.
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9.2 Rationale of the Study 

The rapidly changing climate and warming of planet have led to increased frequency 
of extreme precipitations and, thus, the increased intensity of flooding in rivers. This 
frequent flooding poses heavy impact on aquatic lives, human societies, and econ-
omy. The quantification of flood discharge is crucial for the safety of hydraulic 
structure and its design. However, the traditional measurement of discharge is 
complex and cumbersome task as it involves velocity measurement across the 
river cross-section. During high flows, the discharge estimation through velocity 
measurements puts operator’s life at risk, whereas the stage can still be measured 
remotely with enough accuracy. Thus, there is a need for such techniques which can 
improve the river discharge estimation making use of the remotely measured stage 
data at the considered site. As a result, the goals of the paper are as follows: 

1. Prediction of discharge at a downstream station using locally measured stage and 
available observed upstream discharge on a reach in Brahmani River, Odisha 

2. Modeling the similar reach in two-dimensional HEC-RAS to simulate the down-
stream discharge using unsteady flow routing 

3. Comparative analysis of the two flow routing techniques for discharge simulation 
on the Brahmani River 

9.3 Limitations of the Study 

The study presented has following limitations: 

1. The entropy-based flow routing technique applies on river reach with constant 
entropy parameter (M ) and on a reach having no distributaries. 

2. The flow routing does not involve its application on a reach having any hydraulic 
structures or reservoirs present. 

9.4 Study Area 

The Brahmani River is the second largest river in the State of Odisha and is a 
non-perennial river, lying between latitude 20°28' to 23°35'N and longitude 83°52' 
to 87°30'E. The river flows through Jharkhand, Chhattisgarh, and Odisha and drains 
to the Bay of Bengal with a total drainage area of 39, 033 km2 . The river has three 
major tributaries, named Sankh, Tikra, and Karo. The basin has a tropical climate 
influenced by the southwest monsoon from June to October. The average rainfall 
received by the basin is 1460 mm approximately. The basin observes maximum 
temperature between 38 and 43 °C and minimum temperature ranges between 
10 and 15 °C.
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Fig. 9.1 Study area considered for flow routing 

The hydrological data of the river is measured and maintained by the Central 
Water Commission (CWC), which is a central technical organization in the field of 
water resources. The basin has a total of eight stations, out of which, six are GDSQ 
(Gauge, Discharge, Sediment and Water Quality) measuring stations, one GQ, and 
one seasonal gauge measuring station. In this study, the flow routing is performed for 
the reach between Jaraikela and Panposh on the tributary of the Brahmani River 
(Koel River), as shown in Fig. 9.1. 

9.5 Data Sources 

The CWC measures discharge and stage at river sites on a daily basis. The measured 
discharge at the two stations on the Koel River, Jaraikela and Panposh, is obtained 
for the hydrological year of 2015–2016 from the Water Yearbook – Brahmani basin,



CWC. The discharge measurement is done by CWC utilizing the area velocity 
method, where the velocity measurements are made using the cup-type current 
meter. The depth of the flow is determined using the sounding rod for depths up to 
3 m and by a log line beyond 3 m. The discharge is measured once a day for 
weekdays, whereas for the weekends, the discharge measurements are made using a 
discharge rating curve prepared from weekday measurements. For stage measure-
ments, the datum of the site is fixed 1 or 2 m lower than the lowest bed level for the 
non-perennial streams. The river cross-section geometry by CWC is measured for 
the pre-monsoon (December–May) and post-monsoon (June–November) months. 
The available cross-sectional geometry is digitized to obtain the best-fit curve. 
Further, the cross-sectional area corresponding to the monthly average flow depth 
is calculated for each month utilizing the post- or pre-monsoon digitized curve at a 
considered site using integration on MATLAB. The riverbed slope at a river site is 
obtained from the digital elevation model (DEM) of year 2015 with a resolution of 
30 m, procured from Bhuvan – Indian geo platform of ISRO. The river width and 
reach length are extracted from satellite imagery of the respective year using Google 
Earth Pro. The baseflow at each river site is obtained using the SWAT Baseflow 
filter, which uses the baseflow separation technique to segregate the baseflow from 
the input daily streamflow data. Moreover, the obtained daily baseflow is 
transformed to monthly mean baseflow for the discharge calculations using 
entropy-based routing technique. 
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9.6 Methodology 

9.6.1 Entropy-Based Routing 

The entropy derived flow estimation technique (Moramarco and Singh 2001) deter-
mines the downstream flow hydrograph employing upstream flow hydrograph and 
stage-area curve at both the extreme stations on a reach. The flow routing technique 
is derived from the entropic velocity distribution (Chiu 1991), which expresses the 
relation between average velocity (vm) and maximum velocity (vmax) as follows: 

vm =∅ Mð Þvmax where, ∅ Mð Þ= 
eM 

eM - 1
-

1 
M

ð9:1Þ 

Xia (1997) calculated M using Eq. 9.1 on the upstream and downstream stations 
along an approximately straight river reach. Xia (1997) calculated the M parameter at 
two extreme sections on a reach and based on constant M concluded that the 
parameter remains constant throughout the straight reach. The constant M implies 
∅(M ) to be constant; hence, the mean velocity at the downstream station is directly 
proportional to the mean upstream velocity. Thus, the discharge at the downstream 
sections (Qd) can be written as
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Qd / Au 

Ad 
Qu ð9:2Þ 

where Qu is the upstream discharge, respectively, Ad is the cross-sectional area at 
downstream site, and Au is the upstream cross-sectional area. Using Eq. 9.2, the flow 
routing model (Moramarco et al. 2005) is developed to calculate downstream flow at 
a time, t, given as follows: 

Qd tð Þ= α 
Au tð Þ  

Ad t- TLð ÞQu t- TLð Þ þ  β ð9:3Þ 

where α and β are streamflow and baseflow parameters, respectively, and TL is the 
time of travel by a flood wave from one end to another end of the reach. The 
parameters α and β are determined for the two boundary conditions as given below: 

Qb 
d tð Þ= α 

Ab 
d 

Ab 
u 

Qb 
u þ β ð9:4Þ 

Qp 
d tð Þ= α 

Ap 
d 

Ap 
u 
Qp 

u þ β ð9:5Þ 

where Qb and Q p is peak baseflow and discharge, respectively, and Ab and A p is area 
corresponding to Qb and Q p , respectively. Assuming Qb 

d =Qb 
u in Eq. 9.4 for the 

nonuniform flow, the downstream peak flow (Qp 
d) can be expressed as the attenuated 

flow at upstream section in addition to the lateral inflow from tributaries (qpL ) 
during peak flow: 

Qp 
d tð Þ= Qp 

u tð Þ-Q� þ qpL ð9:6Þ 

The attenuation in upstream discharge (Q�) is determined using Eq. 9.7 (Price 
1973), where K = L/2BS is the peak discharge attenuation parameter, Qp 

u is the 
upstream peak discharge, Δtp is one-fifth of the time to peak tp, and Q1 and Q-1 are 
the discharge on either side of tp at Δtp: 

Q� = 
K 

L=Tð  Þ3 Q
p 
u 

Q1 þ Q- 1 - 2Qp 
u 

tp 
2 ð9:7Þ 

The qpL shows the lateral flow contribution from tributaries, which is calculated 
using Eq. 9.8–9.10 expressed by Moramarco et al. (2005) as follows:



�

ð Þ
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qpL= 
Ad tp -Au tp - TL 

TL 
ð9:8Þ 

TL = 
L 
c

ð9:9Þ 

c= 
∂Qu 

∂Au 
ð9:10Þ 

The parameters are estimated by solving Eqs. 9.4–9.10, as mentioned above. 
Further, the discharge is estimated at any downstream station (using Eq. 9.3) on the 
same reach with calculated M approximately similar to that obtained at the upstream 
station. The only condition under which the entropic routing technique can be 
applied is that M, thus ∅(M ) at the two extreme sections of a river reach, should 
remain the same. Previous studies calculated the M parameter using measured 
velocity pairs (vm and vmax); however, in absence of the available velocity data, 
Eq. 9.1 cannot be utilized. For such cases, the M parameter can be estimated utilizing 
measured discharge for previous years, assuming the statement regarding the 
M being constant at a gauging station and independent of flow dynamics (Xia 
1997) to be true. Thus, the M is determined solving Eqs. 9.11–9.14 given below: 

vme
a1 = MeM - eM þ 1 eM - 1

- 2 ð9:11Þ 

vm = 
Q 
A

ð9:12Þ 

a1 = ln 
μ 

v2D
ð9:13Þ 

v� = gRS 9:14 

where v* is the shear velocity, R is the hydraulic radius (assumed equal to the depth 
of water, D), S is the bed slope at the considered site, and μ is the kinematic viscosity 
of water. Thus, depending upon the constant M, a suitable reach is selected on the 
Brahmani basin to apply flow routing based on entropy theory. 

9.6.2 Numerical Model: Two-Dimensional HEC-RAS 

9.6.2.1 Overview of Model Setup Using HEC-RAS 

The HEC-RAS is a two-dimensional (2D) model developed by the US Army Corps 
of Engineers (USACE) to demonstrate the hydrodynamics of flow in channels. It is 
one of the widely used softwares to simulate water depth (Sharma et al. 2022), 
discharge (Kumar et al. 2017), and sediment transport (Patel and Sarkar 2022)  in  
river systems and is available freely in public domain. Two-dimensional HEC-RAS



solves diffusion or St. Venant equation to perform unsteady flow analysis for a river 
using finite difference method. The diffusion equation works fine for most flood 
applications; however, the St. Venant equation provides better results for shallow 
water flow problems. Thus, the St. Venant equation is solved to simulate the annual 
flow hydrograph at Panposh utilizing monitored flow at upstream station, Jaraikela, 
on the same reach. Equations 9.15 and 9.16 given below are the St. Venant equa-
tions, representing the law of conservation of mass and momentum, respectively: 
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∂Q 
∂X 

þ ∂A 
∂t 

= q ð9:15Þ 

∂Q 
∂t 

þ 
∂ γ Q

2 

A 

∂X 
þ gA ∂H 

∂X 
þ gQ Qj j  

c2AR 
= 0 ð9:16Þ 

where q is the lateral inflow, H is the stage, c is the Chezy coefficient, g is 
the acceleration due to gravity (9.81 m/s2 ), γ is the momentum distribution coeffi-
cient, X is the longitudinal distance along the flow direction, and t is the elapsed 
time (s). 

9.6.2.2 Geometric Data Input 

The river modeling in HEC-RAS requires the river geometry and bathymetry 
information which is extracted from DEM given as input. The river geometry is 
drawn using satellite imagery as reference, representing flow line, bank line, and 
cross-sections demarcating the mainstream and floodplains. The modeling of river 
network requires the representation of tributary in the geometry from the point where 
measured data is available up to the point where it joins the main channel. In case of 
river networks with no observed discharge on the tributaries, the numerical model 
cannot be utilized to accurately estimate the downstream flow on a river reach. 

9.6.2.3 Model Calibration 

The riverbed roughness expressed as Manning’s coefficient (n) is calibrated through 
an iterative process by running steady flow analysis multiple times for different 
n values. The n values for natural rivers vary within the range of 0.03–0.65 (Chow 
et al. 1988); thus, the n equivalent to 0.03, 0.04, and 0.05 are considered to calibrate 
the model. The n value for which the accurate stage at the downstream station is 
obtained is considered further for the unsteady discharge simulation at the down-
stream site. For the steady analysis, the boundary condition at downstream site is 
taken as normal depth, which can be assumed equal to river local bed slope (USACE 
2016) of 0.003, whereas the upstream boundary condition is provided with a 
constant flow. The constant input flow equivalent to daily discharge at upstream 
site is randomly selected from the hydrological data of the years 2015–2016 for any



five days. The steady flow analysis is performed for the five different input flows at 
upstream to simulate the water level at downstream station. Thus, the water level 
obtained at the downstream station is matched with the observed water levels for 
each input discharge with different n. The n value accurately predicting water depth 
at the downstream station is considered for the unsteady flow analysis using 
two-dimensional HEC-RAS to simulate downstream discharge on a reach. 
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9.6.2.4 Unsteady Flow Analysis for Discharge Computation 

The unsteady flow analysis requires detailed streamflow and stage time series at the 
upstream and downstream station, respectively. The computational period is pro-
vided from 01 June 2015 to 31 May 2016, with daily discharge as input at Jaraikela. 
The calibrated n value obtained from the steady flow analysis is used for discharge 
simulation. The uniform meshing of 50 m × 50 m is created throughout the river for 
the finite difference method to solve the St. Venant equation. The initial flow in the 
reach is provided equivalent to the lowest observed upstream discharge and 
corresponding elevation. It is done in order to avoid the instability in the model 
due to initial bad condition (dry channel). This implies that a discontinuity may 
occur while the channel adjusts the zero flow to the first input flow value at the 
upstream station during the start of the simulation. Thus, an initial ramp-up time 
period is provided for smooth transitioning of flow from zero to initial input 
discharge. The initial condition ramp-up hour of 10 h with a ramp-up fraction of 
0.4 is provided to run the unsteady two-dimensional model. The computation time 
step (Δt) of the model is determined using the Courant condition for better accuracy 
of predictions. The Courant number (Cw) is defined as follows: 

Cw = 
VwΔt 
Δx < 1 ð9:17Þ 

where Vw is the velocity of flood wave andΔx is the distance between cross-sections. 
For this condition to satisfy, the time step should be 

Δt= 
Δx 
Vw 

ð9:18Þ 

The Vw is calculated from average flow velocity by multiplying with a factor. The 
factor for natural channel equivalent to 1.5 is obtained from HEC-RAS user manual 
of version 5.0 (USACE 2016). The flood wave average velocity is calculated using 
the peak flow from the upstream input hydrograph and the corresponding cross-
sectional area. Thus, the minimum time step of approximately 6.9 min is obtained, 
and the model is set to run with the computational time step of 6 min. Finally, using 
full continuity and momentum equations, the unsteady flow plan is created to route 
the flow from upstream to downstream station. The inflow from tributaries to 
downstream station is neglected due to the lack of measured flow on the tributaries.



Further, the discharge simulated after unsteady flow analysis is compared with the 
available measured discharge at Panposh. 
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9.6.3 Performance Evaluation Indices 

The accuracy of the predictions by the model is determined using statistical metrics 
such as coefficient of determination (R2 ) and Nash-Sutcliffe efficiency (NSE). These 
statistical metrics were also used in previous studies to check the goodness of fit of  
the predicted result (ypred ) with the observed datasets (yobs ). The value of NSE and R2 

being close to 1 indicates the accurate model prediction, whereas close to zero 
implies highly inaccurate model predictions. Tarpanelli et al. (2013), Singh and 
Cui (2015), and Vyas et al. (2020) utilized NSE, whereas Sharma et al. (2022) and 
Singh and Saravanan (2022) used R2 to assess the predicted streamflow. The NSE 
and R2 for the datasets are calculated using following equations: 

NSE= 1-

n 

i= 1 
yobs i - ypred i 

2 

n 

i= 1 
yobs i - yobs mean 

2 
ð9:19Þ 

R2 = 

n 

i= 1 
yobs i - yobs mean ypred i - ypred mean 

n 
i= 1 y

pred 
i - ypred mean 

2 
n 
i= 1 y

obs 
i - yobs mean 

2 

2 

ð9:20Þ 

where yobs mean is the mean observed flow. 

9.7 Results 

9.7.1 Entropy-Derived Flow Estimation 

The flow routing technique derived from entropic velocity distribution presents a 
quick discharge estimation at an ungauged site using locally measured stage data. 
However, its application follows a necessary condition that parameter M should 
remain approximately constant at the extreme stations on a river reach. The calcu-
lated parameter M for the two considered stations Jaraikela and Panposh on the 
tributary of the Brahmani River is obtained as 14.4 and 13.8, respectively. The 
estimated value at the two considered stations is approximately constant; thus, the 
entropy-based flow routing is utilized for the reach between these two stations on 
Brahmani River basin, as shown in Fig. 9.1. The M parameter signifies the



geometrical, morphological, and hydraulic characteristics of the river section (Farina 
et al. 2014; Greco and Moramarco 2016). The constant Φ(M ) shows a certain state 
of equilibrium at a river site, achieved through the interaction and balance between 
the hydraulic and geometrical characteristics such as bed slope, width, flow depth, 
sediment concentration, and bed roughness (Choo et al. 2015). The constant M at 
upstream and downstream stations on a reach is just a criterion which should be 
checked before implementing the entropic flow routing on any reach (Moramarco 
et al. 2005). Once the criterion is met, the magnitude of the M parameter does not 
influence the output downstream discharge. This was found true for previous studies 
(Tarpanelli et al. 2013; Barbetta et al. 2012), which used a similar flow routing 
method without even calculating the M parameter for the sections on a river reach yet 
obtained downstream discharge with good accuracy. 
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Table 9.1 Geomorphological 
characteristics of considered 
reach (Jaraikela–Panposh) in 
Brahmani River basin 

Characteristics Magnitude 

Reach length (L ) 30.8 km 

Average bed slope (S ) 0.003 m/m 

Average width (B) 550 m 

Monthly mean peak flow 

Jaraikela 
Panposh 

187.2 m3 /s 
236.8 m3 /s 

The considered reach between Jaraikela and Panposh does not have any existing 
hydraulic structure; however, it receives a significant inflow from tributaries mainly 
during monsoon season. Hence, the lateral inflow (qL) is considered and calculated 
using Eq. 9.8, as stated in previous section. The required river characteristics for 
entropy-based routing are given in Table 9.1. The parameters α and β in Eq. 9.3 are 
calculated solving Eqs. 9.4 and 9.5 and thus obtained equal to 2.58 and-22.69 m3 /s, 
respectively. The calculated monthly mean flow at Panposh for the hydrological year 
of 2015–2016 is given in Fig. 9.3. The calculated statistical indices for Panposh are 
given in Table 9.2, which shows that the flow is simulated with higher accuracy 
having NSE and R2 greater than 0.8. 

9.7.2 HEC-RAS Flow Routing 

The steady flow analysis is performed to determine the calibrated n for the reach. As 
mentioned previously, the reach has tributaries, but the inflow from it is not 
considered in modeling due to unavailable measured discharge. As a result, the 
simulated water depth at the downstream station using steady flow analysis with 
varying n may not be showing results with expected high accuracy. However, the 
results are still significantly accurate with NSE and R2 being greater than 0.5 for all 
three values of n (Table 9.2). The obtained water depth at the downstream station, 
Panposh, is compared with the measured water depth in Fig. 9.2. The results showed



that the predicted water depth at Panposh is closely scattered around the 1:1 line for 
n = 0.05 (Table 9.2), thus offering the best predictions. 
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Table 9.2 Statistical indices 
showing the efficacy of 
models in streamflow 
predictions 

Flow routing technique NSE R2 

Calibration HEC-RAS n = 0.03 0.55 0.90 

n = 0.04 0.66 0.83 

n = 0.05 0.76 0.91 
Validation Entropy-based routing 0.87 0.89 

Two-dimensional HEC-RAS 0.78 0.77 

Fig. 9.2 Comparison of 
predicted and observed 
water depth at Panposh 

The unsteady flow analysis is performed in HEC-RAS for the selected river reach 
to simulate the monthly mean flow at Panposh taking n = 0.05 for the main channel. 
It is observed that the reach has tributaries but no measured flow; thus, the lateral 
flow contribution is neglected in unsteady flow simulation. The simulated flow at 
Panposh for the year of 2015–2016 is shown in Fig. 9.3, indicating that the flow is 
obtained with significant accuracy having R2 and NSE >0.7 (Table 9.2). 

9.8 Discussion 

The two routing techniques employed in this study use a different representation of 
river reach, with HEC-RAS offering an accurate representation of river geometry 
extracted from DEM. The entropy-derived routing assumes a river with an average 
width, neglecting the river meandering and changes in cross-section. The distinct



river representation by both models causes a difference in channel storage, which 
affects the simulated flow. Despite HEC-RAS being superior to entropy-based 
routing regarding channel representation, the latter performed comparatively better 
than the former at Panposh (Fig. 9.3). It is because of the consideration of lateral flow 
contribution from tributaries in a river network by the entropic routing. However, the 
simulated flow by both the techniques agreed well with the observed discharge with 
a negligible difference in calculated statistical metrics (Table 9.2) for the selected 
reach. 
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Fig. 9.3 Predicted and 
observed streamflow at the 
downstream station Panposh 
using two different routing 
techniques 

The inherent assumption behind the constant M parameter is that the average 
flow velocity at the upstream station is linearly associated with the downstream mean 
flow velocity for a given time. The linear relationship is hampered in presence of a 
flow controlling structure; thus, the entropic discharge estimation technique cannot 
be implemented. However, the HEC-RAS is better for such complex engineered 
reaches as it is compatible to define large storage or hydraulic structures. For natural 
un-engineered channels, the entropic technique is assumed better than HEC-RAS 
because of its simpler structure and disregarding the iterative calibration process to 
determine n. 

9.9 Recommendations 

The results presented in this study and previous studies in literature are limited to 
flow simulation at the downstream site on the reach. However, the linear relation 
between the discharges at extreme stations on a reach indicates that the entropic



routing can be used to determine the discharge record at the ungauged station 
upstream of the gauged downstream station having recorded local stage series. 
Thus, it is recommended to examine the entropy-based method for inverse flow 
routing on river reaches as a future scope of the study. 
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9.10 Conclusions 

The river restoration, water management, and fluvial hazard studies require the 
reliable and frequent estimate of the discharge at multiple river sites, which is 
difficult and cumbersome to measure using traditional techniques. Thus, the entropic 
discharge estimation technique can be employed at the river sites, which offers a 
noncontact discharge measurement. Moreover, this method can be utilized for such 
river networks whose modeling in numerical software is difficult due to unknown 
measured discharge at tributaries. The utilized new method gives discharge 
hydrograph at downstream station without the need of local rating curve and 
discharge contribution by tributaries, yet accounting for the lateral inflow to the 
downstream station. The method shows that the existence of linear relationship 
between the discharge at the stations on the extreme ends of a reach is an important 
characteristic for flood wave propagation. In case of a hydraulic structure, this 
relation may disrupt, leading to inapplicability of entropic flow routing on such 
reaches. The entropic flow estimation technique is compared with the numerical 
model HEC-RAS as well to underline the advantages and disadvantages of both the 
methods. The entropy-based routing technique has an advantage over numerical 
model when the ungauged tributaries are present; however, the numerical model 
may perform better for the engineered reaches having hydraulic structures present. 
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Chapter 10 
Infiltration of Suspended Fine Sediments 
into Surface Layer of Coarse 
Sediment-Bedded Channel 

Nilav Karna, A. S. Lodhi, Sai Guguloth, and Ankit Chakravarti 

Abstract The deposition of fine sediments within the surface layer of bed material 
has a significant impact on the aquatic life that exists in the bed substrate. The current 
study conducted laboratory experiments to measure the sediment deposition process 
using a tilting flume. For the experiments, three different uniformly sized gravels 
were used. The accumulation of fine sediment particles within the pores of the coarse 
sediment bed surface moving as bed load was investigated at various equilibrium 
quantities of suspended load in the flow. The present study utilizes a numerical 
model to quantify the loss in porosity of surface layer bed material induced by this 
process. The entrainment of deposited particles by clear water inflow to the channel 
is also investigated. The findings of this study will be useful in future research on the 
ecological and environmental consequences of riverine systems. 
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10.1 Introduction 

Fine sediments such as silt and clay are mostly transported as suspended load by 
channel flows. Previous studies have strongly suggested the possibility of the 
exchange of fine sediment particles suspended in the flow and the sediments in the 
streambed (Gibson et al. 2009; Gupta et al. 2023). This exchange induces fine 
sediment in suspension to infiltrate into the pores of riverbed material, resulting in 
the deposition of fine particles inside the pores of the channel bed surface and its 
substrate (Einstein 1968; Diplas and Parker 1992; Gibson et al. 2007). Entrainment 
of the embedded fine particles occurs both during their deposition and consequent 
flow conditions (Cuthbertson and Ervine 2007; Pandey et al. 2018, 2019). 

The aforementioned process is harmful to benthic fish, invertebrates, and other 
aquatic biotas that rely on these habitats as part of their life cycles (Chaudhuri et al. 
2022; Lodhi et al. 2021a, b; Pourshahbaz et al. 2022; Rathburn and Wohl 2003). 
This process is also significant because of its effects on channel stability and 
downstream sediment deposition (Chapman 1988; Correia et al. 1992; Gibson 
et al. 2007; Pandey et al. 2022). Several field investigations have been conducted 
over the last three decades to investigate the mechanism of fine sediment penetration 
into river channel beds (Beschta and Jackson 1979; Frostick et al. 1984; Lisle 1989; 
Lodhi et al. 2021a; b). Garcia and Parker (1991) gave a thorough overview of 
previous research on this issue. Diplas and Parker (1992) studied the fine particle 
deposition on the surface layer and the release of fines from streambed material using 
a poorly sorted mixture with a median size (d50) of 2.44 mm and a standard deviation 
of 2.75, and silica flour as fine sediment with d50 values of 0.08 mm and 0.11 mm 
was utilized. Diplas and Parker (1992) employed two kinds of fines to establish a 
seal inside the substrate, which was deeper for fines of 0.08 mm and shallower for 
fines of 0.11 mm. The highest depth measured for the seal was 5* d90. In this case, 
d90 is the size of the sediment so that 90% of the particles are finer than this by 
weight. 

Gibson et al. (2007) reported that the clogging occurred only in the thin upper 
layer of bed, which was not quantified. Dimensionless shear stress due to flow was 
observed by Gibson et al. (2007) to control the process and depth of clogging. Diplas 
(1994) discovered the highest fine deposition in the channel bed’s pool and bar tail. 
Nevertheless, the entrainment of sediment was first noticed at the bar head and then 
at the pool and at the bar tail. The amount of fines collected was proportionate to the 
severity of the discharge. According to Diplas (1994), during flood-simulating 
events, fine particles are deposited within the channel bed and are entrained from a 
depth of 4*d90. The exchange of stream water with the water in the pores of a 
subsurface channel bed is also called a hyporheic exchange. Gibson et al. (2007) 
observed changes in bed material composition caused by the collection of fine 
sediment particles that were previously circulating as suspended loads in the flow. 
Huang and García (2000) established an analytical model to investigate the contam-
ination of gravel spawning grounds caused by fine deposition in the flow as 
suspended load. However, due to the assumptions used, the model does not have a



broad application. Packman and MacKay (2003) experimentally observed the kao-
linite clay particle deposition in a coarse sediment bed. They looked into the 
correlation between stream-subsurface exchange flows, deposition of fines to the 
hyporheic zone, fine accumulation in the streambed, and bed structure alteration. 
There was a large deposit of clay inside the bed that was observed. However, 
blockage of bed material pores was observed to occur by bridging rather than bottom 
upward. It implies that even small volumes of suspended particles may significantly 
alter streambed habitat owing to fine sediment deposition in the bed surface layer. 
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Gibson et al. (2009)investigated the variance in vertical gradient of fine sediment 
accumulated in a 100-mm-thick gravel bed. The vertical trends of fine deposition 
inside gravel bed pores were shown to be significantly dependent on the nature of the 
suspended particles and active bed layer. Following that, Gibson et al. (2007) 
calculated the sand bridging threshold (described below) in a channel flow delivering 
fine particles in suspension with gravel as bed material. Cui et al. (2008) developed a 
statistical model to describe the fine sediment particle’s entry into the fixed stream-
bed. The results indicate that contact between the fine and coarse sediment is 
restricted to the near-bed surface area. The current work quantifies this relationship 
in the instance of a moveable bed situation. Through flume studies, Cui et al. (2008) 
found that fine penetration into the substrate of static bed material was independent 
on fine concentration in the flow. However, the current research analyzes these 
impacts using movable bed experiments. Furthermore, fine sediments migrated as 
bed load in Cui et al.’s (2008) trials but as suspended load in the current investiga-
tion. Detert and Parker (2010) calculated the amount of fine particles entrained by the 
flow from pores in a coarse material stratum. They indicated that testing data would 
be required to completely verify the sediment-cleaner mixture. 

The nature of the bed material also has a significant impact on the process of fine 
sediment penetration from flow into the streambed. However, the effect of hetero-
geneous bed composition on fine material deposition has not been well addressed 
(Rathburn and Wohl 2003). The current study was done to solve these information 
gaps, and the development of a mathematical model would be valuable in estimating 
how often a coarse sediment bed of a particular thickness must be washed out for fine 
sediment particle removal and is useful for fish spawning. 

Various initiatives are also planned to develop strategies for flushing sediments 
accumulated in existing storage reservoirs across the globe. The sediments accumu-
lated in streams right beneath the dam are primarily clay, fine silt, and sand particles 
(Bechteler and Nujic 1998). These sediments must be managed in order to extend the 
life of the reservoirs. Reservoir flushing is a probable current activity, and it 
contributes a significant amount of fine suspended silt to river reaches downstream 
of the dam (Rathburn and Wohl 2003; Saikumar et al. 2022). When fine particles are 
discharged into the stream downstream of the dam, their contact with the streambed 
material reduces the porosity of the sediment bed, hampered aquatic life, and has 
influenced the dynamics of the sediment particles in the bed. Riverbed debris in 
downstream sections of the dam would be primarily mobile owing to high-intensity 
flows caused by reservoir flushing. Stream stability, biological, and environmental 
factors must be addressed before the operation plan for dam removal is determined.
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10.2 Experimental Setup 

An extensive set of experiments were conducted in the Hydraulics laboratory of the 
Indian Institute of Technology Roorkee, India, for the study of various processes of 
the flow of fines and suspended sediment through the coarse gravel bed of a channel. 
A recirculating (also has the facility of one way flow) tilting flume of 13.0 m length, 
0.40 m width, and 0.60 m depth was selected for all experiment purposes. 

Naturally available gravel and sand each with a specific gravity of 2.65 were used 
for the experiments. Three different but uniform size gravels each of median size 
(d50) 5.2 mm, 2.7 mm, and 1.9 mm were used in individual experiments to form the 
coarse bed of the channel. The fine sediment used as suspended load was also 
uniform in size with a median diameter of 0.062 mm. The largest gravel was 
designated as L, the middle size gravel as M, the smallest gravel as S, and the 
suspended material as W for the recording purpose. Fine sediment was obtained by 
passing the raw sediment through a 0.09 mm sieve and retaining it on a 0.045 mm 
sieve. Curves of the particle size distribution for the sediment used in the experi-
ments are given in Fig. 10.1. Gibson et al. (2009) specified a channel bed thickness 
of 10 cm. In the current study, a 15-cm-thick sediment bed was placed; this refers to 
a thickness that is considerably higher than the value of 5*d90 of various sediment 
conditions. A pre-calibrated orifice meter was installed in the return pipe to measure 
the channel discharge. A pointer gauge was used to measure the flow depths. 

Fig. 10.1 Distribution of channel bed material’s grains in size
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10.2.1 Procedure 

10.2.1.1 Suspended Sediment-Laden Runs 

The desired coarse sediment, neatly washed with clear water and free from dust or 
any other unwanted particles, was placed throughout the channel bed to the height of 
150 mm and leveled with the help of a wooden template starting from upstream to 
downstream. A predefined quantity of fine material was meticulously combined with 
water in the hopper tank situated at downstream of the canal for a predetermined 
amount of duration. Sediment was mixed in the downstream tank so that proper 
mixing of sediment and water could be ensured before the mixture entered the 
channel entrance through the return pipe. The water mixed with fine sediment was 
pumped from the collection tank to flume entrance through a return pipe. The desired 
discharge in the flow was controlled using the discharge valve in the return pipe and 
orifice meter. The depth of flow in the flume was controlled by operating the 
pre-calibrated tailgate. 

The cross-sectional mean dispersed silt content in the flow was measured using a 
breadth integrating sampling positioned at the downstream end of the flume 
(Kothyari and Jain 2010). The experimental runs were conducted continuously for 
6–8 h period. During each run, at regular interval, 5–7 samples of water flowing in 
the channel were collected in a 10 L capacity bucket through the width-integrating 
sampler. The fine sediment in the collected water was given sufficient time to settle 
down. The settled fine sediment was carefully removed from this mixture by filtering 
and oven-drying. The gravel, if any present in the collected sample, was separated 
from the fine sediment by sieving. The fine sediment thus collected was weighed on 
an electronic balance having 0.01 g least count, and the average proportion of the 
fine sediment in the water flow was estimated. An experimental run was supposed to 
reach equilibrium when the average concentration of suspended fines in the last three 
consecutive samples did not vary by more than ±5%. The average of those last three 
concentration values was considered as equilibrium average concentration (C). Only 
experimental runs which attained equilibrium (deciphered after completion of the 
experiments of a series) were selected for further analysis. 

Throughout the experimental run, the gravel bed material moved as bed load and 
was collected in the trap at the downstream end of the flume. Right from the start of 
the experiment, the bed load was collected every half an hour interval. The bed load 
collected was weighed and then fed upstream of the working section of the channel 
for the next half an hour to maintain the bed load continuity. This process was done 
for the full duration of the experiment. 

The vertical variation of suspended sediment concentration was also measured in 
a few runs at two sections of the channel; the first section was located 2.5 m 
downstream of the entrance and the second was10 m downstream of the channel 
entrance (i.e., end of the flume). The value of suspended sediment concentration at a 
given point in the flow was measured by pumping the suspended sediment sample at 
that point using a Tullu pump. By pre-calibrating the pump, it was ensured that the



velocity of a sample of the suspended load at its entrance into the sampling tube was 
equal to the flow velocity at the point being sampled. The flow depth was traversed 
for measurement of suspended sediment concentration distribution by withdrawing 
the samples from different points (levels) in the flow at vertical spacing of 10 mm. 
The suspended sediment concentration distribution was, however, observed to be in 
equilibrium at both of these sections. For a specific hydraulic condition (discharge 
and slope), the successive experimental runs were carried out by increasing the 
suspended load concentration in the inflow till the surface layer pores got completely 
filled with fines. 
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The channel tailgate was completely lifted at the end of the experiment, and input 
to the flume was halted simultaneously by turning off the re-circulating pump. 
Because of the depletion scenario that occurred inside the flume, storage of the 
flume was emptied out easily with a high velocity. As a result, the potential of 
suspended fine deposition on the channel bed during flow draining was reduced. 
Volumetric samples of the gravel materials in the bed were taken in order to quantify 
the deposition of fine sediment within the pores of bed material. Due to their uniform 
surface, flume walls had little impact on the particles’ settling process. A mixture of 
gravel and fines were picked up from three locations along the bed (3 m, 6 m, and 
9 m) for the full depth of bed. The mixture contained within the surface area of 
0.2 m × 0.4 m × 0.02 m was sampled. In order to facilitate the sampling process, two 
thin but hard aluminum sheets with 2 cm marking on the inner sides were fully 
inserted into the bed 20 cm apart. Proper care was taken to avoid disturbance in the 
structure within the bed layers. The channel bed was relaid by using parent bed 
material in its original position in the channel bed after quantifying the fine sediment 
in the sample. The outflow (≈0.2 l/s) was again allowed to flow through the 
streambed to saturate the entire bed before the start of the next experimental run. 
In the subsequent runs of the series, bed samples for determining its composition 
were taken from the same locations. Though bed forms have an influence on the fine 
particle vertical fluxes infiltrating into pores of bed material, no significant bed forms 
were observed in any of the experimental runs of any series. 

Following the completion of any particular series on suspended sediment-laden 
flow, tests for fine particle entrainment within the pores of the active bed layer were 
carried out. The outflow utilized for this purpose was not the same as the discharge 
used for the comparable set of sediment-laden runs. For each series, four entrainment 
runs were performed, each at successively increasing discharge. During these runs, 
the one-way flow system of the flume was brought into operation using a large 
overhead tank. At the end of each run, bed material samples were taken for analysis 
of residual particles deposited in the various levels of the bed. The composition of 
bed material was used in determining the channel bed porosity. 

Once the specific set of tests has been completed, the gravel on the channel bed 
was completely taken out of the flume. The flume bed and gravel in the channel were 
washed with clear water to remove the fine particles that are existing in the bed layer. 
The channel bed was again prepared using the same or other gravels and made ready 
for the next set of experiments. Seven separate series of tests were carried out, with 
each series consisting of 10–12 experimental runs. The laboratory experiments done



in the absence of fine silt were denoted as 2LC1, 1MC1, and so on, whereas those in 
the presence of suspended fines were marked as 1SW4, 2MW7, and so on. Here first 
numeric stands for a series number; first alphabet is the type of gravel used; C is the 
clear water, W is for a sediment-laden run, and the last numeric is the run number. 
2LC1 represents the first clear water experimental run of the second series on a bed 
composed of 5.2 mm gravel. Similarly, an experimental run with the name 1SW4 
represents fourth sediment-laden run of the first series on a bed composed of 1.9 mm 
gravel. Whereas to denote entrainment runs, E is used. For example, 2ME2 desig-
nates the second entrainment run of second series of runs on a bed composed of 
2.7 mm gravel. 
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10.2.2 Observations on the Infiltration Process of Suspended 
Sediment into the Pores of the Gravel Bed 

10.2.2.1 Visual Analysis 

Depending on the regularity and size of the sediment particles, the tiny suspended 
particles were demonstrated to penetrate into the openings of the gravel bed of the 
channel in two distinct ways. Channel bed consisting of homogeneous sediment of 

series L d15 of sediment 
d85 bed material = 46 , M d15 of sediment 

d85 bed material = 24 , and S d15 of sediment 
d85 bed material = 20 , fine 

sediment infiltrated unrestrained into the pores of the sediment bed, where d85 and 
d15 denote 85% and 15% of the sediment material finer the that diameter. As a result, 
d15/d85 ranges from 12 to 14 met the condition specified by Gibson et al. (2009) for 
the occurrence of unhindered infiltration. A completely unobstructed mode of fine 
sediment infiltration was observed in all experimental runs with L and M size gravels 
on the channel bed; however, fine penetration into gravel S beds proceeded until the 
deposited fines “bridged” the spaces between the sediment particles of the bed, 
forming a “seal” that limited further fine infiltration to a larger depth. Our findings 
almost satisfied Gibson et al.’s (2009) requirements, which say that the bridging 
threshold is determined by the constriction ratio of Dc�

D85 
= 3, where Dc�was deter-

mined by Kenney et al.’s (1985) expression, as the regulating constriction size. Both 
accumulation (intrusion) and infiltration of accumulated particulate silt take place at 
the same time during the latter phases of fine sediment ingress, and the asymptotic 
state is attained in which the quantity of fine sediment contained within the bed 
material does not fluctuate. In the context of the channel inflow, variations in the 
concentration of fine silt can lead to disturbances in the equilibrium. This process 
continues until the pores of the top layer of the active bed layer, which is 20 mm 
thick, are completely sealed with fines; this process is known as fine sediment limit 
deposition. If the suspended sediment content in the flow to the channel increases 
beyond this stage, fine sediment ripples form on the bed surface. 

In a natural environment, the gaps between the coarse sediment particles would 
be partially filled with finer sediments (i.e., silt or sand) before the start of a fine



suspended sediment-laden inflow, thus restricting the entrance of suspended fines 
into pore spaces of the bed material. 
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10.2.2.2 Spatial Disparity of Quantity of Fine Sediment in the Active 
Bed Layer 

The amount of fine particles infiltrated into gravel bed was reported as a percentage 
of the bed material. Figure 10.2 depicts the fluctuation of the quantity of fines 
infiltrated into the upper strata of the active bed layer with distance along the flow 
direction for the data series 2MW (see Eq. 10.1 presented below). As previously 
stated, nomenclatures such as 2MW designate the second series of experimental runs 
with fine sediment in suspension, while the channel bed was composed of sediment 
type M. According to Fig. 10.2, the fraction of fine silt inside the upper layers of the 
active bed layer was slightly more than 25%. However, greater quantities of fines 
(24%) were found in the top layers of the substrate (active layer) during the 1LW 
series experimental runs. The trend lines for the fraction of fines in the active bed 
layer are virtually horizontal, showing no major fluctuation along the flow direction, 
as shown in Fig. 10.2 and other figures for data from the 2MW and 1LW series 
(Karna et al. 2015b). It should be noted that the regional change in the composition 
of the bed layer during fine particle infiltration, as represented in Fig. 10.2, has not 
previously been examined by many researchers. 

The arithmetic average (AEV) of the fine particle proportions in the top layers 
along the flow direction was calculated. Figure 10.3 depicts the fluctuation of AEV

Fig. 10.2 Variation of the proportion of fine particles along the flow direction in active bed layer 
(series 2MW)



values at 3 m and 9 m with equilibrium concentrations of suspended fine particles for 
the series 1LW, 1MW, and 1SW data. The statistics from different series showed that 
the AEV values rise as the concentration of suspended silt in the flow increased. This 
implies that the suspended load transport rate in the flow controls the fraction of fines 
in the pores of granular material on the channel bed. Earlier, Diplas (1994) and 
Einstein and Chien (1953) found similar findings. It is also worth noting that the 
fraction of particles intruded into the active bed layer is less than the porosity of the 
bed material, which is 27% (for L series).
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Fig. 10.3 Variation of the proportion of fines in active bed layer with its concentration in flow 
(series 1LW) 

10.2.2.3 Entrainment of Suspended Particles from Coarse Sediment 
Pores in Bed Material 

Figure 10.4 illustrates the temporal variation of the average fine particle content in 
the channel flow collected at the channel outflow during various entrainment runs. 
The findings of the experiments indicate that the typical concentration of fine 
sediment in suspension at the canal discharge dropped quickly; it indicates a rapid 
increasing entrainment rate. The bed looked to be fine-free at the conclusion of the 
sessions, which could be ascribed to the reduced value of C for the data from run 
1SE1. 

Despite the fact that the fine particles of sediment content in the flow had become 
almost insignificant by the end of the entrainment process, assessment of the bed



samples gathered at the last stage of the entrainment cycle showed that a few of the 
fine particles retained within the bed material fissures. According to Diplas and 
Parker’s (1992)study, they discovered that fine sediments infiltrated into the pave-
ment layer were only partially cleansed during the stage of the entrainment, whereas 
fine sediments penetrated into the sub-pavement layer stayed undisturbed (Diplas 
1994; Karna et al. 2015a). This is due to the protection provided by small grit 
particles in the soil layer. Although fine sediment was much smaller than the parent 
bed material, larger sediment in bed material effectively disguised those silt parti-
cles. Greater flow shear force is necessary to clear these tiny particulates from the 
deeper strata of the bed surface (Einstein and Chien 1953). To increase shear stress 
on the bed, consecutive entrainment runs at rising high flow at larger velocities were 
performed. The depth of silt entrainment rises as the flow through the channel 
increased. However, subsequent increases in flow could not entice the deeper bed 
layer. 
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Fig. 10.4 Temporal variations of concentration of fines during sediment entrainment run (1SE1) 

As previously stated, the samples of the bed material encompassing the complete 
thickness of the bed material were obtained to properly quantify the depth of fine 
sediment penetration into the substrate. Figure 10.5 depicts the change in fine 
sediment fractions in various strata of the bed layer for the 1SE1 run. It is obvious 
from these and figures for data from other similar experimental runs that the flow 
could not entirely entice the fine silt previously deposited in the channel bed 
material.
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Fig. 10.5 Variation of proportion of fines in different layers after sediment entrainment run (1SE1) 

10.3 Mathematical Simulation of Entrainment of Fine 
Particles and Their Deposition from Pores 
of the Coarse Sediment Bed 

The change that occurs in the relative porosity of the active bed layer owing to 
routing of suspended fine sediment through the bed channel constituted of coarse 
particles has been analyzed. As a result, the difference in porosity throughout the 
depth of the bed and its substrate is not replicated. The development of a fine 
sediment barrier or shield within the sediment bed is also not depicted. 

10.3.1 Active Bed Layer 

The interchange of fine particles is primarily restricted to the thin top surface of the 
streambed. The thickness of the particle exchanging layer is determined by the 
sediment size, bed feature parameters, and flow characteristics. The active bed 
layer (substrate) or the mixing layer is the thin layer of bed material that actively 
participates in the exchange of sediment particles. The active layer thickness was 
assumed to be a function of flow depth developed by Rahuel et al. (1989) and Karim 
and Holly Jr (1986); however Diplas and Parker (1992) and Correia et al. (1992) 
connected it to particle size. The first factor seems to be true for a dune bed since 
dune height is proportional to flow depth, while the later appears to be valid for a



flatbed (Garde and Raju 2000). van Niekerk et al. (1992) investigated the relation-
ship between sediment size and shear stress. Singh et al. (2004) developed a strategy 
that incorporates the methodologies above as follows: 
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Δz= 0:3 h 1-
τoc 
τo 

þ 2d50 ð10:1Þ 

where τ0denotesthe average shear stress caused by the flow, h represents the depth of 
the flow, and τcis the critical shear stress for the commencement of sediment particle 
motion. When d50 equals 1, the equation primarily relies on it, especially in flatbed 
scenarios like a static gravel bed. Additionally, when there’s bed load transport, the 
equation always gives a value lower than one. This suggests that Eq. 10.1 effectively 
accounts for the influence of bed load transport on infiltration and the entrainment of 
fine sediment. 

10.3.2 Governing Equations 

Khullar (2002) developed the sediment continuity equation, which governs the 
process of variation in the average porosity caused by the routing of suspended 
particles through a nonuniform sediment bed. In developing the governing equa-
tions, the subsequent assumptions were made: the channel’s active bed layer is 
predominantly involved in the process of fine particles entrainment and deposition, 
the flow is longitudinal, and simultaneous transport of bed material has no effect on 
the process of fine sediment infiltration into the pores of the bed material. The 
governing equation is as follows: 

∂pg 
∂t 

þ a1 
∂Qs 

∂t 
þ a2 ∂ Qs 

∂x 
= 0 ð10:2Þ 

where a1 = - 1/(UbΔz) and a2 = -1/(bΔz)where pgdenotes the porosity of the 
sediment bed, b the stream breadth, and Qs the suspended load transport rate 
consisting mainly of fine silt, U represents mean flow velocity and x the distance, 
and t denotes the duration of the flow. According to Khullar et al. (2013), Qs is a 
function of pg as well as flow and sediment characteristics. The process of fine 
particle infiltration and intrusion into pores of the sediment bed and the substrate is 
therefore reproduced by varying Qs with x and t. 

In conjunction with the dynamic equation of flow and the continuity equation, it 
would provide a series of nonlinear hyperbolic formulas that may be used to examine 
the routing of fine sediments in suspension under uniform/nonuniform flow and 
steady/unsteady flow circumstances. However, in the current analysis, only stable 
uniform flows are studied, and the values of flow parameters are therefore known a 
priori. As a result, just Eq. 10.2 must be solved here. Because an analytical solution



to Eq. 10.2 is not attainable, a numerical solution is developed with the goal of 
assessing the change in average porosity caused by fine sediment deposition (intru-
sion) inside the pores of bed material. As a result, porosity is regarded as the 
unknown variable in Eq. 10.2 and, on the other hand, pertains to the process of 
routing fine suspended sediments through coarse bed material under both equilib-
rium and nonequilibrium suspended load transport situations. The fine sediment is 
expected not to permeate below the active bed layer thickness indicated by Eq. 10.1. 
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A nondimensional suspended load transport law was developed by Khullar et al. 
(2013) who used to implement a correction factor for the interference of the mean 
size of the bed sediment mixture and the effects of sheltering exposure. The 
approach given by Khullar et al. (2013) is employed herein to determine and is so 
briefly detailed below for the sake of completeness: 

φs = 
Qs 

γs 

γf 
Δγsgd

3 and φs,i = 
isQs,i 

ibγs 

γf 
Δγsgdi 

3 ð10:3Þ 

where d represents mean size of the sediment particle, Δγs = γs - γw, with γsand 
γw are specific weights of sediment and water, Qs, i denotes the fraction wise 
suspended load transport rate (by weight) per unit width of the channel, and ib 
andis are the proportions of di in bed material and suspended load respectively. 

The suspended load transport rate for uniform non-cohesive sediment material is 
determined using the equation (Eq. 4) proposed by Samaga et al. (1986)and for 
nonuniform sediment bed conditions (Eq. 10.5) using Khullar (2002): 

φs = f 
τo 

Δγsd
ð10:4Þ 

φs, i = f 
τo 

Δγsdi 
, ξs,i ð10:5Þ 

In the aforementioned expression, ξs, idenotes the interference factor for sediment 
mixtures. The nondimensional bed shear stress (τ*i) for the non-cohesive sediment 
materials is computed by using τ*i = (τo/Δγsdi), where di represents the size of the 
non-cohesive sediment. 

The steps listed below should be used to compute Qs, i: 

1. Calculate the mean size of the sediment particles daon the bed layer. 
2. Calculate the critical shear stress (τc)using shield criteria for the incipient motion 

of the sediment particles. 
3. Determine the shear stress (τ0 = γeReSf) formed due to flow, where Re denotes 

mean hydraulic radius and Sf represents friction slope. 
4. Determine the τ0=τc and di=d0 values.



∂Qs=∂pp
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5. Calculate the ξs,i(τo/τoc)
0.62 using below mentioned equation: 

log ξs,i τo=τoc½ �0:62 = 0:703þ 0:54 log di=dað Þ þ 0:03 log di=dd½ �ð Þ2 

þ 0:0308 log di=da½ �ð Þ3 ð10:6Þ 

6. Calculate the value of ξs,i(τo/Δγsdi) and also compute φs, i using the equation 
proposed by Khullar et al. (2013): 

φs,i = 28 ξs,i τo=Δγsdið Þ  6 ð10:7Þ 

7. Compute the suspended load transport Qs from the below expression: 

Qs = is Qs,i =φs,i ib γs Δγs=γf gd3 i ð10:8Þ 

10.3.3 Numerical Scheme 

The MacCormack’s (1969) finite difference numerical approach with two layers of 
predictor corrector steps is used to solve Eq. 10.2 using proper boundary and 
beginning conditions. The MacCormack’s (1969) approach is straightforward and 
easy to apply. This system can readily accommodate general roughness and sedi-
ment discharge equations. Bhallamudi and Chaudhry (1991) present a full overview 
of the scheme. 

10.3.3.1 Stability of Numerical Model 

The current numerical strategy must meet the stability criterion defined as 

S ≤ q 
h
þ g  h  

Δt 
Δx ð10:9Þ 

where S represents the bed evolution disruption propagation speed, g is gravity 
acceleration, q is discharge intensity, x is the computational spatial step size, and h is 
flow depth. The value of S is determined by Eq. 10.2 and is as follows: S= U 

1- UbΔz .
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10.3.4 Model Application 

The suggested numerical model is utilized to compute the change in average porosity 
of the bed layer, hence replicating the process of fine deposition and infiltration 
within coarse material gaps. The model findings are validated using the current 
study’s experimental data. 

10.3.4.1 Accumulation of Fine Particles Inside the Pores 
of the Sediment Bed 

The model was originally used to assess changes in the active bed layer’s average 
porosity. The following beginning and boundary conditions are utilized for this 
purpose: 

Initial Conditions 

In this instance, the original state was pa(m, 1)  = 0.383) with m = 1, . . ., n, where n is 
the entire amount of geographic grid processing units and 

Qs l, 1ð Þ= 0:0 ð10:10Þ 

Boundary Conditions 

In order to create the temporary situation, fine sediment particles were eventually 
added to the flow at the upstream side of the flume for model implementation. The 
scenario is as follows Qs 

kþ1 
1 =Qs 

k 
N þ ΔQs, where ΔQs is the rate of increase of the 

inbound suspended load of a fine particle at the most upstream computational node, 
N is the downstream boundary computational node, 1 is the upstream boundary 
computational node, and k is the computational time level. This model application 
was difficult to apply on this criterion. It needed to be transformed into an equation 
so that the value could be found at the first processing point. By applying the 
backward difference to the geographic elements of the sediment continuity equation, 
Eq. 10.11 is produced for node 1: 

pg 
kþ1 
1 

= pg 
k 
1 
þ a2 Δt Δx Qs 

k 
N þ ΔQs -Qs 

k 
1 ð10:11Þ 

because the components on the right-hand side of the preceding expression are 
known for time level k.
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Following the procedures outlined above, a FORTRAN computer program was 
created. This software was originally evaluated for correctness using a small amount 
of sample data. The computational grid length that was employed was 1.0 m. The 
computing time step was chosen based on the Courant condition of stability, which 
is given by Eq. 10.9. It should be noted that using an S value equal to or less than 
unity produced no different results. The model might be used to calculate the average 
porosity of the sediment bed during transient phases and under equilibrium condi-
tions of suspended load transit. 

10.3.5 Contrast of Predicted and Measured Estimates 
of Equilibrium Porosity 

In Fig. 10.6, the proposed numerical model is accurately replicating the actual values 
of asymptotic porosity, with the calculated values having a maximum deviation of 
10% from the observed values. This suggests that the model is able to effectively 
quantify fluctuations in porosity values averaged throughout the active bed layer 
thickness. It is noteworthy that no model calibration was performed in order to 
produce the results shown in Fig. 10.6. The porosity of the bed material may vary 
throughout the depth below the streambed due to the variable rate of fine intrusion 
into them and “sealing” or “bridging” created during the fine deposition process in 
the pores. However, such differences are difficult to represent using the 
one-dimensional numerical model described here. The suggested numerical model

Fig. 10.6 Contrast of measured and calculated coarse soil porosity values



is used to estimate the average porosity values for the lengths of the experimental 
runs. The measured (residual) equilibrium porosity value is defined as the initial 
porosity of bed material minus the observed percent of fine silt inside the active bed 
layer at the conclusion of the respective experimental run. The results of the model 
are seen in Fig. 10.6, where it is demonstrated that the model is able to accurately 
capture the observed values of equilibrium porosity, with the calculated values.
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10.3.6 Calculating Porosity of the Bed Layer 
for Transient Stage 

Figure 10.7 depicts the time-dependent variation in estimated porosity at two distinct 
locations along the streambed during the 2MW5 trial session. The gap between the 
sections chosen for study is relatively short; the approximated values of equilibrium 
porosity at these sections do not differ considerably. During the transitory stage, only 
a slight variation is observed in the estimated values of porosity at the specified site, 
with porosity at the upstream portion being lower than that at the downstream 
section. This suggests that the rate of fine particles entry into the gaps of coarse 
particle is greater at upstream than downstream. Fine sediment rate in the flow would 
decline along the flow path due to particles penetrating the crevices of coarse 
sediment material. The sedimentation rate is delayed, and the excess porosity is 
higher when the lowest proportion of particulate material is suspended in the channel 
influx. Figure 10.7 demonstrates that with constant dispersed sediment quantities in

Fig. 10.7 Variation of porosity during transient stage (Run 2MW5)



approach flow, the state of equilibrium deposition proceeds along the flow path and 
is thus reached first at upstream sites. However, as shown by the testing findings in 
Fig. 10.2, the typical permeability of the substrate material should be nearly constant 
over the stream length during the balance period. Figure 10.7 also depicts the 
observed equilibrium porosity at the ninth section of the cycle. This shows that the 
model projected a reasonably accurate result, albeit one that was marginally greater 
than what was witnessed, as shown in Fig. 10.6.
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10.4 Conclusions 

Experiments have been conducted to investigate the changes in the composition of 
bed material caused by fine infiltration. It was discovered that the proportion of fines 
in the top layer of the active bed layer expands as the optimal content of embedded 
fines in the flow gets higher. Additionally, stratification in bed material is caused by 
fine particle infiltration into the gaps between the coarse sediment particles. How-
ever, these results are confined to studies on fine sediment with a consistent 
dimension of 0.062 mm. To further explore this process, a one-dimensional numer-
ical model has been developed. This model uses a finite difference numerical 
approach proposed by MacCormack (1969) to solve the sediment continuity equa-
tion, with proper initial and boundary conditions. The model calculates the variation 
in the mean porosity of the active bed layer as a function of distance and time. 
Despite its potential, the model does have some limitations which should be taken 
into consideration. 
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Chapter 11 
River Water Flow Prediction Rate Based 
on Machine Learning Algorithms: A Case 
Study of Dez River, Iran 

Mohammad Reza Goodarzi, Amir Reza R. Niknam, Ali Barzkar, 
and Davood Shishebori 

Abstract Forecasting the river flow, especially during floods, will allow the offi-
cials to minimize the damages caused. Various methods have been used to predict 
the flow of river water. Many studies have been conducted in this field using artificial 
intelligence and machine learning methods, which show that these methods can also 
be very effective. In this study, river water flow prediction has been made by two 
GEP (gene expression programming) and random forest (RF) machine learning 
algorithms. The daily data of the last ten years of Dez River discharge in Iran were 
used, 75% of which were considered for training and 25% for testing. Finally, the 
predictability of each of the mentioned models has been investigated to select the 
best model. The results of the two models were compared using five statistical 
indices R, MAE, RMSE, Nash-Sutcliffe (NSE), and the agreement index (Ia). The 
accuracy values of R, MAE, RMSE, NSE, and Ia were 0.995, 17.337, 60.635, 0.954, 
and 0.986 for the GEP model and 0.926, 26.483, 26.483, 301.3, 26.483, 26.483, 
17.337, and 0.986 for the random forest model. In some of the statistical indicators, a 
decrease in the values in the testing stage compared to the training stage can be 
observed. This may be due to significant fluctuations on some days of the year, such 
as a sharp increase in rainfall causing a substantial increase in the river flow rate. 
However, the GEP model has demonstrated good results in both the training and 
testing stages, indicating that it can effectively estimate flow rate values. Also, in 
addition to reasonable accuracy, this model has a higher speed than the random 
forest model for river flow estimation. 
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11.1 Introduction 

River flow prediction is a crucial issue in hydrology, which is essential in managing, 
operating, and planning water resources. Due to Iran’s climatic changes and weather 
conditions, rains occur every year, which have caused large floods and subsequent 
losses. Also, since flood control is based on predicting the incoming flow when a 
flood occurs, there is very little time to implement crisis management methods and 
reduce the damages caused by the flood. Therefore, runoff and subsequent floods are 
expected in the last few years by using the predicted data of atmospheric models. In 
this way, one of the strategies for managing the crises caused by floods is the quick 
and accurate prediction of runoff to reduce risk. Over the years, various statistical, 
hydraulic, and hydrological models have been developed, each with strengths and 
weaknesses (Chen et al. 2019; Desta et al. 2019; Gupta et al. 2020). The diverse 
factors affecting hydrological processes make applying all of them in the designed 
models challenging. Moreover, the presence of uncertainties and nonlinear relation-
ships between variables has complicated the problem. Physical and conceptual 
hydrological models have been less emphasized due to the need for abundant 
information about various parameters and time-consuming calibration (Kong et al. 
2019; Mohammady et al. 2018; Ravindranath et al. 2019). The importance of using 
new modeling methods in engineering is so much that it has been able to show its 
footprint in various fields of this field in recent years. These methods are common to 
the majority of engineering sciences. In water science and engineering, artificial 
intelligence models for modeling and predicting various hydrological parameters 
have attracted the attention of experts and researchers in this field. Among these, the 
flow rate can be mentioned as one of the most sensitive parameters. The importance 
of planning and managing water resources and the ever-increasing population 
growth and limited surface water resources in some countries have made a more 
accurate prediction of river flow using new modeling tools and methods an unavoid-
able necessity (Seyedian et al. 2014). Recently, machine learning algorithms have 
found many applications in various fields, including environmental and water 
resource management (Barzkar et al. 2021). Therefore, machine learning-based 
approaches such as artificial neural networks (ANNs), support vector machines 
(SVMs), and Bayesian networks (BNs) have been used as powerful tools to predict 
hydrological parameters (Pitta et al. 2016; Salas 1993; Wagena et al. 2020). With the 
advancement in machine learning algorithms in recent decades, numerous studies 
have investigated their potential in predicting hydrological parameters (Yaseen et al. 
2015). 

Several studies have reported that artificial neural networks and the M5 algorithm 
have been used to model the relationship between water level and flow rate. 
Bhattacharya and Solomatine (2005) reported higher accuracy in predicting hydro-
logical parameters using these methods than conventional approaches. In a study by



Lin et al. (2006) on China’s Lancang River, support vector machines, artificial neural 
networks, and ARMA modeling were used to predict long-term river flow. The 
results indicated that the support vector machine method outperformed other models 
in terms of accuracy. To predict river flow, Noori et al. (2011) utilized the support 
vector machine model and three input variable extraction methods, including for-
ward selection, gamma test, and principal component analysis. The results suggested 
that the support vector machine model’s accuracy improved with these 
preprocessing models. Kisi et al. (2013) conducted a study in Turkey to predict 
the daily flow of the Krokavak basin using gene expression programming (GEP), 
artificial neural network (ANN), and adaptive neuro-fuzzy inference system 
(ANFIS) models. The GEP model demonstrated superior performance compared 
to the other two methods. Chu et al. (2016) used support vector machine, 
autoregressive integrated moving average (ARIMA), and radial basis function neural 
network (RBFNN) models to predict the monthly and long-term flow of the upper 
Yellow River basin. A comparison of the results revealed that the support vector 
machine model had the best performance and the lowest simulation error for long-
term and medium-term streamflows compared to the other two models. Atieh et al. 
(2017) conducted a study to predict the duration curves of ungauged basins using 
artificial neural network (ANN) and GEP models. The results indicated that GEP and 
ANN models were more sensitive to the drainage area, followed by the mean annual 
precipitation, the entropy disturbance index, and the shape. Goyal et al. (2017) 
investigated four models based on support vector regression to predict flow rates 
from two nearby karst springs in Greece. The model’s performance was evaluated 
using the root mean square error and correlation coefficient. Finally, they concluded 
that the models used in their study performed better than the generalized regression 
neural network, radial basis function neural network, and ARIMA models. Das and 
Nanduri (2018) investigated statistical downscaling based on classification and 
regression to forecast monthly monsoon flow over a basin in India. The output of 
GCM models and the representative concentration path (RCP) scenario was used. 
Support vector machine (SVM) and relation vector machine (RVM) models were 
also used for downscaling. The results showed that with the increase in temperature, 
the sensitivity of the upper areas of the monsoon currents increased and showed a 
decreasing trend and medium and low flow in all scenarios showed an increase in the 
future period. 
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Adnan et al. (2021) conducted a study to estimate the monthly flow of KALAN 
and CHAKDARA stations located in the SWAT river basin, utilizing the Group 
Method of Data Handling-Neural Network (GMDH-NN), Dynamic Evolving 
Neural-Fuzzy Inference System (DENFIS), and Multi-Adaptive Regression Splines 
(MARS) models. The results indicated that DENFIS and MARS models had the best 
performances for the two mentioned stations, respectively. Yeditha et al. (2022) 
evaluated the development of rainfall-runoff models and one-day-ahead streamflow 
forecasting using two satellite precipitation datasets, GPM-IMERG and CHIRPS. 
Using daily rainfall data from 2000 to 2018, artificial neural networks, extreme 
learning machines (ELM), and long short-term memory (LSTM) models were 
developed for rainfall-runoff. Nash-Sutcliffe efficiency coefficient, correlation coef-
ficient, and root mean square error were used to evaluate accuracy. The results 
showed that both satellite precipitation products could be used well with LSTM



and ELM models for rainfall-runoff modeling and streamflow forecasting. In another 
study, Barzkar et al. (2022) investigated drought events in different climatic condi-
tions and formulated the standard precipitation-evapotranspiration index (SPEI) 
values for various climates using GEP, model tree (MT), and multiple adaptive 
regression spline (MARS) algorithms. Among these models, the M5MT algorithm 
provided the most accurate prediction of SPEI in all climates. Wei et al. (2022) 
employed the random forest algorithm to predict extreme seasonal rainfall during 
summer on the Yangtze River. The prediction models based on 14 atmospheric and 
oceanic indices were trained and tested using samples from 1951 to 2019. The results 
showed that the RF3 model, based on three indices, performed optimally in 
distinguishing between severe and non-extreme events. The decision trees in the 
RF3 model revealed the primary decision path leading to a severe rainfall event in 
the area. 
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This study aims to assess the daily flow of the Dez River, a significant tributary of 
the Karun River that has substantial agricultural land. Two robust machine learning 
algorithms, gene expression programming (GEP) and random forest (RF), were 
utilized to achieve this. The modeling was based on daily flow data obtained from 
the Tel Zang station. Eventually, the findings of the two models were compared 
using statistical indices to determine the superior model for predicting river flow. 

11.2 Materials and Methodology 

The Dez watershed stretches between 48°10′ to 50°21′ east longitude and 31°34′ to 
34°07′ north latitude, covering an area of approximately 21,720 km2 . The elevation 
of the watershed ranges from 190 m to 4124 m, with an average elevation of 1676 
m. This research focuses on a portion of the Dez watershed situated in Khuzestan 
province. The Telezang hydrometric station is positioned approximately 20 km 
upstream of the Dez dam and has been monitoring river flow since 1955. The 
Khuzestan Water and Power Organization provided the data and information nec-
essary to construct and validate the models used in this study. The flow rates from 
various points along the river were collected in the field. This research utilizes the 
river’s flow rate data recorded at the Telezang station from 2011 to 2022. The 
station’s geographic coordinates are 48°46′48″ east longitude and 49°32′ north 
latitude. Additionally, Fig. 11.1 displays the study area’s location. Also, the flow-
chart of the steps of this study can be seen in Fig. 11.2. 

11.3 Gene Expression Programming 

Ferreira introduced the gene expression programming (GEP) algorithm, based on the 
theory of Darwin, and evolved genetic programming, for the first time (Ferreira 
2001). GEP is a type of data mining network that presents the relationship between



parameters as a mathematical equation and does not have a black box structure. 
Moreover, this model is adaptable to different conditions, making it advantageous 
over neural networks (Danandeh Mehr et al. 2018). The algorithm provides an 
automatic programming technique for solving problems as a computer program 
and can optimize the structure of the model and its components. GEP uses a tree 
structure, whereas the genetic algorithm is based on the binary system, which is the 
fundamental structural difference between these two models (De Castro et al. 2005). 
The step-by-step execution process of GEP is as follows: 
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Fig. 11.1 Study area 

1. Generating an initial population of formulas by combining functions (mathemat-
ical operators used in the formulas) and terminals (problem variables and constant 
numbers) 

2. Evaluating each individual in the population using fitness functions 
3. Generating a new population using the equations 

Figure 11.3 illustrates the GEP model calculation process. The process com-
mences by selecting control parameters, including the function set, terminal set, 
fitness function, control parameters, and termination criteria. Before executing the 
evolutionary algorithm, the fitness function is determined, which leads to the 
creation of an initial population’s random string, commonly referred to as a chro-
mosome in genetic programming terminology. These strings are translated into a 
tree, and the results are compared to the fitness score of each chromosome. If the
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Fig. 11.2 Flowchart of 
study steps 

Fig. 11.3 Schematic 
diagram of the GEP 
algorithm (Iqbal et al. 2020)



fitness criterion is not met, the roulette wheel selection method is used to select a few 
chromosomes, which then undergo mutation to generate new generations. Alterna-
tively, the chromosomes also become optimized if the variables are optimized with 
the fitness function (Iqbal et al. 2020).
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Table 11.1 Table of GEP model settings 

Description of parameters Setting of parameters 

Function set + ، - ، × ، ÷ 

Linking function Addition 

Mutation rate 0.00138 

Inversion rate 0.00546 

One-point and two-point recombination rates 0.00277 

Gene recombination 0.00277 

Fitness function RMSE 

Head size 8 

Number of gene 3 

Number of chromosomes 30 

In this particular study, the GEP model was employed to determine river flow by 
utilizing the GenXproTools5 software. Typically, the data was segregated such that 
75% of it was reserved for the training phase while the remaining 25% was allotted 
for the testing phase. The model’s implementation began by defining a set of initial 
parameters as per the user’s requirements and ended based on the user-defined stop 
criteria. Thus, the selection of accurate and appropriate input parameters plays a 
crucial role in the precision and efficacy of the proposed model for river flow 
estimation. Consequently, the optimal combination of input parameters was obtained 
through trial and error. Table 11.1 illustrates the recommended settings for GEP 
modeling that are utilized for predicting river flow. 

11.4 Random Forest (RF) 

Tree-based methods are nonparametric statistical methods for classification and 
regression analysis using recurrent algorithms (Breiman 1984). Random forest 
(RF) is a tree-based method introduced by Breiman (2001) for addressing classifi-
cation and regression issues. Some advantages of this model include estimating 
missing data, classifying significant variables, handling thousands of variables 
without eliminating them, running on large datasets, and being one of the most 
precise algorithms. The model’s key feature is its superior performance in measuring 
variable importance for determining its role in predicting the response. This model 
creates a forest that contains multiple decision trees, which split the dataset into 
different parts. A decision tree is created for each segment, and the majority voting 
prediction of these trees is used for overall prediction, culminating in the final 
prediction (Cutler et al. 2007) (Fig. 11.4).
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Fig. 11.4 Schematic steps of the RF model (Kunhare et al. 2020) 

11.4.1 Performance Evaluation of Models Using Statistical 
Indicators 

A wide range of indicators is available to assess the efficacy of machine learning 
models. In this study, several indicators, such as the coefficient of correlation (R), 
mean absolute error (MAE), root mean square error (RMSE), Nash-Sutcliffe coef-
ficient (NSE), and agreement index (Ia), were employed to evaluate various 
approaches and ascertain the optimal approach for estimating river flow rate. The 
calculation method for each of these indicators is as follows: 

R= 

n 

1 
QO -QO QF -QF 

n 

1 
QO -QO 

2 
: 

n 

1 
QF -QF 

2 

ð11:1Þ
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MAE= 
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N represents the number of samples, QO is the observed actual values, QF is the 
calculated values, QO is the mean of observed actual values, and QF is the mean of 
calculated values. R is a dimensionless measure that ranges from -1 to 1 and is used 
to determine the strength and type of the relationship between quantitative variables. 
MAE is expressed in cubic meters per second and indicates the difference between 
two values. It has a value between (+1, 0). RMSE, on the other hand, also has a 
value between (+1, 0) and measures the difference between the predicted value and 
the recorded values. The closer the values are to zero, the higher the model’s 
accuracy. NSE is a dimensionless and normalized parameter that assigns values 
between (1, -1) and is sensitive to limit values. Lastly, Ia is a dimensionless 
parameter that has values between (1, 0) and indicates the degree of freedom of 
the error, similar to NSE. 

11.5 Results and Discussion 

11.5.1 The Performance of the GEP 

The GEP machine learning model has successfully demonstrated its performance in 
estimating hydrological parameters in recent years. The training and testing dataset 
was randomly selected from the initial river flow rate dataset, and since there was no 
missing or missing data, no preprocessing was needed. The dataset was relatively 
small and was based on the time series of the river flow rate for five consecutive 
days. Therefore, one day was considered the basic day (QT). According to this, three 
days ago (QT-3), two days ago (QT-2), one day before (QT-1), and the base day (Qt) 
are selected as input variables, and one day after base day (QT +1) is selected as the 
output variable. Based on statistical indicators, the results of the GEP model in the



Approach

training and testing stages are shown in Table 11.2. In some of the statistical 
indicators, a decrease in the values in the testing stage compared to the training 
stage can be observed. This may be due to significant fluctuations on some days of 
the year, such as a sharp increase in rainfall causing a substantial increase in the river 
flow rate. However, the GEP model has demonstrated good results in both the 
training and testing stages, indicating that it can effectively estimate flow rate values. 
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Table 11.2 Statistical indicators of the GEP model 

Indices 

R MAE (m3 /s) RMSE(m3 /s) NSE Ia 
GEP Q Train 0.987 12.190 25.800 0.971 0.993 

Test 0.995 17.337 60.635 0.954 0.986 
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Fig. 11.5 The GEP model presents the tree structure for estimating the flow of the Dez River 

The GEP model’s desired patterns are presented in a tree structure for the best 
model in Fig. 11.5, and the best-extracted equation for the amount of river flow from 
5000 generations and three genes is presented in Eq. 11.6. Since GEP uses mathe-
matical functions and operators, the empirical relations of this algorithm also include 
linear and nonlinear combinations of mathematical functions and operators. For 
example, empirical GEP relationships may involve linear combinations of



ÞÞ

mathematical functions such as addition, multiplication, and subtraction. Also, these 
relations may include nonlinear combinations of mathematical functions such as 
logarithmic and power functions (Ferreira 2006). 

11 River Water Flow Prediction Rate Based on Machine Learning Algorithms:. . . 213

Fig. 11.6 Comparison of predicted values of the GEP model with observed values 

The evaluation of the model and its display between the observed and anticipated 
values are shown in Fig. 11.6. The GEP-based machine learning algorithm is a 
practical approach to evaluating the river flow. Model evaluation in machine learn-
ing is usually performed by regression analysis. Regression analysis indicates that 
the accuracy of each model is higher when it is closer to one (Farooq et al. 2020). 
Figure 11.6 shows that the regression line is about 1, and the model’s accuracy for 
this set is 0.97. Based on this, it is evident that the estimated values align with the 
observed values in most cases, indicating the acceptable accuracy of this model in 
estimating daily values of the Dez River flow: 

GEP-Q= Qt - - 9 � 13ð Þð Þ þ  
Qt- 3
- 4�74 -Qt- 1 ×Qt 

4 � 39þ 3 � 76ð Þ× Qt- 2 þ Qt- 2ðð  

þ
- 0�25-Qt 

Qt- 2 
þ 5 � 47×Qtð Þ  

Qt - Qt- 3 þ Qt- 3ð Þ ð11:6Þ 

11.5.2 The Performance of the Random Forest (RF) Machine 
Learning Model 

This study collected daily streamflow data from the Dez Basin Telezang station for 
11 years (2011–2022). As mentioned, a random forest (RF) machine learning model



Approach

based on data mining methods was employed to estimate daily streamflow. For this 
purpose, 75% of the data was allocated for the training phase, and the remaining 25% 
was for the validation phase. The streamflow training set from three days before the 
baseline to the baseline day was selected as the predictor variable, and the 
streamflow training set from the day after the baseline was used as the target variable. 
Furthermore, Fig. 11.7 shows the scatter plot of observed values against simulated 
daily streamflow values by the random forest model for the validation data. The plot 
indicates that the majority of the simulated and observed values, except for a few 
points on the diagonal, are close to each other, demonstrating a good agreement 
between the observed and simulated values. 
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Fig. 11.7 Scatter plot of observed and simulated daily discharge values at the Telezang station 
using the random forest model 

Table 11.3 Performance of random forest model on training and testing data 

Indices 

R MAE (m3 /s) RMSE (m3 /s) NSE Ia 
RF Q Train 0.956 26.926 21.795 0.889 0.965 

Test 0.926 26.483 16.010 0.843 0.952 

Additionally, Table 11.3 presents the values of five evaluation criteria used to 
quantify the performance of the RF model. The results in this table suggest that 
the model can estimate daily streamflow accurately at the Dez Telezang station, and 
the RF model performed well in streamflow estimation. This section discusses the 
validation process of the RF model to demonstrate its ability to estimate river flow. 

Table 11.3 presents the correlation (R) for the training and test data, which are 
0.956 and 0.926, respectively. The coefficient of determination (Ia) for the training 
and test data is determined to be 0.965 and 0.952, respectively, in this model. The 
Nash-Sutcliffe efficiency index is also obtained for the training and test data as 0.889 
and 0.843, respectively. Furthermore, the RMSE and MAE indices are 21.795 and 
26.926 for the training phase and 16.010 and 26.483 for the testing phase. Therefore,



since the test data is employed to evaluate model performance in research analysis, it 
can be concluded that the statistical indices, including Ia, R, NSE, RMSE, and MAE, 
obtained for precipitation and runoff in the test data are acceptable, and the perfor-
mance of the random forest model at this station is appropriate. 
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11.5.3 Comparison of Prediction Performance Between GEP 
and RF 

In order to ensure a suitable comparison of the two models’ performance, a quan-
titative analysis was conducted in this section. Five evaluation metrics were used to 
compare them; the results are presented in Tables 11.2 and 11.3. The coefficient of 
determination for both models was almost the same during the testing phase, with a 
slight relative superiority of the GEP model. On the other hand, the GEP model’s 
relative superiority was observed based on the Ia index despite a small difference in 
its value. The lower the value of the root mean square error (RMSE) metric, the 
better the model’s performance. The RF model produced slightly better results in the 
testing phase, but in the validation phase, the RF model was considered the superior 
model due to its significant difference. This was possible because the random forest 
model was created from data subsets, and the final output is based on ranking or 
majority average, which mitigates the problem of overfitting. The model’s perfor-
mance is considered better when the Nash-Sutcliffe efficiency (NSE) metric values 
are closer to one. Therefore, it was observed that the GEP model performed better 
than the RF model. 

Finally, based on the obtained results, it was determined that the GEP model 
performed better in most statistical indicators and was chosen as the superior model 
for river flow estimation. Moreover, Fig. 11.8 illustrates the observed and predicted 
daily river flow values. As depicted in the Fig. 11.8, there is no clear trend in the flow 
during the study period. In some years, the flow trend is increasing, while in some 
years, it is decreasing, and the river flow time series is fluctuating. 

Hydrological modeling is one of the most important processes in water resource 
applications (Goodarzi et al. 2022). Policy-makers and decision-makers of each 
region can use the prediction of hydrological processes, such as river flow intensity 
that can lead to floods, as a possible measure to reduce flood damage. By being 
aware of the possible occurrence of floods, policy-makers and managers can make 
informed decisions, such as designing an off-stream reservoir to store excess water 
during high flows and help protect the area more against floods (Chebii et al. 2022). 

One of the significant limitations of random forest is that too many trees can make 
the algorithm too slow for real-time predictions. These algorithms are fast to train, 
but predictions are slow after training. A more accurate forecast requires more trees, 
which results in a slower model. The speed of the random forest algorithm is fast 
enough in many real-world projects, but of course, there may be situations where 
project execution time is more critical and other methods are preferred.
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Fig. 11.8 Observed and computed daily river flow values 

Also, in this study, due to the lack of sufficient data for the years before 2011, it 
was not possible to examine and predict changes with more data. It is suggested that 
in future studies, in addition to using data with a longer time frame, the performance 
of different machine learning techniques such as artificial neural network (ANN), 
support vector machine learning (SVM), adaptive neuro-fuzzy interface (ANFIS) 
and multivariate adaptive regression spline, and (MARS) should be investigated. 

11.6 Conclusion 

Accurately estimating river flow is crucial for hydrological cycle studies, water 
resource management, and allocation. In this study, GEP and RF modeling 
approaches were utilized to estimate the daily flow of the Dez River. The objective



was to demonstrate the differences between the two models and evaluate their ability 
to model daily river flow. The river streamflow daily data was collected from the Dez 
Basin Telezang station for 11 years (2011–2022). The data from five consecutive 
days were also used for the data used in the models. According to this, three days ago 
(QT-3), two days ago (QT-2), one day before (QT-1), and the base day (Qt) are 
selected as input variables, and one day after base day (QT +1) is selected as 
the output variable. The findings indicated that the GEP model performed better 
than the RF model. The predicted value chart shows that the model accurately 
estimated the periodicity and cycles in the prediction data, demonstrating its excel-
lent flow estimation capabilities. Also, several indices such as correlation coefficient 
(R), mean absolute error (MAE), root mean square error (RMSE), Nash-Sutcliffe 
coefficient (NSE), and agreement index (Ia) were used to check the accuracy of the 
models. The accuracy values of R, MAE, RMSE, NSE, and Ia were 0.995, 17.337, 
60.635, 0.954, and 0.986 for the GEP model and 0.926, 26.483, 26.483, 301.3, 
26.483, 26.483, 17.337, and 0.986 for the Random forest model. According to the 
results during training and testing, the GEP model showed more precision and can be 
a suitable alternative to conceptual models in situations with limited data and 
information. Furthermore, the GEP modeling approach was faster than the RF 
model and delivered results in less time. 
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Chapter 12 
A Case Study in Evaluating Spatiotemporal 
Variations in Drought and Its Risk 
Assessment over Telangana Using 
Satellite Data 

Palagiri Hussain and Manali Pal 

Abstract As the critical parameter of the agricultural drought process, soil moisture 
(SM) has the potential to monitor agricultural drought, which can provide practical 
support for water management. Microwave remote sensing showed capability in 
estimating geophysical properties like SM and paved the way for a continuous 
agricultural drought monitoring. ECMWF’s (European Centre for Medium-Range 
Weather Forecasts) fifth-generation reanalysis data, ERA 5 Land data, provides 
monthly averaged global SM at 9 km resolution. Telangana state in India is a 
severely drought-prone state heavily impacted by significant water stress and 
water shortages due to frequent droughts. This increases the need for accurate 
agricultural drought characterisation in the state. Keeping in mind the necessity of 
drought monitoring system for Telangana and availability of large-scale ERA 5 SM 
data in this study, an agricultural drought index, namely, Standardised Soil Moisture 
Index (SSMI), is derived, to characterise agricultural drought in Telangana, India. 
SSMI’s performance is then evaluated by comparing it with meteorological-based 
indices Standardised Precipitation Index (SPI) and Standardised Precipitation 
Evapotranspiration Index (SPEI). The comparison of SSMI with SPI and SPEI 
shows that SSMI when compared with SPI and SPEI performs well in monitoring 
agricultural drought and can be used to develop effective drought warning and risk 
management. Furthermore, to study the drought characteristics, run theory is applied 
for SSMI, SPI and SPEI to identify grid-wise drought events and characterise them 
in terms of duration (Dd), frequency (Df), intensity (Di) and peak (Dp). The results 
show that SPEI characterises an overall increase in Dd, Df, Ds and Dp during 
2003–2022 compared with SSMI and SPI, mainly due to the increasing potential 
evapotranspiration. In contrast, SSMI and SPI do not reveal this phenomenon since 
SM and rainfall alone does not exhibit a significant change overall. For all the four 
drought characteristics, Dd, Df, Ds and Dp, SPEI showed greater drought risk 
whereas SPI/SSMI indicated lower drought risk in terms of Dd and Ds. This also
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suggests that drought occurred more frequently but with shorter duration and more 
severity in Telangana from 2003 to 2022. All indices can roughly capture the major 
drought events, but SPEI-detected drought events are overall more severe than 
SSMI. There is strong heterogeneity in the spatial distribution of drought events as 
identified by all the indices. These findings could contribute to a better understand-
ing of spatiotemporal patterns of agricultural droughts and provide a reference for 
future drought for the study area.
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Keywords Agricultural drought · Soil moisture · Drought indices · Remote 
sensing · Standardised Soil Moisture Index (SSMI) · Standardised Precipitation 
Index (SEI) · Standardised Precipitation Evapotranspiration Index (SPEI) · Run 
theory 

12.1 Introduction 

Hydrologic hazards refer to extreme occurrences involving water distribution, 
movement and occurrences, resulting in adverse economic, social and environmental 
impacts, as well as loss of life (Wilhite 2000). Floods, droughts, landslides and river 
scour and deposition are examples of hydrologic hazards. Unlike other hazards, 
drought is the most intricate yet least comprehended, and it affects a vast geograph-
ical region, causing harm to more people than any other hazard (Hagman et al. 
1984). The onset and end of a drought event are hard to determine, as the effects 
develop slowly over an extended period, lasting years even after the event’s con-
clusion. A drought can last for a short or long time, ranging from a few weeks to 
several years, and it can have catastrophic consequences for water supplies and the 
agriculture sector. Drought is a naturally occurring event where there is a lack of 
water during the process of water distribution. The occurrence of drought is a 
multifaceted and gradual process that can have far-reaching consequences. It can 
result in devastating impacts on agriculture with decreased crop yields, food scarcity 
and environmental degradation, ultimately causing significant economic and societal 
harm (Mishra and Singh 2010; Kim et al. 2015; Park et al. 2016; Das et al. 2022a, 
2022b; Kumari and Shukla 2023; Saikumar et al. 2023). It is crucial to analyse the 
characteristics of drought events to enable governments to implement preventive 
measures against such events. Drought frequency analysis can aid in the selection of 
appropriate measures for providing relief during droughts and managing drought 
risks. Drought event identification and characterisation are necessary to perform 
such drought frequency analysis. 

Drought event identification and characterisation rely on the use of appropriate 
drought indices to analyse and understand the occurrence and impact of drought 
events. In general, droughts are typically classified based on different water factor 
deficits (Wu et al. 2020; Das et al. 2021). Meteorological drought occurs when there 
is a prolonged lack of precipitation. On the other hand, agricultural drought refers to 
a situation where crops are unable to receive sufficient water during a crucial growth 
phase, leading to stunted growth, crop yield reduction or even crop failure due to



declining soil moisture (SM) (Ding et al. 2021). The steps in drought event identi-
fication and characterisation include the selection of suitable drought indices and 
extraction of relevant characteristics (duration, frequency, intensity and peak) asso-
ciated with drought events. 
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At present, various studies on drought event identification and characterisation 
have utilised only Standardized Precipitation Evapotranspiration Index (SPEI) and 
Standardized Precipitation Index (SPI) (Zhang et al. 2020; Jamro et al. 2019; Ma  
et al. 2023; Bisht et al. 2019; Wang et al. 2017; Xu et al. 2015; Zhou et al. 2014; 
Sharma and Goyal 2020; Hinge et al. 2022), which may not provide an accurate 
depiction of the spatiotemporal patterns of different drought events. Therefore, it is 
crucial to choose drought indices that are effective in characterising both meteoro-
logical droughts and agricultural droughts. In this study along with the two meteo-
rological drought indices SPEI and SPI, one agricultural drought index Standardised 
Soil Moisture Index (SSMI) is used for drought event identification. Both the SPI 
and SPEI are both capable of analysing drought over multiple timescales. However, 
the SPI only takes into account precipitation, and thus, it cannot fully capture 
drought conditions caused by rising temperatures. On the other hand, the SPEI is 
more appropriate for assessing the impact of global warming on the severity of 
meteorological drought because it considers both precipitation and evapotranspira-
tion (Yao et al. 2018). SSMI is used as agricultural drought index as it can have 
multiple timescales and can show more comprehensive agricultural drought state 
(Tao and Zhang 2020). The SPI and SPEI are used in this study because agricultural 
drought links various characteristics of meteorological drought to agricultural 
impacts directly, focusing on rainfall shortages (SPI), differences between actual 
and potential evapotranspiration (SPEI), soil water deficits (SSMI), etc. (Łabędzki 
and Bąk 2014). 

The run theory is used in this study for drought identification and characterisation. 
Run theory is a time series analysis method, which has been widely used in the 
drought identification process (Zhang et al. 2020; Jamro et al. 2019; Ma et al. 2023; 
Bisht et al. 2019; Wang et al. 2017; Xu et al. 2015; Zhou et al. 2014). Its basic 
problem is determining the threshold level. In previous studies, only a single 
threshold level is set in the run theory (Zhang et al. 2020; Jamro et al. 2019; Ma  
et al. 2023). This single threshold procedure is simple, but it is tending to over-/ 
incomplete identifying the drought events, affecting the accuracy of the results. 
Therefore, it is necessary to further optimise and test the more thresholds for drought 
identification. This would ensure greater consistency between the identified drought 
events and those that have occurred in reality. 

12.2 Rational of the Study 

Prior studies have primarily focused on individual drought events, with limited 
attention given to exploring the connections among various types of drought. 
Nevertheless, given the impact of climate change and human activities, the



associations between different types of droughts are likely to be affected, yet 
research on the response relationships and underlying mechanisms is inadequate. 
This study aims to identify and characterise both meteorological and agricultural 
drought events using ERA 5 Land data. Various studies on droughts have primarily 
relied on data collected from observation stations. Although this information is 
considered dependable, the number of meteorological stations within these networks 
is often insufficient to provide a comprehensive representation of the spatial distri-
bution of meteorological parameters (Shi et al. 2020). With respect to spatial 
coverage, grid-based datasets can serve as an alternative to station observations for 
drought event identification (Shi et al. 2020). So, in this study, ERA 5 Land gridded 
rainfall, temperature and SM data is used to derive SPI, SPEI and SSMI to identify 
and characterise meteorological and agricultural drought events. 

224 P. Hussain and M. Pal

The state of Telangana in India is highly vulnerable to drought and relies 
primarily on rainfall as a water source. In 2015, the Telangana government declared 
seven out of its ten districts to be experiencing drought conditions (Anuradha 2016). 
In recent years, nearly half of the mandals in Telangana have reported inadequate 
rainfall, with two-thirds of the population engaged in agriculture, which is particu-
larly susceptible to the impacts of droughts. This increases the need for accurate 
drought event identification and characterisation in the state. Given the importance 
of identifying and characterising drought in Telangana, and the availability of 
extensive ERA 5 reanalysis data, this study aims to apply the run theory in conjunc-
tion with the SPI, SPEI and SSMI to characterise and identify drought events in this 
drought-prone state. 

12.3 Limitations of the Study 

This study employs a multi-threshold run theory approach based on the SPI, SPEI 
and SSMI which is used to identify drought events. Typically, run theory uses a 
single threshold; however, our study utilises multiple thresholds. As SPI, SPEI and 
SSMI have same classification levels in terms of mild, moderate, severe and extreme 
wet/drought conditions, using multiple threshold run theory does not pose any 
issues. Nonetheless, implementing multi-threshold run theory with other drought 
indices that have different classification levels can be challenging. Although some 
other drought indices offer more detailed insights by taking into account more 
climatic variables, we could not utilise them due to this limitation. 

12.4 Study Area 

The state of Telangana (Fig. 12.1) is a semi-arid Indian state that experiences severe 
droughts frequently. Its primary source of water is rainfall, and it is situated between 
15.83°N to 19.91°N and 77.24°E to 81.79°E. Most of the state’s land is semi-arid



due to low ground water levels and little rainfall, and it is drained by the two major 
rivers Godavari and Krishna as well as numerous smaller rivers. With an average 
annual rainfall of 905.4 mm, the monsoon season in the state lasts from June through 
September. The State’s total geographic area is 276.95 lakh acres, of which 49.07% 
is under cultivation and 24.07% is covered by forest, and 9.02%, 7.46% and 5.42% 
of all land is either fallow, used for non-agricultural purposes and land unusable for 
cultivation, respectively (Telangana State at a Glance 2021, Telangana government). 
The remaining 4.96% is made up of cultivable waste, permanent pastures and other 
grazing lands. In Telangana, red soils predominate making up for 48% of the total 
land area. Black cotton soils (25%), alluvium (20%) and rocks and boulders (7%) are 
the other soil types found in the state. Major monsoon crops grown in Telangana 
include cotton, paddy, maize, soybeans and pulses. Major rabi crops in the state 
include paddy, groundnuts and Bengal gram (Agriculture Action Plan 2021–2022 
(2022), Telangana Government). The state’s crop production is primarily composed 
of food crops. The agricultural crisis in Telangana is made worse by the state’s 8–9 
months of dry weather each year. 
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Fig. 12.1 Study area map
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12.5 Materials and Methods 

12.5.1 Datasets 

Monthly gridded rainfall, temperature and SM datasets are used in this study to 
derive SPI, SPEI and SSMI. Monthly gridded rainfall in m, 2 m air temperature in K 
and volumetric soil in m3 /m3 for Telangana from 1991 to 2022 is extracted from 
ERA5 Land monthly data. The ERA5 is a reanalysis data and stands for the fifth 
generation of the European Reanalysis (ERA) dataset. It is produced by the 
European Centre for Medium-Range Weather Forecasts (ECMWF) and is based 
on a combination of satellite and ground-based observations, as well as numerical 
weather prediction models. The dataset is available at a spatial resolution of 0.1° 
(approximately 10 km) and covers the period from 1950 to the present day 
(Table 12.1). 

12.5.2 Drought Indices 

The Standardised Soil Moisture Index (SSMI), Standardised Precipitation Index 
(SPI) and Standardised Precipitation Evapotranspiration Index (SPEI) are used to 
determine drought characteristics (duration, frequency, intensity and peak) for 
Telangana. Both the SPI (McKee et al. 1993; McKee 1995) and SPEI (Vicente-
Serrano et al. 2010) are used in this study to quantify the meteorological drought and 
SSMI for agricultural drought identification. The SPI and SSMI uses the 
two-parameter Gamma distribution to fit the cumulative monthly rainfall and SM 
time series. Once the gamma probability density function is fitted to monthly rainfall 
and SM time series, SPI and SSMI are computed mathematically as following 
equation: 

SPI= 
RFmn -RFm 

σm 

Table 12.1 Datasets used in the study 

Datasets 
used 

Spatial/temporal 
coverage 

ERA5 
Land 

Rainfall 
(m) 
Temperature 
(K, 2 m air) 
Soil moisture (m3 /m3 , 
0–7 cm) 

0.1°/monthly https://cds.climate.coperni 
cus.eu/ 
(Muñoz-Sabater et al. 2021)

https://cds.climate.copernicus.eu/
https://cds.climate.copernicus.eu/
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Table 12.2 Classification of 
SPI and SPEI for different 
drought levels (McKee et al. 
1993; McKee 1995; Vicente-
Serrano et al. 2010) 

Level of drought SPI, SPEI 

Extreme wet ≥2.0 
Severe wet 1.5–2 

Moderate wet 1–1.5 

Mild wet 0.5–1 

Near normal -0.5–0.5 

Mild dry -1–-0.5 

Moderate dry -1.5– -1 

Severe dry -2–-1.5 

Extreme dry ≤-2.0 

SSMI= 
SMmn - SMm 

σm 

where RFij and SMij are the rainfall and SM for the mth grid and nth time period. RFm 
and SMm are the mean rainfall and SM for the mth grid and σm is the standard 
deviation of rainfall and SM for the mth grid for SPI and SSMI, respectively. The 
ERA5 Land monthly gridded rainfall and monthly gridded SM from 1991 to 2022 
are used in this study to derive SPI and SSMI from 2001 to 2022. 

The calculation of the SPEI is analogous to that of the SPI. However, in place of 
rainfall data, the monthly difference between the amount of precipitation and 
potential evapotranspiration (PET) is used, resulting in the climatic water surplus/ 
deficit (wb = RFm - PETm). This data is then fitted using a three-parameter 
log-logistic distribution. Once the wb series is fitted using log-logistic distribution, 
SPEI is calculated as 

SPEI=V -
C0 þ C1V þ C2V2 

1þ d1V þ d2V2 þ d3V3 

In the above equation, V = - 2 ln  Pð  Þ for P ≤ 0.5 and C0, C1, C2, d1, d2 and d3 
are constants. P here is the probability of exceeding a determined wb value. If 
P > 0.5, then P is replaced by 1 – P. 

ERA5 Land monthly gridded rainfall and temperature from 1991 to 2022 is used 
in this study to derive SPEI. Both indices use the probability density functions to fit 
the time series (RF for SPI and RF - PET for SPEI) and then use the inverse 
standard normal distribution to transfer the cumulative probability density functions 
to the drought index value. Positive/negative values of the SPI and SPEI indicate 
wet/dry conditions. Different levels of drought based on SPI and SPEI are shown in 
Table 12.2. R Studio is used to calculate SPI, PET and SPEI provided the inputs 
ERA 5 rainfall and ERA 5 temperature.
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12.5.3 Run Theory 

Drought events and their characteristics, including annual drought frequency (Df), 
annual drought duration (Dd), drought intensity (Ds) and drought peak (Dp) at each 
grid, are determined by run theory (Guerrero-Salazar and Yevjevich 1975). The 
schematic diagram of the determination of drought events and their characteristics 
based on the SPI, SPEI and SSMI time series is shown in Fig. 12.2. Run theory is 
applied using multiple thresholds at x0 = - 0.5, x1 = - 1, x2 = 0.5 using three 
indices where x0, x1 and x2 are indices’ values (Ma et al. 2023). Using these three 
thresholds at x0, x1, x2,drought events are identified as follows using run theory: 

Step 1: Check if the monthly SPI/SPEI/SSMI value is below x0. If yes, it indicates 
occurrence of drought and mark it as a potential drought event. Based on this, 
drought events E1, E2, E3, E4, E5 and E6 are selected as shown in Fig. 12.2. 

Step 2: Remove any minor drought event from above selected events in step 
1, which only lasts for one month and does not reach the threshold x1. Accordingly 
E1 is considered as minor drought event and E2, E3, E4, E5 and E6 are screened for 
next step. 

Step 3: Combine any adjacent drought events which have an interval of one 
month and do not reach the threshold x2, into one drought event. Accordingly, E2 
and E3 are combined into one event. 

So, finally from Fig. 12.2, E2–E3, E4, E5 and E6 are the four drought events 
identified based on run theory with multiple thresholds. 

Fig. 12.2 The schematic diagram showing the identification of drought events
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Fig. 12.3 Overall 
methodology workflow 

Once the drought events are identified, drought parameters Df, Dd, Ds and Dp are 
determined. Annual drought frequency (Df) is the number of drought events in the 
study period divided by the number of years. Drought duration for a single drought 
event is the difference between the start time (ts) and the end time (te) of drought 
event. Annual drought duration (Dd) is the total duration of drought events in months 
divided by the total number of years. Drought intensity (Ds) for each drought event 
is determined as sum of SPEI values divided by drought duration for that particular 
drought event. Drought peak (Dp) at each grid is the smallest SPEI value for the 
entire time period. 

The overall methodology of the study is shown in Fig. 12.3 where SPI, SPEI and 
SSMI are derived using rainfall, temperature and SM data. Run theory is then 
applied to these three indices and the drought characteristics, Df, Dd, Ds and Dp, 
are determined. 

12.6 Results 

In this study, the monthly state averaged SPI, SPEI and SSMI for Telangana state 
from 2003 to 2022 is calculated and presented in Fig. 12.4. All the three indices have 
same classification of different classes of drought from mild drought (-1 ≤ SPI/ 
SPEI/SSMI ≤-0.5), to moderate drought (-1.5 ≤ SPI/SPEI/SSMI ≤-1), to severe 
drought (-2 ≤ SPI/SPEI/SSMI ≤ -1.5) and to extreme drought (SPI/SPEI/SSMI 
≤-2). Irrespective of classes of drought (near normal, mild, moderate, severe and 
extreme), all the indices are able to show a synchronous pattern in representing 
drought (negative SPI/SPEI/SSMI) or wet conditions (positive SPI/SPEI/SSMI) 
with a monthly delay of one or two months by SSMI. This time delay by SSMI 
shows the translation of meteorological drought represented by SPI/SPEI to agricul-
tural drought represented by SSMI. However, many severe meteorological drought 
events did not lead to agricultural drought. This may be due to water storage or



groundwater recharge, and the propagation time of meteorological drought to agri-
cultural drought is different under different land-use types (Zhou et al., 2021). 
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Fig. 12.4 Monthly state-averaged time series plot of SPI, SPEI and SSMI in Telangana during the 
period of 2003–2022 

Drought event identification and characterisation are a prerequisite to drought 
frequency analysis and are related to drought risk often characterised by its duration, 
frequency, intensity and spatial extent (Xu et al. 2015). In this study, using run 
theory drought events are identified for Telangana, and annual drought duration 
(Dd), annual drought frequency (Df), drought intensity (Ds) and drought peak (Dp) 
are calculated. Figure 12.5 displays the spatial patterns of drought characteristics Dd, 
Df, Ds and Dp determined from drought events identified by one-month SPI, SPEI 
and SSMI over Telangana from 2003 to 2022. In Fig.12.5, high meteorological/ 
agricultural drought risk is represented by blue colour and low meteorological/ 
agricultural drought risk by yellow colour for all the four drought characteristics. 
In terms of drought peak (Dp), all the three indices show very low values (blue



colour). It means in terms of dry only conditions, that is, if there is a drought, there is 
higher risk of extreme droughts for the entire Telangana represented by SPI/SPEI 
with SSMI indicating even more intense drought risk at very few regions indicated 
by yellow colour. In terms of drought frequency (Df) too, all the three indices 
indicated higher meteorological/agricultural drought risk (blue colour). The spatial 
distribution of Ds is consistent with that of Dd for all the three indices. For all the four 
drought characteristics, Dd, Df, Ds and Dp, SPEI showed greater drought risk 
whereas SPI/SSMI indicated lower drought risk in terms of Dd and Ds. This also 
suggests that drought occurred more frequently (higher Df) but with shorter duration 
(lesser Dd by SPI, SSMI) and more severity (higher Dp) in Telangana from 2003 to 
2022. For meteorological drought risk analyses, SPEI and SPI showed different 
spatial pattern. This is due to input parameters provided to calculated SPI and SPEI. 
SPEI considers both rainfall and precipitation; SPI considers only rainfall. Because 
of this meteorological drought risk assessed by SPEI based run theory, it should be 
considered more accurate than that of SPI-based run theory. 
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Fig. 12.5 Annual drought duration (Dd), annual drought frequency (Df), drought intensity (Ds) and 
drought peak (Dp) as determined by multi-threshold run theory
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12.7 Conclusions 

The drought indices, that is, SPI, SPEI and SSMI, are analysed for the relation 
between meteorological drought and agricultural drought. The translation of mete-
orological drought to agricultural drought is represented by a time delay of a month 
or two by SSMI compared to SPI and SPEI. The investigation into the relation 
between meteorological drought and agricultural drought provides better under-
standing of the process of drought propagation and could aid in enhancing drought 
preparedness and alleviation measures. 

The SPI, SPEI and SSMI are also analysed to identify drought event character-
isation over Telangana to assess drought risk in terms of Dd, Df, Ds and Dp. The SPI 
and SSMI displayed a similar pattern in all the four drought characteristics. All the 
three indices displayed similar spatial distribution of Ds and Dd. The SPEI 
characterises higher values in Dd, Df, Ds and Dp which can be largely attributed to 
increasing PET. In contrast, the SPI did not demonstrate these higher patterns, as it 
solely considers rainfall and does not show a higher Dd and Ds. This emphasises the 
significance of PET in explaining the spatial aspects of drought dynamics. These 
findings indicate that the escalating PET has the potential to intensify drought 
conditions, indicating a worrisome future considering the projected increase in 
PET due to a warming climate (Li et al. 2020). Thus, it is plausible that the SPEI 
may be more appropriate than the SPI index to assess drought risk related to climate 
change. 

12.8 Future Scope and Recommendations 

In this study, the time delay between meteorological drought and agricultural 
drought was seen only by a time series analysis, and any linear or nonlinear 
relationship between them was not performed. A correlation analysis between both 
the droughts would have given more in-depth results of how drought is translated 
from meteorological drought to agricultural drought. Given the influence of climate 
change and human interventions, the relationship between these two types of 
droughts and their propagation is complex and is not limited to linear correlation 
but may also involve nonlinear connections (Leng et al., 2015). Zhou et al. (2021) 
revealed that the translation time from meteorological to agricultural drought varied 
across different land-use categories. Thus, it is crucial to account for both linear and 
nonlinear relationships between different droughts. Drought risk in this study is 
assessed individually in terms of Dd, Df, Ds and Dp. But the better risk assessment 
will be calculated by a joint probability distribution between any of these two 
characteristics (Dd_Df, Dd_Ds, Dd_Dp, Ds_Df, Df_Dp, Dd_Dp) or three characteris-
tics (Dd_Df_Ds, Dd_Df_Dp, Dd_Ds_Dp) from the four drought characteristics. 

Long-term plans are necessary for reducing the risk of drought, and early warning 
should be viewed as a means of effectively reducing the increasing susceptibility of



communities and assets. Regarding early warning systems for drought, it is widely 
acknowledged that establishing an efficient system is crucial for identifying risks and 
closely monitoring farmers’ vulnerability levels. A dependable and lasting drought 
early warning system relies on multi-level governance, institutional setups and 
frameworks that utilise risk assessment characteristics like Dd, Df, Ds and Dp for 
gradual hazards like drought. 
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Chapter 13 
Drought Modeling Through Drought 
Indices in GIS Environment: A Case Study 
of Thoubal District, Manipur, India 

Denish Okram and Thiyam Tamphasana Devi 

Abstract In this study, drought-affected zones were modeled using satellite data 
and geographical information system (GIS) techniques in Thoubal district, Manipur 
(north eastern part of India), from 2013 to 2021. Different drought indices, that is, 
standard precipitation index (SPI), temperature condition index (TCI), normalized 
difference vegetation index (NDVI), vegetation condition index (VCI), NDVI devi-
ation (DevNDVI), and vegetation health index (VHI), were used in the modeling. From 
the results, the study area has been classified into five classes (severely dry, moder-
ately dry, near normal, mildly wet, and moderately wet), and mostly the study area 
witnesses two drought conditions, that is, moderate drought and near normal. Thus, 
drought-like conditions occurred in the years 2015, 2016, 2018, 2019, 2020, and 
2021 while in the years 2013 and 2014, the study area experienced both moderate 
drought and near normal condition in different parts of the district, and in 2017, the 
whole district received a sufficient amount of precipitation and experienced a near 
normal condition. A comparison of the predicted results with the collected data was 
done, and it was observed that the crop yield is high when the near normal condition 
is predicted for the year 2017. In support of the validation of predicted results, a 
community opinion-based survey was also conducted by interacting with the local 
people at various parts of the study area. Their opinions of crop production affected 
either by drought or flood are found to be relevant with the predicted results of the 
present study. 
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13.1 Introduction 

River, sediment, and hydrological extremes are closely linked, as these strong 
interrelationships can lead to a range of natural hazards (Das et al. 2022a, b, c) 
such as reduced water availability, impacts on agricultural productivity, damage to 
infrastructure, loss of life, and injury. The impacts of these hazards can be significant 
and long-lasting and can have far-reaching economic, social, and environmental 
consequences. Rivers and its tributaries are similar with the veins of human and carry 
everything along with the flow including sediments, which is one of the most 
problems creating discharges. Sediment discharge in rivers is due to soil erosion in 
upstream side of the river, which is caused by the escalating anthropogenic influence 
(Saikumar et al. 2022). Long-term continuous deposition of sediments decreases 
water depth and becomes a caused for hydrological extreme events such as drought. 
Drought is one of the hydrological extreme events that impact the ecosystem of 
water resources management and living things on earth in the short term as well as in 
the long term (Saikumar et al. 2022). It is defined as prolonged shortages of water 
supply due to the lack of significant precipitation, over utilization of water, siltation, 
and sedimentation of rivers and lakes and interrupted weather patterns that disturb 
the water cycle. It is also a slow recurring and unpredictable disaster that leads to 
serious impacts on livestocks, humans, and the environment throughout the world 
and is more powerful than other natural disasters (Temesgen et al. 2001). Meteoro-
logical (Das et al. 2021a) and agricultural drought (Goyal and Sharma 2016; Sharma 
and Goyal 2020; Das and Umamahesh 2022) causes change in climate patterns, 
precipitation deficits, and increased evapotranspiration. Managing these hazards 
requires a comprehensive approach that considers the underlying causes of hydro-
logical extremes (Das et al. 2022a, b; c). This includes implementing measures such 
as water conservation practices, sediment management strategies, and drought 
control structures to mitigate the impacts of these phenomena. It also involves 
improved communication and collaboration between stakeholders, including gov-
ernments, water resource managers, and communities. Some of the most challenging 
problems that human societies currently encounter are rising food demand due to 
increase in population (Das et al. 2022a, b, c) and environmental stressors, which 
have prompted new studies to look at how droughts affect food production 
(Orimoloye 2022). Another major problem faced all over the world is the drying 
up of rivers and lakes (Bond et al. 2008; Wu et al. 2021; Gupta et al. 2023), which are 
the main source of water supply to all the living lives. India is also a country that 
depends on agriculture, and India’s agriculture is solely dependent on fresh water 
resources, which is likely a result of irregular rainfall patterns and extended droughts 
(Purohit et al. 2021; Das et al. 2022a, b, c; Rawat et al. 2022). 

Today, several technologies are developed to predict and model the drought 
pattern, and one of the most reliable and effective is integrated approach of satellite 
data with geographical information system (GIS) techniques (Yin et al. 2014; Singh 
and Devi 2022; Zhao et al. 2022) through drought indices (Ihinegbu and Ogunwumi 
2022; Zhang et al. 2023) such as standard precipitation index (SPI), normalized



difference vegetation index (NDVI), temperature condition index (TCI), vegetation 
condition index (VCI), vegetation health index (VHI), etc. or through multi criteria 
decision-making methods such as analytic hierarchy process (AHP) and multi-
influencing factors (MIF). Drought modeling can help inform the development of 
effective management strategies by providing information on the onset, duration, 
and severity of drought conditions (Das et al. 2022a, b, c; Sharma and Goyal 2020). 
This information can be used to inform decision-makers about water allocation, 
drought preparedness measures, and the implementation of drought response plans. 
Unlike many natural disasters, drought is barely noticeable and is difficult to 
recognize when the drought will start, and the end of a drought can take around 
days, months, or even more as the onset of the drought is gradual (Mosley 2015; Das 
et al. 2021a; b). Most of the droughts occur when usual weather patterns are 
disturbed, which leads to a drastic change in the water cycle. Therefore, nowadays, 
satellite-based remote sensing techniques are used to assess high spatial resolution 
and high temporal resolution for observing the Earth (Gao et al. 2021). The surface 
characteristics of land and atmosphere can be derived from remotely sensed images. 
Currently, researchers are demanding for an increasing development of remote 
sensing data (high-resolution images) for effective drought monitoring. 

13 Drought Modeling Through Drought Indices in GIS Environment: A Case. . . 237

Hammouri and El-Naqa (2007) conducted a study on the assessment of drought 
conditions prevailing in Amman-Zarqa basin, northern Jordan, using different 
drought indices using GIS and remote sensing techniques. In this study, the drought 
was assessed using two different indices (SPI and NDVI). Using SPI, drought 
severity has been analyzed, and for selected rainfall stations, the annual SPI values 
for 6 and 12 months from 1975 to 2000 have been analyzed and found an important 
phenomenon that the dry seasons return in a similar way year after year. The months 
of October, November, December, January, and February were used in an investi-
gation of NDVI drought severity for the years 1981–2003. According to the study’s 
findings, the Amman-Zarqa basin is now experiencing drought conditions. Kloos 
et al. (2021) in the south east region of Germany, Central Europe, conducted 
research on agricultural drought detection using moderate-resolution imaging 
spectro-radiometer (MODIS)-based vegetation health indices. The main goal of this 
project is to monitor agricultural drought utilizing (MODIS) NDVI, land surface 
temperature (LST), TCI, VCI, and VHIon water scarce regions and the scope where 
these drought indices can be used to identify drought conditions. In order to assess 
the derived drought indices VCI, TCI, and VHI, soil moisture index data from 2001 
to 2020, combined with yield data for agricultural crops and land use data, were 
employed, and it is observed that in the years 2003, 2015, and 2018, the study area 
was unusually hot or dry, enduring severe drought conditions, which lead to a great 
loss in agriculture. Abuzar et al. (2017) conducted a study on Drought Risk Assess-
ment Using Remote Sensing and GIS: A Case Study of District Khushab, Pakistan. 
By the use of temporal images from NDVI (2003, 2009, and 2015) based on Landsat 
enhanced thematic mapper (ETM) and meteorological based SPI, this work makes 
an effort to identify areas that are geographically and temporally at risk for drought 
in agriculture, in addition to drought due to weather. The study area was separated 
into three zones: no drought, slight drought, and moderate drought. Between the

https://modis.gsfc.nasa.gov/about/
https://modis.gsfc.nasa.gov/about/


NDVI, SPI, and rainfall anomaly, a correlation analysis was conducted. A spatial 
temporal drought risk map was created after correlating rainfall and NDVI. The 
vegetation cover classes were calculated using this NDVI, and a trend in their shift 
was also discovered. Using SPI values over a 15-year period, drought risk was 
detected. NDVI and SPI readings were used in a linear combination weighted 
approach to evaluate the impact of the drought. The results showed that 41% of 
the district has no drought, 28% has a slight drought, and 30% has a moderate 
drought. According to the study, the southern portion of District Khushab had a 
deficit in rainfall and little vegetation, making it the region with the highest preva-
lence of drought. Patil et al. (2021) conducted a study on the analysis of agricultural 
drought intensity and geographic extent in Manganga watershed of Maharashtra, 
India. The major goal of the study is to use VHI, which incorporates NDVI, VCI, 
LST, and  TCI, to examine the severity of the agricultural drought. Clear Landsat 
satellite data availability for the research area is taken into account for the temporal 
analysis of drought. In this work, Landsat data are used to examine the Vegetation 
Health Index during the dry seasons of 2001, 2010, 2015, 2017, and 2019. The 
analysis makes precise measurements of how changes in the drought analysis affect 
the NDVI, LST, and VHI using satellite data, and it is found that mild and moderate 
drought conditions are predominant across the entire study area in exception of the 
nearby areas along the river. Singh and Devi (2022) conducted a study on estimating 
drought-prone areas in low-lying topography of India’s north-eastern region (Imphal 
west district in Manipur state). In their study, it was observed in the year 2019 that a 
condition similar to drought with a terrible amount of available surface water arises, 
which seriously affects the agriculture and to the livelihood of the region. To forecast 
drought-prone areas, two methods were used, that is, AHP and MIF. The drought 
zone region was summarized considering several parameters (like rainfall, temper-
ature, slope, infiltration, vegetation cover, density, soil) as acute (22.8% by AHP and 
39.4% by MIF), moderate (60.1% and 54.7%), critical (16.1% and 5.5%), and 
extreme (0.9% and 0.3%). After analyzing all the data, it is recommended that 
MIF approach is more precise displaying 43.7% of drought zones are acute and 
51.32% are moderate drought-prone areas. 
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The aim of this study is to evaluate drought using satellite data and GIS tech-
niques in Thoubal district, Manipur, and the main objective of this study is to 
identify and map drought-prone area using drought indices, that is, SPI, TCI, 
NDVI, VCI, VHI, and DevNDVI(NDVI deviation) for the nine conjugative years, 
that is, from 2013 to 2021. 

13.2 Study Area 

Thoubal district (Fig. 13.1) is one of Manipur’s districts in northeastern India. The 
district is located in eastern Manipur Valley, where it makes up a bigger portion of 
the state. The district covers an area of 324 km2 . It is located between 23°45′–24°45’ 
N latitudes and 93°45′–94°15′ E longitudes. The district is generally located at an



altitude of 790 meters above mean sea level. The district hardly has some hillocks 
and hills with allow height. Of these, Punam Hill is located at a height of 1009 m 
above sea level. Fig. 13.2 shows the digital elevation model (DEM) and slope of the 
study area. 
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Fig. 13.1 Location of study area (Thoubal District) 

Fig. 13.2 DEM (left) and slope map (right)
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The major rivers in the study area are the Imphal river originating from Senapati 
district and the Thoubal river emerging from the hill ranges of Ukhrul district flows 
through Thoubal district. It has a moderate climate varying seasonally. The major 
source of income for the population of Manipur depends on agriculture and the 
activities concerning to it. Seventy percent of the population in the district is 
associated with farming since the topography of Thoubal district facilitates irrigation 
significantly. Sugarcane, pineapple, and rice are the most cultivated crops. Animal 
husbandry and fishing also support to the economy of the district. 

13.3 Methodology 

The study is conducted using two different sources, that is, metrological data and 
satellite data, and Fig. 13.3 displays a conceptual breakdown of the methodology 
that was used. Metrological data has been collected for nine conjugative years from 
2013 to 2021. Annual rainfall for nine rain stations has been used to derive SPI. In  
our study area, there is only one rainfall station, so we have collected other eight 
rainfall stations from another district as well. For every station, SPI has been

Fig. 13.3 Flowchart of methodology



calculated, and those calculated SPI are being interpolated with the help of inverse 
distance weighting (IDW) through GIS tool (ArcGIS® ). From the interpolated SPI 
map, our study area is been extracted. From the satellite data again, two sources have 
been used: (i) MODIS data and (ii) Landsat-8 data. MODIS data has been collected 
for 9 years (2013–2021), and from those data, LST (maximum and minimum) has 
been derived, and using a formula given in Eq. 13.3, TCI from 2013 to 2021 has been 
calculated. From the Landsat-8 data, NDVI has been derived using GIS tool for nine 
conjugative years, that is, 2013–2021. From NDVI, VCI and DevNDVI have been 
calculated for the same 9 years, and from TCI and VCI, VHI is again calculated. All 
the indices have been reclassified, and using weighted overlay tool, drought-prone 
zone is predicted.
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13.3.1 Drought Indices 

13.3.1.1 SPI 

The SPI is a drought monitoring precipitation data over a period of time. It has an 
intensity scale where the SPI positive values denote wet conditions and the SPI 
negative values show drought conditions. Its purpose is to standardize the rarity of 
current drought. The formula of SPI is given in Eq. 13.1 as: 

SPI = 
Xi -Xi meanð Þ  

σ
ð13:1Þ 

where Xi = significant precipitation, Ximean = average precipitation, σ = standard 
deviation of the selected time. The range of SPI value is given in Table 13.1. 

13.3.1.2 NDVI 

The NDVI is a commonly used vegetation index to understand vegetation health. It 
computes the difference between visible and near-infrared to determine the density 
of green vegetation. High NDVI values show dense green vegetation, while the lesser 
values denote sparse vegetation like barren areas, snow, or sand. The formula used to 
compute NDVI is as shown in Eq. 13.2: 

NDVI = 
NIR-Redð Þ  
NIRþ Redð Þ ð13:2Þ 

where NIR = near-infrared light and Red = visible red light. The range of NDVI 
value is given in Table 13.1.



SPI NDVI DevNDVI

– –

– –

– –
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Table 13.1 Meteorological drought classification using SPI values (McKee et al. 1993), NDVI 
(Aziz et al. 2018) and TCI, VCI, VHI (Bhuiyan et al. 2008), DevNDVI (Berhan et al. et al. 2011) 

Drought
category

Drought 
category

TCI, 
VCI, 
VHI. 

Drought
category

Drought 
category

>2 Extremely 
wet 

≥0.6 Extremely 
wet 

≥40 No 
drought 

>0.1 Extremely 
wet 

1.50–1.99 Very wet 0.4–0.6 Wet <40 Mild 
drought 

>-0.05 
to ≤0.1 

Near 
normal 

1.00–1.49 Moderately 
wet 

0.2–0.4 Moderate <30 Moderate 
drought 

>-0.2 
to ≤0.05 

Moderate 
dry 

0.99–0 Mild wet 0–0.2 Dry <20 Severely 
drought 

≤-0.2 Extreme 
dry 

0–0.99 Mild dry <0 Extremely 
dry 

<10 Extremely 
drought

-1.00–-
1.49 

Moderate 
dry 

– –

-1.5–-
1.99 

Severe dry – –

-2 and 
less 

Extreme 
dry 

– –  

13.3.1.3 TCI 

TCI is an index used to estimate vegetation stress affected by temperature and stress 
caused by extreme amount of wetness. They are determined relating to maximum 
value and minimum value of temperature. The unfavorable conditions are denoted 
by high temperature, while the favorable situation is shown by low temperature. The 
expression of TCI is given in Eq. 13.3: 

TCIj = 
LSTmax - LSTj 

LSTmax - LSTminð Þ � 100 ð13:3Þ 

where LST is land surface temperature. LSTmax and LSTminvalues are based on the 
long-term record of remote sensing images during a specific time period j. The range 
of TCI value is given in Table 13.1. 

13.3.1.4 VCI 

VCI is used to identify drought conditions and to assess the outbreak of drought 
particularly in regions where drought events are confined and imprecise. It provides 
details on the beginning, extent, and the intensity of drought based on the vegetation 
alterations and compared them to historical values. The formula used to compute 
VCI is shown in Eq. 13.4:
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VCI = 
NDVIj -NDVImin 

NDVImax -NDVImin 
ð13:4Þ 

where NDVIjis the image of NDVI value for a particular month/year. NDVImaxand 
NDVIminare the maximum and minimum value of NDVI from all the image within 
the data set. The range of VCI value is given in Table 13.1. 

13.3.1.5 VHI 

VHI shows the extent of the drought based on the condition of the vegetation health 
and the impact of temperature on plant condition. A decline in VHI signifies poor 
vegetation condition and rising temperature, which implies stressed vegetation 
health, and an extended length of time would be a sign of drought. VHI is given in 
Eq. 13.5 

VHI = a � VCI þ 1- að Þ � TCI ð13:5Þ 

where a = 0.5. The range of VHI value is given in Table 13.1. 

13.3.1.6 Deviation NDVI 

On the other end of the spectrum, wetness intensity can be described as the NDVI 
deviation (DevNDVI) from its long-term mean. The difference between the long-term 
NDVI for that particular month and the current time’s NDVI is used to calculate this 
deviation. It is expressed in Eq. 13.6. 

DevNDVI =NDVIj -NDVImean ð13:6Þ 

where NDVIjis the image of NDVI value for a particular month/year and NDVImean is 
the mean value of NDVI from the entire image within the data set. The range of 
DevNDVI value is given in Table 13.1. 

13.3.2 Materials Required 

The data required with spatial and temporal resolution for this study and their 
sources are given in Table 13.2.



Data Source Extracted data type
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Table 13.2 Data source used in the study 

Sl. 
No. 

Resolution 
(spatial/temporal) 

1. STRM DEM USGS, Earth 
Explorer 

Spatial 
(30 m resolution) 

Slope 

3. Landsat 7/8 USGS, Earth 
Explorer 

Temporal 
(2013–2021) 

NDVI 

4 LST MODIS Temporal 
(2013–2021) 

TCI 

4. Meteorology DoECC, Manipur Temporal 
(2013–2021) 

Rainfall and 
Temperature 

5. District Map of 
Manipur 

MARSAC, 
Manipur 

Spatial 
(30 m resolution) 

District Map of 
Thoubal 

Fig. 13.4 SPI values (2013–2021) 

13.4 Results 

In this section, understanding how rainfall deviations, vegetation density, and 
temperature are determined and how drought indices like SPI, NDVI, and TCI 
behave during the study period were analyzed. 

13.4.1 Drought Assessment 

13.4.1.1 SPI Map 

The annual SPI value (2013–2021) was examined to demonstrate the spatial pattern 
during these years. Fig. 13.4 illustrated SPI for Thoubal district. IDW approach was 
used to interpolate the obtained SPI value in order to determine the drought zone 
(Fig. 13.5a–i). There is no sign of drought in 2013 and 2017 as the SPI value of 2013 
and 2017 lies between the range of 0–0.99, which is a sign of mild wet as shown in



Fig. 13.5a and e. While in 2014 and 2016, some region of Thoubal district face mild 
wet, and some region face mild drought as shown in Fig. 13.5b and d. In the past 
4 years, that is, 2018, 2019, 2020, and 2021, Thoubal district faced mild drought as 
shown in Fig. 13.5f–i. 
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Fig. 13.5 (a–i) SPI map (2013–2021) 

13.4.1.2 NDVI 

After analyzing the result of NDVI (Fig. 13.6) from Landsat-8 image for the month 
of November (2013–2021), it was found out that in the year 2013, 2019, 2020, and 
2021, the NDVI value is mostly in the range of 0–0.2, which indicates moderate 
condition as per the drought indices value provided in Table 13.1. The years 2014, 
2015, 2016, and 2018 exhibited mixed conditions with only 2017 showing a 
noticeable difference, ranging from 0.2 to 0.4 and a greater than 0. It indicates that 
some parts are extremely dry, and some areas are in moderate condition.
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Fig. 13.6 (a–i) NDVI map (2013–2021) 

13.4.1.3 TCI 

After analyzing the results of TCI derived from MODIS data, as shown in Fig. 13.7, 
it was found that in the years 2013, 2014, 2015, 2017, 2018, and 2021, the values 
mostly fell within the range of no drought as indicated in Table 13.1. In 2019, some 
parts of the study area do not have a data, and in 2018 and 2020, it was found out that 
there is a mix situation among no drought, mild drought, moderate drought, severely 
drought, and extreme drought. 

13.4.1.4 VCI 

The occurrence of drought was examined from 2013 to 2021 using VCI, which 
indicates vegetation condition at a specific period comparing to its best and the worst



condition. The result of this study shows that in the years 2014, 2018, 2020, and 
2021, there were no drought cases as the majority of the VCI values of the district lies 
between 41 and 100, and in 2015, 2016, and 2019, there is a mixed condition. In 
2017, some small regions in western part of the district are under extreme drought, 
while the remaining parts of the district are in no drought condition. In the year 2013, 
majority of the area faces extreme drought cases where the VCI value is between 
0 and 10 (Fig. 13.8). 
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Fig. 13.7 (a–i) TCI map (2013–2021) 

13.4.1.5 DevNDVI 

The results of drought risk assessment using deviation NDVI (DevNDVI) from 2013 
to 2021 have found that in the years 2014, 2015, 2016, 2018, 2020, and 2021, there 
was near normal condition of drought (-0.049 to 0.1), and in 2017 and 2019, there is



a kind of a mix situation having moderate drought to extreme wet condition. While 
in the year 2013, majority of the study area experiences moderate drought where the 
value lies between -0.19 and -0.05, and some regions in western side have near 
normal condition (Fig. 13.9). 
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Fig. 13.8 (a–i) VCI map (2013–2021) 

13.4.1.6 VHI 

After analyzing the VHI data from 2013 to 2021, the results indicate that the no 
drought conditions dominate over other drought conditions in the years 2014, 2015, 
2017, 2018, 2019, 2020, and 2021 where the VHI values range between 41 and 100. 
In 2013, there is a mix situation between moderate to no drought conditions, while in 
2016, the western region of the study area experienced extreme drought, and 
majority of the eastern region faces moderate to extreme drought conditions where 
the value lies between 0 and 30 (Fig. 13.10).
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Fig. 13.9 (a–i) DevNDVI map (2013–2021) 

13.4.2 Overlay Analysis 

For a period of 9 years (2013 to 2021) and through weighted overlay analysis 
combining SPI, NDVI, VHI, and DevNDVI thematic layers, the final map for each 
year (Fig. 13.8) is calculated. In the overlay analysis, SPI is given as 40% weight, 
NDVI as 30%, VHI as 20%, and DevNDVI as 10% (Aziz et al. 2018). It is observed 
that from 2013 to 2014, the district can be divided into two categories, namely, near 
normal condition and moderate dry condition. In 2013, the western part of the 
district is in near normal, and majority of the eastern region is in moderate dry 
condition, while in 2014, the western part is moderate dry, and the eastern region is 
in near normal condition. In 2017, the whole district receives sufficient rainfall and is 
in near normal condition. For the years 2015, 2016, 2018, 2019, 2020, and 2021, the 
district is in moderate dry arising a drought-like condition (Fig. 13.11).
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Fig. 13.10 (a–i) VHI map (2013–2021) 

13.5 Validation 

The predicted drought has been compared with the ground data values, which have 
been taken from the Department of Agriculture, Government of Manipur, as shown 
in Fig. 13.12. A survey has also been done in various parts of the study area within 
the local community including locations such as Heirok Part-3 Ngarouthen, Heirok 
Part-2 Khunou, Langmeithet Mamang Leikai, Langmeithet Maning Leikai, and 
Ukhongshang Laikol leirak (local manes). In the survey, the first author interacted 
with several people whose profession is agriculture and who are also familiar with 
agricultural practices from several years. They have been asked about the difficulties 
faced during the farming season, which may be due to flood or drough-like situation, 
that is, scarcity available surface water (in the study region, main source of water for 
agriculture is only surface water) or excess water during growing season. After the 
survey has been conducted, it was found out that in the years 2015, 2016, 2018,



2019, 2020, and 2021, a drought-like situation was witnessed in the study region, 
while in the year 2017, the whole district receives sufficient amount of rainfall and is 
in near normal condition. Such findings are also matched with present study of 
predicted drought-affected zone in a particular year, which is evident in Fig. 13.12. 
In the year 2017, crop production is high as per collected ground data, and there is 
highest area of near normal as per prediction; thus, this graph follows the pattern of 
high crop production in low drought prediction in the years 2013, 2015, and in 2017. 
But in the year 2019, crop production is low, and there is also low drought 
prediction. So, it may be due to other factors that the crop production is low and is 
not necessarily due to drought. And in the year 2020, drought prediction is compar-
atively high, but crop production is also high, and this is the exception in the results 
of this drought prediction study. 
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Fig. 13.11 (a–i) Drought analysis map (2013–2021)
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Fig. 13.12 Crop production (ground data) in drought-affected areas (predicted result) 

13.6 Discussion 

The drought monitoring tools and indices play an important role in executing 
drought conditions, and the use of GIS and remote sensing is recommended as 
they make it accessible to examine the data for reachable and inaccessible regions. 
The study shows that remote sensing and meteorological drought indices were able 
to indicate drought events. The drought events were determined by considering 
various drought indicators like SPI, NDVI, TCI, VCI, VHI, and DevNDVI. According 
to SPI, the rainfall of the district varies spatially and temporarily, and the highest 
rainfall was recorded in 2017, while the least was in 2016. In addition to this, TCI 
derived from MODIS was examined, and it was found that there is a mix of 
situations among no drought, mild drought, severe drought, and extreme drought. 
Furthermore, several studies of NDVI were conducted to detect and assess agricul-
tural drought. NDVI is one of the most commonly used remote sensing indices to 
detect and quantify the presence of greenness and vegetation density. It is derived 
from satellite images and based on the intensities of light reflected in the near-
infrared (NIR) and red (RED) ranges. In the year 2013, the district had the minimum 
density of vegetation coverage, or sparse vegetation, while in the year 2017, the 
district indicated the densest vegetation coverage, signifying sufficient precipitation 
occurred. Lastly, NDVI is recommended for global agricultural drought monitoring 
as it helps monitor changes in lighting conditions, surface slopes, and many other 
factors. The NDVI is used in the calculation of VCI, which contrasts the NDVI with 
the range of values seen during the same time period in previous years. It is 
applicable for the evaluation of vegetation stress and the study of vegetation 
reactions. From the VCI results, it was found out that in 2013, the majority of the 
area faced extreme drought cases where the VCI values were between 0 and 10. The 
VHI displays the amount of moisture and the temperature or thermal condition of 
vegetation as calculated using VCI and TCI.
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From the results of VHI, it was found that there were no other drought conditions 
in the years 2014, 2015, 2017, 2018, 2019, 2020, and 2021, while in 2016, the 
western part of the study area experienced extreme drought, and the majority of the 
eastern region faced moderate to extreme drought conditions. From the results of 
DevNDVI in 2013, the majority of the study area experienced moderate drought. The 
output from the above study displays that the Thoubal district faced drought-like 
conditions in the years 2018, 2019, 2020, and 2021, while in the year 2017, the 
district received sufficient amounts of precipitation with a maximum density of 
vegetation. More than 70% of the population is directly or indirectly engaged in 
agricultural activities. Therefore, analyzing and studying the changes in hydrological 
extremities is very important. After analyzing the study area using drought indices 
for the past 9 years, it was found out that Thoubal District is a prevailing area of 
drought, so proper planning of water resource management is needed. The irrigation 
system needs to be well planned, and regular maintenance is needed for those areas 
in which irrigation systems are already provided. Farmers can adopt sustainable 
practices such as using drought-resistant crops, implementing efficient irrigation 
techniques, and practicing soil conservation. Raise awareness through programs 
with the help of local clubs and governments. 

13.7 Future Scope 

Drought is a natural disaster that affects many parts of the world, and its impact is 
expected to increase due to climate change. Drought indices are used to quantify 
drought severity and assess its impacts on water resources, agriculture, and other 
sectors. With the availability of satellite data and advances in remote sensing 
technology, there are many opportunities to improve drought modeling using 
drought indices such as the following: 

1. By developing new and improved drought indices that can capture the complexity 
of drought processes. For example, current drought indices mainly rely on 
precipitation and temperature data, but there are other factors such as soil 
moisture, vegetation cover, and evapotranspiration that can affect drought sever-
ity. Developing new indices that incorporate these factors could improve the 
accuracy of drought modeling. 

2. By improving the spatial resolution of drought modeling using drought indices. 
Most current drought indices are based on large-scale data, such as weather 
station observations or satellite data with coarse spatial resolution. However, 
with the availability of high-resolution satellite data, it is possible to develop 
drought indices at a finer spatial scale, which can be useful for local decision-
making. 

3. Finally, future research could focus on integrating drought modeling with deci-
sion support systems. Drought is a complex phenomenon that affects multiple 
sectors, and decision-making requires the integration of different sources of
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information. By integrating drought modeling with decision support systems, 
stakeholders can make informed decisions on water allocation, crop management, 
and other aspects of drought management. 

13.8 Conclusion 

Thoubal district faced drought like conditions in the years 2018, 2019, 2020, and 
2021, while in 2017, the district receives sufficient amount of precipitation with 
maximum density of vegetation. Among the studied indices, NDVI is recommended 
for global agricultural drought monitoring as it helps to change in lighting condi-
tions, surface slopes, and many other factors. More than 70% of the population is 
directly or indirectly engaged in agricultural activities and therefore more focused, 
and studies on agricultural drought in this region are needed. Specifically for the 
study region, it is suggested to construct bore-wells, which can be effectively used as 
an alternate source of water for various purposes, including small-area farming of 
crops. It is also important to note that surface water is the only and widely used 
source of water in this region, which indicates the high potential of using ground-
water as another source, especially during drought-like situations. 
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Chapter 14 
Copula-Based Probabilistic Evaluation 
of Meteorological Drought Characteristics 
over India 

Vikas Poonia, Lixin Wang, and Manish Kumar Goyal 

Abstract This chapter describes the applicability of copula-based probabilistic 
methodology to model the dependence structure among drought characteristics for 
meteorological drought in India. The Plackett, Frank, and Gumbel copulas were used 
across 1162 pixels across 24 Indian river basins. We then analyzed the joint 
dependence of drought characteristics to extract significant features such as return 
periods and exceedance probability, which could be beneficial for the effective 
management and planning of water resource systems. Our findings suggest that 
drought events across Central and Western part of the country are severe and longer, 
whereas river basins in Southern part experience droughts more frequently but with 
low severity. The outcomes of this research offer crucial insights into the drought 
hotspots with longer and severe drought events across the study area and thus 
provides useful insights for policymakers to formulate comprehensive national-
level drought mitigation and prevention strategies to safeguard the sustainable 
ecosystem. 

Keywords Drought · Duration · Probabilistic approach · Severity · SPI 

14.1 Introduction 

Drought is an extreme and recurrent climate disaster that happens due to abnormal 
deficiency in precipitation (Das et al. 2022a; Huang et al. 2014; Wilhite 2000a, 
2000b; Zhang and Zhang 2016) leading to significant losses in terms of economy, 
ecology, environment, and people, for example, forest fires, crop losses, desertifica-
tion, and ecological degradation (Poonia et al. 2022; Yuan et al. 2017). Droughts are
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a prevalent occurrence, affecting over 50% of the Earth’s surface (Kogan 1997). It is 
considered one of the most expensive natural disasters globally, causing an average 
of 6–8 billion USD in damages (Keyantash and Dracup 2002; Saikumar et al. 2022; 
Soľáková et al. 2014; Wilhite 2005). Compared to other natural disasters, drought 
has a much larger spatial extent, leading to significantly higher damages (Das et al. 
2022b; Xu et al. 2015b). Drought is described as the most unpredictable and least 
understood natural disaster (Hagman 1984). There is no universal definition for 
drought (Wilhite 2000a, 2000b), and its definition varies regionally, exhibiting 
variations in climatic characteristics and integrating various socioeconomic, physi-
cal, and biological variables (Zeleke 2017). Due to its complex nature, drought is 
typically classified into three main categories: meteorological, agricultural, and 
hydrological droughts (Mishra and Singh 2010). However, in drought monitoring, 
the most emphasis is placed on meteorological drought, which refers to the absence 
or insufficiency of rainfall compared to long-term averages. Meteorological drought 
is the first to occur, and other two droughts are consequent to it. If the precipitation 
scarcity persists for an extended period, other forms of drought can occur subse-
quently, as noted by (Guo et al. 2017; Gupta et al. 2023; Purkayastha and Afzal 
2022). Thus, this study is specifically focused on monitoring meteorological 
drought. The standardized precipitation index (SPI) is the most commonly used 
index among several meteorological drought indices due to its simplicity and 
flexibility, and it requires only precipitation as an input parameter (Mckee et al. 
1993). In this study, the most widely used standardized precipitation index (SPI) is 
selected for drought characterization.
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According to Mishra and Singh (2010), drought has a significant impact on 
various aspects over Asia, particularly in India, including the country’s GDP, 
water availability, and food production. Thus, it is crucial to determine the frequency 
and severity of drought events that occur in India. Thus, it is crucial to determine the 
frequency and severity of drought events that occur in India. However, quantifying 
drought is challenging due to its elusive and complex behavior. Nonetheless, Dracup 
et al. (1980) have recognized two crucial characteristics of a drought event, namely, 
drought duration and drought severity. Since drought is a phenomenon that involves 
multiple variables; therefore, it is more appropriate to use multivariate techniques to 
model drought properties such as severity and duration. In the past, number of 
probabilistic techniques were used to analyze drought characteristics, but univariate 
analysis fails to reveal significant correlations. Therefore, a multivariate approach is 
recommended to develop a joint dependence that can describe the interconnections 
between different drought characteristics. However, most multivariate distributions 
are based on univariate approaches and have some drawbacks, such as the require-
ment for the marginal distributions to be identical (Salvadori and De Michele 2004). 
To address these drawbacks, the copula is appropriate approach for the multivariate 
analysis. Copula is a powerful tool that can combine multiple drought characteristics 
and has been found to be better to conventional multivariate approaches and become 
widely used in the field of hydrometeorology (Das and Das 2021; Guo et al. 2019; 
Hao and AghaKouchak 2013; Maeng et al. 2017; Sklar 1959a; b; Van de Vyver and 
Van den Bergh 2018). This allows for a more accurate representation of the



multivariate relationships between different variables. Many studies have demon-
strated the effectiveness of copulas in studying hydro-climatic events, and detailed 
information can be found in these studies (Bisht et al. 2019; Goswami et al. 2018b; 
Jha et al. 2019). In this present study, we have chosen to use the copula-based 
approach instead of univariate analysis, and further details can be found in method-
ology section. 
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Both globally and in India, there has been an observed rise in drought events, with 
over one million square kilometers of India experiencing varying degrees of water 
stress and drought conditions (Mishra and Cherkauer 2010). To address this issue, 
several studies have utilized bivariate copulas to analyze drought frequency in some 
regions of India. Other studies, such as Xu et al., in 2015a,b, have focused on the 
variability of drought events in terms of their spatial and temporal aspects, with a 
focus on copula theory. In 2018, Goswami et al. conducted a drought characteriza-
tion using copula approach for the Sikkim region of the Himalayas. Their findings 
indicated that extreme events are more likely to occur together in the future under 
different climatic scenarios. The impact of climate change on drought parameters, 
including severity and duration, can lead to non-stationarity, which may affect both 
drought vulnerability and resilience. In 2018, Sharma and Goyal investigated the 
impact of drought on ecosystem resilience over India. More recently, in 2019, Jha 
et al. employed a probabilistic approach based on copulas to forecast vegetation 
drought in India and evaluate vegetation resilience to disturbances. Das et al. (2020a; 
b) carried out a multivariate characterization of drought using copulas in the Hima-
layan states, allowing for a quantitative assessment of drought resilience. Bisht et al. 
(2019) showed that drought severity and duration in India would increase under 
changing climate scenarios. Therefore, there is an urgent need for an India-level 
multivariate drought characterization. 

Numerous investigations using copulas have been conducted on the occurrence of 
drought in various areas of central and western India. However, since rainfall 
patterns are diverse across various regions of India, a thorough assessment of 
drought using copulas would require various marginal distributions. Consequently, 
the dependence structure between drought characteristics such as duration and 
severity would vary across different regions of the country. To facilitate effective 
drought mitigation strategies and risk management, a comprehensive nationwide 
drought investigation is required, including the computation of return periods. Thus, 
this study aims to investigate the dependence among meteorological drought char-
acteristics in various regions of India using a multivariate approach. The study also 
conducts a comprehensive evaluation of drought risk on a national scale to calculate 
the return period and exceedance probability of meteorological droughts.
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14.2 Study Area and Data Used 

Climate change has a significant impact on river basins around the world, leading to 
changes in their ecosystems and water balance. The hydrological characteristics of a 
region play a critical role in how vegetation responds to climate instability, making it 
useful to assess river basins based on their vulnerability. Thus, for this study, the 
24 major river basins in India were chosen as study area (Fig. 14.1). The Indian 
Meteorological Department (IMD4) provided monthly gridded precipitation data 
with a resolution of 0.5° × 0.5° covering the period from 1982 to 2013. The IMD 
data was derived from daily precipitation data collected and has been used in several 
recent studies (Kumar et al. 2021; Poonia et al. 2021a, b; Das et al. 2020c; Shivam 
et al. 2019). IMD data is commonly used for drought analysis due to its ability to 
effectively capture the rainfall variability across the country, which makes it a more 
accurate dataset (Mishra and Liu 2014). 

14.3 Methodology 

The SPI is widely used as a meteorological drought index, and for this study, a 
12-month time scale drought index based on SPI is utilized. The SPI-12 is preferred 
as it reflects long-term precipitation patterns and is commonly associated with 
reservoir, groundwater, and streamflow levels. As climatological and hydrological 
characteristics are mutually dependent, multivariate assessment is necessary to 
understand their dependence. Drought being a complex and multivariate extreme 
event, effective tools such as copulas are required to model its dependence charac-
teristics. Therefore, a copula tool is employed in this analysis. Primarily, a trend 
analysis was conducted on drought severity and duration through MK Test using the

Fig. 14.1 River basins of India



MK test from 1982 to 2013. However, this trend analysis suggested that an addi-
tional efficient methodology is needed to fully understand the drought condition over 
India. Further, various copulas are employed and selected the best copula for each 
pixel across India (Goswami et al. 2018a). Finally, using different copulas, several 
bivariate probabilistic computations, such as joint return periods and exceedance 
probabilities, were examined.
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14.3.1 Computation of Drought Properties and Trend 
Assessment 

According to Shiau (2006), drought duration (d) is defined when the SPI consistently 
less than the specific threshold, that is, SPI equals to zero for a particular length of 
time, whereas severity (s) can be computed calculated by adding up the negative SPI 

values, that is, sn = 
d 

n= 1 
SPIn. The severity and duration of a drought event are 

determined by the same criteria as defined by Shiau (2006). For this study, the trend 
analysis was conducted to examine whether there is any monotonic trend in drought 
severity and duration utilizing MK trend analysis test. 

14.3.2 Copula Modeling 

It is crucial to recognize that the drought variables are interrelated, so relying merely 
on univariate analysis is insufficient to fully investigate drought. Therefore, this 
study incorporates bivariate analysis to assess the joint dependence among drought 
characteristics. The copula tool was utilized in this study, which offers a robust 
approach to construct a bivariate distribution. A theorem, proposed by Sklar in 
1959a,b, states that a d-dimensional CDF can be computed as: 

F x1, x2 . . . . . . xnð Þ=C F1 x1ð Þ,F2 x2ð Þ,F3 x3ð Þ . . . :Fn xp ð14:1Þ 

Three copulas named as Plackett, Frank, and Gumbel were selected for this 
analysis. These copulas offer numerous advantages, like model negatively and 
positively correlated variables and offer greater flexibility (Zhang and Singh 
2007). Before modeling the joint distributions, it is crucial to determine the suitable 
marginal distribution of the data. For the present study, five marginals (lognormal, 
gamma, Weibull, exponential, and normal distributions) were fitted to the drought 
characteristics, and the best one was determined through KS test. Further, parameters 
for all three copulas were determined. The performance of each copula was evalu-
ated using two indices, that is, AIC and BIC. These indices are commonly used to 
compare the model performance (Poonia et al. 2021c; Das et al. 2020b; Goswami



ð

et al. 2018b). The joint dependence of different drought variables was assessed to 
determine useful properties such as return period and exceedance probability. 
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14.3.3 Probabilistic (Exceedance Probability) Assessment 

The copula-based analysis of drought properties provides crucial information for 
drought management, such as the probability of both duration and severity of a 
drought simultaneously surpassing certain limits. In present study, exceedance 
probability (Eq. 14.2) was computed, which refers to the likelihood that both drought 
duration and severity surpass a specific threshold. Specifically, the exceedance 
probability was calculated at the 25th, 50th, 75th, and 95th percentile values of 
drought duration and severity for all basins. 

F D≥ d, S≥ sð Þ= 1-FD dð Þ-FS sð Þ þ  C FD dð Þ,FS sð Þð Þ 14:2Þ 

14.3.4 Return Period Analysis 

The return period is the average time between two successive drought events. In the 
univariate case, the return period of drought severity and drought duration can be 
computed using Eqs. 14.3 and 14.4, respectively, proposed by Shiau and Shen 
(2001): 

TS = 
E Lð Þ  

1-Fs Sð Þ ð14:3Þ 

TD = 
E Lð Þ  

1-Fd Dð Þ ð14:4Þ 

where TS and TD are the expected return period of drought severity and duration, 
respectively. Also, E(L) is the anticipated drought interarrival time. 

In this study, we have also computed the bivariate return period TDS (duration and 
severity surpassing a certain threshold) as given by Shiau (2006) (Eq. 14.5): 

TDS = 
E  Lð  Þ  

P  D≥ d, S≥ sð Þ  = 
E  Lð  Þ  

1-FD dð  Þ-FS sð  Þ þ  C  FD dð  Þ,FS sð  Þð Þ  ð14:5Þ
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14.4 Results and Discussion 

14.4.1 Drought Properties and Trend Assessment 

Prior to undertaking probabilistic computation, we first calculated the average 
drought variables, namely, severity and duration, obtained from observed meteoro-
logical droughts (Fig. 14.2). 

Our investigation revealed that the average drought duration and severity are 
more prominent over Eastern India. Our preliminary examination indicates that 
assessing drought characteristics based solely on drought duration and severity 
may provide only limited information; thus, it would be more effective to employ 
multivariate technique. The lack of a significant trend in drought severity and 
duration (Fig. 14.3) suggests that the random fluctuations in drought characteristics 
make it challenging to explain their joint dependence structure. This further empha-
sizes the need for a more advanced methodology, such as copula analysis, to 
understand and manage drought across Indian river basins. 

14.4.2 Bivariate Analysis of Probability 

After obtaining the joint probabilities, the next step is to calculate exceedance 
probabilities by Eq. 14.5 for distinct severity and duration thresholds at each grid 
location across India. Fig. 14.4 demonstrates the exceedance probability for different 
drought properties where they simultaneously exceed different thresholds (25th,

Fig. 14.2 Mean drought characteristics across Indian river basins from 1982 to 2013



50th, 75th, and 95th percentile). Here, we focus on the 50th percentile outcomes 
because it delivers more accurate finding. The findings indicate that the majority of 
the study area are prone to meteorological drought conditions. Thus, it implies that a 
shortage of precipitation poses a significant risk to these regions. In the lower 
exceedance probability scenario (25th percentile), almost the entire study area 
shows a high probability of meteorological drought. This could be attributed to the 
increase in average temperature and the decrease in seasonal and annual rainfall in 
recent years (Mallya et al. 2015). According to Niranjan Kumar et al. (2013), there 
has been a usual rise in the occurrence of meteorological droughts in modern time. 
Results suggest that simultaneous exceedance of drought characteristics is more 
useful than analyzing them separately. This is because the joint analysis provides a 
better understanding of the combined impact of duration and severity on drought 
occurrence, which can help in developing more effective drought management 
strategies. Therefore, it is important to consider both variables together when 
assessing the severity and duration of drought events.
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Fig. 14.3 Basin-wise trend assessment of drought characteristics from 1982 to 2013 

14.4.3 Bivariate Analysis of Return Period 

This part focuses on the calculation of the joint return period. Fig. 14.5 illustrates the 
joint return period for severity and duration at different percentile thresholds. The 
findings suggest that the regions of Eastern India (MRBB, Barak, and Brahmaputra) 
and Western India (Luni, Sabarmati, Mahi, and Tapi) have the longest return period 
for all thresholds. Longer drought inter-arrival times are related to extreme events 
with greater drought severity and duration. Additionally, Western Ghats, Narmada,



and Indus also demonstrate the longest return period. The Western Ghats, in 
particular, has a longer return period due to its high rainfall, ecological diversity, 
and evergreen forests. Additionally, this part of the country is well recognized for its 
resilience to hydroclimatic disturbances, as noted in studies by Jha et al. (2019) and 
Sharma and Goyal 2018a, b. On the other hand, South Indian basins, such as 
Krishna, EFRPCB, and Cauveri, as well as BB and Sabarmati basins also demon-
strate a lesser return period. The findings from Amrit et al. (2018) also support the 
shorter return period in Southern India, where frequent droughts occur every 
5–6 years in a significant part of the region. The joint return period results can aid 
policymakers and stakeholders in formulating better drought management guidelines 
and designing water resource systems in drought-prone areas. 
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Fig. 14.4 Exceedance probabilities for drought characteristics (severity and duration) surpassing 
their different threshold values
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Fig. 14.5 Joint return period for drought characteristics (severity and duration) surpassing their 
different threshold values 

14.5 Conclusion 

The current research focuses on conducting a nationwide drought assessment of 
India during the period 1982–2013 by employing copula-based probabilistic model. 
We employ various copulas to determine the joint dependence among drought 
properties. From this, a joint PDF is constructed, which is further used to calculate 
exceedance probability as well as recurrence interval at different thresholds of 
drought properties. The research revealed that it is necessary to use different 
marginal distributions to model the drought characteristics for all 1162 grid points 
across India. It was also determined that only one copula model is inadequate to 
capture the joint dependence at higher levels; therefore, three copulas were 
employed in this analysis. To better understand the likelihood of drought occurrence, 
return period and exceedance probability analysis was carried out.
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Our findings conclude that southern river basins are highly susceptible to drought. 
This is consistent with the results of Mallya et al. (2015), where they found a rise in 
drought occurrence in different regions across the country. Our analysis revealed that 
Southern River basins exhibit larger exceedance probability but lesser recurrence 
interval when compared to Western India. It implies that droughts are longer and 
severe in Central and Western River basins of India, while less severe and more 
frequent over Southern River basins of the country. The western India is more prone 
to drought due to scarce vegetation and are highly vulnerable to agricultural 
droughts, and this is consistent with the findings of Jha et al. (2019). Additionally, 
the river basins in Southern India situated over arid regions frequently experience 
droughts. Thus, our analysis suggests that droughts have a significant impact on 
India, particularly in the Western and Southern parts of the country. In this analysis, 
we have used bivariate copula, which was effective in exploring the interaction 
between drought duration and severity; however, it may be ineffective to capture the 
interactions between other properties. Hence, it is recommended to use trivariate 
copula in future drought research (Xu et al. 2015a). Overall, this analysis offers 
important information for policymakers and stakeholders in developing drought 
mitigation strategies at the national level, particularly in managing severe and longer 
drought events. 
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Chapter 15 
Nonstationary Flood Frequency Analysis: 
Review of Methods and Models 

Siddik Barbhuiya, Meenu Ramadas, and Shanti Swarup Biswal 

Abstract Recent changes in the climate, land use/land cover, and field-scale water 
resources allocation at the catchment scale have rendered the conventional hypoth-
esis of the stationarity of hydrologic extremes unreliable. The current understanding 
of evolving patterns of hydrological variables has led to the development of 
nonstationary approaches, particularly in extreme event frequency analysis. A com-
prehensive review of the different approaches for nonstationary flood frequency 
analysis is presented in this chapter. The popular methods including generalized 
additive models for location, scale, and shape (GAMLSS) framework; probability-
based approaches using Gumbel distribution and Log Pearson distribution III (LP 3), 
Bayesian approaches, r-largest, peaks-over-threshold, time-varying moments; 
among others are discussed. Additionally, the challenges associated with 
nonstationary hydrological frequency analysis and future research directions in the 
analysis of flood extremes are briefly addressed. It is evident that nonstationarity 
needs to be incorporated in flood risk assessment framework for addressing the 
likely impacts of potential future climate change in water resources management. 

Keywords Flood frequency analysis · Climate change · Extreme events · 
Nonstationarity · Bayesian approach 

15.1 Introduction 

Among the fatal natural hazards, water resource-related extreme events such as 
floods, cyclones, and droughts have been known to be the costliest and most 
disastrous, across different parts of the world. Naturally occurring riverine flood 
and flash flood events are characterized by overflowing of rivers into the riverbanks 
as a result of heavy precipitation, inundating large areal extent comprising human 
settlements and natural ecosystems (Merz et al. 2021; Das et al. 2022). In fact, the
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extreme events are also caused by anthropogenic influences such as urban floods, 
dam break, and coastal floods. Disastrous floods can leave unprecedented impacts on 
society and destruction of lives and also cause disruption to economic activities in 
the region (Mudelsee et al. 2003; Ray et al. 2019; Kuang and Liao 2020; Mangukiya 
and Sharma 2022; and Das et al. 2022 among others). In India, a significant portion 
of land, encompassing over 40 million hectares or 12% of the geographical area, is 
observed to be susceptible to flood events. Each year, floods claim the lives of more 
than 1600 people and inflict damages exceeding Rs. 5600 crores (73 million USD) 
(Central Water Commission 2018). Flood frequency analysis (FFA) has become an 
indispensable tool in assessing the potential impacts of these flood hazards and 
designing effective mitigation measures. In this regard, the term frequency or return 
period that expresses the exceedance probability of the flood event is used. Through 
FFA, the relationship among flood peaks, volumes, duration, and the associated 
return periods can be assessed, utilizing continuous long-term data of observed flow 
discharge or water levels in the river. In recent years, the phenomena of climate 
change, land use/land cover change, and water resource reallocation and different 
watershed-scale interventions have challenged the notion of stationarity of hydro-
logical variables that is adopted in frequency analysis and extreme event modeling 
(Berghuijs et al. 2019; Milly et al. 2008; Villarini et al. 2009; Debele et al. 2017a). 
Significant rise in riverine flood hazard is projected for parts of sub-Saharan Africa, 
Asia, Europe, northern Russia, and specific regions in South and North America in 
future periods (Merz et al. 2021). Incidentally, the trends and change patterns of 
hydrological variables have been studied by numerous researchers in the form of 
detection and attribution studies and encouraged the choice of nonstationary 
approaches for modeling the changing risk of hydrological extremes such as floods 
and droughts (Mondal and Mujumdar 2012; Serinaldi and Kilsby 2015; Singh and 
Chinnasamy 2021). Therefore, these methods are increasingly being adopted for 
estimation of return period and risk associated with riverine flood hazards at local-to-
regional scales (Lima et al. 2015; Mondal and Daniel 2019).
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FFA methods accounting for nonstationarity have been applied to various case 
studies worldwide, demonstrating their usefulness in understanding and predicting 
the behavior of hydrological extremes in changing environments. The analysis 
includes finding the best estimates of the time-varying parameters of probability 
distributions that fit the flood variables (peak, volume, duration), using covariates 
such as time, temperature, or any suitable hydroclimatic variable. The popular 
methods and models adopted in nonstationary hydrologic frequency analysis include 
generalized additive models for location, scale, and shape (GAMLSS) framework, 
probability distribution-based models (Gumbel distribution, Log Pearson distribu-
tion III), Bayesian approaches, r-largest, peaks-over-threshold, time-varying 
moments, pooled FFA, local likelihood, and quantile regression. In one of the earlier 
studies by Strupczewski et al. (2001), the need to incorporate trend for accurate 
analysis of flood frequency is established, wherein the temporal trends in hydrolog-
ical variables implying nonstationarity were investigated for FFA. They used annual 
peak discharge series, applying both the annual maximum series and partial duration 
series-based approaches for at-site frequency modeling. They had relied on the



Akaike information criterion (AIC) to identify the best nonstationary model among 
different models, while the maximum likelihood method was used for model 
parameter determination. The advancements in hydrological modeling over the last 
few decades include use of Bayesian approaches (Cheng et al. 2014; Sharma and 
Goyal 2017), as well as applications for regional flood frequency analysis, in the 
context of nonstationary analysis. The application of nonstationary analysis of 
extreme precipitation events in Mediterranean region is found in Tramblay et al. 
(2013), where a nonstationary peaks-over-threshold model was utilized with climatic 
variables as covariates. The authors used Poisson distribution and generalized Pareto 
distribution for modeling the occurrence and magnitude of heavy rainfall events, 
respectively, while the southern circulation patterns and monthly air temperature 
were adopted as covariates. They found that the nonstationary model with climatic 
covariates performed better than the classical stationary model and could simulate 
future climate scenarios for understanding impacts of such changes in future. The 
potential future changes in the covariates included in the model were also used to 
evaluate the possible future changes in extreme precipitation events in the study area. 
Das and Umamahesh (2017) had analyzed uncertainties and nonstationarity in future 
streamflow projections at river basin scale under climate change scenarios: repre-
sentative concentration pathways (RCPs) 4.5 and 8.5 using the VIC-3 L model, they 
and found that while stationary models were suitable for RCP4.5, nonstationary 
approach was more appropriate for RCP8.5. Further, their study suggested that 
nonstationary return levels were reliable for designing low-capacity hydraulic struc-
tures and highlights the role of nonstationarity in improved hydrologic modeling and 
design. Similarly, a review of various return level-based metrics for hydrologic 
design under nonstationary conditions can be found in Mondal and Daniel (2019). 
Das and Umamahesh (2022) also studied the hydrological extremes in the Godavari 
River basin, India, incorporating physically based covariates such as the Indian 
Summer Monsoon Index and precipitation into the Generalized Extreme Value 
distribution to incorporate nonstationarity. 
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Comparison of stationary and nonstationary flood frequency approaches can 
provide useful insights on the drawbacks of stationary models that do not address 
climatic change. Currently, we can find numerous studies that use external covariates 
besides time, to improve results of FFA. In their study, Machado et al. (2015) 
analyzed historical flood records of the Tagus River in Spain and found that the 
estimates of extreme event magnitudes and frequencies are better modeled by 
including covariates of various climate and environmental drivers. They compared 
both stationary and nonstationary models including a GAMLSS model that incor-
porated both climate and catchment factors. The norming constants method (NCM) 
was adopted for nonstationary FFA of flow in the Wei River in China, by Xiong et al. 
(2015). In their study, the nonstationarity present in annual daily flow series and their 
effect on the annual maximum flood series were modeled. The authors had consid-
ered nonstationarity using additional explanatory climatic variables, tested the NCM 
on the flow data, and found that it outperformed the traditional stationary FFA 
models. Šraj et al. (2016) also compared among four different models for estimating 
flood quantiles at gauging sites in Slovenia. With significantly increasing trend in



annual maximum discharge series at these sites, nonstationarity-based analysis of 
extremes was imperative. In their study, Šraj et al. (2016) used the GEV distribution, 
with parameters dependent on time and annual precipitation as covariates. The 
maximum likelihood and Bayesian Monte Carlo Markov chain methods were used 
for parameter estimation. Comparison of results of FFA using GAMLSS method 
with different types of covariates is performed by Dègan et al. (2017), creating 
nonstationary models with time and principal components obtained from empirical 
orthogonal factor (EOF) analysis on climate variables (climate indices and temper-
ature). Their study found the nonstationary model using principal components as 
covariates to be better at modeling change. These studies overall suggest that 
nonstationarity is important in the context of FFA, and significant difference exists 
between nonstationary and stationary estimates, with likely underestimation in case 
of the latter approach. 
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There are numerous instances when nonstationary approach has reduced the 
uncertainty involved in hydrologic design, specifically with advancements in Bayes-
ian model-based analysis. It is possible that stationarity assumption could lead to 
unsafe designs for structures when trends are present in hydrologic variables, and 
potential variations in these trends also need attention of hydrologists. Singh and 
Chinnasamy (2021) performed nonstationary FFA of discharge of Periyar River in 
India using generalized extreme value distribution and covariates of annual precip-
itation, urban extent, and time. When compared with stationary analysis results, they 
observed that the trends in flows are present, and it is advantageous to adopt 
nonstationary FFA. A study by Guo et al. (2023) has compared the performance 
of nonstationary Bayesian regional flood frequency analysis (RFFA) coupled with 
the linear mixed effect (LME) model with the stationary generalized least squares 
(GLS) model. Indeed, the nonstationary LME-based Bayesian RFFA method 
performed better than the stationary GLS-based method with respect to the deviance 
information criterion (DIC). The nonstationary approach reduced uncertainty in 
design flood estimation and has been recommended for nonstationary FFA of 
ungauged sites. 

The presented review of applications of nonstationary hydrologic frequency 
analysis suggests that incorporating nonstationarity in FFA is particularly relevant 
in the current scenario with possible future alterations in climatic variables and 
hydrologic processes. The studies also emphasize the choice of relevant covariate 
that drives the changes in these variables. There are several challenges associated 
with nonstationary FFA that are evident from the review of literature. Discerning 
among the natural, anthropogenic, and mixed drivers of nonstationarity is problem-
atic, as these factors may be interlinked in complex ways, and requires substantial 
efforts for detecting trends and change points with limited data records. In fact, short-
term trends and multi-decadal shifts in hydrological variables may complicate 
nonstationary analysis (Koutsoyiannis and Montanari 2015). Besides, the inadver-
tent use of nonstationary approach to shorter-term time series can lead to increased 
uncertainty (Serinaldi and Kilsby 2015). 

This chapter aims at a comprehensive review of important nonstationary FFA 
approaches and their applications, challenges, and future research direction. The



popular GAMLSS framework, probability distribution-based models (Gumbel dis-
tribution, Log Pearson distribution III), Bayesian approaches, r-largest, peaks-over-
threshold, and other methods: time-varying moments, pooled FFA, local likelihood, 
and quantile regression are included in the review. The objective of the review is to 
provide direction to hydrologists regarding the emerging methods in nonstationary 
hydrologic frequency analysis and their relative merits and demerits. With increasing 
focus on nonstationarity approaches in the face of changing climate, land use, and 
anthropogenic interventions, there is perennial need for developing more robust and 
flexible approaches that can be adapted across spatial scales too. It is also important 
to devise strategies for integrating the findings of nonstationary analysis into risk 
assessment and adaptation, so that the benefits of planning and management of water 
resources can be maximized, ensuring that communities are better prepared and 
more resilient to future hydrologic extreme events (Chen et al. 2021; Zhou et al. 
2022). 
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15.2 Nonstationary Frequency Analysis Approaches 

15.2.1 Generalized Additive Models for Location, Scale, 
and Shape (GAMLSS) Framework 

15.2.1.1 Theory 

The GAMLSS framework (Rigby et al. 2005) offers a flexible statistical framework 
for the estimation of distribution parameters of flood variables as functions of 
covariates, under assumptions of nonstationarity. The GAMLSS framework has 
been widely used to model different hydrological variables, such as precipitation, 
temperature, and streamflow (Archfield et al. 2016; Westra et al. 2014). In the 
GAMLSS framework, the response variable y is assumed to follow a specific 
distribution with parameters μ, σ, ν, τ (for location, scale, shape, and additional 
shape, respectively). Each parameter is modeled as a function of covariates (Rigby 
et al. 2005). The general GAMLSS model can be written as: 

gk θkð Þ=Xkβk þ 
pk 

i= 1 

sik xikð Þ, for k = 1, 2, . . . ,K ð15:1Þ 

where y follows a specific distribution with parameter vector θ = (μ, σ, ν, τ), gk is a 
link function for the k-th (k = 1, 2, . . .,K ) parameter, θk is the k-th parameter of the 
distribution (location, shape, or additional shape), Xk is known model matrix for the 
k-th parameter, βk is the parameter vector for the k-th parameter, sik(xik) is the smooth 
function of the covariance xik for the k-th parameter, and pk is the number of 
covariates for the k-th parameter.
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The GAMLSS model can accommodate different choices of probability distribu-
tion and link functions. The link functions gk transform the distribution parameters to 
a scale on which the linear predictors can be modeled. The choice of link function 
depends on the range and interpretation of the distribution parameters. The smooth 
sik(xik) functions capture nonlinear relationships between the covariates and the 
distribution parameters (Wood 2006). These functions can be spline function or 
local regression function. Generally, in GAMLSS framework, the distribution 
parameters and smooth functions are estimated by maximizing a penalized likeli-
hood function. This maximization process ensures the goodness of fit of the model 
(Rigby et al. 2005). 

15.2.1.2 Scope 

Debele et al. (2017a, 2017b) provide a detailed process of use of GAMLSS in flood 
frequency studies. The challenges of nonstationarity-based approach are discussed in 
Debele et al. (2017a), and they also suggest the GAMLSS framework as the most 
popular for nonstationary statistical analysis. The relative advantages and weak-
nesses are also presented in their work. A comparison of three methods—maximum 
likelihood, weighted least squares-two stage (WLS/TS), and GAMLSS for compu-
tation of design flood quantiles under nonstationarity was performed for Polish and 
Norwegian catchments by Debele et al. (2017b). Their study recommended using a 
multi-model approach to minimize errors associated with model formulation across 
different length datasets. While GAMLSS performed best in overall estimation of 
design flood quantiles with longer datasets, the WLS/TS provides better accuracy for 
shorter time series analysis. In another study, Chen et al. (2021) did flood frequency 
analysis for several gauging stations in the United Kingdom and examined the 
choice of covariates. The nine covariates chosen included rainfall variability-related 
and atmospheric circulation pattern-based variables, to model the inherent 
nonstationarity in flood records. Their study found that the simplest choice—a 
time-varying nonstationary flood model may not always be the most appropriate, 
and physically based covariates can offer better nonstationary models. Even the use 
of multiple covariates is recommended to improve the analysis, to simulate the 
effects of climate change. A framework for assessing the uncertainty of 
nonstationary FFA with possible application in hydrologic design, water supply, 
and reservoir regulation was proposed by Zhou et al. (2022), for the Hanjiang River 
of China. They combined GAMLSS, copula model, and Bayesian uncertainty 
processor (BUP) techniques for design flood estimation with information on uncer-
tainty of the estimates. In this study, precipitation and reservoir index were 
covariates. Their framework addresses the modeling of uncertainty in 
nonstationary FFA.
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15.2.2 FFA Using Probability Distributions 

GEV distribution is widely used for modeling extreme events such as floods, 
droughts, and other hydroclimatic extremes. The GEV family includes three types 
of extreme value distributions, namely, the Gumbel, Frechet, and Weibull distribu-
tions. The Gumbel distribution has been widely used to model extreme event 
characteristics in a nonstationary context. Log Pearson distribution III (LP 3) is 
another popular choice of distribution for flood frequency analysis, which considers 
the skewness, kurtosis, and other moments of the variable data (Stedinger 
et al. 1993). 

15.2.2.1 Generalized Extreme Value (GEV) Distribution 

The cumulative distribution function (CDF) of the GEV distribution is given by 
Coles (2001): 

F xð Þ= exp - 1þ ξ � x- μ 
σ

- 1 
ξ ð15:2Þ 

where x is the random variable of interest, μ is the location parameter, σ is the scale 
parameter, and ξ is the shape parameter. In a nonstationary context, any of the 
parameters can be modeled as functions of time or other covariates. For example, 
suppose we have a covariate, t, representing time. We can model the location and 
scale parameters as functions of time in a linear fashion: 

μ tð Þ= μ0 þ μ1t 
σ tð Þ= σ0 þ σ1t 
ξ tð Þ= ξ0 þ ξ1t 

ð15:3Þ 

where μ0, μ1, σ0, σ1, ξ0, and ξ1 are the regression coefficients to be estimated. 

15.2.2.2 Gumbel Distribution 

The Gumbel distribution probability density function (PDF) f(x) and cumulative 
distribution function (CDF) F(x) are as follows: 

f ðxÞ= 
1 
σ exp½- ðx- μ 

σ Þ- expð- x- μ 
σ Þ�;FðxÞ 

= exp½- expð- x- μ 
σ Þ� ð15:4Þ



where x is the random variable, μ is the location parameter, and σ is the scale
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parameter. Incorporating the time-varying parameters μt, σt previously discussed 
into these PDF and CDF expressions results in: 

f x, tð Þ= 
1 

σ tð Þ  exp -
x- μ tð Þ  
σ tð Þ - exp -

x- μ tð Þ  
σ tð Þ ;F x, tð Þ  

= exp - exp -
x- μ tð Þ  
σ tð Þ ð15:5Þ 

This approach allows to account for nonstationarity in the data, provided the 
correct estimates of the parameters are obtained through the analysis. 

15.2.2.3 Log Pearson Distribution III (LP 3) 

The LP 3 distribution is specified by its parameters: location (μ), scale (σ), and shape 
(ξ). In this approach, the goal is to fit a Pearson type III distribution to the base-10 
logarithms of the annual flood maxima. The parameters estimated are mean μ, 
standard deviation σ, and skew coefficient ξ of the log-transformed data (Griffis 
and Stedinger 2007). By setting parameters μ, σ, and ξ as functions of time or other 
covariates as previously discussed, it is possible to capture the changes in flood 
magnitudes and frequencies over time (Vogel and Wilson 1996). By incorporating 
time-varying parameters, the LP 3 distribution can better represent the nonstationary 
behavior of hydrological variables, providing more accurate flood frequency esti-
mates in the context of changing conditions. 

15.2.2.4 Scope 

An important step of FFA is the choice of best distribution to represent the charac-
teristics of the extreme events. There are numerous probability distributions that can 
be adopted and depend on the data and results of goodness of fit tests. In the study by 
Gruss et al. (2022) that performed annual maxima FFA for ten rivers in the Czech 
Republic and Poland, they compared three-parameter distributions including the 
log-normal, Weibull, generalized extreme value (GEV), and Pearson type III distri-
butions. Their methodology was flexible as it allowed for the choice of best fit 
distribution for FFA. Nonstationary FFA models were found to be superior over 
stationary models for flood estimation, and among the distributions, Weibull and 
log-Normal distributions were found to be the most suitable for lower and upper 
quantiles, respectively.
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15.2.3 Bayesian Models 

15.2.3.1 Theory 

Bayesian model framework has been employed to perform robust nonstationary FFA 
by integrating prior knowledge, uncertainty, and model updating based on new data 
(Khaliq et al. 2006; Salas et al. 2018). The analysis is used to estimate the posterior 
distribution of the parameters of the probability distributions and the time-varying 
functions. The framework is best suitable to model uncertainties related to 
hydrological FFA. 

The posterior distribution of the parameters can be expressed as (Salas et al. 
2018): 

p θjyð Þ /  p yjθð Þ � p θð Þ ð15:6Þ 

where p(θ| y) is the posterior distribution, p(y| θ) is the likelihood function that 
represents the probability of observing the data y given the parameters θ, p(θ) is  
the prior distribution that encodes our knowledge about the parameters before 
observing the data, and y denotes the observed data. 

15.2.3.2 Scope 

Bayesian approaches have been successfully utilized to model distributions in flood 
frequency models involving GAMLSS, Gumbel, and LP 3 distributions (Khaliq 
et al. 2006). This allows for the incorporation of expert knowledge and historical 
information into the modeling process, which can lead to more accurate and reliable 
predictions of extreme events. In their FFA study, Lima and Lall (2010) demon-
strated that the Hierarchical Bayesian models can provide accurate estimates of 
monthly/annual flood discharge probability distribution parameters for ungauged 
sites in Brazil. They performed nonstationary model development using 
reconstructed natural inflow series from over 40 gauging points representing a 
wider range of catchment areas. In fact, the developed regional-scale approach was 
used for augmenting records of flow at sites with missing data as well as to estimate 
flow at ungauged sites. Similarly, studies by Ouarda and El (2011) detail the scope of 
nonstationary frequency analysis models in hydrology, with a specific focus on the 
Bayesian approaches. They had used the nonstationary generalized maximum like-
lihood estimation method and the reversible jump Monte Carlo Markov Chain 
(MCMC) model for hydrologic frequency analysis.
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15.2.4 Other Methods 

Few other popular models used in nonstationary FFA are discussed in this section. 
The r-largest and peaks-over-threshold (POT) approaches have been useful for 
modeling nonstationary extreme events, using annual maxima as well as POT data 
(Douglas et al. 2000; Mudelsee et al. 2003). 

The r-largest approach is a method for modeling extreme events by fitting a 
distribution to the r largest order statistics within a specified period (Douglas et al. 
2000). This technique focuses on modeling the most extreme floods and provides a 
means of estimating the return levels associated with rare discharge levels. The 
peaks-over-threshold approach, on the other hand, models exceedances over a 
predefined threshold u using the generalized Pareto distribution (GPD) (Mudelsee 
et al. 2003). The GPD is described by its f(x) and F(x) as follows: 

f xð Þ= 
1 
σ
� 1 þ ξ 

x- u 
σ

- 1þξð Þ- 1 

;F xð Þ= 1- 1þ ξ 
x- u 
σ

- 1þξð Þ- 1 

ð15:7Þ 

where the symbols as defined previously. Both the r-largest and POT approaches can 
be used in conjunction with Bayesian approach for analysis of floods with due 
consideration for uncertainty assessment. 

Time-varying moments, pooled flood frequency analysis, local likelihood, and 
quantile regression also offer flexibility in modeling extreme events, under climate 
change, land use change, and human interventions, but are less popular methods for 
nonstationary flood frequency analysis (Hejazi and Markus 2009; Villarini et al. 
2009; Vogel et al. 2011; Wilson et al. 2010). 

Time-varying moments provide a method for estimating the moments of the 
underlying distribution as functions of time. Strupczewski et al. (2001) used the 
nonstationary approach by incorporating temporal trend in the first two moments of 
the distributions: mean and variance. The time-varying mean μt and variance σ2 t were 
modeled using smooth functions such as splines or linear regression. 

Pooled flood frequency analysis is a method that combines data from multiple 
sites to improve the estimation of flood quantiles (Vogel et al. 2011). The pooling 
group is determined by a similarity criterion, such as geographical proximity or 
hydrological similarity. Flood quantiles are then estimated using a weighted average 
of the site-specific quantiles. 

Local likelihood is a nonparametric approach that estimates the distribution 
parameters using a weighted likelihood function (Khaliq et al. 2006). 

L θð  Þ= 
i 

f yi j θ xið Þð Þ½ �w xi,xð Þ ð15:8Þ 

where L(θ) is the likelihood function, f(yi| θ(xi)) is the probability density function, 
and w(xi, x) are the weights. The weights depend on the distance between the xi 
observation and the point of interest x, typically following a kernel function.
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Quantile regression models the quantiles of the response variable as a function of 
covariates, allowing for the estimation of flood quantiles under nonstationary con-
ditions (Khaliq et al. 2006). The quantile regression model is specified as follows: 

Qy τjXð Þ=X β τð Þ ð15:9Þ 

where Qy(τ|X) is the conditional quantile function, τ is the quantile level, X is the 
matrix of covariates, and β(τ) are the quantile-specific coefficients. 

15.3 Case Studies 

15.3.1 Review of Literature 

An exhaustive list of case studies that have contributed to the understanding and 
development of nonstationary flood frequency analysis is presented in Table 15.1. 
The compiled information showcases the evolution of the modeling approaches and 
the relative popularity of models and highlights the growing importance of 
nonstationary approaches in flood frequency analysis. 

15.3.2 Application: Case Study of Barmanghat Subbasin, 
India 

We present findings of case study of nonstationary and stationary FFA of discharge 
data of Barmanghat subbasin of the Narmada River Basin in this section. The basin 
area is predominantly agricultural land. In this case, we performed FFA on the 
annual maximum streamflow data using a temporal nonstationary GEV model. 
The location and scale parameters of the GEV distributions are modeled as linear 
functions of the time covariate, while the shape parameter remains constant. Normal 
priors are utilized for parameter estimation in this case study. This analysis is 
implemented using the nonstationary extreme value analysis (NEVA) software 
package developed by Cheng et al. (2014). This analysis provides posterior proba-
bilities with uncertainty interval during estimation of return levels and utilizes 
Bayesian approach for parameter estimation of models. 

Results presented in Fig. 15.1a show the flood discharge versus return level 
curves obtained from the FFA for time covariate value of 45 years from the initial 
observation (as an example). The Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) performance metrics used to evaluate model efficiency 
both suggest that nonstationarity approach is best for streamflow analysis of 
Barmanghat. With an AIC value of 499.43, the nonstationary model is significantly 
better than the stationary model with AIC of 505.76. Similarly, the BIC value for the
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Table 15.1 Overview of popular nonstationary flood frequency analysis studies 

Author(s) Objective Methodology Findings 

Strupczewski 
et al. (2001) 

Investigated time trends in 
hydrological 
nonstationarity 

Maximum likelihood 
method 

Trend incorporation nec-
essary for accurate 
modeling 

Lima and Lall 
(2010) 

Developed hierarchical 
Bayesian models for 
regional and at-site trends 

Hierarchical Bayesian 
models 

Accurate estimation of 
parameters; useful for 
record augmentation 

Ouarda and 
El (2011) 

Discussed nonstationary 
frequency analysis 
models 

Nonstationary GMLE 
method and reversible 
jump MCMC 

Bayesian model efficient 
for hydrological quantiles 

Tramblay 
et al. (2013) 

Analyzed nonstationary 
model for heavy rainfall 
events 

Poisson and general-
ized Pareto 
distribution 

Nonstationary model 
with climatic covariates 
superior to stationary 
model 

Xiong et al. 
(2015) 

Developed NCM for 
nonstationary FFA 

NCM NCM outperformed tra-
ditional FFA models 

Machado 
et al. (2015) 

Evaluated stationary and 
nonstationary flood fre-
quency approaches 

Stationary and 
nonstationary models 

Nonstationary modeling 
improved rare flood 
probability estimates 

Šraj et al. 
(2016) 

Compared models for 
flood quantile estimation 

Stationary and 
nonstationary GEV 
models 

Nonstationary model 
with annual precipitation 
had best performance 

Debele et al. 
(2017b) 

Analyzed seasonal flow 
maxima 

Maximum likelihood, 
two-stage, and 
GAMLSS methods 

GAMLSS exhibited bet-
ter performance 

Das and 
Umamahesh 
(2017) 

Analyzed uncertainties in 
streamflow projections 

VIC-3L model projec-
tions under RCPs 4.5 
and 8.5 

Stationary for RCP4.5; 
nonstationary for RCP8.5 

Debele et al. 
(2017a) 

Discussed challenges in 
nonstationarity models 
and practical requirements 

GAMLSS package GAMLSS useful, but 
issues remain in 
applicability 

Dègan et al. 
(2017) 

Analyzed nonstationary 
flood frequency 

Stationary and 
nonstationary models 

Nonstationary models 
crucial for long periods 

Singh and 
Chinnasamy 
(2021) 

Investigated 
nonstationarity of Periyar 
River 

Stationary and 
nonstationary models 

Nonstationary FFA 
methods recommended 

Chen et al. 
(2021) 

Revisited the stationary 
assumption in FFA 

Nine candidate 
covariates in 
nonstationary models 

Rainfall variability domi-
nant driver for flooding 

Gruss et al. 
(2022) 

Compared distributions 
for stationary and non 
stationary data 

Weibull, Log-Normal, 
GEV, and Pearson 
Type III-based models 

Nonstationary models 
superior; Weibull and 
Log-Normal most 
suitable 

Zhou et al. 
(2022) 

Developed approach for 
nonstationary FFA 
uncertainty 

GAMLSS, Copula, 
and BUP techniques 

Reliable probabilistic 
interval estimations for 
design floods



nonstationary model (507.2) is also better than the stationary model with BIC of 
509.64. The comparison of return levels between the presented nonstationary anal-
ysis (in Fig. 15.1a) and the stationary model (Fig. 15.1b) demonstrates the differ-
ences between results of both approaches. Fig. 15.1c further shows the changes in
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Table 15.1 (continued)

Author(s) Objective Methodology Findings 

Das and 
Umamahesh 
(2022) 

Examined hydrological 
extremes under 
nonstationary conditions 

GEV distribution with 
physically based 
covariates 

Nonstationary approach 
provided valuable 
insights 

Guo et al. 
(2023) 

Investigated performance 
of nonstationary Bayesian 
RFFA 

LME and GLS models Nonstationary 
LME-based Bayesian 
RFFA method performed 
better 

Fig. 15.1 Results of nonstationary and stationary FFA performed for Barmanghat Subbasin: (a) 
return level curves constructed based on a nonstationary model, (b) return level curves based on a 
stationary model, and (c) varying effective return levels as a function of time



effective return level as a function of time chosen as the covariate in the present case 
study.
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15.4 Concluding Remarks 

Nonstationary flood frequency analysis methods have become increasingly impor-
tant in understanding and predicting hydrological extremes in changing environ-
ments. Various studies have been conducted worldwide, employing different 
approaches and techniques to address nonstationarity in flood frequency modeling. 
In summary, nonstationary flood frequency analysis methods have demonstrated 
their usefulness in various case studies, offering improved modeling accuracy and 
reducing uncertainty in the face of changing environmental conditions. These 
methods provide valuable insights for flood management, infrastructure design, 
and flood mitigation projects. 

The vast amount of literature reviewed in this domain emphasizes that 
nonstationary flood frequency analysis is important for addressing the impacts of 
climate change, land use changes, and human activities in water resources manage-
ment and has capability to provide reliable estimates of flood risk probabilities, 
design flood levels, and convey the associated uncertainties to users, compared to 
stationary approaches. Additionally, for integrating nonstationary flood frequency 
analysis into policy making, following parameters are required to be met: 
(i) understanding of local hydrological regimes and nonstationary factors; 
(ii) creation of public awareness on the importance of nonstationary flood frequency 
analysis; (iii) identification of appropriate nonstationary methods tailored to the 
study area; (iv) conversations with stakeholders, such as policymakers, engineers, 
and researchers for participatory resilience development; and (v) regular update and 
review of flood adaptation and mitigation policies and strategies to ensure their 
effectiveness and relevance. 

15.4.1 Challenges 

The comprehensive review of flood studies and existing approaches in nonstationary 
FFA has helped us to summarize the different challenges that are faced by hydrol-
ogists (Das et al. 2022). The major challenges are as follows:

• Data availability and quality: Nonstationary flood frequency analysis often 
requires long-term and high-quality data to capture the underlying trends and 
changes in hydrological extremes. However, acquiring such data is often chal-
lenging due to data gaps, inconsistencies, and limited spatial coverage.

• Selection of appropriate covariates: Identifying relevant and significant covariates 
that can explain the nonstationarity in flood frequency is a difficult task.



Researchers must carefully select the covariates based on their physical relevance 
and statistical significance in relation to the regional flood data.

• Model selection and validation: Numerous nonstationary models have been 
proposed in the literature, each with their own advantages and limitations. 
Choosing the appropriate model for a specific case and validating its performance 
are essential steps in nonstationary flood frequency analysis.

• Uncertainty quantification: Nonstationary flood frequency analysis has numerous 
sources of uncertainty, including those due to parameter estimation, model 
structure, and input data. Quantifying and accounting for these uncertainties is 
crucial for providing reliable and robust estimates of design floods.

• Computational complexity: Nonstationary flood frequency analysis often 
involves complex mathematical models and advanced statistical techniques that 
can be computationally demanding. Development of efficient algorithms and 
software packages is necessary for practical applications. 
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15.4.2 Future Direction 

With the exhaustive review of applications and scope of nonstationary FFA carried 
out in this chapter, we have been able to assess the future scope of the research in this 
domain. Notably, the following important thrust areas are to be addressed in the 
analysis to utilize the maximum benefits of this exercise in hydrologic design and 
risk adaptation:

• Integration of climate change projections: Incorporating climate change projec-
tions into nonstationary flood frequency analysis can help assess the potential 
impacts of climate change on future flood risk and inform adaptation strategies.

• Development of regional nonstationary models: Developing regional 
nonstationary flood frequency models can help overcome data limitations and 
improve the estimation of flood quantiles for ungauged sites, which is particularly 
relevant for regions with limited data availability.

• Improvement of model performance and uncertainty quantification: Further 
research is needed to develop and evaluate new nonstationary models, as well 
as to refine existing ones and to improve their performance and uncertainty 
quantification in flood frequency analysis.

• Cross-disciplinary collaboration: Collaboration between hydrologists, meteorol-
ogists, and climate scientists can help better understand the drivers of 
nonstationarity in flood frequency and develop more accurate and robust models.

• Application of machine learning and artificial intelligence: The use of machine 
learning and artificial intelligence techniques can help identify patterns and 
relationships in large, complex datasets and may provide novel insights into 
nonstationary flood frequency analysis. 

Ultimately, advancing the science of nonstationary FFA is essential for improv-
ing the design and management of water resources infrastructure and better adapting



to the impacts of natural and anthropogenic climate change on hydrological systems. 
By addressing the aforementioned challenges and research gaps and addressing the 
future scope for research in this domain, nonstationary FFA can be improved, 
standardized, and merged with flood risk management protocols to provide timely, 
accurate, and reliable estimates of flood risk and build the resilience of flood 
mitigation infrastructure. 
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Chapter 16 
Multiday Extreme Precipitation Ranking 
and Association with Atmospheric Moisture 
Transport During Indian Summer Monsoon 

Hariom Gupta, Akash Singh Raghuvanshi, and Ankit Agarwal 

Abstract In recent years, the frequency of multiday extreme precipitation events 
has intensified over the Indian subcontinent. Variability in frequency, intensity, and 
duration of extreme precipitation events have an adverse impact on human society 
and the natural ecosystem. Therefore, it becomes essential to rank such extreme 
events based on their characteristics and understand the underlying atmospheric 
dynamics driving them. In this study, we ranked multiday extreme precipitation 
events during the Indian summer monsoon (ISM) season over the Indian subconti-
nent using a high-resolution daily precipitation dataset for 71 years period 
(1951–2021). Further, we attempt to evaluate the association between moisture 
transport and multiday extreme precipitation events by quantifying moisture trans-
port during identified top-ranked multiday extreme precipitation events. Our analysis 
indicates strong moisture transport persisting over the extreme precipitation occur-
rence regions prior to and during the multiday extreme precipitation events. Quan-
tifying the connection between extreme precipitation to moisture transport might 
help in the early prediction of extreme precipitation events and lower the associated 
risks. 

Keywords Multiday extremes · Ranking · Moisture transport · Integrated vapor 
transport (IVT) · Indian summer monsoon 

16.1 Introduction 

Due to climate change, warmer temperatures lead to increased evaporation and 
atmospheric moisture, which can then lead to more intense rainfall, which is 
contributing to more frequent and intense extreme precipitation events. These events 
can lead to flooding, landslides, and other hazards and also have significant human
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impacts that can cause significant damage to infrastructure, homes, and other 
property. Managing extreme precipitation events requires a multifaceted approach 
that involves several strategies, and infrastructure improvements such as building 
levees, improving drainage systems, and reinforcing buildings can help to minimize 
the impact of extreme precipitation. Early warning systems can help to alert com-
munities to the potential for extreme precipitation, allowing for evacuation or other 
preparedness measures. Land-use planning and zoning can help to minimize the 
impact of extreme precipitation by avoiding development in flood-prone areas or 
requiring new construction to be built to higher standards to withstand flooding.
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Most extreme rainfall indices across the west coast stations and north-western 
regions of the Indian Peninsula have exhibited notable positive trends. Over India, in 
the last 50 years, precipitation extremes have varied in heterogeneous ways (Joshi 
and Rajeevan 2006), thus becoming a major concern. Understanding the character-
istics of precipitation extremes allows us to identify the impact causing extreme 
events, which requires attention and resources for mitigation and adaptation. There-
fore, it is crucial to characterize and rank precipitation extremes to comprehend the 
risk and impact and examine the underlying drivers that contribute to their occur-
rence and intensification. In recent years, several techniques have been adopted to 
evaluate and rank precipitation extremes in various parts of the world. Beguería et al. 
(2009) adopted extreme value theory to evaluate the characteristics of extreme 
precipitation occurrences over north-eastern Iberian Peninsula. An equivalent 
threshold-based objective method was adopted for identifying regional extreme 
events (REE) while considering their impact area and duration (Ren et al. 2012). 
An index system was also established specifically for REE in this method. This index 
system was comprised of five indices, that is, extreme magnitude, maximum 
impacted area, cumulative intensity, accumulated area, and duration, as well as an 
integrated index and spatial location. An “event-adjusted” method based on the 
optimization of the time duration and the event area was developed by Müller and 
Kaspar (2014) in which the radius of a circle with the same diameter as the one over 
which the geometric mean is taken is multiplied by the common logarithm of the 
spatial geometric mean of the return periods, to measure the extremeness. Ramos 
et al. (2014) introduced a novel approach for ranking daily extreme precipitation on 
the basis of the affected area and the intensity at each grid point. This approach was 
further modified for multiday extreme events using accumulated normalized depar-
ture from climatology at shorter time scales (e.g., 3 days) and longer time scale 
(e.g. 5, 7, and 10 days) (Ramos et al. 2017). Similar approach was adopted to rank 
multiday precipitation extreme events in the Indian western Himalayas (IWH) (Raj 
et al. 2021) and for the identification and selection of wet spell events across Danube 
river basin (Ciric et al. 2017). In the above ranking methods, a typical Gaussian 
distribution was not achieved by normalized precipitation anomalies. Therefore, a 
new ranking method, based on the severity of the extreme precipitation days 
considering the magnitude of the precipitation above the 95th climatological per-
centile and the area affected by the same magnitude, was suggested (Ramos et al. 
2018).
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Atmospheric moisture transport plays a crucial role in the occurrence of extreme 
precipitation events. Being the primary component of the atmospheric branch of the 
water cycle, atmospheric moisture transport anomalies have a considerable impact 
on precipitation extremes. The Indian summer monsoon (ISM) is closely related to 
atmospheric moisture transport, as it involves the transport of moisture from the 
surrounding oceans to the Indian subcontinent. The Indian summer monsoon 
accounts for the majority of the annual rainfall (Turner and Annamalai 2012) over 
India (~ 80% of the annual rainfall) and contributes as the critical source of water for 
agriculture in the region (Hrudya et al. 2021). However, in recent years, India has 
experienced rise in frequency of extreme precipitation events during the Indian 
summer monsoon causing significant damage to infrastructure and loss of life. The 
importance of atmospheric moisture transport to extreme precipitation has become 
even more pronounced in recent years as a result of climate change. As global 
temperatures rise, the atmosphere is able to hold more moisture, which means that 
there is more moisture availability for transport and precipitation (Tabari 2020). This 
has led to an increase in the frequency and severity of extreme precipitation events in 
many parts of the world. Thus, understanding the linkages between extreme precip-
itation events and atmospheric moisture transport is essential. Recent study 
attempted to establish the link between precipitation over the continents and evap-
oration from the ocean using various major atmospheric moisture transport mecha-
nisms, namely, atmospheric rivers (ARs) and low-level jets (LLJs) (Gimeno et al. 
2016). With these references, the present study focuses on evaluating the rank of 
multiday extreme precipitation events over Indian subcontinent region during India 
summer monsoon (ISM). Further, the association between moisture transport and 
extreme precipitation is evaluated by assessing the spatiotemporal variability of 
atmospheric moisture during top ranked multiday events. 

16.2 Study Area 

India has a diverse physiography, with varied landforms, ranging from high moun-
tain ranges, plateaus, plains, and coastal regions (as shown in Fig. 16.1). The country 
has a coastline of about 7500 km, which is home to several major ports. The West 
coast (WC) of India is bordered by the Arabian Sea, while the East coast (EC) is 
bordered by the Bay of Bengal. During the ISM, the Indian WC region, which makes 
up the windward side of the Western Ghats mountains, experiences extremely heavy 
rainfall, whereas the Southeast Indian region experiences rain-shadowing (Francis 
and Gadgil 2006). During ISM season, the country receives 75–80% of its total 
annual rainfall. Despite significant year-to-year variability, the intensity and fre-
quency of extreme rainfall events during ISM have increased significantly over the 
past 50 years (Goswami et al. 2006). In addition, there is an increase in the rise of 
location-specific and widespread extreme precipitation due to large variability of the 
monsoon low-level westerlies over the Arabian Sea (AS), which provides the intense 
streams of moisture supply causing extreme rainfall events across the country (Roxy



et al. 2017; Sagar et al. 2017). Despite the importance of moisture supply from the 
AS (during ISM season) in triggering multiday extreme precipitation events over the 
Indian region, no research has thoroughly examined the relationship between 
multiday extreme precipitation events and atmospheric moisture transport over the 
Indian subcontinent. 
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Fig. 16.1 Geographic map of Indian subcontinent depicting its elevation over different regions 

16.3 Datasets and Methods 

16.3.1 Precipitation Data 

For the computation of multiday ranking events, daily gridded rainfall data devel-
oped by India Meteorological Department (IMD) at a spatial resolution of 
0.25° × 0.25° is used for ISM months, that is, from June to September (JJAS) for 
1951–2021 period (Pai et al. 2014). These datasets were prepared with the use of 
daily rainfall records obtained from 6955 rain gauge stations over India (Pai et al. 
2014). IMD data is considered as the more accurate dataset as it efficiently captures 
the temporal and spatial variability of precipitation in India (Pai et al. 2014).
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16.3.2 Reanalysis Data 

We used data from the most recent ERA-5 reanalysis (Hersbach et al. 2020) from the 
European Centre for Medium-Range Weather Forecasts (ECMFW) at 6-hourly 
temporal resolution (0 UTC, 6 UTC, 12 UTC, and 18 UTC) to obtain the values 
of zonal wind speed (u), meridional wind speed (v), and specific humidity (q) at 
multiple vertical levels of the troposphere (1000–300 hPa; 20 pressure levels) in 
order to quantify atmospheric moisture transport at 0.25° × 0.25° resolution. Com-
pared to other reanalysis products, ERA-5 captures precipitation reasonably well 
during Indian summer monsoon (Mahto and Mishra 2019). 

16.3.3 Ranking Multiday Extreme Precipitation 

For the ranking of extreme precipitation events, we adopted the methodology 
developed by Ramos et al. (2018). This ranking method considered magnitude, 
spatial extent, and duration of the extreme precipitation events. For the estimation 
of ranking, only wet days (days with precipitation greater than 2.5 mm as per IMD) 
are considered. In this method, we calculate 95th percentile threshold from daily 
precipitation data for 1951–2021 period at each grid point and for each day of year 
during ISM to ensure a fair comparison among all grid point while evaluating 
precipitation anomaly. A three-step procedure is used to determine the ranks of 
extreme precipitation events across multiday accumulation periods. 

Step 1: The extreme precipitation anomaly is computed for each day and each 
grid point as follow: 

N95d,i,j =Pd,i,j -P95t,i,j ð16:1Þ 

where N95d, i, j is the extreme precipitation anomaly on day d, at the grid point (i,j). 
Pd, i, j is the daily accumulated precipitation of day d at grid point (i,j). P95t, i, j is the 
Julian daily 95th percentile of the precipitation for that grid point (i,j). A seven-day 
running mean of P95t, i, j is calculated before computing the anomalies in order to 
smoothen the highly variable P95t, i, j time series. Finally, for each day and for each 
grid point (i,j), an anomaly departure from 95th percentile threshold is obtained. 

Step 2: The second step involves calculating the accumulated extreme precipita-
tion anomalies (NCC) for a certain period p by calculating the sum of the anomalies 
(Eq. 16.1 – N95) over multiday periods (n) as follows: 

NCCp,i,j = 
n 

d = 1 

N95d,i,j ð16:2Þ 

We computed the accumulated extreme precipitation anomalies for 1-, 3-, 5-, and 
7-day period. For example, the accumulated precipitation anomalies for 3 days on



August 5, 2006, corresponds to the sum of the extreme precipitation anomaly 
relative to August 3–5, 2006. 
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Step 3: Finally, the multiday extreme precipitation events are ranked based on a 
ranking index (R), which is defined as follows: 

R=A×M ð16:3Þ 

where A is the area (in percentage) with accumulated extreme precipitation anom-
alies (NCC) greater than zero and M is the mean value of the extreme precipitation 
anomalies (N95) for all the grid points. 

16.3.4 Atmospheric Moisture Transport 

Atmospheric moisture transport is characterized by significant water vapor anoma-
lies in the atmosphere. In the past, many studies have used water vapor imagery and 
column-integrated water vapor (IWV) observations to quantify atmospheric mois-
ture transport and its mechanisms (Neiman et al. 2008, 2013; Ralph et al. 2004; Zhu 
and Newell 1998). Later, it was realized that IWV does not account the flux 
component, and the column-integrated water vapor transport (IVT), which includes 
horizontal winds in its computation, is used as the preferable measure in most 
contemporary research because it includes horizontal winds in its computation. 
IVT has certain benefits over IWV, including better relationships with precipitation 
and more accurate forecasts from numerical weather prediction models (Dettinger 
et al. 2011). IVT magnitude on a grid cell is computed as the magnitude of column-
integrated zonal and meridional moisture fluxes, as given in Eq. 16.4: 

IVT= 
1 
g 

300hpa 

1000hpa 
qu dp 

2 

þ 
300hpa 

1000hpa 
qv dp 

2 

ð16:4Þ 

where IVT is magnitude of water vapor transport in kg. m-1 s -1 ; q is specific 
humidity in kg. kg-1 ; u and v are, respectively, zonal and meridional wind velocities 
in m. s -1 ; dp is the pressure difference between two adjacent pressure levels in Pa; 
and g is the acceleration due to gravity (9.81 ms-2 ). 

16.4 Results and Discussions 

In this section, multiday extreme precipitation events ranking over Indian subcon-
tinent is presented in tabular format. The spatiotemporal patterns of top ranked 
multiday extreme precipitation events and corresponding multiday moisture trans-
port is presented and discussed.
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16.4.1 Ranking Multiday Extreme Precipitation Events 

In Tables 16.1, 16.2, 16.3, and 16.4, the top ten cases of the rankings of precipitation 
extremes for different accumulated periods (1, 3, 5, and 7 days) are shown. Inter-
estingly, many events are not independent, and they overlap at different durations. In 
addition, it is clear from Tables 16.1, 16.2, 16.3, and 16.4 that the different top ten 
ranks are dominated by four events that occurred, respectively, in July 1989, 
September 1995, July 2006, and August 2019. This dominance exerted by just a 
few extreme precipitation episodes is expected to occur at longer durations, since we 
analyze successive accumulated precipitation days over relatively long periods.

Table 16.1 The top ten 
events ranking of one-day 
accumulated extreme precipi-
tation events 

Date % Area (A) Mean (M ) R = A*M Rank 

24-07-1989 12.08 46.89 566.39 1 

05-09-1995 13.20 40.05 528.70 2 

16-08-2011 9.35 56.24 525.55 3 

23-07-1989 9.24 54.86 507.03 4 

23-06-2007 9.28 53.44 496.11 5 

09-08-2019 12.45 39.78 495.35 6 

07-08-2007 7.81 60.30 471.06 7 

04-09-1995 11.71 39.88 466.94 8 

04-07-2006 6.96 63.93 445.11 9 

The first column corresponds to the date of the event. Column 
A corresponds to the area (in %) of the domain that has extreme 
precipitation anomalies above N95. Column M corresponds to 
mean value of these extreme precipitation anomalies over area A. 
Column R corresponds to the final rank index used for ranking the 
days. The final column corresponds to the ranking of the event. 

Table 16.2 The top ten 
events ranking of three-day 
accumulated extreme precipi-
tation events 

Date % Area (A) Mean (M ) R = A*M Rank 

05-09-1995 9.24 94.86 876.64 1 

05-08-2006 5.93 135.29 801.77 2 

06-08-2006 7.21 105.03 757.35 3 

24-07-1989 8.56 81.98 701.56 4 

03-08-1997 5.41 118.76 642.27 5 

06-09-1995 7.81 81.89 639.74 6 

25-07-1989 8.50 75.20 638.91 7 

04-08-2006 3.81 161.62 616.21 8 

09-08-2019 8.60 69.99 601.82 9 

The first column corresponds to the date of the event. Column 
A corresponds to the area (in %) of the domain that has extreme 
precipitation anomalies above N95. Column M corresponds to 
mean value of these extreme precipitation anomalies over area A. 
Column R corresponds to the final rank index used for ranking the 
days. The final column corresponds to the ranking of the event.



Therefore, two or three intense precipitation anomalous days will be sufficient to 
influence successive periods.
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Table 16.3 The top ten 
events ranking of five-day 
accumulated extreme precipi-
tation events 

Date %Area (A) Mean (M ) R = A*M Rank 

07-08-2006 6.78 113.46 768.78 1 

10-08-2019 4.43 141.11 625.73 2 

06-09-1995 5.53 111.50 616.89 3 

11–08-2019 4.06 133.63 542.71 4 

13-08-2017 3.42 158.05 540.36 5 

08-08-2006 6.01 89.79 539.57 6 

09-08-2019 5.26 99.06 521.38 7 

07-09-1995 5.14 97.73 502.24 8 

27-09-1988 6.42 77.32 496.64 9 

The first column corresponds to the date of the event. Column 
A corresponds to the area (in %) of the domain that has extreme 
precipitation anomalies above N95. Column M corresponds to 
mean value of these extreme precipitation anomalies over area A. 
Column R corresponds to the final rank index used for ranking the 
days. The final column corresponds to the ranking of the event. 

Table 16.4 The top ten 
events ranking of seven-day 
accumulated extreme precipi-
tation events 

Date Area Mean Rm Rank 

11–08-2019 3.61 154.67 557.67 1 

10-08-2019 4.00 137.59 550.23 2 

06-09-1995 4.21 115.23 484.72 3 

05-09-1995 4.93 97.79 482.26 4 

13-07-1962 3.13 146.02 456.87 5 

12-08-2019 3.07 147.62 452.69 6 

24-06-1974 1.28 325.87 418.65 7 

07-09-1995 3.94 105.98 417.25 8 

14-07-1962 2.74 145.50 397.97 9 

The first column corresponds to the date of the event. Column 
A corresponds to the area (in %) of the domain that has extreme 
precipitation anomalies above N95. Column M corresponds to 
mean value of these extreme precipitation anomalies over area A. 
Column R corresponds to the final rank index used for ranking the 
days. The final column corresponds to the ranking of the event. 

The one-day first rank event on July 24, 1989 (Fig. 16.2), was widespread, with 
12.08% of Indian subcontinent showing extreme precipitation anomalies larger than 
P95. It reached an average extreme precipitation anomaly of 46.89 mm (Fig. 16.2). 
The event hit the central peninsula and west-coast section of India, with maximum 
precipitation more than 250 mm and with precipitation above 150 mm observed at 
several grid points. The same event is also present in the three-day ranking (rank 
4 and 7) underlining that it was dominant at the daily scale, but precipitation on the 
day before and the day after was also relevant (Fig. 16.2). In this regard, any ranking 
methodology focusing on single-day duration would be limited in capturing its 
evolution. The absence of this event from further multiday ranking (five- and



seven-day ranking) shows that the extreme event occurred only for three to four 
continuous days (i.e., July 22–25). 
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Fig. 16.2 Spatiotemporal variation of precipitation events 2 days prior to the top-ranked one-day 
accumulated extreme precipitation event. The magnitude of precipitation (mm) is shaded in 
different colors 

Several events, which are not significant on a daily ranking, become significant, 
based on intensity and spatial extension at longer time durations (as shown in 
Tables 16.1, 16.2, 16.3, and 16.4). For instance, the total of five different events 
appeared in the three-, five-, and seven-day ranking categories that are absent in 
one-day ranking. The changes in the ranking of different duration highlight the 
importance of multiday ranking of extremes, as it is crucial to capture events of 
varying spatiotemporal characteristics. The extreme event of August 11, 2019, 
accounts for eight occurrences. The event was not a short-lived one and lasted for 
a considerably longer duration of 7 days from August 2 to August 11, 2019 
(Fig. 16.8). Daily average extreme precipitation anomalies higher than 154.67 mm 
are present on all the days. Precipitation was localized and intense (Fig. 16.9) along 
west coast throughout 7 days. This prolonged event was related to the disastrous 
floods that took place in Odisha and Kerala between August 1 and 20 causing the 
death of 135 people and affecting 89.76 lakh people in total (https://weather.com/en-
IN/india/news/news/2020-01-08-top-5-biggest-floods-affect-india-2019). 

16.4.2 Moisture Transport During Extreme Precipitation 
Events 

Top-ranked multiday extreme precipitation events identified as per the above criteria 
are shown in Figs. 16.2, 16.4, 16.6, and 16.8. Figs. 16.3, 16.5, and 16.7 and 9 show 
vertically integrated water vapor associated with this multiday extreme precipitation 
events. For the present analysis, the hilly regions of north-eastern parts of India and 
the Western Ghats were not considered for this analysis. It is interesting to see the 
asymmetry in the moisture convergence and associated rainfall, which is a charac-
teristic of the monsoon low-pressure systems (Sagar et al. 2017).

https://weather.com/en-IN/india/news/news/2020-01-08-top-5-biggest-floods-affect-india-2019
https://weather.com/en-IN/india/news/news/2020-01-08-top-5-biggest-floods-affect-india-2019
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Fig. 16.3 Atmospheric moisture transport 2 days prior to the top-ranked one-day accumulated 
extreme precipitation event. The magnitude of atmospheric moisture transport quantified by IVT 
(kg/m/s) is shaded in different colors, while the direction of atmospheric moisture transport is also 
shown with black color vector arrows 

Fig. 16.4 Spatiotemporal variation of precipitation events 2 days prior to the top ranked three-day 
accumulated extreme precipitation event. The magnitude of precipitation (mm) is shaded in 
different colors 

In addition, results show atmospheric moisture transport persisting for 2 days or 
more prior to the occurrence of multiday extreme precipitation events with peak IVT 
intensity ranging between 900 and 1000 kg/m/s (as shown in Figs. 16.3, 16.5, 16.7, 
and 16.9). The existence of consistent IVT values above 1000 kg/m/s during heavy 
precipitation events emphasizes that persistent nature of IVT will be an indication of 
the extent of extreme rainfall over a region. It is proved from the analysis that the 
existence of intense moisture transport, which is at least persisting for 24 h, may be 
the major reason for the occurrence of heavy precipitation. Our findings are in



coherence with recent studies (Sagar et al. 2017; Hazra et al. 2017) regarding 
extreme precipitation caused by low-level convergence and abundance of moisture 
in the atmosphere. 
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Fig. 16.5 Atmospheric moisture transport 2 days prior to the top ranked three-day accumulated 
extreme precipitation event. The magnitude of atmospheric moisture transport quantified by IVT 
(kg/m/s) is shaded in different colors, while the direction of atmospheric moisture transport is also 
shown with black color vector arrows 

Fig. 16.6 Spatiotemporal variation of precipitation events 2 days prior to the top ranked 5-day 
accumulated extreme precipitation event. The magnitude of precipitation (mm) is shaded in 
different colors



300 H. Gupta et al.

Fig. 16.7 Atmospheric moisture transport 2 days prior to the top-ranked five-day accumulated 
extreme precipitation event. The magnitude of atmospheric moisture transport quantified by IVT 
(kg/m-s) is shaded in different colors, while the direction of atmospheric moisture transport is also 
shown with black color vector arrows 

16.5 Conclusions 

We ranked multiday extreme precipitation events over India using a methodology 
similar to that used by Ramos et al. (2018). We considered both magnitude and 
spatial extent to rank events of different durations. We found that a few events 
received higher rankings due to their more significant precipitation amounts and 
impacts. Our ranking technique can help identify the timing of maximum impact and 
long-duration extremes. We also examined the association between atmospheric 
moisture transport and extreme precipitation events. Our results suggest that high 
moisture incursion over regions near cyclonic circulations increases specific humid-
ity and contributes to the development of thunderstorms leading to multiday extreme 
precipitation. Our findings emphasize the importance of utilizing a multiday ranking 
scheme to accurately measure and monitor the spatial and temporal propagation of 
extreme precipitation events. The ranking database we created can also be useful for 
studying the impacts of extreme precipitation periods on wide areas and analyzing 
changes in atmospheric circulation throughout those days. Future studies will focus 
on looking into different synoptic scale meteorological patterns during multiday 
extreme precipitation events.
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Fig. 16.8 Spatiotemporal variation of precipitation events 2 days prior to the top ranked seven-day 
accumulated extreme precipitation event. The magnitude of precipitation (mm) is shaded in 
different colors
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Fig. 16.9 Atmospheric moisture transport 2 days prior to the top ranked seven-day accumulated 
extreme precipitation event. The magnitude of atmospheric moisture transport quantified by IVT 
(kg/m/s) is shaded in different colors, while the direction of atmospheric moisture transport is also 
shown with black color vector arrows 
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Chapter 17 
Remote Sensing and Its Application on Soil: 
An Ecosystem Services 

Deeksha, Anoop Kumar Shukla, Nandineni Rama Devi, 
and Satyavati Shukla 

Abstract Ecosystem services are a necessary part of human life. Because these 
ecological services linked directly to human survival, we must understand the 
significance of their interaction, even though there is a large amount of literature 
on the subject, establishing a suitable knowledge foundation, which is vital. In this 
book chapter, we discussed importance of ecosystem services (ES) and its various 
forms and explored various remote sensing techniques and the models used to assess 
soil ES. As a result, we discover that the emphasis of modern urban studies is 
changing from interpretation to information collection for effective decision-
making, which will help readers grasp the issues associated with the existing system 
and the way forward to achieve sustainable development.. This work will assist 
stakeholders and policymakers in taking necessary actions to preserve the present 
ecological equilibrium. 

Keywords Ecosystem services · Remote sensing · GIS · Soil · River 

17.1 Introduction 

Soils are the Earth’s greatest carbon reservoir, storing approximately 3.3 times more 
carbon than the atmosphere and 4.5 times more than total biomass. Wetlands play an 
important role in carbon sequestration, an ecological function that is seen as a critical 
environmental benefit in the context of global warming. Based on the land usage 
practise, temperature, structure, and terrain, the reservoir of soil organic carbon can 
operate as a source (through oxidation of carbon into CO2 owing to soil exposure to
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atmosphere) or a sink (by long-term retention of carbon as organic matter in soil) of 
atmospheric carbon dioxide.
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Soil properties are one of the most critical environmental elements that have a 
significant influence on the structure and productivity of coastal wetlands. Topog-
raphy, tidal or riverine sedimentation patterns, temperature, tidal regime, and long-
term sea level fluctuations, as well as soil type and its physical, chemical, and 
biological qualities, may all contribute to aquatic vegetation ability to capture 
atmospheric carbon through photosynthesis. 

The value of biodiversity is intrinsically connected to ecosystem services and 
individual well-being. Apart from incursion, additional risks to biodiversity include 
soil degradation, air degradation, and climatic changes. Ecosystem services (ES) are 
the advantages people receive from nature (Costanza et al. 1997; Daily 1997. To  
build a bridge between nature and society, ES combines human well-being and 
natural systems for ecological and economic growth. Changes in land use and land 
cover significantly influence ecosystem services, leading to deterioration (Deeksha 
and Shukla 2022; Gupta et al. 2023; Saikumar et al. 2022; Sharma and Goyal 2018; 
Shukla et al. 2018; Shukla et al. 2020). As a result, evaluating ecosystem services has 
been a focus of academic research for many years. Recent interventions also 
demonstrate the study’s preparedness to advise policymakers in making critical 
decisions in the policymaking process, as well as the integration of ecology, geog-
raphy, and economy. 

ES is essential in ensuring an individual’s well-being by providing security, 
satisfying fundamental necessities for day-to-day living, and maintaining strong 
social relationships. As half of the world’s population lives in cities, urban ecosys-
tems remain a significant topic of ecosystem service study. According to MEA 
(2005), over 60% of worldwide ES has been threatened or inappropriately exploited, 
and a similar trend is projected to continue for the foreseeable future. As a result, ES 
is now widely regarded as a critical component of land-use planning, ecological, 
environmental planning, and management. 

The interaction between the ESs might be of two forms. The first is tradeoffs, in 
which an increase in one ES’s influence leads to a decrease in another ES’s effect. 
Second, there are synergies, which occur when the action of one ES increases the 
impact of another ES (Han et al. 2020). Understanding this link is crucial because it 
focuses on the interaction between ES by focusing on intrinsic bundles (Cord et al. 
2017) rather than separate ES when similar relationships arise again throughout 
place and time. According to studies, tradeoffs and synergies are created by inter-
actions between multiple ecosystems. Hence, ecosystem services cannot be regarded 
as autonomous. Researchers conclude that studying numerous ecosystem services is 
difficult (Braat and de Groot 2012; Bejagam et al. 2023; Das et al. 2023). 

Several more paradigms for ES investigations have recently developed (Li et al. 
2021). The Common International Classification of Ecosystem Services (CICES) 
includes multiple ES criteria to account for natural capital. The framework designed 
by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem 
Services (IPBES) closely captures themes that link nature’s contribution to human-
ity. To better comprehend ES, researchers developed a foundation framework for



worldwide ES research; hence, ES is divided into four categories: (i) provisioning 
ecosystem services, (ii) regulating ecosystem services, (iii) supporting ecosystem 
services, (iv) cultural ecosystem services. 
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Ecosystem services described as commodities that may be directly derived from 
nature, consumed, and have a commercial value. Water, food, timber, and biofuels 
are all examples of provisioning ecosystem services. Similarly, for the freshwater 
supply, ecosystem service provided an environment that works well (Abera et al. 
2021). Precipitation, evaporation, and climatic fluctuation significantly influence the 
region’s water output (Zhang et al. 2018). Water yield has a favorable relationship 
with evapotranspiration and soil conservation, as well as other components such as 
food production and wood. 

Regulating ecosystem services may be described as the advantages derived from 
the ecosystem’s process current affairs. Climate change, carbon storage, soil fertility, 
floods, and other examples will be given. The study’s researcher (Bennett et al. 
2009) stresses the interaction between regulating ecosystems and other ESs in terms 
of tradeoffs and synergies, as a result of which regulating ESs regarded as one of the 
essential metrics for assessing ecological resilience. Managing one ES component 
improves synergies with other ES parameters, particularly carbon storage, low flow, 
biodiversity, and so forth (Carter Berry et al. 2020). Carbon storage is a critical 
component in the worldwide service of climate management (Gómez-Baggethun 
and Barton 2013). Because of the ineffectiveness non-interpreting-scientific criteria, 
the practical application of carbon sequestration knowledge will take a step back in 
public governance. Carbon sequestration is a critical factor in global climate man-
agement. Because carbon is held in the terrestrial environment, researchers (Delibas 
et al. 2021) investigated the significance of soil in avoiding climate change by 
sequestering carbon. As a result, the carbon in the ground significantly influences 
geographical and nonspatial data. As a result, modeling and comparing various 
LULC scenarios can provide crucial information to policymakers in decision-
making. This process may be re-scaled globally, regionally, and locally by linking 
various rationales to economic possibilities and regulatory legislation. 

Researchers introduced cultural ecosystem services and examined and character-
ized it as “the non-material or intangible advantages humans gain from the ecosys-
tem either spiritually, via cognitive growth, recreation, self-reflection or by enjoying 
aesthetically” (Gómez-Baggethun and Barton 2013; MEA 2005). Some of the 
services in this ES, such as recreation, have monetary value, while others do not. 
Many methods in which cultural ecosystems are incorporated in the research are 
functions that fulfil life information functioning (de Groot et al. 2012; Das et al. 
2020). Furthermore, simplify the term by linking human sociocultural behaviors to 
psychological growth (Sen and Guchhait 2021). CES is also related to the intangible 
advantages individuals gain from nature as a result of engagement. Several 
researches on cultural ecosystem services focus on nature-based and aesthetic 
recreation services (TEEB 2010), with little attention paid to the spiritual value of 
landscape due to modeling limitations (Nelson et al. 2013). 

Supporting ecosystem services are the underlying processes of the ecosystem that 
sustain life, such as photosynthesis, the nutrient cycle, and evolution; this is a critical



service that the ecosystem offers, allowing the rest of the ecosystem services to be 
delivered. 
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17.2 Soil Ecosystem Service 

Soils are a crucial element of environments; therefore, understanding their processes 
requires multidisciplinary and transdisciplinary methods. Soil is generated when the 
lithosphere, biosphere, atmosphere, and hydrosphere collide. It manages the bulk of 
ecological processes in environments. It is host to a considerable part of the world’s 
biodiversity, supplying the physical underpinning for many anthropogenic activities. 
Anthropogenic influences on soil have been worse since the dawn of agriculture 
(Brevik et al. 2015; Beyene et al. 2021). Man has used soil for centuries, and this 
legacy is widely recorded. Yet, despite such extensive use, a complete perspective on 
the subject has just lately evolved. Undoubtedly, all of various applications of soils 
have received considerable attention over the past, yet there is hardly any overlap 
from one research field toward another. Someone might propose that the absence of a 
holistic viewpoint is related to the reality that soil resources were not limited till the 
beginning of the twentieth decade, and thus, individuals did not automatically 
conceive of diverse soil usages as competing, including one another. Along with 
air and water health, soil conditions constitute one of the three factors of ecosystems. 
Water and air quality are primarily influenced by the amount of contamination they 
contain, which significantly affects the benefit of humans and animals, health, and 
ecological systems. Soil quality, on the other hand, is described rather more gener-
ally as “the ability of a soil to operate within ecological and territory constraints to 
sustain biological production, preserve ecological integrity, and encourage flora and 
fauna health.” 

Soil ES has been significantly damaged due to global warming and anthropogenic 
activity, threatening food safety in the future. Climate change will likely reduce soil 
quality by altering the soil-water-gas balance and lowering soil organic carbon. 
Nevertheless, the soil is indeed most excellent terrestrial carbon store and, if not 
maintained properly, may contribute significantly to greenhouse gas emissions. 
Agricultural development, unsustainable practices, alteration of natural environ-
ments in rural regions, and urban sprawl are all hastening soil deterioration, with 
negative consequences for soil value (Pereira et al. 2016). 

Soils are an essential natural resource since they influence a country’s financial 
position (Dominati et al. 2010). Soil natural capital is characterized as the soil’s 
ability to deliver the ES necessary for specific land use, providing that sustainable 
practices are adopted (Hewitt et al. 2015). 

Urban soils are impermeable, heavily contaminated, poisonous to plants and 
microorganisms, and threaten people’s well-being (De Vries et al. 2013). Likewise, 
in mining-affected regions, soils may be incapable of supporting productive and 
functioning ecosystems. Soil ES of provision, regulation, and cultural relevance are 
particularly endangered in intensive agricultural areas, and more efficient techniques



that reduced soil ES deterioration are required. It is critical to restoring a few of these 
deteriorated regions prone to significant disruptions to reintroduce ES. This paper 
aims to examine the significance of soil ES and RS GIS application on the same. 
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17.3 Importance of Soil Ecosystem Service 

Soils face intense stresses in metropolitan settings, reducing the quantity and quality 
of the ES they offer. Notwithstanding these challenges, these grounds significantly 
contribute to food grown in urban gardens, leading to long-term food security, urban 
resilience, and urban environment development. Management of soil functions is 
critical for agricultural output. Soil productivity and sensitivity to deterioration will 
be determined by their ability to preserve carbon, water, and nutrients. Healthy soils 
have more significant potential to absorb carbon, water, and nutrients; reduce 
greenhouse gas emissions; and fight pests and diseases. The ability of farming 
soils to control ES is declining as the region is surrounded by intensive crop 
production practices to raise animals and people expands. This excessive usage 
affects soils’ long-term capability to manage functions critical to the sustainability 
of ecosystems and societies. 

The ES value of soil is determined by its potential supply and how we handle it 
(Fig. 17.1). Grounds can bring just brief advantages that are not unsustainable or 
advantages that only become visible over time, depending on how we handle our 
property. Nonsustainable administration may devalue and deteriorate ecosystem soil 
services, whereas sustainable management can preserve or increase such facilities. 
Many methods for assessing soil ES have been developed for general soil services, 
although most of the assessments have been centered on agricultural landscapes. 
Those concepts are utilized to increase our understanding of agriculture practices’ 
ability to transform agroecosystems and vice versa. 

The value, devaluation, deterioration, preservation, or enhancement of soil ES is 
inextricably tied to land use planning. The primary reason for soil deterioration in 
urban and peri-urban settings are urban sprawl, which results in a variety of soil 
disservices, including sealing, contamination, ecosystem and habitat loss, and water 
and nutrient losses. Innovative types of urban design that utilize organic alternatives 
are required to limit the effects caused by humans and towns on soil functions, hence 
lowering land usage, the likelihood of medical conditions, and the expenses 
connected with them. 

17.4 RS and GIS Implemented in Soil ES Studies 

Remote sensing (RS) is a basic form of science that helps us acquire and analyze 
information about any object or phenomenon from a certain distance through the 
help of satellites. Today, we find various applications of remote sensing in



groundwater analysis, mining and mineral exploration, biophysical mapping, geo-
logical planning and mapping, landslide hazard analysis, earthquake analysis, geo-
morphology studies, etc. And the Geographic Information System (GIS) data model 
represents how we intend to look at the world and gives an understanding of how 
the world works. GIS data provides new representation for one or more aspects of the 
real world. The models created may be of the static type, where the input to the 
model and the processed output from the model pertains to a specific study area for 
the same period. These studies provide general indicators, impact factors, and weak 
points toward the current scenario study area like soil exploration, water contami-
nation estimates, land use land cover (LULC) change studies, ecosystem service 
studies, etc. In this section, we shall understand the application of RS and GIS in 
studying ecosystem services. 
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Fig. 17.1 Characteristics of soil ecosystem services 

Ecosystems may be investigated at several scales, including global, regional, and 
local. Global-level studies are conducted globally, but researchers recommend 
examining the services at the local level, which provides us with a better knowledge 
of the issue and aids in the implementation of suitable mitigation methods at the 
regional level. This contributes to achieving global sustainable goals (Jia et al. 2014). 
Although several research investigations have shed light on the interdependence of 
various ecosystem services in recent years, the merger of our existing knowledge 
reservoir and gaps remains insufficient (Lee and Lautenbach 2016).
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Remote sensing and GIS implementations in ecosystem surveillance are increas-
ingly widespread, overcoming the limits of old approaches and allowing observation 
of multiple spatiotemporal scales in a repeated and unbiased way (Lausch et al. 
2016; Soubry et al. 2021). The inherent properties of GIS and RS allow for the 
synchronization of synoptic, geographically linked, and periodic observations. The 
data is used to understand man-environment interactions in a specific metropolitan 
area (Luederitz et al. 2015). RS-based evaluations are gaining popularity as a valid 
method for modeling, mapping, and evaluating ecosystems and their products 
(Pettorelli et al. 2014). The scenario includes assessing the potential of RS for 
protecting urban ecological integrity. As a result, the current study is meant to 
highlight the relevance and potential of remote sensing in measuring ES. It examines 
attitudes regarding RS in recent research on ecosystem services. 

The ES model assists the researcher in quantifying, physically locating, and 
perhaps evaluating economic patterns. According to Daily, this knowledge is critical 
in helping urban planners, designers, and legislators understand the impact of urban 
growth on ES. There is a profusion of models and technologies available now that 
assist us in mapping and accessing ES and likewise (Signorello et al. 2020). 

A growing body of research has tried to comprehend land-use developments and 
their influence on ES at the same time, which has assisted designers and 
policymakers in taking proper actions to address the issue. Satellite photos have 
been widely utilized as the most accurate technique for monitoring LULC and ES 
changes (Shukla et al. 2020; Verma and Raghubanshi 2019). Models are used to 
examine the interactions of ES (such as a tradeoff, synergies, bundles/clusters, and 
flows) and to bring forth advantages that humans experience for their well-being 
consciously (Dang et al. 2021). Enhancing ecosystem service management by 
objectively assessing interactions among multiple ES is highly valued. 

The Integrated Valuation of Environmental Services and Tradeoffs (InVEST) 
tool was created inside the Natural Capital Project (Signorello et al. 2020). The 
InVEST model can display a spatially displayed map of the ESs. When compared to 
other models, the In-VEST model requires little experience; it provides a virtually 
exact evaluation with a minimum number of data input criteria and is useful in 
comprehending areas dealing with ecological processes. The In-VEST model is a 
helpful tool for evaluating small-scale and local research that produces meaningful 
and trustworthy results for LULC and ES. Using user-defined base settings like land 
usage, land cover, and climate variations, the InVEST toolbox is used to calculate 
roughly 14 ES for supply changes. 

Soil and Water Assessment Tool (SWAT) is widely used to simulate hydrological 
processes (Notter et al. 2012). Furthermore, the model offers spatial discretization 
flexibility, allowing it to assess space locally, regionally, and globally. To measure 
ES changes, various models are utilized, including ARIES, LUCI, CA-Markov, 
SLEUTH, CLUES, and others. 

Ecosystem services are studied quantitatively using mapping and modeling tools. 
Researchers also employed a mix of models to analyze ES, such as a combination of 
model mapping ES (such as InVEST, SWAT, and ARIES), model mapping urban 
expansion, and statistical modeling. LUSD-urban (Land Use Scenario



Dynamics-urban) is an urban expansion model that helps in a multi-scale simulation 
of urban development. LUSD-urban, together with Cellular Automata (CA) and 
system dynamics models, represents micro-scale evolutionary factors and macro-
scale resource restrictions. This model has gone through several versions in recent 
years, with improved accuracy and a kappa index on average (Xie et al. 2018). 
SLEUTH (Slope, Land use, Exclusion, Urban extent, Transportation, and Hill 
shade) and CLUE-S are the other models (the Conversion of Land Use and its 
Effects at a Small regional area). Correlation analysis, regression analysis, and root 
mean square deviation are examples of statistical models. This model combination is 
effective for creating correlations among a few variables, but it is not regarded as 
practically feasible. InVEST, ARIES, and SWAT are the most well-known models. 
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LULC, soil data, topographical data, and hydrological data are the most widely 
utilized base data. This provides a comprehensive picture of several criteria, such as 
habitats, soil types, vegetation classes, and biomes. Additional types of data required 
for ES evaluation include census data, meteorological data such as precipitation data, 
which is used for water yield assessment, and digital elevation model (DEM), which 
is employed for Hydrology evaluation. 

InVEST, SWATARIES (Artificial Intelligence for Ecosystem Services (ARIES), 
LUCI, and other models are utilized to obtain spatiotemporal ESs. According to the 
publishing trend, the InVEST model is widely utilized due to its input data criterion; 
it uses publicly available open-source data and has a mapping/modeling scale of 30 x 
30 m. This strategy enables us access to various ecological services (water quality, 
soil erosion, carbon sequestration, biodiversity conservation, nutrients, agricultural 
produce, etc.). 

17.5 The Methodological Framework Used to Study 
(Soil) ES 

The methodological framework (Fig. 17.2) used to assess ecosystem services starts 
with the image acquisitions from earth observation satellite. Followed by spatial map 
preparation, LULC maps are created using satellite images and ERDAS Imagine 
image processing software. The map can be prepared using pixel-based image 
analysis (PBIA) or object-based image analysis (OBIA) method (Shukla et al. 
2018). In PIBA framework, we have two types of map classification, that is, 
supervised classification and unsupervised classification. 

Object-based image analysis (OBIA) and nearest neighbor (NN) classification are 
used to create land use land cover (LULC) maps. The categorization indices for 
OBIA are as follows: (1) the Normalized Difference Vegetation Index (NDVI), 
which estimates the density of green cover on a specific land parcel; (2) the Soil 
Adjustment Vegetation Index (SAVI), which corrects NDVI for the impact of soil 
brightness on the given land parcel and is employed where vegetation cover is poor; 
(3) Normalized Difference Water Index (MNDWI) modification, which aids in



developing open water features by reducing built-up, vegetation, and soil land 
sounds; and (4) the Normalized Difference Built-Up Index (NDBI), which is a 
tool for mapping the urban built-up area. 
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Fig. 17.2 Methodological framework used to study ES using RS and GIS 

The majority of studies relied on accessible “open data sources,” according to key 
findings. The Landsat, MODIS, and Sentinel series were the most widely used for 
data collecting. Most research relied on open and accessible data repositories for this 
purpose, such as aerial photos and Google Earth imagery. The data is then processed, 
analyzed, and visualized using a GIS environment. 

17.6 Discussion 

From the study, we discovered that not only has the quantity of studies risen, but also 
the notion of ecosystem services has attracted an increasing range of study view-
points. The concept of ecosystem services was originally meant to tie ecology and 
economics together by using economic terminology and a utilitarian rationale for 
conservation objectives. Considering these roots, it is not unexpected to observe the



dataset’s persistent high representation of the ecological perspective; however, we 
did not witness the “domination by ecology and economy” as is commonly stated. 
Numerous academics have advocated for ecosystem services research to incorporate 
social sciences, citing the fundamentally social character of governance and the 
necessity to “work our way backwards from society and its unique requirements to 
environmental processes, rather than vice versa.” 
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17.7 Conclusion 

This chapter attempted to summarise the present state of soil ES research. It 
indicated potential areas for further soil ES study. The following can be inferred 
from this study: Plenty of research on soil and ecosystem services are found, though 
not all of them have investigated the direct relationship with soil qualities. Most 
investigations focused on provisioning and regulating ES, and most of the study was 
undertaken within Europe. Visualization of ecosystem services must begin at the 
lowest levels of education, when the influence of soil characteristics may be imme-
diately integrated. The need to use soil data in all ES modeling investigations must 
be stressed. Upcoming soil and ecosystem service studies must concentrate on soil 
functioning in light of the United Nations’ Sustainable Development Goals. This 
highlights the multifaceted importance of soil security in long-term environmental 
governance and decision-making. Soils are a complicated structure inextricably 
linked to biogeochemical cycles that isolating out the soil part in ES research may 
be insufficient. Understanding the ecological process and its benefits to civilization 
requires a comprehensive perspective. 

The methods chosen to treat our fields may have a significant influence on soil 
ES. Non-sustainable usage can result in a substantial amount of disservices, an 
adverse effect on the ecological features of the land, soil qualities, functionalities, 
and services. On the opposite side, sustainable alternatives can potentially preserve 
or enhance such functions. Nonsustainable activities hasten the consequences of 
global warming on soil ES, whereas sustainable practises assist in ameliorating 
them. Soil ES is inextricably tied to sustainability, and the harm or benefit caused 
by our actions will be mirrored in our economic and social systems. 

Notwithstanding this awareness, the soil ecosystem must be prioritized in the 
environment of sustainable growth. Similarly, additional attempts should be made to 
develop methods that can analyze soil functions in nonagricultural settings. Finally, 
the preservation and enhancement of soil ES depends on how sustainable our 
activities are, making it a long-term imperative to strike an equilibrium between 
food security and sustainability. 

According to the findings, the emphasis of current urban studies is changing away 
from interpretation and toward information gathering for effective decision-making. 
The usage of RS and GIS for this purpose is growing in popularity. The LULC-based 
evaluation technique is frequently used to assess soil ES. The findings show that rich 
nations fund a disproportionately large amount of ES research. Researchers from



developed and developing countries choose free or open data sources for studying 
soil ES. 
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Nevertheless, information obstacles, a lack of RS- and GIS-based software, and a 
lack of capacity-building programs in developing countries obstruct any research 
attempts. It advocates for extraordinary solutions to encourage RS-based ES research 
in poor economies. The availability of open-source technology, such as Google 
Earth Engine, free database access, and other capacity-building initiatives, is crucial. 
As a way forward, work related to carbon sequestration in the wetland areas of 
Indian context can be undertaken to understand the use of RS and GIS tools in the 
wetland areas and to address present trends in this line of work. 
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Chapter 18 
Sustainable Land and Water Management 
in Urban Areas: Emerging Challenges 

Suryanarayana Gajulapalli, Sumanth Chinthala, and Sridhar Pilli 

Abstract In Indian urban areas, the water and land use are critical, finite, and 
entwined resources. Expeditious increasing urbanization propelled by globalization 
and the booming population has brought global problems such as climate change, a 
shortage of natural resources, deteriorated public health, and so forth. Among these 
overwhelming challenges, a major obstacle is meeting the basic needs of increasing 
urban populations while ensuring the integrity of ecosystems including land and 
water. Urban water management and land resource management play a pivotal role 
for a sustainable future. The traditional water infrastructure focused mainly on 
physical structures associated with drinking water supply and distribution and 
collection and disposal of wastewater and storm water. However, integration of 
the traditional components with the protection and restoration of natural systems, 
conservation, reuse, and reclamation is the need of the hour. Moreover, the active 
incorporation of new decentralized technologies, green infrastructure, and low 
impact development to ensure the long-term reliability and resilience of our water 
resources has to be prioritized. Since the urban areas are rapidly developing, we need 
to understand the emerging challenges and develop strategies to mitigate the ill 
effects at a faster pace. This chapter discusses various emerging challenges that may 
arise from the water and land use perspective. 

Keywords Urban · Management · Water · Land use 

18.1 Introduction 

Rivers were considered as the lifelines in many countries. Ancient civilizations and 
empires were established on the banks of rivers and for many centuries, and those 
civilizations and empires have faced a lot of challenges due to the hydrological 
extremes and other issues(Saikumar et al. 2022). Even in the modern era, many cities

S. Gajulapalli · S. Chinthala (✉) · S. Pilli 
Department of Civil Engineering, NIT, Warangal, Telangana, India 
e-mail: sumanthchinthala@nitw.ac.in 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
M. Pandey et al. (eds.), River, Sediment and Hydrological Extremes: Causes, 
Impacts and Management, Disaster Resilience and Green Growth, 
https://doi.org/10.1007/978-981-99-4811-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-4811-6_18&domain=pdf
mailto:sumanthchinthala@nitw.ac.in
https://doi.org/10.1007/978-981-99-4811-6_18#DOI


are either directly or indirectly built depending on a major river. As the demand for 
resources increased, management of water, sediments, and hydrological extremes 
became more and more challenging, and as a result, the hazards that were resulted 
due to the natural and anthropogenic factors have affected many cities directly and 
indirectly.
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Since the impacts of climate change are visible in various aspects, it is necessary 
for us to think about the sustainable practices, which can reduce the hydrological 
risks. Since rivers cannot be exclusively engineered without the management of land 
and water, there is an immediate necessity to integrate the land and water manage-
ment in urban areas to ensure that the hydrological risks are minimized. 

Generally, people migrate from villages to the cities for various work opportuni-
ties; as a result, urban population has rapidly increased, and it has had a negative 
impact on the urban people and environment. Presently, almost >50% of the global 
population lives in the cities (Falah et al. 2020). Globally, by 2030, around 60% of 
the population is accounting for the urban population (Seto et al. 2012). According to 
the United Nations, by the year 2050, urban growth will increase from 3.9 to 6.4 
billion (Narimani et al. 2022), whereas the growth rates of urban lands will be twice 
as fast as those of urban populations. 

It is estimated that between 2018 and 2050, more than 35% of India, China, and 
Nigeria people will settle in cities (Mohammad and Goswami 2021). Over the 
decades due to financial progress and the technology development, persistent growth 
of the urban cities in the regional and the city level has undergone many changes and 
raises the major challenge on to the structure and functional systems and subsystems 
(Chu and Tang 2005; Chen 2016). As a result, increase in the population density and 
land use patterns are contributing to urban climate changes and affect the meteoro-
logical factors (Kim and Brown 2021; Saikumar et al. 2022). On the other hand, 
countries like India are purely dependent on agriculture, and it requires a tremendous 
amount of water and land (Seto et al. 2012). Due to the increase of global population 
and a subsequent increase in anthropogenic activities and other factors, availability 
of fresh water has been significantly affected (John et al. 2021a; b). Moreover, for 
many medium- and low-income group countries, water shortage has emerged as a 
significant problem at the national level (John et al. 2021a; b). Additionally, the 
rampant increase of growing challenges in the form of urbanization, economic 
growth, population, and climate changes, etc. are disturbing the water flow cycle 
and land maintenance by exerting pressure on water resource management and land 
use patterns and biodiversity hotspots with built-up area (Fidani and Pancovska 
2020; Gupta et al. 2023). 

During the past decades, vast acceleration of urbanization and the increasing 
demand for built-up areas have led to increasingly serious conflicts between various 
types of land use (Seto et al. 2012). Moreover, high density of population, various 
types of land use patterns, and expansion of transport system and industrialization 
ushered in an unprecedented process of urbanization. As the result, the huge quantity 
of heat is stored in the city. It has been observed to reduce the large amount of heat 
and energy required. For instance, Urban dwellers consume more than 75% of total 
energy resources because of their activities in urban environments (Madlener and



Sunak 2011). One of these factors is the increase in energy demand in urban centers, 
which not only wastes millions of dollars in energy but also damages the health of 
the urban people (Ouda and Cekirge 2014). Some of the cities are now starting 
working toward sustainable paths, and in some of the cities, still it is a big challenge. 
Nevertheless, in the narrow range, some negative effects from the blue and green 
infrastructure are dominated by their positive impacts (de Souza and Torres 2021). 
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Green infrastructure (GI) is a comprehensive planning approach discussing the 
blue and green infrastructure including the greenspace and the water space. Strate-
gically, the disparate types of natural elements are interconnected networks and 
provide multiple environmental and ecological and economic and social benefits to 
the people and wildlife (Walmsley 2006). Existing urban water systems in Sweden 
fulfill these fundamental requirements to a high degree. Over the last decade, the 
existing systems have been increasingly criticized from the viewpoint of sustain-
ability. However, similar discussions have also arisen in the power and transporta-
tion sectors. A number of supplementary requirements for a sustainable urban water 
system have also been identified in various programs. They state that the system 
should (1) have a high degree of functional robustness and flexibility (2) to be 
adapted to local conditions and (3) be easy to understand and thus encourage 
responsible behavior by the users. This systems analysis project within the program 
is carried out by a group of framework for systems analysis of sustainable urban 
water management (Hellström et al. 2000). 

18.2 Sustainable Development Goals 

To address the present global challenges around the world, agenda for the 2030 
sustainable development in 2015 United Nations has adopted the sustainable devel-
opment goals (UN Sustainable Goals 2015). The urgent call for action for all 
developed and developing countries in a global partnership to achieve the 17 sus-
tainable goals. However, on paper, Stockholm resilience center elucidates the 
interrelationships between various SDGs. The SDGs are grouped into three domains: 
economic, environmental, and social domains, and these three are interrelated with 
each other. However, sustainable progress in the economic layer can be achieved by 
the good progress in the other two layers vice versa. On several interrelated scales, to 
create the balance between economic, social, and environmental concern is essential 
to achieving the SDGs by 2030. Progress on many global concerns, such as climate 
change, food security, water resources, and sustainable energy, is hampered by poor 
economic or social conditions. 

The SDGs have emphasized on land degradation, which is the one of the major 
problem in the local and regional level. It reflects the human resources, and also it 
has negative effects on the ecosystem and soil functionality. Land degradation is 
inherently related to the carrying capacity of ecosystem and sensitivity resilience and 
to the vulnerability of local communities, increasing the soil depletion other hand 
same rate the built up areas are increasing (Smrekar et al. 2016). This indicates that to



handle land degradation and other problems, factors affecting water and land 
management are to be identified. Figs. 18.1 and 18.2 show various factors affecting 
water and land management, respectively. 
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Fig. 18.1 Factors affecting water management 

18.3 Rational of the Study 

Every government has to provide clean water to the urban communities. Urban water 
management is to be water, and its constituents can be carefully used, reused, and 
returned to nature by different forms. The main aim of the sustainable urban water 
and wastewater system is necessary focusing the different aspects like (1) moving 
toward a nontoxic environment; (2) improve the drinking water—treatment and 
distribution; (3) conserving natural resources; (4) saving human resources; (5) saving



financial resources; (6) maximizing the biodegradable products; (7) improving 
health and hygiene; (8) improving wastewater and sludge—recovery of products; 
(9) build-up the planned infrastructure; (10) integrated waste management; 
(11) storm water management; (12) improve the land use patterns; (13) improve 
the air quality; (14) built the green infrastructure; (15) built the integrated transport 
system; and (16) awareness among the people. On the other hand, to build the 
economic infrastructure, the researchers and scientists are focusing on the integrated 
projects on the (1) use of products and by-products from the urban water treatment 
system (2) social-economical aspects, (3) risk assessment, and (4) communication 
technologies. A framework for system analysis of sustainable urban water manage-
ment has been described by (Simpson et al. 2021). 
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In addition to that, developing the urban green and blue infrastructure is also 
responsible for the water quality and control of waterborne diseases. Urban green 
and blue infrastructure is responsible for the ecosystem service but not limited to the 
water retention and regulation, amelioration of biodiversity, carbon sequestration, 
and the thermal comfort in and around the build-up area (Li et al. 2017). In addition 
to that, restoration of the stream and river ecosystem services in the urban areas 
enhances the biodiversity and water quality and controls the waterborne disease 
(Haase 2015). Even though it is implemented in the small areas, it has improved the 
availability and quality of recreational space in and around areas. In cities, the main 
components of GBI land plots consist of the natural surfaces, permeable and 
unsealed blue water surfaces, and the green vegetation grounds (Puppim de Oliveira 
et al. 2022). While gray infrastructure can be easily replaced with GBI to give small-
scale, cost-effective treatments, local governments and cities must learn to create 
their own, site-specific innovations. Therefore, it is necessary to comprehend the 
relationship between GBI, and especially in urban areas, naturally available green 
surfaces like trees and grasses are replaced by the artificial surfaces. 

Overall, sustainable management of water and land in urban areas is essential for 
creating more livable, resilient, and environmentally sustainable cities. By adopting 
a range of strategies and engaging with communities, urban areas can work toward a 
more sustainable future for all. To remove wastewater from user’s location to 
prevent unhygienic conditions and remove storm water to avoid damage from 
flooding, it is necessary to address the following. 

Sustainable Urban Design: Sustainable urban design can help to maximize the 
use of land and water resources in cities. This may include designing buildings and 
public spaces to be more energy-efficient, integrating green spaces and public 
transportation systems, and utilizing low-impact development techniques to manage 
storm water runoff. 

Efficient Water Use: Urban areas should aim to use water resources efficiently by 
adopting practices such as rain water harvesting, graywater reuse, and water-efficient 
landscaping. This can help to reduce demand on freshwater resources and minimize 
the need for energy-intensive water treatment and distribution systems. 

Integrated Water Management: Integrated water management involves coordi-
nating the management of different water sources, such as groundwater, surface 
water, and storm water. This can help to improve water quality, reduce flooding and 
erosion, and provide multiple benefits for the environment and communities. 

Sustainable Land Use Planning: Sustainable land use planning involves devel-
oping land use policies that promote compact, walkable urban centers that are more 
efficient in their use of resources. This may involve implementing policies to 
encourage denser development, mixed-use zoning, and more efficient transportation 
systems, which can help to reduce the need for car travel and promote active 
transportation. 

Community Engagement: Community engagement is critical for achieving sus-
tainable water and land management in urban areas. Engaging with residents and 
stakeholders can help to identify their priorities and concerns, promote public



awareness of sustainability issues, and build support for sustainable practices and 
policies. 
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Sustainable water, storm water, energy, and infrastructure management in Indian 
communities is an important issue that has both present and future challenges. Some 
of the challenges that Indian communities face include the following: 

Water Scarcity: India is one of the most water-stressed countries in the world, 
with many communities facing acute water shortages. As the population grows and 
climate change impacts become more severe, the challenge of managing water 
sustainably will only become more difficult. 

Flooding: Many Indian communities are also at risk of flooding, particularly 
during the monsoon season. This can cause damage to infrastructure and homes and 
can also lead to health issues like waterborne diseases. 

Energy Poverty: A large proportion of the Indian population still lacks access to 
reliable and affordable energy. This can make it difficult to meet basic needs like 
cooking and lighting and can also hinder economic development. 

Poor Infrastructure: Many Indian communities lack basic infrastructure like 
roads, sanitation, and waste management systems. This can make it difficult to 
implement sustainable water and energy management strategies, as well as contrib-
ute to other social and economic issues. The information on technical innovations, 
policy proposals, strategies, and actions related to rainwater management was 
documented in Kazak et al. (2022). 

18.4 Limitations 

1. Dynamically changing land use and water use patterns will not allow the recovery 
of the water bodies. 

2. Unauthorized usage/contamination of groundwater and surface water may lead to 
many hydrological issues resulting in the destruction of the water body. 

3. Nonuniform cropping pattern creates an unpredictable demand for water and may 
create water shortage issues. 

4. Water requirement for maintaining the green infrastructure and recently devel-
oped forest areas is often overlooked resulting in the damage to the recently 
developed green ecosystems. 

5. Water requirements for large infrastructure projects and recreational purposes are 
not estimated resulting in sudden rise in demand for water resources. 

18.5 Materials and Methods 

Table 18.1 shows that the different types of methods are adopted to solve the water-
related issues in various countries. These methods are discussed in detail in the 
subsequent sections.



Country Methodology Purpose References
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Table 18.1 Various types of methodologies adopted worldwide to solve water-related issues 

Sl 
no 

1 Latin America and 
Caribbean (LAC) 

Managed Aqui-
fer Recharge 
(MAR) 

To maximize the natural 
storage 

Valverde et al. 
(2018) 

2 Implemented in 
many cities 

Constructed 
wetlands 

Strom water management 
and water treatment 

Stefanakis (2019) 

3 Guangdong, China Water 
Resource-With-
drawal-GDP-
Footprint 
(WRWGF)3 

Mitigation of water short-
age and pollution 

Xian et al. (2022) 

4 Applicable to 
cities 

City Water 
Resilience 
Framework 
(CWRF) 

Plan for strengthening 
urban water resilience 

Saikia et al. (2022) 

5 Implemented to 
excessive rain and 
flood cities 

Urban storm 
water drainage 
systems 

Protecting cities from 
excessive rainfalls and 
urban floods 

Azari and Tabesh 
(2022) 

6 Australia Water-sensitive 
urban design 
(WSUD) 

Local storm water 
management 

Roy et al. (2008), 
Barton and Argue 
(2007) 

7 Urban environment Sustainable 
Drainage Sys-
tems (SuDS) 

Designed to transport sur-
face water, slow runoff 
down before it enters 
watercourses, they provide 
areas to store water in nat-
ural contours 

usdrain.org/deliver 
ing suds/using 
suds/background/ 
sustainable 
drainage 

8 South-eastern 
United States 

Best manage-
ment practice 
(bmp) 

Reduce sediment and pol-
lutant loading into streams 

Anderson and 
Lockaby (2011) 

9 Hydrology of 
urban catchments 
closer to 
predevelopment 
conditions 

Low impact 
development 
(LID) 

Utilizes distributed storm 
water controls 

Performance and 
implementation of 
low impact devel-
opment: A review 

10 Australia Integrated 
Urban Water 
Management 
(IUWM) 

All parts of the water cycle, 
natural and constructed, 
surface and subsurface, 
recognizing them as an 
integrated system 

Mitchell (2006) 

18.6 Managed Aquifer Recharge (MAR) 

MAR is adapted from the International Groundwater Resource Assessment Centre. 
It has to be willful recharged of aquifer for future recover or environmental benefits, 
and the main purpose of the MAR is to overcome the environmental imbalance of 
local groundwater demand of and availability withal securing drinking and irrigation

http://usdrain.org/delivering-suds/using-suds/background/sustainable-drainage
http://usdrain.org/delivering-suds/using-suds/background/sustainable-drainage
http://usdrain.org/delivering-suds/using-suds/background/sustainable-drainage
http://usdrain.org/delivering-suds/using-suds/background/sustainable-drainage
http://usdrain.org/delivering-suds/using-suds/background/sustainable-drainage


water supply at any time by increasing the groundwater storage. Other hand, it 
includes the prevention of land subsidence, salt water intrusion, improvement of 
source water quality, and avoidance of direct potable reuse of treated wastewater by 
underground passage. This water source includes surface water from reclaimed 
water, rivers, lakes, and storm runoff. Water sources include surface water from 
rivers or lakes, storm water runoff, and reclaimed water. Thus, based on the water 
quality, pre-treatment might be necessary to recharging to an aquifer. This MAR 
classification system starting five main methods and associated specific MAR 
methods. The methods are discussed in detail in Table 18.2. 
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Table 18.2 Different types of main and specific MAR classification systems 

Main MAR methods Specific MAR methods 

Water 
infiltration 

Well, shaft, and 
borehole recharge 

Aquifer storage and recovery (ASR)/aquifer storage, 
transfer, and recovery (ASTR) shallow well/shaft/pit 
infiltration 

Spreading Drains Irrigation, infiltration ponds, furrow and basins, 
flooding ditch 

Infiltration due to 
induced bank 

Lake/river bank filtration, dune filtration 

Water 
interception 

In-channel 
modifications 

Channel spreading, subsurface dams, recharge dams, sand 
dams 

Runoff harvesting bunds, trenches, and rooftop rainwater harvesting barriers 

In the MAR, most modeling studies were carried out on the shaft, well, and 
borehole recharge and spreading methods, and these methods are frequently used to 
recharge the aquifers globally. This method is planning and establishing in different 
location in order to reduce the hazard risk such as low recovery efficiencies and 
clogging that lead to failure of facility. 

18.6.1 Role of Constructed Wetland as Green Infrastructure 
in Urban Water Management 

The basic concept of constructed wetland is able to remove various forms of 
pollutants like organic, trace elements, and nutrients through the series of physical, 
chemical, and biological process and enhance the water quality under controlled 
conditions. Nowadays, in some of the areas, the natural wetlands are seldom utilized 
for the treatment of light-contaminated wetlands. On a global basis, these are 
commonly avoided for the treatment of wastewater; these could affect irreversible 
damage to ecosystems. In general, the CWs are constructed in such a way as to 
simulate and increase the functions of natural wetlands. Urban designers, 
researchers, scientists, and architects designed their characteristics in such a way 
that they are more easily understood and implemented in the built-up environment. 
CWs represent a very interesting and effective development in the field of ecological



engineering. Based on the utility and function, CWs are divided in the three main 
areas. 
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Constructed Wetlands for Flood Control: Due to high rainfall, the system has 
reached the high runoff, and it will create the flood and damage the system. To avoid 
these issues, implement strategies to increase the infiltration volume and the capacity 
for storing storm water, while controlling the volume water reaching the sewers 
system and eventually treatment plants. It is found in many countries that the CWs 
significantly contribute to the IUWM and also have the ability to recycle the stored 
water volume. Constructed wetlands for wastewater treatment: CWs are the 
engineered developed systems designed to receive and purify wastewater from 
various sources exploiting the naturally occurring treatment processes. Internation-
ally, many countries used the applications of CWs. 

Constructed Wetlands for Habitat Creation: These programs are meant to create 
new habitat for wildlife. The major objective is to utilize CWs’ ecological advan-
tages rather than just their role as a therapeutic center. By luring in wildlife species, 
particularly birds, and establishing a green area, CWs’ primary characteristics—the 
presence of water and vegetation—make them excellent for the establishment of a 
new ecological habitat or for the restoration of a degraded ecosystem. These systems 
can be used as public recreation and educational facilities, as well as a source of food 
and fiber. Many comparable facilities, like the CWs in the Greater Vancouver area, 
have been built in North America. 

18.7 Water Resource-Withdrawal-GDP-Footprint 

To fulfil the UN sustainable development goal by utilization, sustainable water 
practices are the basis of sustainable development. Using a thorough framework 
that considers both water quantity and quality, it is vital to evaluate the development 
of sustainable water consumption. Based on the graywater footprint to enunciate the 
water quality and quantity, the Water Resource-Withdrawal-GDP-Footprint 
(WRWGF) work is constructed, and China’s largest economic province city Guang-
dong, which suffers from severe water pollution, investigated the sustainable water 
utilization. 

18.7.1 City Water Resilience Framework (CWRF) 

Due to the emerging challenges like rapid urban growth, degrading ecosystems and 
global health crisis like the recent pandemic, providing water services, and managing 
resources need much more than risk reduction and management (OECD 2014;  UN  
2018). CWRF is conceptualized within a five-step approach called the City Water 
Resilience Approach (CWRA) (ARUP 2019). These five steps include



understanding the system, assessing urban water resilience, development of action 
plan, and implementation of action plan and evaluate, learn, and adapt. 
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18.7.2 Urban Storm Water Drainage Systems 

Urban floods are a natural disaster that cannot be prevented, but the damages can be 
minimized by implementing the right policies and actions. Hence, in order to reduce 
the danger of system failure and urban flooding, it is necessary to establish a better 
framework to assist decision-makers in evaluating and rehabilitating the USDS. 

18.7.3 Water-Sensitive Urban Design 

As there are many uses of the WSUD architecture, practitioners’ definitions of 
WSUD frequently reflect this confusion. WSUD is described as “the integration of 
urban planning with the management, preservation and conservation of the urban 
water cycle, that guarantees that urban water management is attentive to natural 
hydrological and ecological processes” in the inter-government agreement on a 
National Water Initiative. The terms “water sensitive” and “urban design” are 
included in the term “water-sensitive urban drainage,” according to (Wong 2006) 
in their proposal to the IWA/IAHR Joint Committee on Urban Drainage (Barton and 
Argue 2007). 

Urban design is a well-known discipline that deals with the planning and archi-
tectural design of urban environments, addressing problems that have traditionally 
been dealt with in areas unrelated to water but that nevertheless interact with or have 
an impact on environmental effects on both land and water. In order to guarantee that 
water is given the proper importance during the urban design processes, WSUD 
introduces “sensitivity to water” into urban design. The words “water sensitive” 
define a new paradigm in integrated urban water cycle management that integrates 
various disciplines of engineering and environmental sciences associated with the 
provision of water services including the protection of aquatic environments in urban 
areas. Urban design choices and, by extension, water management techniques are 
governed by community values and goals. Collectively, WSUD integrates the social 
and physical sciences. 

18.7.4 Sustainable Drainage Systems (SuDS) 

SuDS can balance various opportunities and challenges in urban design and com-
munity development, improving different places and spaces by implementing sus-
tainable development practices. Although it has been manage surface water that



account for the pollution, flood, wildlife and plants combined known as Sustainable 
Drainage Systems (SuDS). SuDS mimic nature and typically manage rainfall close 
to where it falls. Basically, these are designed for the slow runoff and conveyance of 
water. On the other hand, these provide the space to where the water soaks in the soil 
and undergoes evaporation and transpiration. Drainage systems known as SuDS are 
thought to be environmentally friendly because they harm the environment only 
temporarily or not at all. They are frequently seen as a series of management 
techniques, command systems, and strategies created to drain surface water effec-
tively and sustainably, while reducing pollution and controlling the effect on the 
water quality of nearby bodies of water. 
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SuDS are more sustainable than traditional drainage methods because of the 
following reasons. Firstly, they manage runoff volumes and flow rates from hard 
surfaces so that flooding does not affect urbanization. They also provide natural flow 
regime to water courses, habitat for wildlife, opportunities for evapotranspiration 
from surface cover, and vegetation. 

18.7.5 Best Management Practice (BMP) 

It has been demonstrated that applying best management practices (BMP) signifi-
cantly lowers the risk. The management of forests in the Southeast varies widely 
depending on the physiographic region, soil erosion, climate, and site wetness. And 
it is obvious that BMP reduce the amount of pollutants and sediment that enter 
streams. 

According to scientific research, using forestry BMPs has lessened the influence 
on water quality. Managers are increasingly being expected to quantify the amount 
of sediment being retained by recommended BMPs, even though numerous studies 
have shown the qualitative value of BMPs. There are few studies that have specif-
ically quantified BMP efficacy for use in models or estimates. We looked through the 
scientific literature for studies in the Southeast where the improvement in water 
quality was measured or where specific pathways for improvement were discovered 
in order to better understand the impact of BMPs. Although we acknowledge that it 
may also be determined by examining physical (temperature) and biotic responses, 
our review concentrated on BMP effectiveness to minimize sediment delivery. 
Although BMP may include a variety of procedural or policy approaches, our 
focus was on field-based solutions to isolate silviculture operations from streams 
(Anderson and Lockaby 2011).
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18.8 Low Impact Development (LID) 

Climate change exacerbates the effects of urbanization; hence, new storm water 
management strategies must be developed in order to lessen these effects. Low 
impact development is a new storm water management paradigm (LID). To bring 
the hydrology of urban catchments closer to pre-development conditions, LID makes 
use of dispersed storm water controls (typically green infrastructure), green areas, 
and natural hydrologic features. The review gives an overview of what is known 
about LID as a method for managing storm water and a way to combat climate 
change, as well as the state of research and application of this subject. Methods of 
optimization, modeling, monitoring, and the performance of LID alternatives are 
presented in order to provide readers a better knowledge of the wide range of factors 
that should be taken into account when designing low impact developments. 
Although LID has been widely used and has been successful in many instances, 
its advantages are still debatable. In order to provide an overview of LID and analyze 
its performance and application, this review synthesizes knowledge from a variety of 
sources. 

18.8.1 Integrated Urban Water Management (IUWM) 

In Indian cities, after the water contamination incidents like Bholakpur in Hydera-
bad, the centralized urban water supply in Indian cities has to focus on many 
interrelated issues and local factors to manage urban waters so that the hygiene of 
urban areas may be improved on similar lines with western countries (Mitchell 
2006). Indian cities should consider all parts of water cycle including the natural, 
constructed, surface, and subsurface components in the integrated system. In case if 
any component is not included in the integrated system due to any reason, the long-
term strategies may be formulated for their inclusion in the long run. 

Secondly, the water requirements for both anthropogenic and ecological require-
ments have to be identified. In many Indian cities, the estimation for demand of 
water for ecological purposes is not carried out. As a result, during peak summer 
seasons, the water scarcity has affected a lot of wildlife. 

In many instances, the local, cultural, and economic perspectives are often 
ignored by the policy makers. Additionally, the involvement of all stakeholders in 
planning and decision-making process is missing. 

Examples are as follows: 

1. Involving sport authority experts while conducting major sports events in the city 
and estimating the water consumption. 

2. Involving authorities who organize religious/social/cultural/technical/business 
events in the city and taking their consent in estimating the water consumption.
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Fig. 18.3 Strategies to manage land and water 

Creating awareness on sustainability to balance the environmental, social, and 
economic needs for short, medium, and long term. 

The multifunctional elements of IUWM include groundwater management, main-
tenance of biodiversity, recreation, affordableness, greenhouse gas emissions, ame-
nity, community satisfaction, ecosystem protection, energy usage, equity, pollution 
prevention and control, public health protection and sanitation, and water sharing 
(Mitchell 2006). However, for Indian context, more dimensions including nutrient/ 
pollutant recovery from groundwater may be added to ensure that the groundwater 
sources are restored for future purposes. Fig. 18.3 summarizes various aspects of 
managing water and land management policies simultaneously. 

18.9 Discussions and Recommendations 

The water systems and usage of land near to the water bodies must be looked at as a 
single unit rather than considering them as independent units before carrying out any 
anthropogenic activity. While using the land, efforts must be made in such a way that 
the natural flow is not disturbed. Even if such disturbance is inevitable, the demar-
cation of the water body and land must be made. Further, in random sampling of



water bodies and monitoring of the recharge capacity, flow reduction has to be 
carried out on time to restore any damage that happens to the water network. 
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18.10 Conclusions 

From the studies conducted, it is evident that management of water resources is 
going to become tougher in the coming years due to various reasons. To address the 
same, the following conclusions can be made: 

1. Think tanks: International bodies generally talk about various short-term and 
long-term strategies to manage water resources. However, the decisions taken 
at international level take a lot of time to reach the local level due to various 
factors. To reduce the delays, think tanks are to be developed where the experts 
should converge on taking decisions based on the international scenario, national 
economy, local factors, administrative difficulties, and public acceptance. Social 
scientists and other relevant experts are to be involved at state and central level in 
the country to accelerate the strategies, which can address the issues of water 
management. 

2. Decentralized reusing/water reducing strategies: They have to be encouraged at 
community level to keep a check on the rising water demand. For instance, the 
reusable cup project, which was initiated across many educational institutions 
across the world, has significantly reduced millions of gallons of water by 
reducing the need for a disposable container, which can be used only once. The 
entire water footprint of the disposable cup industry was significantly reduced. 
Similarly, there are many local solutions that reduce the water footprint signifi-
cantly. However, it needs a lot of planning, implementation, and dedication by the 
local communities to show a significant impact. 

3. Mass restoration of water sources: Mass restoration of water sources using 
conventional techniques is needed to check on depleting groundwater levels 
and many other hydrological parameters. 

4. Losses: Losses at various levels can be addressed by working on efficient 
technologies, which can be retrofitted at various components in the water supply. 
The cost benefits of reducing the losses must be transferred to the public by 
providing some incentives. 

5. Safe water reuse strategies: Research has to be carried out to investigate the 
strategies needed to reuse domestic water safely. 

References 

Anderson CJ, Lockaby BG (2011) The effectiveness of forestry best management. 35(cm) 
ARUP (2019) Methodology City Water Resilience Assessment Acknowledgements



336 S. Gajulapalli et al.

Azari B, Tabesh M (2022) Urban storm water drainage system optimization using a sustainability 
index and LID/BMPs. Sustain Cities Soc 76(June 2021):103500. https://doi.org/10.1016/j.scs. 
2021.103500 

Barton AB, Argue JR (2007) A review of the application of water sensitive urban design (WSUD) 
to residential development in Australia. Aust J Water Resour 11(1):31–40. https://doi.org/10. 
1080/13241583.2007.11465309 

Chen X (2016) An analysis of climate impact on landscape design. Atmos Clim Sci 06(03): 
475–481. https://doi.org/10.4236/acs.2016.63037 

Chu YW, Tang JTH (2005) The internet and civil society: environmental and labour organizations 
in Hong Kong. Int J Urban Reg Res 29(4):849–866. https://doi.org/10.1111/j.1468-2427.2005. 
00625.x 

de Souza DT, Torres PHC (2021) Greening and just cities: elements for fostering a south–north 
dialogue based on a systematic literature review. Front Sustain Cities 3(May). https://doi.org/10. 
3389/frsc.2021.669944 

Falah N, Karimi A, Harandi AT (2020) Urban growth modeling using cellular automata model and 
AHP (case study: Qazvin city). Model Earth Syst Environ 6(1):235–248. https://doi.org/10. 
1007/s40808-019-00674-z 

Fidani D, Pancovska VZ (2020) 2020 UBT International Conference Sustainable Management of 
Water Resources in Urban Areas as an Integrated Part of Urban Planning Sustainable Manage-
ment of Water Resources in Urban Areas as an Integrated Part of Urban Planning: the Case 

Gupta LK, Pandey M, Raj PA, Shukla AK (2023) Fine sediment intrusion and its consequences for 
river ecosystems: a review. J Hazard Toxic Radioact Waste. 27(1):4022036 

Haase D (2015) Sustainability of water quality and ecology reflections about blue ecosystem 
services in cities. Sustain Water Q Ecol 5:77–83. https://doi.org/10.1016/j.swaqe.2015.02.003 

Hellström D, Jeppsson U, Kärrman E (2000) A framework for systems analysis of sustainable urban 
water management. Environ Impact Assess Rev 20(3):311–321. https://doi.org/10.1016/S0195-
9255(00)00043-3 

John CK, Pu JH, Moruzzi R, Pandey M, Azamathulla HM (2021a) Reusable rainwater quality at the 
ikorodu area of lagos, Nigeria: Impact of first-flush and household treatment techniques. J Water 
Sanit Hyg Dev 11(5):732–745. https://doi.org/10.2166/washdev.2021.062 

John CK, Pu JH, Pandey M, Moruzzi R (2021b) Impacts of sedimentation on rainwater quality: case 
study at Ikorodu of Lagos, Nigeria. Water Supply 21(7):3356–3369. https://doi.org/10.2166/ws. 
2021.093 

Kazak JK, Dąbrowska J, Bednarek A (2022) Stormwater management in urban and rural areas. 
Water 14(21):3488. https://doi.org/10.3390/w14213488 

Kim SW, Brown RD (2021) Urban heat Island (UHI) variations within a city boundary: a 
systematic literature review. Renew Sust Energ Rev 148(August 2020):111256. https://doi. 
org/10.1016/j.rser.2021.111256 

Li F, Liu X, Zhang X, Zhao D, Liu H, Zhou C, Wang R (2017) Urban ecological infrastructure: an 
integrated network for ecosystem services and sustainable urban systems. J Clean Prod 163: 
S12–S18. https://doi.org/10.1016/j.jclepro.2016.02.079 

Madlener R, Sunak Y (2011) Impacts of urbanization on urban structures and energy demand: What 
can we learn for urban energy planning and urbanization management? Sustain Cities Soc 1(1): 
45–53. https://doi.org/10.1016/j.scs.2010.08.006 

Mitchell VG (2006) Applying integrated urban water management concepts: a review of Australian 
experience. Environ Manag 37(5):589–605. https://doi.org/10.1007/s00267-004-0252-1 

Mohammad P, Goswami A (2021) Quantifying diurnal and seasonal variation of surface urban heat 
Island intensity and its associated determinants across different climatic zones over Indian cities. 
GISci Remote Sens 58(7):955–981. https://doi.org/10.1080/15481603.2021.1940739 

Narimani N, Karimi A, Brown RD (2022) Effects of street orientation and tree species thermal 
comfort within urban canyons in a hot, dry climate. Eco Inform 69(March):101671. https://doi. 
org/10.1016/j.ecoinf.2022.101671

https://doi.org/10.1016/j.scs.2021.103500
https://doi.org/10.1016/j.scs.2021.103500
https://doi.org/10.1080/13241583.2007.11465309
https://doi.org/10.1080/13241583.2007.11465309
https://doi.org/10.4236/acs.2016.63037
https://doi.org/10.1111/j.1468-2427.2005.00625.x
https://doi.org/10.1111/j.1468-2427.2005.00625.x
https://doi.org/10.3389/frsc.2021.669944
https://doi.org/10.3389/frsc.2021.669944
https://doi.org/10.1007/s40808-019-00674-z
https://doi.org/10.1007/s40808-019-00674-z
https://doi.org/10.1016/j.swaqe.2015.02.003
https://doi.org/10.1016/S0195-9255(00)00043-3
https://doi.org/10.1016/S0195-9255(00)00043-3
https://doi.org/10.2166/washdev.2021.062
https://doi.org/10.2166/ws.2021.093
https://doi.org/10.2166/ws.2021.093
https://doi.org/10.3390/w14213488
https://doi.org/10.1016/j.rser.2021.111256
https://doi.org/10.1016/j.rser.2021.111256
https://doi.org/10.1016/j.jclepro.2016.02.079
https://doi.org/10.1016/j.scs.2010.08.006
https://doi.org/10.1007/s00267-004-0252-1
https://doi.org/10.1080/15481603.2021.1940739
https://doi.org/10.1016/j.ecoinf.2022.101671
https://doi.org/10.1016/j.ecoinf.2022.101671


18 Sustainable Land and Water Management in Urban Areas: Emerging Challenges 337

OECD (2014) Managing water for future cities: Policy Perspectives. https://www.oecd.org/ 
environment/resources/Policy-Perspectives-Managing-Water-For-Future-Cities.pdf. 

Ouda OKM, Cekirge HM (2014) Potential environmental values of waste-to-energy facilities in 
Saudi Arabia. Arab J Sci Eng 39(11):7525–7533. https://doi.org/10.1007/s13369-014-1311-4 

Puppim de Oliveira JA, Bellezoni RA, Wan-Yu S, Bayulken B (2022) Innovations in urban green 
and blue infrastructure: tackling local and global challenges in cities. J Clean Prod 362 
(March):132355. https://doi.org/10.1016/j.jclepro.2022.132355 

Roy AH, Wenger SJ, Fletcher TD, Walsh CJ, Ladson AR, Shuster WD, Thurston HW, Brown RR 
(2008) Impediments and solutions to sustainable, watershed-scale urban stormwater manage-
ment: lessons from Australia and the United States. Environ Manag 42(2):344–359. https://doi. 
org/10.1007/s00267-008-9119-1 

Saikia P, Beane G, Gin R, Avello P, Ellis L, Shouler M, Ward R, Fisher S, Leten J, Jim A, Town C 
(2022) City water resilience framework: a governance based planning tool to enhance urban 
water resilience. Sustain Cities Soc:77. https://doi.org/10.1016/j.scs.2021.103497 

Saikumar G, Pandey M, Dikshit PKS (2022) Natural river hazards: their impacts and mitigation 
techniques. In: River dynamics and flood hazards: studies on risk and mitigation. Springer, 
Cham, pp 3–16 

Seto KC, Güneralp B, Hutyra LR (2012) Global forecasts of urban expansion to 2030 and direct 
impacts on biodiversity and carbon pools. Proc Natl Acad Sci U S A 109(40):16083–16088. 
https://doi.org/10.1073/pnas.1211658109 

Simpson NP, Mach KJ, Constable A, Hess J, Hogarth R, Howden M, Lawrence J, Lempert RJ, 
Muccione V, Mackey B, New MG, O’Neill B, Otto F, Pörtner HO, Reisinger A, Roberts D, 
Schmidt DN, Seneviratne S, Strongin S, van Aalst M, Trisos CH (2021) A framework for 
complex climate change risk assessment. One Earth 4(4):489–501. https://doi.org/10.1016/j. 
oneear.2021.03.005 

Smrekar A, Zorn M, Komac B (2016) Heritage protection through a geomorphologist’s eyes: From 
recording to awareness raising. Acta Geogr Slov 56(1):123–127. https://doi.org/10.3986/AGS. 
3348 

Stefanakis AI (2019) The role of constructed wetlands as green infrastructure for sustainable urban 
water management 

UN (2018) The World’s Cities in 2018. https://www.un.org/en/events/citiesday/assets/pdf/the_ 
worlds_cities_in_2018_data_booklet.pdf. 

Valverde JPB, Stefan C, Palma A, Eduardo N, Vivar HLP, M, C. R. (2018) Inventory of managed 
aquifer recharge schemes in Latin America and the Caribbean. Sustain Water Resour Manag 
4(2):163–178. https://doi.org/10.1007/s40899-018-0231-y 

Walmsley A (2006) Greenways: multiplying and diversifying in the 21st century. Landsc Urban 
Plan 76(1–4):252–290. https://doi.org/10.1016/j.landurbplan.2004.09.036 

Wong THF (2006) Water sensitive urban design - the journey thus far. Austr J Water Resour 10(3): 
213–222. https://doi.org/10.1080/13241583.2006.11465296 

Xian C, Fan Y, Zhang J, Zhang L (2022) Assessing sustainable water utilization from a holistic 
view : A case study of. Sustain Cities Soc 76(June 2021):103428. https://doi.org/10.1016/j.scs. 
2021.10342

https://www.oecd.org/environment/resources/Policy-Perspectives-Managing-Water-For-Future-Cities.pdf
https://www.oecd.org/environment/resources/Policy-Perspectives-Managing-Water-For-Future-Cities.pdf
https://doi.org/10.1007/s13369-014-1311-4
https://doi.org/10.1016/j.jclepro.2022.132355
https://doi.org/10.1007/s00267-008-9119-1
https://doi.org/10.1007/s00267-008-9119-1
https://doi.org/10.1016/j.scs.2021.103497
https://doi.org/10.1073/pnas.1211658109
https://doi.org/10.1016/j.oneear.2021.03.005
https://doi.org/10.1016/j.oneear.2021.03.005
https://doi.org/10.3986/AGS.3348
https://doi.org/10.3986/AGS.3348
https://www.un.org/en/events/citiesday/assets/pdf/the_worlds_cities_in_2018_data_booklet.pdf
https://www.un.org/en/events/citiesday/assets/pdf/the_worlds_cities_in_2018_data_booklet.pdf
https://doi.org/10.1007/s40899-018-0231-y
https://doi.org/10.1016/j.landurbplan.2004.09.036
https://doi.org/10.1080/13241583.2006.11465296
https://doi.org/10.1016/j.scs.2021.10342
https://doi.org/10.1016/j.scs.2021.10342


339

Chapter 19 
Nature of Bursting Events over a Rigid Bed 
with Emergent Vegetation 

Aaditya Ojha, Abhishek Kumar, Pritam Kumar, and Anurag Sharma 

Abstract The turbulent flow parameters and Reynolds stress analysis in flow over 
the smooth rigid bed with the emergent rigid vegetation in a straight channel have 
been investigated in this study. Higher-order turbulence parameters such as quadrant 
and octant analysis have been performed in the present study. Quadrant analysis 
shows that in the non-vegetation zone, sweep and ejection events have more 
dominant. In the vegetation zone, sweep and ejection have significant contributions 
as well as inward interaction event. Probability distribution shows that in the 
vegetation zone P(3,0) and P(2,0) have the least value, and in the vegetation zone, 
P(1,0) has the maximum value. Occurrence of probability analysis will show the 
contribution of the different classes of events in the three-dimensional bursting 
phenomena. This paper investigated three-dimensional octant analysis used to clar-
ify the function of bursting events in the particle entrainment process. The outcomes 
of this study provide an important and detailed view of turbulent flow structures in 
vegetation and non-vegetation zone in an open channel flow. 

Keywords Rigid vegetation · Bursting event · Octant analysis · Probability 
distribution · Quadrant analysis 

19.1 Introduction 

Aquatic plants have a significant impact on nutrient transport, flow patterns, and 
turbulence in rivers and canals, as well as on aesthetics, ecological restoration, and 
flood management (Tsujimoto 1999; Wang et al. 2021). In addition to create a 
habitat for aquatic life, vegetation also strengthens banks; reduces bank erosion, 
turbidity, and floods; and penetrates pollutants (Bennett et al. 2002; Gupta et al. 
2023). One factor that alters the average and turbulent flow behavior of a channel is 
the presence of vegetation (Nepf 2012). The effect of vegetation on flow is
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influenced by both the characteristics of the channel and the vegetation. Many 
studies have been conducted in the past on numerical methods for experiments 
utilizing real or artificial vegetation in flumes (Järvelä 2002; Meijer and Van Velzen 
1999; Righetti and Armanini 2002; Khan et al. 2022). In main channels, floodplains, 
and wetland water basins, vegetation like grasses, bushes, and mangroves often 
grows. They enhance shear stress at the channel bed and raise hydraulic resistance to 
water flow. As a result, the open channel’s conveyance capacity of the channel will 
be reduced. Additionally, the potential for sediment containment and deposition will 
be enhanced. Vegetation in coastal and riverine areas is crucial for sediment move-
ment as well as ecosystem regulation. Vegetation in rivers is crucial to the ecosys-
tem’s restoration. Whether they are ecological, morphological, hydrological, or 
water quality factors, restoration must take into account several functions (Brookes 
et al. 1996; Aamir et al. 2022).
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In rivers and open channels, vegetation increases the hydraulic resistance to the 
flow, causing an increase in flow depth and a decrease in flow velocity. As a result, 
vegetation is crucial for riverbank stability and energy loss during feeding occasions. 
The features of turbulence and vegetation cover affect sediment transport. In some 
areas along the river, there is frequent vegetation at various heights. Depending on 
the flow conditions, some vegetation may be emergent or submerged. As a result of 
momentum transfer between various vegetation layers, this results in complex flow 
dynamics (Luhar et al. 2008; Pasha and Tanaka 2016; Pasha et al. 2018; Chembolu 
et al. 2019; Chatelain and Proust 2021; Sohrabi et al. 2022). 

River flood risk and environmental management presently focus on how riparian 
vegetation affects biological and flow processes in channels. Prior research mainly 
examined and simulated vegetation that was uniform in height while submerged or 
emerging, which is contrary to the behavior of real river and floodplain systems. 
Conversely, there are several plant heights that simultaneously experience emergent 
and submerged environments. Consequently, an important scientific method for 
assessing the impact of vegetation in open channel flows would be properly studied 
on the hydrodynamics of vegetated flow in open channels under more realistic 
circumstances (Tsujimoto and Kitamura 1990; Nepf 1999; Carollo et al. 2002; 
Nezu and Sanjou 2008; Fathi-Moghadam et al. 2011). 

Only few literatures focused on the comparison of higher-order turbulence and 
Reynolds stress with vegetation and non-vegetation condition for open channel flow. 
In this present study, the data has been taken from previous literature (Kumar and 
Sharma 2022) and is therefore devoted for analyzing the higher-order turbulent 
parameters and Reynolds stress in a straight open channel with the presence of 
emerged rigid vegetation and non-vegetation condition. In this paper, higher-order 
turbulence flow parameter such as based on velocity fluctuation quadrant analysis, 
the probability distribution for the four types of quadrant and octant probability 
analysis has been analyzed for vegetation (S1, S2) and non-vegetation zone (S0). The 
occurrence of probability for octant analysis has been investigated for vegetation and 
non-vegetation zone.



19 Nature of Bursting Events over a Rigid Bed with Emergent Vegetation 341

19.2 Experimental Setup and Methodology 

The experiment was conducted in a 13 m long, 0.9 m wide, and 0.7 m deep 
recirculating straight rectangular channel. The channel sidewalls were made of 
glass, and the channel bed was constructed with concrete with a bed slope (SO) of  
0.002. Steel is used for the channel sidewalls, and an overhead tank was positioned 
upstream of the test channel to transport the water, and it is useful to maintain the 
flow under stable head circumstances. In this study, water is extracted from a storage 
tank that stores water in an intake tank using centrifugal pumps. Fig. 19.1. shows the 
plan view of vegetation arrangement and experimental setup in the laboratory. In this 
experiment, 3D velocity data has been taken by SonTek 16 MHz acoustic Doppler 
velocimeter (ADV). For detailed information on experimental setup and procedure, 
refer literature by Kumar and Sharma (2022). 

In this experiment, three sections (S0, S1, S2) have been taken for analysis. S0 is 
the non-vegetation zone, that is, 30 cm before the upstream vegetation. Both (S1, S2) 
sections are in the vegetation zone, that is, 387 cm and 603 cm from the upstream 
vegetation, respectively. 

19.3 Result and Discussion 

19.3.1 Quadrant Analysis 

Quadrant analysis is a very important parameter in analyzing fluid dynamics. The 
determination of quadrant analysis is based on the relative sign of velocity fluctua-
tion. In this analysis, four quadrants will show the different bursting events. The 
bursting events are defined by four quadrants such as outward interactions (i = 1, u 
′ > 0, w′ >0), ejections (i = 2, u′ < 0, w′ > 0), inward interactions (i = 3, u′ < 0, w 
′ < 0), and sweeps (i = 4, u′ > 0, w′ < 0). This analysis has been done at Z/Y ~ 0.1 
(Z = height from bed and Y = total depth of flow) at three different points in the 
channel. Fig. 19.1 shows the quadrant analysis at Z/Y ~ 0.1, where horizontal and 
vertical coordinates represent velocity fluctuation in the longitudinal and vertical 
direction, respectively. In the non-vegetation zone shown in Fig. 19.2a, the ejection

Fig. 19.1 Plan view and test section of experimental setup



event is more dominant than other events. The least contribution is from the sweep 
and outward interaction. The contribution of ejection and inward interaction is 
60–70%. The contribution of sweep and outward interaction is 20–30%.
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Fig. 19.2 Quadrant analysis at Z/Y ~ 0.1 in flows subjected to (a) non-vegetation (S0) and (b, c) 
vegetation zone (S1, S2) 

Figure 19.2b shows the velocity fluctuation at the center of the vegetation zone. 
The ejection event is more dominant than other events. The least contribution is from 
the sweep event. The contribution of ejection is 70–80%. The contribution of inward 
and outward interaction is 30–20%. While flow is going through rigid vegetation



toward downstream, velocity fluctuation is less. The contribution of velocity fluctu-
ation at the downstream vegetation end is shown in Fig. 19.2c. The sweep and 
ejection events are more dominant than other events. The least contribution is from 
the inward interaction event. The contribution of sweep and ejection is 50–70%. The 
contribution of inward and outward interaction is 40–30. Sweep and ejection event 
has more dominance in the non-vegetation zone (S0), while in the vegetation zone 
(S1, S2), ejection and inward interaction have more contribution. 
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19.3.2 Probability Distribution 

The probability Pi,H of the occurrence of the bursting events can be obtained from 
Eq. 19.1 (Sharma and Kumar 2017): 

Pi,H = 

t=T 

t = 0 
Ii,Hdt 

t =T 

t = 0 
I1,H þ I2,H þ I3,H þ I4,H½ �dt 

ð19:1Þ 

Ii,H u
0 tð Þw0 tð Þ½ �= 

1, if u0w0ð Þ  is inquadranti and if 

u0w0j j=H u02ð Þ0:5 w02ð Þ0:5 
o, otherwise 

ð19:2Þ 

where Ii,H is an indicator function described by the Eq. 19.2 The vertical variations of 
Pi,H in flows subjected to non-vegetation zone, center of vegetation zone, and end of 
vegetation zone are plotted in Fig. 19.3. 

In the non-vegetation zone, P(1,0) and P(4,0) are having higher probabilities as 
compared to the P(3,0) and P(2,0). At the center of the vegetation (S1), the probability 
P(4,0) has the least value as compared to other quadrant probabilities. At the end of 
the vegetation zone (S2), P(2,0) has the least value of probability, and P(1,0) has 
maximum probability. 

19.3.3 Octant Analysis 

The research by Keshavarzi and Gheisi (2006) also demonstrated that when there is 
fully three-dimensional flow in nature, two-dimensional analysis of bursting analysis 
cannot identify the entrainment process. They created a three-dimensional octant 
analysis technique to take into account for a secondary flow’s impact. The afore-
mentioned method was utilized in this study to analyze experimentally recorded 
velocity data in order to evaluate the coherent turbulent flow structure around 
bridge pier.
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Fig. 19.3 Vertical profiles of Pi,H in flows subjected to (a) non-vegetation (S0) and (b, c) vegetation 
zone (S1, S2) 

The classifications of bursting events were performed based on the sign of the 
velocityfluctuations in three dimensions that can be obtained from Eq. 19.3, and 
eight different events are described below: 

u0 = ui - u, v0 = vi - v,w0 =wi -w ð19:3Þ 

1. Internal outward interaction or Class I-A (u′ > 0, w′ > 0, v′ > 0); 
2. Internal ejection or Class II-A (u′ < 0, w′ > 0, v′ < 0); 
3. Internal inward interaction or Class III-A (u′ < 0, w′ < 0, v′ < 0); 
4. Internal sweep or Class IV-A (u′ > 0, w′ < 0, v′ > 0); 
5. External outward interaction or Class I-B (u′ > 0, w′ > 0, v′ < 0);
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6. External ejection or Class II-B (u′ < 0, w′ > 0, v′ > 0); 
7. External inward interaction or Class III-B (u′ < 0, w′ < 0, v′ > 0); 
8. External sweep or Class IV-B (u′ > 0, w′< 0, v′ < 0); 

Based on the three velocity fluctuations, the time fraction or occurrence proba-
bility of the eight orthogonal zones was calculated. To determine an event’s likeli-
hood of occurring given the sediment entrainment function, the time fraction of each 
event must be known. The following equation was presented by Keshavarzi and 
Gheisi (2006) to calculate the likelihood of occurrence for each event. 

Pk = 
nk 
N

ð19:4Þ 

N = 
8 

K = 1 

nk k= 1, 2, 3, 4, . . . . . . :8 ð19:5Þ 

Pk is the occurrence probability of each bursting event, which can be determined by 
Eqs. 19.4 and 19.5; nk is the number of events in each class; and N is the total number 
of bursting events. Using the above equations, the occurrence probabilities for the 
eight different bursting events were computed for vegetation (S1, S2) and 
non-vegetation zone (S0) shown in Fig. 19.4. 

The occurrence of probability in octant analysis in eight classes shows the 
non-vegetation zone, in Fig. 19.4a at z/y ~ (0.3 to 0.4), and maximum probability 
of occurrence is for Class I-A and least value of probability of occurrence for Class 
IV-A. At the center of vegetation zone (S1), Class III-A and Class I-A have 
maximum probability, while at the bed surface Z/Y < 0.1, Class II-B and Class 
IV-B have minimum probability shown in Fig. 19.4b. Fig. 19.4c shows the occur-
rence of probability toward the downstream of the vegetation zone (S2) at the flow 
depth z/y > 0.1 Class IV-A has minimum probability. 

19.4 Discussion 

A series of quasicyclic events that take place in the wall region of turbulent flows 
make up the bursting process. Approximately 70% of turbulence production happens 
during this procedure. The most significant process in wall-bounded turbulent shear 
flow is considered to be bursting. To have a more thorough understanding of the 
dynamics of the turbulent transport process, it is essential to understand bursting 
phenomenon. Reynolds shear stress transport can be observed in quadrant analysis. 
It has been observed that sweep and ejection have more contribution in the 
non-vegetation zone while in the vegetation zone ejection and inward have more 
contribution. Probability distribution will show the occurrence of the bursting events 
in the flow. Probability analysis has been done for hole region (H = 0). P(1,0) has 
maximum value in the vegetation and non-vegetation zone. P(2,0) and P(4,0) have



least value in the vegetation zone. Octant analysis shows the occurrence of proba-
bility for eight classes. Class I-A and Class III-A have maximum probability in the 
vegetation and non-vegetation zone. Class IV-B and Class II-B have minimum 
probability in the vegetation and non-vegetation zone. 
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Fig. 19.4 Vertical profiles of the occurrence of probability for different bursting events (a) Non 
vegetation (S0) and (b, c) vegetation zone (S1, S2) 

19.5 Conclusion 

An experimental investigation was conducted to examine changes in the turbulent 
flow characteristics caused by the application of vegetation and non-vegetation over 
a rigid bed with emergent rigid vegetation. In this paper, quadrant analysis show the 
bursting event such as sweep and ejection has more contribution in the



non-vegetation zone. In the vegetation zone, sweep event reduces, and inward 
interactions have more contribution. Probability analysis shows the occurrence of 
bursting event. It shows P(2,0) and P(4,0) have more value in the vegetation zone as 
compared to the non-vegetation zone that shows the Reynolds shear stress transport 
by the sweep and ejection event. The probability occurrence of octant analysis shows 
the maximum value for Class I-A in the non-vegetation zone and at the center of the 
vegetation zone, while at the end of the vegetation zone, Class II-B has maximum 
probability. The minimum occurrence of probability for non-vegetation zone is 
Class IV-A, and the center of the vegetation has also similar effect, while at end of 
the vegetation zone, Class II-B and Class IV-B have least probability of occurrence 
at the bed surface. 
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19.6 Future Scope 

In this study, analysis has been done for rigid bed with emergent rigid vegetation. In 
future research, detail analysis of turbulent flow characteristics can be done for 
flexible vegetation, and validation of the experimental results can be performed in 
Ansys Fluent and Flow3D. 
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Chapter 20 
Recirculation Region Control Behind 
a Partially Submerged Cylinder Due 
to Wave Against Current 

Krishnendu Barman, Sayahnya Roy, Susanta Chaudhuri, 
and Koustuv Debnath 

Abstract This chapter shows the effect of wave acting against the current on the 
modulation of vortex shedding behind a partially submerged cylinder. The effect of 
superimposed wave against current flow on the drag field and turbulence character-
istics at downstream of the cylinder is still not been revealed. A micro Acoustic 
Doppler velocimeter (ADV) is used to measure the high-frequency velocity varia-
tions. Observation suggests that there is no distinct recirculation in the wake region 
for the lock-on (LO) case. This LO state is achieved when the frequency of the 
superimposed wave is two times that of natural vortex shedding (Vns) frequency. 
Turbulent dissipative eddy creates a jacket around the cylinder that changes the flow 
separation due to the superimposed wave acting against the current. Further, the 
upward momentum flux is found in the LO case. As far as vorticity is concerned, it is 
completely different for LO case. Moreover, the mean flow, fluctuating velocity, and 
velocity derivatives interact and exchange energy in a complex way for the case of 
LO as evident from turbulence production. This complex interaction of energy 
enhances the drag force at the near bed region, which decreases toward the free 
stream region in the vicinity of the cylinder for LO case. 
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20.1 Introduction 

The cylinder is studied because the study of turbulent flow around a vertically 
partially submerged cylinder sheds light on a wide spectrum of applications that 
includes flow around the offshore structures, bridge pier, and coastal structures. As 
will be evident later, there are a lot of strange events (vortex shedding, vortex-lock 
on, recirculation zone) stimulated in the wake regime downstream of a cylinder (Lin 
et al. 2002, 2003; Kim et al. 2006; Vandiver et al. 2009; Feng and Wang 2010; 
Gunnoo et al. 2016; Gupta et al. 2023). Therefore, physical interpretation of the 
induced oscillatory flow resonance, that is, vortex lock-on between the shed fre-
quency and external force near the downstream of cylinder, is primary interest in 
spite of its engineering applications such as turbomachinery and power generation. 
Accordingly, in an earlier study of Sheridan et al. (1997), they describe a range of 
behavior that differs greatly from that of a more classical fully submerged cylinder. 
They observed that the occurrence of pre-existing layer of vortices around the 
cylinder due to localized wave-braking phenomena. Griffin and hall (1991) 
performed an important review to analyze the characteristic behavior of vortex 
lock-on phenomenon and recirculation region control. It was found that the vortex 
shedding resonance is exhibit due to submerged bluff body along with rotational, 
in-line, and transverse oscillating steady flow. In particular, Kim et al. (2006) carried 
out an experimental study to illustrate the coherent structures and vortex lock-on 
dynamics behind a circular cylinder in an oscillatory flow environment. It is 
observed that the vortex lock-on appeared when the applied oscillatory frequency 
is perturbed twice of the natural shedding frequency near downstream of the 
cylinder. However, Kim et al. (2009) presented a numerical simulation to describe 
the vortex synchronization condition due to prescribed longitudinal sinusoidal 
velocity perturbation. Moreover, Lin et al. (2012) investigated the flow structure at 
the wake region of circular cylinder. They concluded that the two larger vortices in 
the longitudinal and vertical direction occurred at the recirculation zone of the 
impulsively stated cylinder due to energy transfer from the entrainment of back-
ground flow into the recirculation region. Therefore, vortex shedding is a very 
imminent event in our day to day life as evident from flow past offshore structures, 
high rise buildings, chimneys, or bridge. The induced vortex interaction downstream 
of a bluff body results in large unsteady side forces, which in turn leads to heavy 
structural vibrations. 

Of note, a mechanism of the couple interaction of waves into the following 
currents over the flat surface (Kemp and Simons 1982; Umeyama 2005, 2009; 
Dutta et al. 2022; Chaudhuri et al. 2022), ripple structures (Grant and Madsen 
1979; Fredsøe et al. 1999; Khan et al. 2022), and fully and partially submerged 
obstacles (Banerjee et al. 2015; Barman et al. 2018) is an important topic for offshore 
structures, marine environment, and shore protection. Earlier studies of Grant and 
Madsen (1979) and Fredsøe et al. (1999) on wave induced flow with following 
currents over ripple-covered bottom surface. Results showed that the changes in 
mean flow and increased in shear stress are due to wave interaction on the current



flow. Indeed, a key experimental investigation was performed by Kemp and Simons 
(1982) to characterize the wave flow dynamics along the current over smooth and 
rough beds. However, an elaborated experimental investigation on a much-related 
topic was attended by Kemp and Simons (1983) for the propagating waves against 
the turbulent current and discussed the silent features of this combined interaction. 
They stated that the wave attenuation rate is increased for applying wave opposing 
current. Umeyama (2005, 2009) carried out a series of experiment on wave plus 
current over flat surface. Rey et al. (2014) studied wave-current interaction for deep 
water wave against current flow in the presence of tri-dimensional bathymetry. Their 
results confirmed that the wave amplitude and intensity were increased when waves 
propagated against the current flow near the two submerged mounds. Moreover, 
Zhang et al. (2015) proposed a developed turbulence model for a solitary wave 
streaming over following as well as opposing current conditions. They concluded 
that the turbulent kinetic energy (TKE) and level of turbulence are increased due to 
the addition of wave into opposing current. Recently, Barman et al. (2018) presented 
an experimental investigation over the submerged obstacles with the existence of 
wave following current. Based on the wave-current interaction, Roy et al. (2018) 
performed an experimental study to characterize the turbulent structure at the wake 
region of circular cylinder and investigated the dynamics of vortex lock-on. Their 
finding confirmed that the recirculation region at downstream of the partially sub-
merged cylinder almost departed for vortex lock-on due to combined interaction of 
wave-current flow. Also, shear stress showed higher values near the shear layer at the 
wake region of cylinder for the superimposed surface wave following the current in 
comparison with the natural shedding frequency. Natural hazards like pier and river 
bank scour happen due to an increased recirculation region, resulting in bridge 
collapse and flood, which leads to loss of human life (Chaudhuri et al. 2022; 
Saikumar et al. 2022). 
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The purpose of this paper is to describe the statistics of the forces at the 
downstream of cylinder partially submerged in a “wave-against-current” environ-
ment. Streamline of mean velocity and contour of phase-averaged turbulence inten-
sity and Reynolds shear stress are discussed in this paper. Moreover, vorticity and 
dissipation contour are portrayed to analyze the eddy structure and modulation of 
drag force on the interaction of wave into the opposing currents. Therefore, study of 
vorticity (and other properties) of the “wave against current” flow downstream of the 
cylinder can lead to many desirable results such as vortex-induced vibrations and 
wake turbulence, which has innumerable applications. 

20.2 Experiments 

All the experimental measurements were taken in a wave flume situated at Fluid 
Mechanics and Hydraulics Laboratory (FMHL), Department of Aerospace Engi-
neering and Applied Mechanics, IIEST Shibpur India. A plunger-type wavemaker 
bench was placed at the outlet of the flume (see Fig. 20.1). For more details about the



gh
p

dimension and also the mechanism of the wave-maker, please follow previous study 
of Barman et al. (2018) and Roy et al. (2018). A 16 MHz Micro-ADV (acoustic 
Doppler velocimeter) was used to capture the induced opposing wave-current flow 
structures. All the instantaneous velocity data (for 3 min) measurements were taken 
near the downstream of the circular cylinder. The vertical cylinder was located at 9 m 
from the inlet, and the wavemaker was deployed at 7 m downstream from the 
cylinder. A number of tests (11) have been made in this experiment, but for clarity 
and better representation, three different cases WC1, WC2, and WC3, with wave 
frequencies f = 0, 1, and 2 Hz acting against the current are discussed. For each 
vertical profile, measurements were performed at 25 points. The points were chosen 
more densely to capture the spatial variation of turbulence. Waves were 
superimposed against the current of Reynolds number Re = Uh ν = 60,000, where 
U is the depth average mean stream-wise velocity and h is the depth of water and νis 
kinematic viscosity. A constant water depth 20 cm was maintained for all the 
experimental cases. The superimposed wave frequency was precise by varying the 
voltage of the input electricity to the motor, using an electronic varies. For more 
particulars on hydrodynamic parameters and superimposed waves, please see 
Tables 20.1 and 20.2. 
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Fig. 20.1 Schematic diagram of the experimental setup 

Table 20.1 Hydrodynamic parameters of mean flow 

Reynolds number, Re (Uh/v) 60,000 

Depth average stream-wise mean velocity, U (cm/s) 29.5 

Mean flow depth, h (cm) 20 

Froude Number, Fr= U 0.28



20 Recirculation Region Control Behind a Partially Submerged Cylinder Due. . . 353

Table 20.2 Superimposed wave parameters 

WC1 WC2 WC3 

Time period, T (s) 0 1 0.5 

Frequency of wave, f (Hz) 0 1 2 

Flow depth, h (cm) 20 20 20 

Surface wave height, Hw (cm) 0 3.5 3.2 

Surface wave length, Lw (cm) 0 65 36 

Ratio of Lw/Hw 0 16 13.1 

Depth average stream-wise velocity, U (cm/s) 29.5 29.4 29.2 

Wavelength-mean depth ratio 0 3.25 1.75 

Wave slope 0 7.1 9.46 

20.3 Experimental Results and Observations 

The instantaneous velocity components for wave propagations into opposing current 
can be written as: 

ut = u þ ~ut þ u0; vt = v þ ~vt þ v0;wt =wþ ~wt þ w0 ð20:1Þ 

where ~ut = uth i- u; ~vt = vth i- v; ~wt = wth i-w; the bar represents the time-averaged 
velocity, tilde signify wave-induced velocity, and a prime indicates the fluctuation 
velocity. For the combined wave-current environment, the normalized stream-wise 
and vertical phase-averaged mean velocities can be obtained as: 

uh i= uth i=u�; wh i= wth i=u� ð20:2Þ 

For induced wave opposing a current flow, the normalized phase-averaged 
longitudinal turbulence intensities are denoted as: 

uþh i= 

1 
N 

N 
t = 0 ut - uth ið Þ2 

u�
ð20:3Þ 

where N = total number of observation periods. And the normalized phase-averaged 
Reynolds shear stress is given by: 

τuwh i= - ρ �u0w0 = 
ρ 
N 

N 

t= 0 
ut - uth ið Þ  wt - wth ið Þ ð20:4Þ 

All the phase-averaged turbulence parameters are determined by a similar process 
of Umeyama (2005) and Barman et al. (2016). In the present experiment, the vortex 
LO condition was achieved for the case WC2 ( f = 1 Hz) and non LO condition 
evident for the case WC3, ( f = 2 Hz).
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20.3.1 Mean Velocity 

Fig. 20.2a–c display the streamline of mean velocity plots for the case of WC1 
( f = 0 Hz), WC2 ( f = 1 Hz), and WC3 ( f = 2 Hz). As is evident from the Fig. 20.2a 
( f = 0 Hz), the region of maximum concentration of the stream line is the region of 
distinction between wake/recirculation region (flow toward the cylinder, x/ 
h = 0–0.5) and the main downstream flow, and this concentrated stream line region 
is known as reattachment region. However, there is no such distinct concentration of 
the streamlines at x/h = 0.5 observed in Fig. 20.2b, also no evidence of recirculation 
region for the LO case WC2 ( f = 1 Hz). The distinction line comes into play again 
when the frequency is increased as mapped in the Fig. 20.2c ( f = 2 Hz). 

To understand the suppression of the recirculation region, the fast Fourier trans-
form (FFT) of the velocity signal (measured at the 1d downstream on the cylinder 
wake center line) is calculated (not shown in here). FFT output shows that the vortex 
shedding natural frequency, Vns, is superimposed wave frequency, fvs = 0.5 Hz. 
According to Kim et al. (2006), a LO state occurs when the frequency of the wavy 
flow is double that of fvs. In the present experiment, a similar result is noted. In the 
LO state, the superimposed wave frequency synchronized with the fvs, which creates 
a resonance and modulates the flow separations around the cylinder, which sup-
presses the recirculation. 

Fig. 20.2 (a–c) streamline of mean velocity plots for WC1, WC2, and WC3 cases
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20.3.2 Phase-Averaged Turbulent Intensity and Reynolds 
Shear Stress 

Turbulent intensities represent the level of turbulence within the flow field. 
Fig. 20.3a–c show the stream-wise turbulence intensity (U+ ) contour plots for the 
cases WC1 ( f = 0 Hz), WC2 ( f = 1 Hz), and WC3 ( f = 2 Hz). The maximum values 
of U+ are observed within the recirculation region (x/h = 0.5–0.6) for only current 
over the cylinder (Vns) case WC1 ( f = 0 Hz). This is due to the interaction of vortices 
in the wake region and viscous region near the wall. However, the large values of U+ 

shifted near the cylinder wall (x/h = 0.1–0.2) for the vortex LO case WC2 
( f = 1 Hz). In this regard, Kim et al. (2006) stated that the larger values of U+ 

appears close to the cylinder in the LO state compared to the Vns state, and this 
statement supports the present results. This observation provides an insight, on the 
fact of modulation of turbulent eddies within the flow field due to the superimposed 
wave against current. Umeyama (2009) also observed that the values of U+ are larger 
at the free surface region for the superimposed wave against current compared to the 
only current flow. As there are large values of U+ observed for LO case from the 
present and past studies, it may be stated that the superimpose wave can modulate 
the turbulence eddies around the cylinder. These eddies create a jacket around the 
cylinder, which can change the flow separation. This result shows the suppuration of 
recirculation region is achieved behind the cylinder. Fig. 20.3e and f show the 
Reynolds stress contour plots for the case of WC1 ( f = 0 Hz), WC2 ( f = 1 Hz), 
and WC3 ( f = 2 Hz). As is evident from the above figure, within the reattachment 
region (x/h = 0.5–0.6), Reynolds stresses are four times higher in WC1 case than 
WC2 and WC3 cases. However, there is ten times lesser value of τuwat the immediate 
vicinity of cylinder for WC1 case than WC2 and WC3. Reynolds stress directly hints

Fig. 20.3 Contour plots of phase-averaged turbulent intensities (a–c); and Reynolds shear stress 
(d–f) for WC1, WC2, and WC3 cases



at the fact of momentum transfer in turbulent flow. Previously, it was noted by many 
researchers (Umeyama 2009; Feng and Wang 2010) that the wave-current flow can 
decrease momentum transfer. Kemp and Simons (1983) observed that the super-
posed waves on flow field significantly reduce the turbulence stress at the outer flow 
field. The reduction of τuw is a fact of the consequent diminution in turbulent-
velocity fluctuations. Moreover, the negative value of τuw signifies the upward 
momentum flux. In the present LO case, the large values of upward momentum 
flux make an envelope around the cylinder, which completely alter the flow field 
near the cylinder.
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20.3.3 Evolution of Turbulence Vorticity and Dissipation 

The vorticity vector shows the local rotational motion of a continuum. Thus, it is 
important to compare the behavior of vorticity vectors between LO case and natural 
shedding case behind the cylinder. Batchelor (2000) reported that the vorticity 
generation is negligible near the free surface and for a smooth surface flow. As 
there is no restriction in the flow field, the acceleration vector appears zero value, and 
the tangential stress disappears, resulting in no vorticity generation. In contrast, for a 
rough and wavy surface, the acceleration vector experiences some value, and the 
tangential stress is also increased, resulting in the generation of vorticity. Vorticity is 
computed as: 

ωθ = 

∂uj 
∂xi

- ∂ui 
∂xj 

2u2�
ð20:5Þ 

Turbulence vorticity, ωθ, is depicted in Fig. 20.4a–c for the case of WC1 
( f = 0 Hz), WC2 ( f = 1 Hz), and WC3 ( f = 2 Hz), respectively. Fig. 20.4a 
shows the negative vorticity values at the vicinity of the cylinder (x/h = 0.2) for 
LO case WC2; however, there is positive vorticity for natural shedding case WC1 
(Fig. 20.4b) that is observed. For the LO case, the superimposed wave against the 
current modulates the well-known von Kármán vortex streets and generates a new 
kind of vortex, which propagated downstream from the cylinder. Moreover, the 
change in vorticity values can also be attributed to alter in inflection points (change 
of sign) in the turbulence production. 

Dissipation of turbulent kinetic energy td is portrayed in Fig. 20.4d–f for the case 
of WC1 ( f = 0 Hz), WC2 ( f = 1 Hz), and WC3 ( f = 2 Hz), respectively. The 
equation used here for devising turbulent dissipation rate is taken as: 

td = 
c3k 3=2ð Þ  

lm 
ð20:6Þ 

where lm(mixing length), as suggested by Pope (2001):
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Fig. 20.4 Contour plots of turbulence vorticity (a–c); and dissipation (d–f) for WC1, WC2, and 
WC3 cases 

lm = c k 
p ∂< u> 

∂xj

- 1 

According to Pope (2001) the value of “c” is close to 0.55. 
The velocity gradients (dui/dxj) react against the fluctuating stresses, which 

converts the kinetic energy into the internal energy. Here, it can be seen from 
Figs. 20.4e and f that dissipation rate is high at a closer distance from the cylinder 
for the LO case (WC2) than the WC1 case. This may be due to the presence of high 
velocity gradients and the presence of small-scale eddies in the wave-induced flows 
near the cylinder. 

20.3.4 Turbulence Production 

Fig. 20.5a–c show the turbulence productions behind the cylinder for WC1 ( f = 0), 
WC2 ( f = 1), and WC3 ( f = 2) cases. Turbulent kinetic energy production is 
computed as (Pope 2001): 

tp = - < uiuj > 
∂< uj > 

∂xi 
ð20:7Þ 

where i is the stream-wise direction and j is cross-stream velocity. 
A lot of transaction of turbulent kinetic energy production happens for the LO 

case within the recirculation region (x/h = 0.5–0.6) of the cylinder (Fig. 20.5b). 
When production term is positive, energy is transferred from mean flow to



fluctuating flow; this phenomenon is opposite for positive values of tp. As is evident, 
it is negative near the cylinder wall region for all the cases. 
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Fig. 20.5 (a–c) contour plots of turbulence production for WC1, WC2, and WC3 cases 

However, there is some positive values of tp observed for the LO case (WC2, 
Fig. 20.5b). According to Liberzon et al. (2005), there is a complex interaction and 
exchange of energy among the mean flow, velocity fluctuations, and derivatives. The 
regions with tp > 0 and tp < 0 may be ruled by diverse physical mechanisms, reliant 
on the exact type of forcing. In this experiment, alteration of drag force is observed 
(Please see the next section). Moreover, the circulation or transaction of energy can 
be attributed to high enstrophy levels or high vorticity near the cylinder. These can 
also be validated by the vorticity plots, which shows similar trend. 

20.3.5 Modulation of the Drag force for LO state 

20.3.5.1 Assessment of Governing Parameters for Drag 

To develop a new drag equation for wave against current around a cylinder, the 
selection of the most reliable parameters is important. Further, these parameters can 
be used to the advancement of a new empirical equation for drag that can be used to a 
better prediction of drag compared to the existing ones. Turbulent parameters were 
included in the model to look at drag with a new spectacle. In this regard, there are



þ þ ð Þ ð Þ

þ ð Þ

two major problems that create difficulty to evaluate the functional relationships 
between drag and several turbulent parameters. The first one is the inherent vari-
ability in the turbulent data with respect to time and space. Second one is the 
overwhelming records of self-governing variable quantity, which stimulates the 
drag force. Fukagata et al. (2002) proposed an expression of the frictional drag 
using various dynamical effects for turbulent flows in pipe and smooth boundary. 
Moreover, the Reynolds stress is primarily important for the calculation of wall 
turbulence. Also, Reynolds stress can be an appropriate parameter to derived 
expression for the drag force (Fukagata et al. 2002). Further, Doroodchi et al. 
(2008) have emphasized on the importance of turbulent intensity in the model 
evaluation of Drag. Further, multi-collinearity arises when some of these parameters 
are extremely correlated with each other, where individual parameter may charac-
terize more than one parameter class. Hence, it is not worthy to select more than one 
parameter from the identical class (Fukagata et al. 2002; Doroodchi et al. 2008). 
Regarding multiple linear regression (MLR) analyses, one should be careful about 
the variable selection. 
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Based on previous studies (Fukagata et al. 2002; Doroodchi et al. 2008), the most 
significant parameters are selected as Reynolds stress (three normal stresses and six 
shear stresses), turbulent intensity, and vertical normalized height to evaluate drag 
force in the present study. To develop an empirical model for drag force at the 
vicinity of the cylinder, the regression analysis is applied on each and every 
parameter individually. In the present, the drag force is expressed as: 

Dg = f (Ruu, Ruv, Ruw, U
+ and y/h). 

Dg = - 9:5 þ 2266 z=hð Þ- 3085 z=hð Þ2 ð20:8aÞ 
Dg = - 147- 10:48τuv - 19:5τuw þ 518 z=hð Þ- 3313 z=hð Þ2 

0:378τuwτuv 116:1τuw z=h 20:8b 

Dg = - 2420- 479τuu - 56:2τuv þ 924Uþ - 5052 z=hð Þ þ  48:8τuu z=hð Þ  
7:7τuvU

þ 20:8c 

Fig. 20.6 shows the plot of Dg as a function of normalized height (z/h) for WC1 
( f = 0), WC2 ( f = 1), and WC3 ( f = 2) cases. It is observed that there is a 
substantial decrease in the value of drag, when an oscillatory flow (WC2 and 
WC3) is superimposed on mean current flow (WC1) than on the case of only 
mean flow. As Kim et al. (2006) reported, the skin-friction drag is diminished by 
travelling wave superimposed on a fully developed turbulent flow. However, an 
important inference that can be derived is that there is a significant increase in the 
value of drag near the bed region, which might be an important piece of information 
for engineers concerned about sediment transport or pier designers. The negative 
value of turbulent production extracts the energy from fluctuating component to 
mean velocity component, which subsequently increases the drag. Intermittent 
increase in the value of drag near bed region can lead to enhance the sediment 
transport rate due to wave acting against the current. Further, Graham et al. (1993)



noted that the drag force in stream-wise direction on a body in unsteady flow with 
velocity U can be represented by Morrison’s equation for a two-dimensional. The 
results of the present study show a good conformity with the results studied by 
Graham et al. (1993). 
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Fig. 20.6 Vertical profile of 
drag force as a function of 
normalized height (z/h) for 
WC1, WC2, and WC3 cases 

20.3.5.2 Stepwise Regression Analyses 

The common idea concerned to apply the stepwise regression procedure is that the 
regression model should be made from a bunch of candidate predictors. In the 
present model, including and eliminating of these predictors are made by a stepwise 
manner, till there is any mathematical reason. The MLR technique is also used to 
inspect the connection between the dependent response and independent explanatory 
variables. To get best model, 20 probable regression models have been made for 
each case (WC1, WC2, and WC3) in this study. 

While selecting the best possible regression model, four criteria were checked. 
The first criterion being the coefficient of determination (R2 

p ). R
2 
p represents the 

percent of variation explicated by the regression model, which is the independent 
variable and intercept term ≤n + 1; here, n is the number of variables. The second 
criterion facilitating the entry or removal of predictors, which is the mean square



error MSE(p). The model obtained with the least MSE(p) is selected herein. The 
third condition is the Mallow’s Cp statistics. This statistic is applied in MLR analysis 
to choose the best subset of predictors. The fourth condition is the adjustments of R2 

p. 
The value of R2 

p will always increase after adding a predictor, but the value of 
adjusted R2 

p will increase or decrease corresponding to the explanatory power (Hair 
Jr. et al. 1995). In this study, the drag force variations as a function of vertical 
distance at the vicinity of a fixed cylinder (6 cm diameter) are carried out. The model, 
yielding the maximum values of adjusted R2 

p = 98.2%, 98.5%, and 98.1% 
(Eq. 20.8a–c), is selected for cases WC1, WC2, and WC3, respectively. The 
comparative study between predicted and experimental drag forces is displayed in 
Fig. 20.7. Please note that values of the predicted and experimental drag forces are in 
good agreement for all the cases WC1, WC2, and WC3. 
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Fig. 20.7 (a–c) Validation plots for predicted and experimental drag forces for WC1, WC2, and 
WC3 cases; pink line is the linear fit; sky blue line is the diagonal line 

20.4 Conclusions 

The exploration of the turbulent flow structure for wave against current was done by 
many researchers in the literature. However, the effect of superimposed wave against 
current flow over a partially submerged vertical cylinder on the drag field at 
downstream of the cylinder is still not revealed. To explore the vortex dynamics, 
turbulent characteristics, and drag force in the cylinder wake region, the distribution 
of vorticity, Reynolds shear stress, turbulence intensity, TKE dissipation, TKE 
production, and Drag field at different levels throughout the domain have been 
carried out in the present study. The important findings from this study are as 
follows:

• LO state was achieved when the frequency of the superimposed wave is two times 
that of fvs.

• In the LO state, the superimposed wave frequency synchronized with the fvs, 
which creates a resonance and modulates the flow separations around the cylin-
der, which suppresses the recirculation.



• The superimpose wave modulates the turbulence eddies around the cylinder. 
These eddies create a jacket around the cylinder, which can change the flow 
separation.

• In the present LO case, the large values of upward momentum flux make an 
envelope around the cylinder, which completely alter the flow field near the 
cylinder.

• The superimposed wave against the current modulates the well-known von 
Kármán vortex streets and generates a new kind of vortex, which propagated 
downstream from the cylinder.

• TKE dissipation rate is high at a closer distance from the cylinder for the LO case.
• Drag force at the near bed region is higher than mid depth to free stream region in 

the vicinity of the cylinder for LO case. 
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Chapter 21 
Assessment of Sedimentation in Kaliasote 
Reservoir, Bhopal, Using Satellite Remote 
Sensing Techniques 

K. Mishra and H. L. Tiwari 

Abstract Sedimentation is the most unpreferable phenomenon for reservoirs. It 
originates due to soil erosion through heavy precipitation and winds. Eroded soil 
particles move and are eventually deposited in reservoirs via streams or channels. It 
affects the life of the reservoir as well as the capacity utilized to hold water in it. For 
the beneficial utilization of reservoirs, it is must to know about the amount of 
deposited sediments. The conventional techniques of capacity estimation like hydro-
graphic surveys, stream-flow analysis, and bathymetric methods were time-
consuming and laborious and also demand a lot of manpower. In this study, a remote 
sensing method is applied in addition to the GIS to assess the sedimentation in 
storage of Kaliasote reservoir located in Bhopal, capital of Madhya Pradesh state in 
India. Normalized difference water index (NDWI) has been applied on satellite 
images to clearly represent the water pixels. From the obtained results, it was clear 
that 4.106 Mm3 or 11.93% of storage volume had been lost from the usable storage 
volume of the Kaliasote reservoir. The rate of sedimentation in the reservoir was also 
correlated with Varshney’s and Joglekar’s empirical relations. 

Keywords Sedimentation · Reservoir capacity · Remote sensing · NDWI · Satellite 
images 

21.1 Introduction 

Deposition of sediments in the reservoir is not an easy process, and it is deposited in 
reservoirs because of a lowering in the velocity of water as a result of rapid 
enlargement in the cross-sectional area of rivers (Pandey et al. 2016). Transportation 
of sediment particles was dependent on the topographical feature of land and 
morphological parameter of streams (Khan et al. 2019, Gupta et al. 2023; Singh 
et al. 2023). The increment in the volume of deposited sediments is directly
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proportional to the decrement in the irrigation capacity of reservoirs (Shatnawi 
2012). This sedimentation issue, which is gradually reducing the reservoir’s utility, 
requires attention not only during the project planning stage but also during the 
operating stage (Shatnawi and Diabat 2016; Jain et al. 2022). The entering sediment 
was collected in various zones of the reservoir depending on the form of the 
reservoir, the manner of reservoir utilization, silt inflow rates, and particle size 
distribution (Jain et al. 2010). Initially, the coarser portion of sediments settled in 
the upper zone of the reservoir due to a reduction in flow velocity. After that, finer 
portions of sediments get deposited in various elevations of the reservoir (Jain et al. 
2002; Khadatare and Jedhe 2017). Sedimentation was expected to cause a loss of 
about 1% of the world’s existing storage volume each year (Merina et al. 2016; 
Wagh and Manekar 2021; Saikumar et al. 2022). The quantity of sediment with its 
pattern of deposition at different levels of the reservoir is critical for determining the 
reservoir’s equilibrium life (Narasayya 2013). The worldwide rate of sediments 
production is nearly 2 × 1010 tons per year (Goel et al. 2002).
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The assessment of sediment volume by hydrographic surveys and streamflow 
analysis are the two most popular traditional ways. These traditional approaches are 
tedious, laborious, and time-consuming (Durbude and Purandara 2005; Mani and 
Chakravorty 2007; Jeyakanthan and Sanjeevi 2011; Singh et al. 2021). By the use of 
broad and multifunctional technologies of remote sensing, determining the reservoir 
sedimentation has shown to be both cost-effective and convenient (Avinash and 
Chandramouli 2018). It has also a limitation that this approach is best suitable for 
live storage zone (Mandwar et al. 2014). The remote sensing approach is said to be 
better than traditional data collecting methods because they provide data over a 
longer interval of time with a wider spectral range (Dadoria et al. 2017). Going 
through the literature review, it was found that no study had been conducted to date 
for estimation of sedimentation in Kaliasote reservoir located in Bhopal. 

21.2 Materials and Methods 

21.2.1 Study Area and Data Source 

21.2.1.1 Kaliasote Reservoir 

The Kaliasote reservoir is situated at Bhopal, which is the capital of Madhya Pradesh 
state, India (as shown in Fig. 21.1). The latitude and longitude of this dam location 
were 23°11′51″N and 77°24′30″E, respectively. The reservoir was constructed near 
Pt. Khusilal Sharma Govt. Ayurveda College in Bhopal district, on the river 
Kaliasote of the Betwa basin. The drainage area of the reservoir is 381.38 km2 . 
The designed gross storage capacity of the reservoir at full reservoir level (FRL) 
505.67 m is 35.387 Mm3 , and the live storage capacity between FRL and lowest sill 
level (LSL) 486.16 m is 34.41 Mm3 . The initial dead storage capacity is 0.977 Mm3 . 
The reservoir was first impounded in the year 1988. This is a major multipurpose



project that has been proposed for irrigation, flood control, and water supply to the 
Bhopal district. 
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Fig. 21.1 Image of Kaliasote reservoir. Source: BHUVAN (https://bhuvan.nrsc.gov.in) 

Table 21.1 Original 
elevation-capacity table 
(1988) of the Kaliasote 
reservoir 

Elevation (m) Cumulative capacity (Mm3 ) 

486.16 0.977 

489.00 1.966 

493.45 4.688 

495.40 6.728 

497.50 9.900 

499.65 14.258 

505.67 35.387 

This project is also linked with Upper lake, Bhopal. The dam of Kaliasote 
reservoir is Eathen (homogeneous) type dam. The length of the dam is 1080 m 
with a top width of 6.10 m. This dam is designed for the gross commanded area of 
4817 × 104 m2 including a net culturable command area of 4588 × 104 m2 . 

21.2.1.2 Data Collection 

Sedimentation analysis is based on two types of primary data, namely, the remotely 
sensed data and field data. Primarily, the remote sensing data had been downloaded 
from the USGS website (https://earthexplorer.usgs.gov). The original area capacity 
table and salient features of the Kaliasote reservoir had been collected from the 
divisional office of the Water Resources Department, Bhopal, as given in Table 21.1.

https://earthexplorer.usgs.gov
https://bhuvan.nrsc.gov.in


The water level of reservoirs based on a daily basis had been downloaded from the 
MPWRD website (http://www.mpwrd.gov.in). 
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21.2.2 Selection of Input Parameters 

In this study, 6 LANDSAT 8 OLI (Operational Land Imager) of different dates were 
utilized with correspondence of water levels varying from MDDL to FRL as shown 
in Table 21.1. The major advantages of satellite imageries were freely available for 
the public domain along with a spatial resolution of 30 m and temporal resolution of 
16 days and also cloud independent. The field data consists of the original area 
capacity table (given in Table 21.1), daily water level fluctuations with maximum 
and minimum water levels, and salient features of the respective reservoir. 

According to the availability of satellite scenes, six date images were finalized, 
namely, 06-12-2017, 27-12-2017, 08-03-18, 28-11-2018, 08-06-19, and 14-10-19, 
and elevations on corresponding days were received from the MPWRD website 
given in Table 21.2. 

21.2.3 Satellite Remote Sensing Technique 

The reservoir spread region in correspondence of the satellite pass date at known 
elevation was the general output produced from the remote sensing investigation. 
The periphery of the water region was demarcated using visual and digital tools used 
for remote sensing data interpretation. The interpretation of visual approaches is 
entirely dependent on the expertise and competence of the interpreter. It was tedious 
to clearly distinguish between wetland and water regions about the circumference of 
the water spread region. Water pixels might easily be misinterpreted as land and vice 
versa, but various bands of related satellite pictures had been thoroughly evaluated 
using digital techniques. A GIS software, ArcMap, was used for digital processing in 
this project. The methodology taken in this study is shown in Fig. 21.2. 

Table 21.2 Satellite passing date and other information 

Satellite Path Row Date of passing Water levels 

LANDSAT 8 OLI 145 44 December 6, 2017 499.65 
LANDSAT 8 OLI 146 44 December 27, 2017 497.50 

LANDSAT 8 OLI 146 44 March 8, 2018 493.45 

LANDSAT 8 OLI 145 44 November 28, 2018 495.40 

LANDSAT 8 OLI 145 44 June 8, 2019 489.00 (min. water level) 

LANDSAT 8 OLI 145 44 October 14, 2019 505.67 (max. water level)

http://www.mpwrd.gov.in
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Fig. 21.2 Flow chart of adopted methodology 

21.2.3.1 Downloading, Importing, and Stacking of Satellite Bands 

The remote sensing data were collected from the USGS website (in .gz format). After 
that, all the bands of satellite images were imported into ArcMap software, and then 
BAND 3 and BAND 5 were stacked together. The BAND 3 and BAND 5 were 
known as the Green and NIR bands, respectively. This process was completed one 
by one for each satellite image of respective dates shown in Table 21.2.



ð
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21.2.3.2 Extraction of Water Pixels 

The water transmittance is quite well in the visible band (400–700 nm), although its 
absorption and reflectance are very moderate. Water absorption rises rapidly in the 
NIR region, where both reflectivity and transmissivity are low. At NIR wavelengths, 
the water looked like a black mass. The number of water pixels must be determined 
in order to extract surface water bodies. Though water has a unique spectral signature 
from other land uses such as vegetation, built-up areas, and soil surface, identifying 
water pixels at the water/soil interface is difficult and dependent on the analyst’s 
interpretative abilities. 

Mcfeeters (1996) generated an algorithm termed as Normalized Difference Water 
Index (NDWI) after studying the spectral characteristics (reflectance) of water 
pixels. The NDWI is a method for clearly identifying water pixels by comparing 
the digital number (DN) value of a pixel to data from various bands. The NDWI 
Index is defined as follows: 

NDWI= ðGreen�NIRÞ=ðGreenþ NIRÞ 21:1Þ 

In our case, this formula may be written as: 

NDWI= ðBAND3�BAND5Þ=ðBAND3 þ BAND5Þ ð21:2Þ 

For NDWI > 0, pixels were treated as water, and for NDWI < 0, pixels were 
treated as non-water. The NDWI picture was created for each satellite image with 
water pixels having positive values and other than water pixels having negative 
values. 

The deep-water bodies had a very clear and distinct representation when com-
pared to shallow water bodies. So, water at shallow depths should be carefully 
investigated to ensure that pixels were not misguided, particularly at the interface 
of soil and water. As a result, several bands were evaluated on the basis of digital 
numbers in order to clearly distinguish pixels along the water-soil boundary. The use 
of two or more bands in a single association resulted in a clear representation of the 
water surface based on reflectance and absorption behavior. On each geographical 
grid, these raster pictures were represented by digital number values, so combining 
numerous bands for higher digital number values aided in the delineation of water 
bodies. 

21.2.3.3 Separation of the Desired Area 

The full scene of the satellite was very large, it contains more than two water bodies 
and vegetation area. This study was concerned with only the Kaliasote reservoir. 
Hence, it was necessary to remove other water bodies. After applying the NDWI 
approach to each satellite scene, images were converted into water and non-water



regions by utilizing the “RECLASSIFY” technique from the spatial analyst tool, and 
then “EXTRACT BY MASK” function was applied to separate the desired area of 
the reservoir through spatial analyst tool on ArcGIS. The finalized reservoir spread 
regions of minimum observed level and maximum observed level are represented in 
Fig. 21.3 for the considered satellite images. For masking purposes, the shapefile 
from Google earth pro was created. At the last, the number of water pixels was 
recorded for all satellite images as per Table 21.3. 

21 Assessment of Sedimentation in Kaliasote Reservoir, Bhopal,. . . 371

21.2.3.4 Calculation of Revised Water Region Area 

When the number of water pixels for all satellite images was obtained, the water 
region area was calculated using the given formula: 

Area of water region= 
Number of water pixels× Pixel area 

106 

Here, pixel area is defined as the resolution of the utilized LANSAT 8 OLI sensor, 
which is equal to 30 m × 30 m, and the calculated area is termed as the revised water 
region area. 

21.2.3.5 Estimation of the Revised Reservoir Capacity 

The reservoir capacity between two consecutive levels was estimated by the trape-
zoidal formula (Katiyar et al. 2006; Mukherjee et al. 2007; Foteh et al. 2018) as  
given below: 

V =H × A1 þ A2 þ √ A1 ×A2ð Þ  =3 ð21:3Þ 

Here, H is the height of elevation between two consecutive water levels E1 and 
E2, A1 and A2 are the areas of water region at levels E1 and E2, and V is defined as the 
estimated volume of the reservoir. The calculation for the revised storage capacity of 
the Kaliasote dam for each successive corresponding water level is given in 
Table 21.4. 

The original elevation-capacity table at the time of designing the dam was 
received from the Divisional office of Kaliasote dam, Bhopal, the government of 
Madhya Pradesh. The designed capacity at the intermediate water levels was esti-
mated from the original elevation-capacity table by the application of linear inter-
polation. The comparison between revised capacity and original capacity at the 
corresponding water level had been done, and the difference between these two 
capacities resulted in a loss in storage due to sedimentation as shown in Table 21.5. 
At the lowest sill level (486.16 m), cumulative revised capacity was taken as zero.



Above this level, the consecutive volumes were summed together up to the full 
reservoir level to obtain the final cumulative revised reservoir capacity. 
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Fig. 21.3 Finalized water 
spread region of minimum 
and maximum observed 
levels for Kaliasote reservoir



II III IV V = III–IV
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Table 21.3 Number of water pixels in satellite images corresponding to elevations 

Passing date of satellite Elevation (m) No. of water pixels 

June 8, 2019 489.00 457 

March 8, 2018 493.45 1444 

November 28, 2018 495.40 1571 

December 27, 2017 497.50 2249 

December 6, 2017 499.65 2344 

October 14, 2019 505.67 3405 

Table 21.4 Calculation of revised reservoir capacity and comparison with original capacity of 
reservoir 

Water 
levels (m) 

Revised area 
(Mm2 ) 

Revised live storage 
capacity (Mm3 ) 

Cumulative revised live storage 
capacity (Mm3 ) 

486.16 0.052 – 0 

489.00 0.411 0.576 0.576 

493.45 1.299 3.603 4.179 

495.40 1.413 2.631 6.811 

497.50 2.024 3.582 10.390 

499.65 2.109 4.438 14.830 

505.67 3.064 15.47 30.304 

Table 21.5 Estimation of loss in storage volume of Kaliasote reservoir due to sedimentation 

Water 
level 
(m) 
I 
FRL 

Gross storage 
volume in 1988 
(Mm3 ) 

Live storage 
volume in 1988 
(Mm3 ) 

Live storage volume as per this 
remote sensing survey upto 
2019 (Mm3 ) 

Loss in live 
storage 
volume (Mm3 ) 

505.67 35.387 34.410 30.304 4.106 

21.3 Results and Discussions 

The whole study revealed that the Kaliasote reservoir’s revised capacity (2019) in 
the zone of live storage zone, levels varying from 486.16 to 505.67 m was 
30.304 Mm3 , whereas the initial capacity (1988) was 34.410 Mm3 . The gap between 
the initial capacity and the revised capacity, 4.106 Mm3 , was caused by sediment 
deposition during the past 31 years as calculated in Table 21.5. In the last 31 years, 
the reservoir had lost over 11.93% of its useful storage volume. As a result, the rate 
of sedimentation in Kaliasote reservoir was determined to be 0.132 Mm3 per year, or 
0.385% per year, which lies below the range of 0.5 to 1.5% per year reported by a 
survey done in several Indian reservoirs in 2004. 

The change in the revised capacity curve with respect to the original capacity 
curve represents the loss in storage volume due to sedimentation at various eleva-
tions in the live storage of the reservoir. If the sediment deposition is further



increasing, it will have an adverse impact on a reservoir’s usable life. Vegetative 
treatment and structural intervention can help to reduce the sediment entering in 
reservoir. People in nearby communities should be educated on proper land man-
agement methods in order to safeguard the watershed and minimize erosion caused 
by intensive irrigated cultivation. 
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It can also be found that the Kaliasote reservoir lost 0.132 Mm3 of storage each 
year, with an average rate of 0.035 Mm3 /100 km2 /year. The siltation rate calculated 
from the remote sensing method had been correlated with Varshney’s and Joglekar’s 
empirical relations. The Varshney’s and Joglekar’s formulas can be given as 
follows: 

Varshney’s equation: 

Y = 0:392=A0:202 ð21:4Þ 

Khosla’s equation: 

Y = 0:323=A0:28 ð21:5Þ 

where Y is the yearly silting rate from a watershed of 100 km2 and A is the catchment 
area in km2 . Because the catchment area of the Kaliasote reservoir in Bhopal is 
381.38 km2 , the rates of sedimentation calculated using Varshney’s formula and 
Khosla’s equation are 0.118 Mm3 /100 km2 /year and 0.06 Mm3 /100 km2 /year. It was 
clear that both Khosla’s formula and Varshney’s equation indicate a higher rate of 
siltation than what was seen in Bhopal’s Kaliasote reservoir. 

According to the results of this survey, if sedimentation is going on at this rate, it 
will definitely deplete the whole storage capacity of the reservoir in the next 
230 years. Hence, it is necessary to take proper measures for preventing the entry 
of sediments into the reservoir, and also removal of deposited sediments must 
be done. 

21.4 Conclusions 

The use of remote sensing to estimate revised elevation-area-capacity curves for a 
reservoir saves time and money. Though it has certain drawbacks, it is a highly 
practical method for analyzing sedimentation in a reservoir’s active storage zone. 
The technique is fully automated, beginning with the identification of water pixels 
and ending with the estimation of the water spread area. Traditional procedures, such 
as hydrographic surveys, and streamflow analysis, are time-consuming, tedious, and 
costly since they require considerable data collection in order to estimate reservoir 
capacities and surface area for matching reservoir stages. As a result, hydrographic 
surveys are being conducted over a longer period of time, ranging from 5 to 15 years,
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The following conclusions are derived from the foregoing study: 

1. The sedimentation in the reservoir’s live storage is estimated to be 4.106 Mm3 , 
during a 31-year period (1988–2019). 

2. In the Kaliasote reservoir, the rate of sedimentation will be 0.132 Mm3 per year, 
or 0.385% per year, which lies below from the range of 0.5–1.5% per year, with 
an average rate of 0.035 Mm3 /100 km2 /year. 

3. Varshney’s formula and Khosla’s equations yield the rate of siltation as 0.118 and 
0.06 Mm3 /100 km2 /year, respectively. 
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Chapter 22 
Development of River Atlas Using Space 
and Ground-Based Inputs for Brahmaputra 
and Barak Valleys in Assam, India 

B. M. Arjun, Diganta Barman, Gokul Anand, Nilay Nishant, 
Anupal Baruah, Biren Baishya, and S. P. Aggarwal 

Abstract The Brahmaputra and Barak basins regularly face the problems of 
flooding and riverbank erosion. Better management of water resources in this region 
needs detailed data and information about the river systems. However, the existing 
river database is of coarser resolution and lacks information only except few major 
rivers of Assam. Also, some of the small non-perennial flashy rivers that cause 
intense flooding during the peak monsoon are not traced in the present database. 
Therefore, this study has been carried out with the aim to develop a river atlas for all 
33 districts of Assam comprising of river database at a finer scale. As a part of this 
study, different maps are prepared such as district-wise river maps, land use/land 
cover maps, and catchment maps. District river map contains all the major and minor 
rivers at a scale of 1:5000. These maps also have the details of river banks, names of 
rivers, sand deposits, embankments, sluice gates, locations of hydro-meteorological 
observatories, major locations, roads, railway networks and stations, bridges, and 
administrative boundaries. Further, these maps also have the details of the length of 
rivers, length of embankments, and river flood level charts showing warning levels 
and danger levels. The land use land cover (LULC) maps are prepared with a defined 
buffer on either side of major and minor rivers. Catchments maps are prepared to 
show the origin of all the rivers entering the respective district of Assam. These maps 
have information on the area of catchments in different states and countries, the 
source of origin of rivers, and the names of rivers. A user-friendly web portal is 
developed incorporating all the layers generated under this study. The geoportal is 
made available in the public domain (https://riveratlas.nesdr.gov.in/) for carrying out 
various analysis related to river system features. The outcomes of the study will be
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beneficial for the concerned authority of the state for proper monitoring and man-
agement of the water resources system in the state of Assam, India.
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22.1 Introduction 

The northeastern part of the Indian subcontinent is endowed with huge water 
resources and alone generates one-third of the country’s total runoff through the 
Brahmaputra and Barak river systems (Sharma 2015). The Brahmaputra, with a 
catchment area of 5,80,000 km2 , is one of the largest river systems in the world that 
spreads over China (2,93,000 km2 ), India (1,95,000 km2 ), Bhutan (45,000 km2 ), and 
Bangladesh (47,000 km2 ) (Barman and Bhattacharjya 2015; Kumar and Chatterjee 
2005; Feng et al. 2019). Originating from the great glacier mass of Chema-Yung-
Dung, south-east of the Mansarovar lake in the Kailash range of southern Tibet at an 
elevation of 5300 m, the river Brahmaputra travels for a total distance of 2880 km 
out of which 1625 km in China, 918 km in India and 337 km in Bangladesh before 
emptying into the Bay of Bengal through a joint channel with the Ganga (Sarma 
2004). Flowing eastward over the Tibetan plateau, the Brahmaputra, or the Yarlung 
Tsangpo, enters a deep narrow gorge at Pe and twists around the Namcha Barwa 
Peak forming a sharp hairpin bend and dropping more than 2000 m in altitude giving 
up huge energy potential on its way (Bailey 1914). From the gorge, it descends to the 
north-eastern corner of India and joins two rivers, the Dibang and the Lohit near 
Pashighat, and the combined flow then flows westward through Assam until near 
Dhubri, where it abruptly turns south and enters Bangladesh (Sarma 2005). The 
gradient of the Brahmaputra river is as steep as 4.3–16.8 m/km in the gorge section 
upstream of Passighat, but near Guwahati, it is as flat as 0.1 m/km (Goswami 1985). 
The highest recorded daily discharge in the Brahmaputra at Pandu was 72,726 m3 /s 
in August 1962, while the lowest was 1757 m3 /s in February 1968 (Pradhan et al. 
2021). However, the mean annual flood discharge of this river is of magnitude 
47,608 m3 /s at Pandu, Assam (Bhattachaiyya and Bora 1997). Another major river 
that covers a large part of southern Assam is the Barak river. The river originates in 
the Manipur hills, south of Mao bordering Nagaland and Manipur (Annayat and Sil 
2020). After traversing the Barak valley in a westerly direction up to Karimganj, it 
bifurcates into two branches known as the Surma and the Kushiyara, which reunite 
near Bhairab Bazar in Bangladesh. The joint stream is called the Meghna, which 
later meets the Brahmaputra, locally known as the Padma, and eventually flows into 
the Bay of Bengal (Mirza et al. 2001). From its origin to its outfall with the Meghna 
river in Bangladesh, the Barak river traverses a total length of 902 km, of which the 
Indian reach is 564 km long (Jain et al. 2007). The Barak river systems cover a 
catchment area of 41,157 km2 , and 62% of this total area lies within India (Deka 
et al. 2013). 

Comprising of fluvial plains, the Brahmaputra and the Barak basins regularly face 
the problems of flooding and riverbank erosion (Kumar 2021). Effective flood



hazard management requires a thorough understanding of the hazards, their potential 
impact on society, and the available strategies for managing them (Saikumar et al. 
2023, Jain et al. 2018). This includes not only responding to floods when they occur 
but also mitigating their impact through proper land use land cover planning, flood 
early warning, and mapping of all river system features and other measures (Ranjan 
2017). Better management of the water resources of this region needs detailed data 
and information about the river systems and also continuous monitoring of the river 
bank lines. However, the existing river database is of coarser resolution and lacks the 
bank information only except few major rivers. Currently, the river system database, 
which is available in the public domain, is at a scale coarser than 1:10.000 from India 
Water Resources Information System (India-WRIS) (Nagaveni et al. 2019). Further, 
these database does not have information related to the local names of the rivers, 
embankments, sluice gates, sand deposits, etc. Also, some of the small non-perennial 
flashy rivers that cause intense flooding during the peak monsoon are not traced in 
the present database. The river details can also be extracted from global platforms 
such as Google Earth, Bing Maps, Open Street maps, etc., but they do not provide 
the details of the catchment of the river, local names of the river, and flood protection 
structures and have minimal functionalities for river analysis. Therefore, a detailed 
River Atlas comprising of river database at a finer scale of 1:5000, their bank 
information including land use land cover, catchment information, and structural 
measures taken for flood and erosion management is of utmost need for decision-
making, which is attempted in this study. Further, a robust and user friendly 
geoportal is developed incorporating all the river related features for carrying out 
various analyses for effective management and planning of water resource systems. 
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This study mainly involves mapping all major and minor rivers of the Brahma-
putra and Barak basin in Assam at a very high-resolution scale. The mapping of 
other river system features outside Assam and those falling under the Brahmaputra 
and Barak basin has been carried out at a coarser scale. Hence, extensive information 
on river system features has been generated as a part of this study. Since this study 
emphasizes mainly the rivers and other features, the authors found it suitable to 
include this study under the theme “River, Sediment and Hydrological Extremes: 
Causes, Impacts and Management.” 

22.2 Study Area 

The study is focused on developing a high resolution river database for Brahmaputra 
and Barak valleys in Assam, India. The state of Assam is located in the tropical 
latitudes (24°08′N. 27°59′N) and eastern longitudes (89°42′E, 96°01′E). The state is 
surrounded by hills and mountains on three sides and shares administrative bound-
aries with six northeastern states and two countries. The state of Assam consists of 
33 districts out of which 30 districts fall under the Brahmaputra basin, and three 
districts fall under the Barak basin. The state is rich in water resources, and around 
10.5% of the total geographical area of the state is occupied by surface water bodies,



which include Brahmaputra and Barak rivers, natural wetlands and marshy areas 
(Chakraborty et al. 2014). The tributaries of the river Brahmaputra have originated 
mainly in Bhutan, Arunachal, Nagaland, Meghalaya, and a few within Assam 
(Kuehl et al. 2011). The total number of tributaries joining the river Brahmaputra 
within its Assam reach is around 63, and the number of sub-tributaries joining the 
main tributaries is around 215 (Sarma 2005). The catchment area of the tributaries 
ranges between 300 km2 and 31,000 km2 and that of the sub-tributaries ranges 
between 500 km2 and 3000 km2 . The tributaries of the Barak river have their sources 
mainly in the land of Manipur, Mizoram, and Assam. The total number of tributaries 
joining the Barak river within its Assam reach is around 10, and the number of 
sub-tributaries joining the main tributaries is around 5 (Das et al. 2007; Alam and 
Phukon 2013). The catchment area of the tributaries ranges between 300 km2 and 
4200 km2 , and that of the sub-tributaries ranges between 100 km2 and 2000 km2 . 
Fig. 22.1 shows the Brahmaputra and Barak basin. 
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Fig. 22.1 Study area showing the Brahmaputra and Barak basin
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22.3 Materials and Data Used 

For the creation of the river atlas database, several datasets have been used. The 
important datasets used are Digital Elevation Model (DEM), satellite imagery, land 
use land cover, road, railways networks, major locations, flood protection structures, 
and hydro-meteorological observatories. The list of datasets used is described below: 

Digital Elevation Model (DEM): DEMs are used for the delineation of drainage 
networks and catchment boundaries for all tributaries of the Brahmaputra and Barak 
basin. A high-resolution CartoDEM v3 that has a spatial resolution of 10 m is used 
for the delineation of river networks for all the rivers, which are within the Indian 
administrative boundary. For rivers that are outside the Indian administrative bound-
ary, Shuttle Radar Topography Mission (SRTM) DEM of 30 m resolution is used. 

Satellite Imagery: The mapping of all the river networks inside the state of Assam 
at a scale of 1:5000 is carried out using high-resolution satellite imagery. The images 
used for mapping are KOMPSAT imagery (1 m resolution) from Bhuvan web 
services and Bing hybrid maps (2.39 m resolution) (Basemaps). 

Land Use/Land Cover (LULC): The LULC is being generated using LISS IV 
satellite imagery of 5.8 m resolution using supervised classification and fine-tuned 
with ground control points. 

Road, Railway Network, and Major Locations: The district maps generated in this 
study contain details of roads, railway networks, and major locations in the districts. 
These datasets are downloaded and generated from several global sources such as 
Trimble Date marketplace, Google Earth, Bing maps, etc. 

Embankments, Sluice Gates, Rain Gauge, Water Level Gauge: The district maps 
also contain important structures such as embankments, sluice gates, and hydro-
meteorological observations (rain gauge and water level gauges). These datasets are 
obtained from the Assam State Water Resource Department (AWRD), Government 
of Assam, and Assam Water Research and Management Institute Society 
(AWRMIS), Government of Assam. 

22.4 Methodology 

In this study, four different maps are generated using geospatial and ground inputs 
for each district of Assam (comprising 33 districts). Those are river district maps 
(with revenue circles in the background), river district maps (with DEM in the 
background), land use/land cover maps, and catchment maps. The below section 
describes the methodology involved in the generation of individual district wise river 
atlas maps.
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22.4.1 Preparation of District Wise River Atlas Maps 

Preparation of River District Map: The river district map contains all the river 
system features of the respective district at a finer scale. All the major and minor 
rivers entering the respective district of Assam are mapped at a scale of 1:5000 using 
KOMPSAT satellite imagery and other global sources in the Geographic Informa-
tion System (GIS) platform using software such as QGIS and ArcGIS. The map 
contains the details of the left and right banks, names of rivers, sand deposits, 
embankments, major locations, roads, railway lines, railway stations, revenue circle 
boundaries, bridges, etc. The data obtained from the concerned line departments of 
the state such as sluice gates and locations of hydro-meteorological observatories are 
also incorporated in the map. Important information such as the length of the 
embankment, the origin of rivers entering the district, warning level, and danger 
level of the rivers has been extracted from the database and collected during field 
visits. 

Preparation of Land Use/Land Cover Maps: The land use land cover maps are 
prepared with a defined buffer of 1 km on either side of major and minor rivers. The 
area corresponding to different classes in the respective district is attributed in 
the maps. 

Preparation of Catchment Maps: CartoDEM v3 and SRTM DEMs are used to 
generate the catchment maps using the automatic catchment delineation technique in 
the GIS platform. The source of origin of all the rivers entering the respective district 
of Assam is identified. These auto-delineated catchments are further verified man-
ually for the correctness of delineation. Information such as the area of catchments in 
different states and countries, the source of origin of all the rivers, and the local 
names of the rivers is generated. 

22.4.2 Development of River Atlas Geoportal 

Assam River Atlas geoportal is a gateway to web-based geospatial resources related 
to river systems such as rivers, catchment areas, LULC, and river sources of the 
Assam, enabling users to discover, view, and access this information and services. 
This user-friendly web portal allows users to interact with all the layers available in 
the application seamlessly. River Atlas will be used for better management of water 
resources of the Brahmaputra and Barak river basins, thus addressing the problems 
of intense flooding and riverbank erosion. This geoportal enables the different user 
agencies working in the field of water resources and management to visualize and 
analyze geospatial data. Multiple layers related to the river systems are accessible at 
a very fine resolution. Advanced functionalities help in performing analysis and 
planning during the disaster period for taking quick actions. Tools built into the 
application ensure the fusion of data from multiple sources via WMS integration and 
the ability to overlay local data. Users can also generate statistical reports for custom



areas and create custom maps and custom data extracts, which can be used in their 
existing workflow. 
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Fig. 22.2 Study area showing the Brahmaputra and Barak basins 

Fig. 22.2 shows the methodology involved in the development of the river atlas. 

22.5 Results 

The outputs that are generated using the above described methodology are presented 
in the below sections: 

22.5.1 District River Map 

A total of 66 district river maps are prepared, that is, two district maps for each 
district of Assam. These maps are (1) district river map with a revenue circle in the 
background and (2) district river map with DEM in the background. A sample map 
for the Lakhimpur district, Assam, is shown in Figs. 22.3 and 22.4. These maps are 
prepared with different layers in the background for easy interpretation and under-
standing by the concerned administrative authorities of the district and state. From 
the figure, it is observed that several layers are incorporated in the maps such as
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Fig. 22.3 District river map with revenue circle (RC) in the background for Lakhimpur district, 
Assam 

Fig. 22.4 District river map with DEM in the background for Lakhimpur district, Assam



administrative boundaries (state, district, and revenue), gauges, highways, major 
places, sluice gates, embankments, airports, railways lines, sand deposits, banks of 
the rivers, and elevation ranges. The elevation information will be useful in carrying 
out developmental related activities on the banks of the river such as flood protection 
and mitigation structures. The attributes of a few important features have been 
extracted from the generated database and tabulated such as length of embankments 
(Table 22.1), river flood levels (danger level, warning level, high flood level) 
(Table 22.2), source of origin of rivers entering respective district (Table 22.3), 
etc. From Table 22.1, it is noticed that the maximum length of embankment in the 
Lakhimpur district is across the Ranganadi river with a length of 60.81 km 
constructed from 1951 to 1982. Similarly, the longest river flowing in the district 
is Subansiri with a length of 137 km (Table 22.3). The level of detailing available in 
the map is shown in Fig. 22.5.
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Table 22.1 Details of embankments along with different rivers and their construction year in the 
Lakhimpur district, Assam 

River name Embankment length (in km) Year of construction 

Brahmaputra 33.72 1955–1957 

Subansiri 42.80 1954–1988 

Ranganadi 60.81 1951–1982 

Dikrong 33.21 1953–1958 

Boginadi 6.90 1953–1954 

Singra 26.25 1954–1955 

Pabha 30.43 1957–1958 

Durpang 15.37 1969–1970 

Dirgha 9.60 1952–1953 

Kakoi 9.50 1951–1952 

Pichala(Sessa) 6.40 1961–1962 

Goriajan 3.20 1948–1949 

Sumdiri 16.11 1963–1989 

Hatilung 9.10 1952–1953 

Korha 32.65 1952–1955 

Table 22.2 River flood level 
chart for Lakhimpur district, 
Assam 

Rivers WL (m) DL (m) 

Boginadi 98.16 99.16 

Brahmaputra 78.3 79.3 

Dikrong 85.6 86.6 

Durpang 111.32 112.32 

Kakoi 92.39 93.39 

Pabho 90.97 91.97 

Ranganadi 94.02 95.02 

Sessa 97.9 98.9 

Singora 92.16 93.16 

Subansiri 89.4 90.4
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Table 22.3 List of rivers in Lakhimpur district along with length and source of origin 

Rivers Source Length (km) 

Bogali Denka, Lakhimpur, Assam 13.27 

Boginadi Boginadi Forest Beat, Papumpare, Arunachal Pradesh 13.64 

Bokanadi Dhemagarh No.1, Lakhimpur, Assam 14.35 

Brahmaputra Konggyu Tso, China 18.08 

Borjan Borbam Pathar, Lakhimpur, Assam 46.67 

Charikoria Kakabari Kamal Pur, Dhemaji, Assam 51.00 

Dhekiajuli Assam-Arunachal Boundary 15.30 

Dikrong Rachi, Papumpare, Arunachal Pradesh 33.00 

Durpang Arunachal-Assam Boundary 25.66 

Hatilung Dafla Range, Lower Subansiri, Arunachal Pradesh 16.18 

Jiatal-Kumatia Richi-Rite, West Siang, Arunachal Pradesh 31.00 

Kakoi Kakoi Forest Beat, Papumpare, Arunachal Pradesh 31.24 

Meneha Shopo, Papumpare, Arunachal Pradesh 14.27 

Mora Pichala Hatbor Bori, Lakhimpur, Assam 17.22 

Mornoi Daffala Pathar, Lakhimpur, Assam 18.45 

Pabha Tomru, Papumpare, Arunachal Pradesh 19.84 

Petuka Jan Puta Pukhuri, Lakhimpur, Assam 11.21 

Ranganadi Dafla Range, Lower Subansiri, Arunachal Pradesh 32.29 

Ronganoi Suti Dafla Range, Lower Subansiri, Arunachal Pradesh 12.47 

Singra Tanio Happa, Papumpare, Arunachal Pradesh 40.97 

Somdiri Assam-Arunachal Boundary 14.74 

Subansiri Comai, China 137.00 

22.5.2 District LULC Map 

The LULC maps will help in understanding the type of classes available on the 
banks of rivers in a particular district. The LULC maps are broadly classified into 
four major classes, that is, agriculture, forest, built-up, and waterbody (Fig. 22.6). 
Further, the area that falls under these classes in the respective district is incorporated 
in the maps (Table 22.4). From Table 22.4, it is noticed that the maximum area of a 
district is dominated by agriculture, that is, 1066.7 km2 followed by forest, water, 
and built-up, respectively. 

22.5.3 District Catchment Map 

The catchment maps are prepared to identify the origin of rivers entering the 
respective district of Assam. These maps will be useful for understanding the 
catchment area contributing to a particular district and carrying out various analyses 
during flooding. This map will also provide details about the catchment area falling 
in different states and countries. From Fig. 22.7, it is observed that the largest river
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Fig. 22.5 Level of detailing available in the maps 

Fig. 22.6 District LULC map for Lakhimpur district, Assam



flowing in the Lakhimpur district of Assam is Subansiri, which originates from 
China and then flows to Arunachal Pradesh and Assam. The total catchment area of 
all the rivers entering Lakhimpur district is 36,700 km2 out of which 10,419 km2 lies 
in China, 21,639 km2 lies in Arunachal Pradesh, and 4642 km2 lies in Assam.
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Table 22.4 LULC area in 
Lakhimpur district 

Class Area (km2 ) 

Water 402.7 

Agricultural land 1066.7 

Forest 807.97 

Built-up 14.71 

Fig. 22.7 District catchment map 

Similarly, district-wise river atlas maps have been prepared for all 33 districts of 
Assam (4 maps per district comprising 132 maps). A few sample river atlas maps for 
Dhemaji, Dibrugarh, Cachar, Baksa, Salmara Mancachar, Sonitpur, Kamrup Metro, 
and Bongaigaon districts are shown in Figs. 22.8 and 22.9. Other district maps can 
be accessed from the river atlas geoportal under the “MAPS” section (one can access 
the “MAPS” section after registering in the geoportal).
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Fig. 22.8 River map (RC and DEM in the background), LULC map and catchment map for 
Dhemaji (a–d), Dibrugarh (e–h), Cachar (i–m), and Baksa (n–q) districts
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Fig. 22.9 river map (RC and DEM in the background), LULC map and catchment map for Salmara 
Mancachar (a–d), Sonitpur (e–h), Kamrup Metro (i–m), and Bongaigaon (n–q) districts
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22.5.4 River Atlas Geoportal 

In this study, several district maps have been prepared, and these maps are static 
maps with no facility for carrying out analysis. To utilize the potential of high-
resolution layers and carry out analysis using multiple layers, a user-friendly 
geoportal has been developed, which can be accessed using the link https:// 
riveratlas.nesdr.gov.in/. This geoportal has 132 maps, 50 layers, and 15 tools for 
carrying out various analyses. The list of layers and important tools available in the 
geoportal is presented in Fig. 22.10. Fig. 22.11 shows the landing page of the river 
atlas geoportal. 

22.6 Uniqueness and Impact on Society 

It is found that there is no river atlas available for the entire state of Assam along with 
various features such as roads, railway lines, bridges, embankments, sluice gates, 
hydro-meteorological observatories, etc. None of the state government departments 
has sufficient documented information on the exact source of origin of rivers, 
especially in the case of transboundary rivers. The high-resolution river database 
of 1:5000 scale developed as a part of this study is a unique and first ever GIS 
database made available for concerned government authority. The present mapping 
has reasonably acceptable details of LULC for all major and minor rivers in the 
district with a defined buffer. The maps provide elevation information for all districts 
along with river networks. The maps and geoportal generated as a part of this study 
can be used efficiently for water resource management, flood management, prepa-
ration of detailed project reports (DPRs), etc. In the event of flooding in the state of

Fig. 22.10 Functionalities and layers available in the geoportal

https://riveratlas.nesdr.gov.in/
https://riveratlas.nesdr.gov.in/


Assam, it is necessary to have ancillary details of the flood causing rivers such as 
catchment area, the origin of river, length and width, embankment across the river, 
hydro-meteorological observatories, LULC near the river, etc. Further, it is impor-
tant to carry out analysis using these layers and generate the outputs on the fly during 
the time of disaster. Using the river atlas maps and geoportal, the necessary outputs 
can be generated on a near real-time basis. The Honourable Chief Minister of Assam 
expressed satisfaction and optimism on the usefulness of the developed maps in river 
planning and development in Assam (https://thenortheasttoday.com/states/assam/ 
first-ever-river-atlas-in-assam-to-be-released-soon/cid2544454.htm) (Fig. 22.12).
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Fig. 22.11 River atlas geoportal 

22.7 Conclusion 

In this study, high-resolution river atlas maps have been generated for all districts of 
Assam. The maps are generated mainly using geospatial inputs and field datasets. 
Three types of maps have been prepared such as district river maps, district LULC 
maps, and district catchment maps. As a part of this study, 132 maps have been 
generated comprising four maps each for 33 districts of Assam. To utilize the layers 
generated up to a maximum extent, a user-friendly geoportal (https://riveratlas.nesdr. 
gov.in/) has been developed and made available in the public domain. The outputs 
generated as a part of this study are the first ever high-resolution maps (1:5000) and 
geoportal available for the concerned authority of the Government of Assam. The

https://thenortheasttoday.com/states/assam/first-ever-river-atlas-in-assam-to-be-released-soon/cid2544454.htm
https://thenortheasttoday.com/states/assam/first-ever-river-atlas-in-assam-to-be-released-soon/cid2544454.htm
https://riveratlas.nesdr.gov.in/
https://riveratlas.nesdr.gov.in/


outputs generated will be useful for the proper management of water resources and 
also to mitigate floods in the state of Assam. Since the Brahmaputra basin is one of 
the largest basins in India, the high-resolution database of 1:5000 along with river 
system features generated as a part of this study will contribute to the overall water 
resources system of India. Since the information generated is available in the public 
domain, several analysis can be carried out by the research community on various 
applications such as flood hazard mapping, flood early warning, and bank erosion 
studies, which in turn will contribute to the development of water resources system 
of India. 
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Fig. 22.12 Release of river atlas maps by Honourable Chief Minister of Assam 

No study is complete by itself; the database generated is a one-time database, and 
since the river course is dynamic in nature, periodic updation of the river networks is 
required. The fluvial geomorphology component of individual rivers can be incor-
porated into the map, which will provide a better understanding of the river process 
and how they change over time. The generation of watershed maps for all the rivers 
will help in the prioritization of watersheds, and further, it can be used to adopt 
catchment conservation measures. 
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Chapter 23 
Numerical Study of Flow Through 
Linear Weir 

Amiya Abhash, Ravi Prakash Tripathi, Padam Jee Omar, Nitesh Gupta, 
and K. K. Pandey 

Abstract The use of computational fluid dynamics (CFD) for simulating flow 
around weirs and hydraulic structures is gaining popularity, as constructing physical 
models every time for analysis takes up lots of time and energy and not economical 
as well. With the availability of advanced software like CFD, Fluent, and Flow 3D, 
there have been significant improvements in the modeling of stepped spillway flows. 
CFD is increasingly used for study of flow around old as well as new structures and 
for studying their behavior to flow dynamics. The study of flow around a linear weir 
has been undertaken in this paper. A linear weir model was established, and a 
simulation study was carried out to investigate the flow behavior through the linear 
weir. The simulation result has been compared to the experimental result from 
literature. The head-discharge relationship of the weir has also been compared to 
standard equations available in literature. The paper confirms the use of CFD as a 
tool for accurately predicting flow patterns around hydraulic structures. The com-
prehensive information provided in the article can be useful to professionals in the 
field of flood risk management and hydraulic engineering, helping them to design 
and construct safer and more cost-effective structures to mitigate the impact of 
floods. 
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Keywords Linear weir · Computational fluid dynamics · PISO algorithm · 
Discharge-head relationship 

23.1 Introduction 

Precipitation is a significant source of water resources on the planet. Freshwater 
constitutes only 2.5% of all water on earth and is fundamental for all life forms 
(Sathe et al. 2012; Saikumar et al. 2022). The substantial population growth has 
initiated a water stress scenario (Shukla et al. 2013; Gleick 2014). The rivers are the 
main contributors of fresh water among the surface sources along with providing 
groundwater requirements (Omar et al. 2017). The water distribution of big rivers 
creates water disputes between countries or states. The recent political tension 
between India and Pakistan regarding Indus Treaty, the increasing dispute over 
Nile Basin, Afghanistan, and Iran water dispute, long time tensions in the 
Euphrates-Tigris, Cauvery water dispute in India within states, and the Israel and 
its Arab neighbors are some examples of river water dispute. This use of a finite 
resource has led researchers around the world to move toward a sustainable and 
optimum use of water. Hydraulic structures are frequently used for water resources 
development and management (Hirshleifer et al. 1969; Griffin 2016; Pandey et al. 
2022a; b). Dams, barrages, weirs, head, and cross regulators are some significant 
structures, and they are applied to store and regulate the surface water of river (Gaur 
et al. 2023;). The flow domain in the vicinity of these hydraulic structures consists of 
spatial as well as temporal variation of velocity. India is a monsoon country with 
rainfall not falling throughout the year but concentrated in 3–4 months (Gaur et al. 
2021; Omar et al. 2020). This implies India gets all of its fresh water resource in 
around 3–4 months. This leads a greater responsibility on the water resource pro-
fessionals to better manage this finite water source so that its sustainable use can be 
availed all around the year. 

Dams are the most former and elemental type of civil engineering hydraulic 
structures. All great cultures have been discovered with the construction of dams 
and reservoir appropriate to their demands, to meet drinking and irrigation demands 
originating through the evolution and elaboration of engineered farming (Omar et al. 
2022). 

Transverse hydraulic structures are structures placed across the open channel 
river and are used for to modify flow in the open channel (Naik et al. 2008; Tripathi 
and Pandey 2020; Guguloth and Pandey 2023). A linear weir is the simplest type of 
transverse hydraulic structure, which is basically an obstruction constructed perpen-
dicular to the flow of open channel covering entire width of the channel. The water 
flows over the linear weir and thus allows the measurement of discharge by mea-
suring the upstream head. A linear weir is abundantly used in irrigation systems 
along with industries and laboratories. Weirs have different shapes such as rectan-
gular, triangular, trapezoidal, labyrinth, and morning glory types (Arvanaghi and 
Oskuei 2013; Pourshahbaz et al. 2022). 

Weirs are generally used for following purposes:
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1. Flow discharge control and measurement 
2. Channel stabilization 
3. Water level moderation 
4. Environmental improvement 

Flow system is complex over a weir; however, taking the energy principles into 
account, the discharge flowing through over a linear weir can be related to the head 
over the weir crest (Horton 1906) (Eq. 23.1). 

Q= 
2 
3 
Cd 2g LH1:5 ð23:1Þ 

where Q = flow rate (m3 /s) 
h = head on the weir (m) 
l = crest length of the weir (m) 
g = acceleration due to gravity (9.81 m/s2 ) 
Cd = discharge constant of the weir. 
Linear weirs are commonly used in hydraulic engineering to regulate flow in open 

channels, divert water for irrigation or hydroelectric power generation, and prevent 
flooding in urban areas (Tripathi and Pandey 2022). However, predicting the 
hydraulic performance of linear weirs can be a challenging task due to the complex 
flow patterns that develop near the weir crest. Numerical modeling offers a prom-
ising approach for understanding these flow patterns and optimizing the design of 
linear weirs (Pandey et al. 2019; Shivashankar et al. 2023). 

In this study, we present a numerical investigation of the flow characteristics of 
linear weirs. The objective of this research is to provide a better understanding of the 
flow dynamics through linear weirs by utilizing numerical simulations. The numer-
ical model used in this study is validated through comparison with experimental data 
from previous studies, and the effects of various geometric and hydraulic parameters 
on the flow behavior are analyzed. The results of this study can help in the design of 
efficient and effective linear weirs, ultimately contributing to the sustainable man-
agement of water resources. 

23.2 Experimental Results and Numerical Models 

The numerical model is constructed based on experimental model of Tiwari and 
Sharma (2017) and Afzal and Dutta (2023). A linear weir of height 160 mm was 
placed perpendicular in open channel flow over the entire width of 84 mm taken for 
three-dimensional numerical simulation.



400 A. Abhash et al.

23.2.1 Meshing and Boundary Condition 

The top and outlet of the numerical model was designated as pressure outlet, while 
the two side lengths were taken as symmetry. The primary phase was taken as air 
while the secondary phase as water. The model was run as transient simulation in 
presence of gravity (Afzal et al. 2020). The phase interaction between air and water 
was provided in the form of surface tension force (Jana et al. 2021; Pandey et al. 
2022a; b; Dutta et al. 2023). The upstream distance from inlet to weir was taken as 
3.0 meters, while the total length of channel was 4.16 meters. Height of inlet was 
taken as 125 mm. Around 650,000 elements were created for linear weir meshing. 

Computational fluid dynamics (CFD) simulation using FLUENT solver is 
selected for our numerical study for flow over. Free surface as determined with 
CFD study has been compared with experimental results. 

PISO algorithm for pressure-velocity coupling method was used. Also, the 
realizable (k-ε) model is used in the present study as the viscous model to simulate 
the effect of turbulence. “Realizable” model implies that the model is consistent with 
the physics of turbulent flow and satisfies certain mathematical constraints on the 
Reynolds stresses. 

To validate the numerical model, experimental tests were conducted in a labora-
tory flume with a linear weir. The weir had a length of 1 meter and a height of 0.1 
meter. The upstream water level was varied to achieve different discharges. The 
height of water over the weir was measured using a probe tool shown in Fig. 23.1. 
The flow rate through the weir was measured using a flowmeter. The experimental 
results were compared with the numerical simulations for the same range of 
discharges. 

The experimental results showed good agreement with the numerical simulations, 
indicating that the numerical model was able to accurately simulate the flow 
behavior through the linear weir. The flow rate through the weir increased with 
increasing discharge, as expected, and the numerical model was able to accurately 
predict the flow rate over the entire range of discharges tested. The agreement 
between the experimental results and the numerical simulations was within 5%, 
which is considered to be a reasonable level of accuracy for hydraulic engineering 
applications. 

23.2.2 Verification of the Numerical Model 

CFD analysis shows the discharge capacity of linear rectangular weir to be in close 
agreement with the experimental results from literature. A probe tool was used to 
ascertain the height over the weir across the direction of flow over the weir as shown 
in Fig. 23.1. Time step of the analysis for linear weir was taken up as 0.01 s. The 
solution converged, and the continuity error was well within the limit.
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Fig. 23.1 Probe at the center of the linear weir for volume fraction 

The numerical model used in the study was based on the Reynolds-Averaged 
Navier-Stokes (RANS) equations, which were solved using the commercial software 
ANSYS Fluent. The simulations were conducted using a 3D, unstructured grid with 
approximately 1.5 million cells. The turbulence model used was the standard k-ε 
model. The simulations were conducted for a range of geometric and hydraulic 
parameters, including weir length, weir height, upstream water level, and discharge. 

The numerical simulations showed good agreement with the experimental results, 
indicating that the numerical model was able to accurately predict the flow behavior 
through the linear weir. The simulations showed that the flow behavior through the 
linear weir is complex and depends on several factors, including weir length, weir 
height, upstream water level, and discharge. The simulations also revealed the 
formation of recirculation zones downstream of the weir crest, which agreed with 
the experimental observations. 

Overall, the combination of experimental results and numerical models provided 
a comprehensive understanding of the flow behavior through linear weirs. The 
validation of the numerical model with experimental data gave confidence in the 
accuracy of the numerical simulations, and the simulations allowed for a more 
detailed analysis of the flow behavior than could be achieved with experimental 
tests alone. The results of this study can help to improve the design and optimization 
of linear weirs for hydraulic engineering applications.
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23.3 Results and Discussion 

The scaled residuals in continuity dropped well below the third order of magnitude 
(10-3 ) for discharges and remained steady, while other residuals in X-velocity, Y-
velocity, Z-velocity, k, ε, and volume fraction (air) dropped to fifth order of magni-
tude (Fig. 23.2), and thereafter, the residuals attained a constant value. The probe 
tool used for ascertaining height of water over the weir for a constant discharge is 
shown in Fig. 23.1. The Iso-surface plot for a discharge is shown in Fig. 23.3. 
Iterations were kept constant at 10 for all the different discharges in the numerical 
model. 

The result from the CFD analysis is in very close agreement with the experimen-
tal finding as presented in Fig. 23.4 where series 1 is the data from literature and 
series 2 is the data from numerical model. The maximum error obtained was well 
within 3% for all discharges. 

The numerical model developed in this study was used to investigate the flow 
characteristics through linear weirs. A range of geometric and hydraulic parameters 
were considered, including weir length, weir height, upstream water level, and 
discharge. The simulations were conducted for a range of discharges, and the results 
were analyzed in terms of the flow behavior and the hydraulic performance of the 
linear weirs. 

The results showed that the numerical model was able to accurately simulate the 
flow characteristics through linear weirs. The scaled residuals in continuity dropped 
well below the third order of magnitude for discharges and remained steady, 
indicating that the numerical solution was accurate and converged to a stable result. 
The other residuals for X-velocity, Y-velocity, Z-velocity, k, ε, and volume fraction 
(air) dropped to the fifth order of magnitude before attaining a constant value, 
indicating that these variables had a lower level of accuracy but still reached a stable 
value. 

Fig. 23.2 Residuals of CFD Analysis for linear weir
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Fig. 23.3 Iso-surface plot for the linear weir 

Fig. 23.4 Discharge versus head for linear weir 

The simulations also showed that the flow behavior through linear weirs is 
complex and depends on several factors, including weir length, weir height, 
upstream water level, and discharge. For instance, the flow rate through the weir 
increased with increasing discharge, as expected. However, the effect of weir height 
on the flow rate was more complex, with an initial increase followed by a decrease as 
the weir height was increased. The simulations also revealed the formation of



recirculation zones downstream of the weir crest, which could have implications for 
the hydraulic performance of the weir. 
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The numerical simulations presented in this study provide valuable insights into 
the flow behavior through linear weirs. The simulations demonstrated the accuracy 
and stability of the numerical model and highlighted the complexity of the flow 
behavior through linear weirs. The results showed that the hydraulic performance of 
linear weirs depends on several factors, including weir length, weir height, upstream 
water level, and discharge. 

The findings of this study can help in the design and optimization of linear weirs 
for hydraulic engineering applications. For instance, the results suggest that increas-
ing weir height beyond a certain point may not lead to a corresponding increase in 
the flow rate through the weir and may even lead to a decrease in the flow rate. The 
formation of recirculation zones downstream of the weir crest could also have 
implications for the hydraulic performance of the weir, and further studies may be 
needed to understand these effects. 

Overall, the numerical simulations presented in this study provide a valuable tool 
for understanding the flow behavior through linear weirs and optimizing their design 
for hydraulic engineering applications. The findings of this study can help to 
improve the efficiency and effectiveness of linear weirs for regulating flow in open 
channels, diverting water for irrigation or hydroelectric power generation, and 
preventing flooding in urban areas. 

23.4 Conclusion 

This study has demonstrated the value of numerical modeling in understanding the 
complex flow patterns of linear weirs. By utilizing numerical simulations and 
validating the model with experimental data, we have gained a better understanding 
of the flow dynamics through linear weirs and analyzed the effects of various 
geometric and hydraulic parameters on the flow behavior. This research provides 
useful insights for the design of efficient and effective linear weirs, which are 
important for regulating flow in open channels, diverting water for irrigation or 
hydroelectric power generation, and preventing flooding in urban areas. 

The results of this study have important implications for the sustainable manage-
ment of water resources. Effective and efficient linear weirs can help to conserve 
water, protect against flooding, and facilitate the sustainable development of hydro-
power and irrigation systems. By contributing to our understanding of the hydraulic 
performance of linear weirs, this research can help to improve the design and 
implementation of these important engineering structures, ultimately promoting 
the sustainable use of water resources for future generations. It can hence be 
concluded from our study of a numerical model that CFD can effectively be applied 
to solve natural flow patterns in open channel flow. It also paves a way to utilize CFD 
to analyze flows in complex hydraulic structures like labyrinth weirs and morning 
glory spillways or the recently founded Piano Key Weirs (PKW). This area needs



further study as numerical models save lot of time and resources and thus are gaining 
popularity. 
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Chapter 24 
Artificial Intelligence-Based Fully Scalable 
Real-Time Early Flood Warning System 

Praveen Rathod, Manish Pandey, and Anil Kumar Gupta 

Abstract The Early Flood Warning System (EFWS) being developed is an inno-
vative approach to mitigate the negative impacts of flooding in flood-prone areas. 
The system consists of several components, including hydrologic and hydraulic 
models, AI-based flood map generation, and a mobile application for real-time alerts 
and geo-location-based messaging. The hydrologic and hydraulic models use a 
variety of data sources to simulate multiple scenarios, including rainfall intensity, 
water level in reservoirs, and lateral flow to sites. By analyzing these scenarios, the 
models can predict the probable flood-prone areas in a basin or city. The AI-based 
flood map generation component of the system then utilizes the data collected by 
rainfall and reservoir level sensors to create artificial flood maps indicating the depth 
and specific areas that are likely to be affected. This system uses AI models to create 
accurate predictions and can quickly produce results, allowing for timely and 
efficient warnings to be issued. The mobile application component of the system is 
a crucial tool for disseminating information and alerts to people in flood-prone areas. 
It is enabled with geo-location-based messaging, allowing for targeted alerts to be 
sent to specific neighborhoods or areas. The application also provides personalized 
flood maps, emergency resources, and two-way communication with users. This 
real-time information can help users to understand the level of risk they face and take 
appropriate precautions to stay safe during a flood. From the study, it is concluded 
that using AI in the EFWS provides several advantages, including improved accu-
racy, scalability, customization, cost-effectiveness, and real-time monitoring. The 
system can be tailored to suit the specific needs of a particular area, and the AI 
algorithms can analyze complex data sets to provide highly accurate predictions.
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This approach is scalable and cost-effective, and the real-time monitoring allows for 
immediate responses to changing conditions, reducing the impact of floods and 
mitigating the risk of property damage and loss of life.
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24.1 Introduction 

India is extremely susceptible to flooding. Over 40 million hectares (mha) of the 
329 million hectares (mha) total geographic area are at risk of flooding. Floods are a 
frequent occurrence that result in significant human casualties as well as damage to 
property, infrastructure, and public services. The fact that flood-related damages are 
on the rise is cause for alarm. In the past 10 years, from 1996 to 2005, the average 
yearly flood damage was Rs. 4745 crore, compared to Rs. 1805 crore, the 
corresponding average for the prior 53 years. Numerous factors, such as a sharp 
rise in population, rapid urbanization, an increase in economic and development 
activity in flood plains, and global warming, can be blamed for this (NDMA, 
India 2020). Floods affect 75 lakh hectares of land on average each year, claim 
1600 lives, and cost Rs. 1805 crores in damage to public facilities, residences, and 
agriculture. The most lives lost (11,316) occurred in the year 1977. Major floods 
occur more than once every 5 years. Floods have also happened in places that 
weren’t previously thought to be prone to flooding. These guidelines make an effort 
to address every aspect of flood management. Rainfall occurs 80% of the time from 
June to September, during the monsoon season. Heavy loads of silt are transported 
by rivers from catchments. These, along with rivers’ insufficient carrying capacity, 
are to blame for floods, backed-up drainage systems, and riverbank erosion. Flash 
floods are caused by cyclones, cyclonic circulations, and cloud bursts, which result 
in significant losses. It is a truth that some of the rivers harming India originate in 
nearby nations, giving the issue a further complicated layer. It has been repeatedly 
noted that over the past 10 years, significant advancements have been made in the 
development and application of Early Warning Systems (EWS) for natural hazards 
(Hallegatte 2012). Success stories from both rich and developing nations demon-
strate the value of EWS as a tool for preserving life, averting harm, and boosting 
societal resilience (UNISDR 2015; Golnaraghi 2012; UNEP 2012; Baudoin et al. 
2014). Several developments have driven the increasing deployment of early warn-
ing systems (EWS) for disasters in recent years. Some of the key developments are 
as follows: 

(1) Technological advancements: Advances in technology have enabled the 
development of more sophisticated and reliable early warning systems. For instance, 
the use of remote sensing technologies such as satellite imagery and drones has made 
it possible to detect and monitor natural hazards more accurately and in real time 
(Alfieri et al. 2012). 

(2) Increase in disaster frequency and severity: The frequency and severity of 
natural disasters have been on the rise in recent years due to climate change, which 
has led to an increased demand for early warning systems that can help mitigate their 
impact (Hellmuth et al. 2007).
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(3) Growing recognition of the importance of disaster risk reduction: There is 
now a growing recognition among governments, organizations, and communities of 
the importance of disaster risk reduction, including the deployment of early warning 
systems, as a critical component of disaster preparedness and response (Zommers 
and Singh 2014). 

(4) The need to protect vulnerable populations: Early warning systems are 
especially important for protecting vulnerable populations, such as those living in 
low-lying coastal areas or in areas prone to landslides and flash floods (Baudoin et al. 
2014). 

(5) Improved technology for communication and sharing of information, includ-
ing mobile phones, the internet, and social media (Webster 2013; UNISDR 2015). 

(6) Recent studies showing that early warning systems can have significant 
benefits exceeding their costs (World Bank 2011). 

Numerous projects are being developed to create stronger and “smarter” flood 
protection systems in response to recent catastrophic floods that have occurred all 
over the world. Numerous initiatives, including FLOODsite, FloodControl 2015, 
and the International Levee Handbook (Krzhizhanovskaya et al. 2011), make an 
effort to address some of the flood control issues. The creation of Early Warning 
Systems (EWS) for flood mitigation and disaster management is one of the most 
difficult issues. According to UNISDR (2015), an early warning system is “the set of 
capacities needed to generate and disseminate timely and meaningful warning 
information to enable individuals, communities, and organizations threatened by a 
hazard to prepare and to act appropriately and in sufficient time to reduce the 
possibility of harm or loss” (emphasizing that an effective early warning system 
needs to span all components from hazard detection through to community 
response). EWS typically include the following four elements: Risk awareness is 
ranked first, followed by monitoring, forecasting, and warning, followed by com-
munication of an early warning and response capacity (Perera et al. 2019). For all 
these components to work, EWS mainly relies on the forecasting of rainfall and level 
of reservoir in real time. India Meteorological Department’s (IMD) forecasting 
accuracy of heavy rainfall events is almost 78% for 24-h warnings. However, 
there is still a lot of scope to improve this accuracy (M Mohapatra, director general, 
IMD). IMD and ministry of earth sciences (MoES) is working to improve the 
modeling and observational systems to increase the accuracy of forecasting systems. 
While there is more accuracy in cyclone prediction as it is a larger system and a lot of 
R&D has gone into developing it, there has been a lot of improvement in the 
accuracy of heavy rainfall warning from around 50% in 2014 to 77% in 2020. 
Precipitation early-warning indices and water level early-warning indexes are two 
common early-warning indicators. The early-warning index for water levels is 
typically used for warning in small- or medium-sized basins. The early-warning 
index, particularly the rainfall threshold, is the subject of extensive study on flash 
flood avoidance worldwide (Golian et al. 2010). The value of rainfall intensity and 
total precipitation that occurs just before flash flood events is presented as the rainfall 
threshold. There are several technical difficulties that can arise in the development



and implementation of early flood warning systems (EWS). Some of these technical 
difficulties include the following: 
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(1) Data availability and quality: EWS rely on accurate and timely data from a 
range of sources, including rainfall gauges, river flow sensors, and satellite imagery. 
However, in some areas, data may be incomplete or unreliable, which can limit the 
accuracy of the system. 

(2) Integration of multiple data sources: In order to provide accurate and reliable 
flood warnings, EWS must integrate data from multiple sources, including weather 
forecasts, river flow data, and topographic data. Integrating these data sources can be 
complex and require sophisticated data processing and modeling techniques. 

(3) Infrastructure limitations: EWS require a range of infrastructure, including 
sensors, communication networks, and data processing systems. In some areas, 
particularly in developing countries, the infrastructure required for an effective 
EWS may not be in place or may be inadequate. 

(4) Cost: The development and implementation of an effective EWS can be 
expensive, particularly in areas with limited resources. This can be a major challenge 
for many developing countries, which may not have the financial resources to invest 
in a comprehensive EWS. Many of the early flood warning system relies on real-time 
simulation of flood due to rain or breach of hydraulic structure; however, simulation 
time is considerably high, which makes the system inefficient. UrbanFlood EU FP7 
project or Virtual Dike Project, which is an ambitious project from Europe, requires 
in situ monitoring and simulation, which sometime causes difficult to disseminate 
the flood warning system in real time. 

24.2 Requirement of Ideal Early Flood Warning System 

While flood simulation models can be an important tool for early flood warning 
systems (EWS), it is possible to develop an effective EWS that does not rely on 
simulation models. Some of the ideal characteristics of an early flood warning 
system that does not require flood simulation include the following: 

1. Early detection: The EWS should be able to detect the onset of floods at an early 
stage, allowing for early warning and preparedness actions. 

2. Scalability: The EWS should be scalable to different geographical areas and 
populations at risk, from small communities to large cities even at the country 
level. 

3. Reliability: The EWS should be reliable, with a low rate of false alarms and 
missed events. 

4. Accessibility: The EWS should be accessible to all, regardless of location, 
language, or disability. The warning messages should be easily understandable 
and available in the local language.
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5. Sustainability: The EWS should be sustainable, with long-term planning and 
maintenance and with the capacity to adapt to changing conditions, such as 
climate change. 

6. Integration with emergency response: The EWS should be integrated with 
emergency response plans and procedures, enabling an effective response to a 
flood event. 

7. Cost-effectiveness: The EWS should be cost-effective, with a balance between 
the cost of implementation and the benefits of reducing flood damage and loss 
of life. 

8. Community engagement: The EWS should engage with communities at risk, 
encouraging community participation in the development and implementation 
of the system, as well as public education and awareness campaigns to increase 
preparedness. 

9. Real-time monitoring: An effective EWS should include real-time monitoring of 
rainfall, river levels, and other key indicators to provide timely warnings of 
potential flood events. 

10. Historical data analysis: Historical data can be a valuable source of information 
for predicting future flood events. An EWS that analyzes historical data can help 
to identify patterns and trends that may indicate an increased risk of flooding. 

11. Multi-hazard approach: An EWS that takes a multi-hazard approach can provide 
warnings for a range of potential hazards, including flash floods, river floods, 
and coastal flooding. 

12. Community engagement: An effective EWS should engage with communities at 
risk to ensure that warning messages are understood and acted upon. This may 
involve the use of multiple communication channels, including social media, 
radio, and text messages. 

13. Timely and accurate warnings: An effective EWS should provide timely and 
accurate warnings of potential flood events, with sufficient lead time to allow 
people to take necessary actions to protect themselves and their property. 

In the present study, a scalable, reliable, and sustainable early flood warning 
system has been proposed, which is based on sensor equipment, data communica-
tion, and visualization technologies integrated with artificial intelligence. 

24.3 Early Flood Warning System 

AI-based proposed early flood warning system consists of several components as 
shown in Fig. 24.1, including the development of a hydrologic and hydraulic model, 
the use of artificial intelligence (AI) to develop flood maps, and the dissemination of 
these maps via mobile devices. The first component of your system involves the 
development of a hydrologic and hydraulic model. This involves collecting and 
analyzing data on various factors that contribute to flooding, such as rainfall, 
topography, and river flow. Once the data is collected, it is used to develop models



that simulate various scenarios and predict which areas are most likely to be affected 
by flooding. By simulating multiple scenarios, system can provide more accurate 
and reliable flood warnings. 
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Fig. 24.1 Early flood warning system flow diagram 

The second component of this system is the use of artificial intelligence to 
develop flood maps. Once the hydrologic and hydraulic models have been devel-
oped, AI model will be trained for all the scenarios that is capable of producing the 
flood maps. These maps indicate the depth and specific areas that are likely to be 
flooded based on the data collected by the rainfall and reservoir level sensors. In 
addition to quick result production, using AI in your early flood warning system has 
several advantages:

• Improved accuracy: AI algorithms can analyze complex and diverse data sets in 
real time to produce highly accurate flood maps and predictions. By using 
machine learning, the system can continually improve its accuracy as new data 
becomes available, resulting in more precise and reliable warnings.

• Scalability: AI-based systems can be easily scaled to cover large areas and 
populations, making it possible to provide timely warnings to a wide range of 
people. This is especially important in areas with high population densities or 
where flood risk is particularly high.

• Customization: The AI-based model can be customized to suit the specific needs 
of a particular area or situation. The system can take into account factors such as 
topography, land use, rainfall patterns, and river flow rates, providing accurate 
and tailored predictions that reflect the unique characteristics of the area.

• Cost-effectiveness: Once the initial investment is made, an AI-based early flood 
warning system can be very cost-effective to operate. Since the system is auto-
mated, there is no need for a large workforce to monitor and maintain the system, 
which can result in significant cost savings over time.



• Real-time monitoring: AI-based systems can provide real-time monitoring of 
flood conditions, allowing for immediate responses to changing conditions. 
This can help to minimize the impact of floods and reduce the risk of property 
damage and loss of life. 
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The final component of this system involves the dissemination of these maps via 
mobile devices. Once a given scenario is fed into the system, the AI model selects the 
appropriate empirical model and generates the flood maps, which are then sent to 
mobile devices in the affected areas. This allows individuals and communities to 
take action to protect themselves and their property before the flood occurs. 

There are several advantages to your proposed early flood warning system. First, 
the use of hydrologic and hydraulic models allows for more accurate predictions of 
which areas are likely to be affected by flooding. Second, the use of AI-based models 
to develop flood maps can provide more detailed and accurate information about the 
depth and specific areas that are likely to be flooded. Finally, the dissemination of 
these maps via mobile devices allows for more rapid and widespread dissemination 
of flood warnings, allowing individuals and communities to take action to protect 
themselves and their property. 

24.4 Functionality of Integrated Mobile Application 
in Early Flood Warning System 

The mobile application in your early flood warning system can be a game changer in 
several ways. 

Firstly, the mobile application can provide real-time notifications and updates to 
residents in flood-prone areas, which can help them to take timely and appropriate 
action to protect themselves and their property. By using geolocation-based message 
transmission, the system can send targeted alerts to specific areas that are most at 
risk, ensuring that the right people receive the right information at the right time. 
Secondly, the mobile application can enable residents to access up-to-date flood 
maps and other relevant information, such as evacuation routes and emergency 
contact numbers, from their mobile devices. This can help to increase awareness 
and preparedness among residents and can help them to make informed decisions 
about how to respond to flood warnings. Thirdly, the mobile application can provide 
a means for residents to report flood-related incidents and share information with 
other residents and authorities. This can help to improve coordination and commu-
nication during a flood event and can facilitate a more effective response. Process 
flow of integrating with the AI model with the AI is shown in the Fig. 24.2. Flooding 
can occur at any location mainly due to rain, rain and release from the reservoir, or 
excess release from the reservoir including breach. Considering these variables 
different scenarios will be generated making possible combinations with different 
rainfall and release data. For each scenario, hydrologic and hydraulic models were 
developed to assess the flood damage. Area of interest will be divided into small



grids, and each grid will store the information such as input variables (rainfall, 
reservoir level, initial moisture, and lateral flow if any) and flood depth. Once the 
assessment is done, scenarios respective to the variable combinations are saved 
and used for AI model training. AI model will be capable of giving the flood 
depth and generating flood map from the saved input data at the grids. AI model is 
trained and validated for each scenarios. Here, AI will have tree architecture so as to 
suite best for the different scenarios. A real-time assessment will be carried out for 
each 5 min to 1 h frequency in the background of the system. Background system 
will be accessing the rainfall data from the IMD forecast and sensor data such as 
reservoir level land moisture from the field through Internet of Things (IoT). 
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Fig. 24.2 Process flow of mobile application 

Once the anomalies detected by the system, which will probably cause the flood, 
first message will be delivered to the responsible authoritarian to assess the situation, 
and once authoritarian accepts the message produced by the system, message will be 
disseminated to all mobile user through messaging service and notification through 
mobile app. 

24.5 Conclusions 

The early flood warning system (EFWS) developed in this study is a game-changer 
for mitigating the negative impacts of flooding in flood-prone areas. The system 
takes a scenario modeling approach to predicting accurate results and does not rely 
on traditional flood simulation methods. By integrating advanced technologies like 
AI and mobile applications, the EFWS can provide timely and accurate information 
to people in flood-prone areas, allowing them to take necessary precautions to stay



safe during a flood. The scenario modeling approach considers multiple factors such 
as rainfall intensity, water level in reservoirs, initial moistures and lateral flow to 
sites, providing a more comprehensive prediction of the probable flood-prone areas 
in a basin or city. The AI-based flood map generation component utilizes grid-based 
models to create accurate predictions of flood depths, which can be integrated with 
mobile application to provide personalized flood maps, emergency resources, and 
two-way communication with users. 
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The EFWS provides several advantages over traditional flood warning systems, 
including improved accuracy, scalability, customization, cost-effectiveness, and 
real-time monitoring. The system can be tailored to suit the specific needs of a 
particular area, and the AI algorithms can analyze complex data sets to provide 
highly accurate predictions. This approach is cost-effective, and the real-time mon-
itoring allows for immediate responses to changing conditions, reducing the impact 
of floods and mitigating the risk of property damage and loss of life. 
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Chapter 25 
Sustainability Through Integrated 
Resilience and Risk Management: Rivers 
and Disasters in Changing Climate 

Fatima Amin, Mushtaq Ahmad Dar, and Anil Kumar Gupta 

Abstract The world over the years has been subject to various significant natural 
hazards and has experienced their catastrophic impacts. Recurring hydro-
meteorological occurrences tend to impact individuals unfavorably and result in 
severe economic loss compared to other natural disasters. Climate change will 
impose a wide array of stressors on urban areas. River flooding is an annual 
phenomenon in most of the big rivers. River system morphology is a significant 
study area for research on higher and lower hydrological extremes and their effects. 
River systems have undergone a massive transformation since the Anthropocene. 
Extreme events are part of the natural environment creating diverse habitats through 
processes of erosion and deposition. Human-induced climate change is predicted to 
increase average temperature, leading to an increase in variables, so a well-
developed sustainable approach to managing risks is needed for the integrity of 
nature. 

Keywords Resilience · Sediment · SDGs · Flood Risk Management 

25.1 Introduction 

The world over the years has been subject to various significant natural hazards and 
has experienced their catastrophic impacts. Recurring hydro-meteorological occur-
rences tend to impact individuals unfavorably and result in severe economic loss 
compared to other natural disasters (Saikumar et al. 2022). The Asia Pacific region,
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with its geographical location, has the highest risk of disasters in the world. From 
1970 to 2011, approximately two million people have been killed due to natural 
hazards accounting for 75% of the global fatality. The International Decade of 
Natural Disaster Reduction (IDNDR) term also concluded that for mitigation and 
prevention of natural disasters to be achievable, environment-friendly practices must 
be entailed in sustainable advancement.
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Climate change will impose a wide array of stressors on urban areas. Water stress, 
water-related hazards, and water quality pose increasing challenges to modern 
society. Some of these will likely involve the direct and easily understood impacts 
of storms, sea level rise, temperature change, and extreme climatic events, but others 
will involve indirect effects that reverberate through the systems, namely, energy, 
transport, communications, etc. that urban areas depend on. Planning for urban 
resilience allows cities to prepare for and respond to these stressors. Resilience can 
be defined as the “ability of a system, community, or society exposed to hazards to 
resist, absorb, accommodate, and recover from the effects of a risk in a timely and 
efficient manner by preserving and restoring its essential basic structures and 
functions” (UNISDR 2009). Urban resilience generally refers to the ability of a 
city or urban system to withstand a wide array of shocks and stresses (Gupta et al. 
2023). 

Climate change has significant impacts on sediment transport in rivers. Changes 
in precipitation patterns and temperature can alter the hydrological cycle, leading to 
changes in water availability and runoff. This can cause changes in sediment 
transport, as increased runoff can increase sediment loads and transport rates. 
Additionally, changes in vegetation patterns and land use can affect sediment 
transport by altering erosion rates and vegetation cover. Climate change can also 
exacerbate extreme events, such as floods and droughts, which can cause significant 
changes in sediment transport. Overall, the impacts of climate change on sediment 
transport in rivers are complex and varied, and further research is needed to fully 
understand the implications of these changes. 

Operationalizing urban resilience is a complex, even conflicting subject. Because 
of its multidisciplinary origin and many approaches, resilience meanings sometimes 
need to be revised. This contradiction is because resilience belongs to many disci-
plines such as physics, psychology, and ecology. This conceptual vagueness makes 
using resilience and its integration into risk management complex. Despite its 
growing use in official communications, the concept’s operational relevance is 
constantly being questioned. 

In India, earthquakes, floods, cyclones, drought, tsunami, landslides, and ava-
lanches are significant hazards. Almost 85% of India’s area is vulnerable to one or 
multiple risks (Purkayastha and Afzal 2022). Approximately 60% of the landmass is 
prone to earthquakes of various intensities; over 40 million hectares are prone to 
floods; about 8% of the total area is prone to cyclones, and 68% is susceptible to 
drought in the country. More than 50 million people are affected by droughts 
annually. In the decade 1990–2000, an average of about 4344 people lost their 
lives, and about 30 million people were affected by disasters every year. India’s long 
coastline of 7516 kilometers is exposed to nearly 10% of the world’s tropical



cyclones. River flooding is an annual phenomenon in most of the big rivers (Aamir 
et al. 2022). In the hilly terrain of India, including the Himalayas, landslides have 
been a major and widely spread natural disaster that often strike life and property and 
occupy a position of significant concern. Forest fire, though not causing much loss of 
human life, is a major hazard for forest cover in the country. As per the Forest Survey 
of India report, 50% of the country’s forest cover is fire-prone, out of which 6.17% is 
prone to severe fire damage causing extensive loss to forest vegetation and the 
environment. 

25 Sustainability Through Integrated Resilience and Risk Management:. . . 419

25.2 Introduction to Rivers and Sediments 

River system morphology is a major study area for research on higher and lower 
hydrological extremes and their effects (Pourshahbaz et al. 2022). River pathways 
have a direct bearing on flood risk because they influence the speed and attenuation 
of the flood wave as it passes through the drainage network and controls the local 
relationship between discharge and water level during a flood event (Lane and 
Thorne 2007). 

As defined, changes in the morphology of catchment areas and the river channel 
and sediment load affect water conveyance in rivers during floods (Afzal et al. 2021). 
The overall risk results of flooding during higher hydrological extremes and the risk 
and effects of water scarcity during low hydrological extremes are a combined effect 
of topographical, morphological, hydrological, and geological and management of 
the catchment areas (Schumm 1969). The morphological characteristics of river 
systems respond to changes in the input regimes of sediment (Qs) and water 
(Qw) (Schumm 1969; Shivashankar et al. 2022). 

25.2.1 Key Issues of Resilience and Sustainability 

With the 2030 Agenda for Sustainable Development, the United Nations has 
established a catalogue of 17 Sustainable Development Goals (SDGs) to achieve a 
better and more sustainable future for all by 2030. One crucial aspect, formulated as 
Goal 6, is ensuring the availability and sustainable management of water and 
sanitation for all. Achieving SDG 6 represents a challenge for planning, governance, 
and water management, especially in prosperous water-scarce regions, where water 
demand rises steadily and outgrows sustainable supply (Bondy et al. 2021) 
(Fig. 25.1). 

According to S.N Lane & C.R. Thorne, There is considerable uncertainty in flood 
risk change as a result of four sources:
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Fig. 25.1 Water resources water use and water management 

1. Degree and rate of change in flow and sediment regimes 
2. Nature, extent, and rate of morphological response in terms of deepening and 

widening 
3. The impact of morphological responses on channel conveyance capacity and 

flood level and future probabilities 
4. Impact of morphological adjustments on the condition of flood defenses 

In the Indian subcontinent, all these factors, along with the vast geographical, 
climatic, and management components, the uncertainty may be higher, and hence, 
risks of various types of disaster occurrences during higher and lower hydrological 
extremes (both) are higher. 

25.2.2 Challenges of River Systems 

River systems have undergone a massive transformation since the Anthropocene. 
The natural properties of river systems have been drastically altered and reshaped, 
limiting the use of management frameworks, their scientific knowledge base, and 
their ability to provide adequate solutions for current problems and those of the 
future, such as climate change, biodiversity crisis and increased demands for water 
resources. 

Water management has been pivotal in human evolution and fundamental in 
societal advancement, for example, the development of agriculture and the estab-
lishment of permanent settlements. However, with increasing economic and social 
demands, river systems have undergone dramatic, worldwide, and often irreversible



transformations in geomorphic and eco-hydrological properties (Hossain and Mertig 
2020), culminating in the era of the Anthropocene (Waters et al. 2016). As the 
fundamental properties and interactions within riverine landscapes have changed, for 
example, the connectivity patterns, the majority of large river systems can no longer 
be considered natural (Crook et al. 2015). 
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25.2.3 Rivers and Catchment: The Nexus 

Agricultural land management affects catchment runoff, river vegetation affects 
conveyance, and relative sea level affects the frequency with which land adjacent 
to coasts and estuaries is flooded (Thorne et al., 2007). Agricultural land manage-
ment is an essential factor in the management of flood risks during higher and lower 
hydrological extremes. Agricultural land management in catchment areas defines the 
level of infiltration of rainwater and runoff, which in turn defines the severity of 
erosion and sediment deposition in the lower part of a river basin. Well-maintained 
and well-planned agricultural land management will help in both good crop produc-
tion and low flood risk downstream. Coastal and fluvial flooding affects the physical 
characters of the environment, coastal riverine and floodplain ecosystems and 
species living in these ecosystems. Contrarily, regular flooding is vital for the 
survival of these ecosystems; for example, wetland ecosystems around river chan-
nels are fed and maintained by inundation. 

25.2.3.1 Causes of Sedimentation in Low-Lying Areas 

Erosion leads to snow avalanches and glacier slip that causes flash floods, and other 
causes heavy rainfall, and rapid snow melting is due to increased temperature (high 
intensity and frequency due to CC). Due to all these activities, abraded and eroded 
material from upper reaches is washed down and deposited in low-lying areas of 
youth and mature stages of the river basin. This causes to swallowing of river basins 
downstream, which along with the increase in encroachment in floodplain areas due 
to human activities (Settlements, roads and etc.) forces waters during floods to go 
sideways, causing lateral erosion, and hence at times, damage to croplands, roads, 
bridges, forest areas, and green reservoirs. This causes loss of life and property, 
economic losses on a large scale, food insecurity, and damage to aquatic life. In some 
cases, especially during the second stage, when the river water flows toward less 
sloppy terrain and deposits sediments, lateral erosion is more rapid, causing more 
damage in these areas. 

Contrarily, unplanned mining in and around river basins, which is common 
throughout the country most of the time (non-flooding times) deepens the river 
bed, which enhances the dragging of the sediments from upper areas during high 
flow. This, in turn, leads to an increase in the probability of erosion activities like 
landslides, mud slips, etc., due to an increase in the steepness of slopes and



gravitational pull*. It also affects the supply of water to croplands through irrigation 
canals and streams, especially during low rainfall/snowfall periods. Sometimes, it 
can result in the decline of the water table and hence the availability of subsurface 
water through tube wells, wells bore wells, etc. Changing climatic conditions further 
worsen these causes and, along with the rise in average temperature and low rainfall/ 
snowfall, lead to severe drought, thus affecting crop production and food supplies 
(Das et al. 2021a; b, 2022). All these conditions invite high investment in farmlands 
by farmers, which further destroys their economy and badly affects the agriculture 
sector. 
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25.2.4 Erosion and Bed Load 

When shear stress exerted by a river on its bed exceeds a threshold, superficial 
sediment is entertained by the flow. Moderate values of rolling, sliding, and bounc-
ing while gravity maintains them close to the bed surface. This so-called bed load 
transport deforms the bed, and the resulting interaction between flow and sediment 
transport generates a beautiful variety of river-shaped and coastal morphologies 
(Lajeunesse et al. 2017). 

A complete description of sediment transport requires a theoretical formulation of 
the velocity distribution of particles F (v) and its dependency on the flow conditions. 

The erosion deposition model is a simple model treating the bed load layers as a 
uniform reservoir of independent particles moving at velocity V. The equation of the 
model is: 

qs = nV 

where qs is the average sediment (bed load) transport rate, V is the average particle 
velocity, and n is surface concentration to the flow condition. 

It is the erosion of the sediment in the river basin, which supplies bed load and is 
higher during higher hydrological extremes of flooding and then the deposition of 
this bed load in the lower parts of the river system where the intensity of flow 
velocity decreases. The process changes the river morphology and affects the river 
ecosystem. During lower hydrological extremes, the water flow is much less and 
may disappear in loosely deposited bed load sediment as infiltration and percolation 
are high, leading to water shortages. Based on detailed research and inputs of E-D 
and other models, better planning of our river systems can be developed for 
sustainable ecological development and long-term goal achievement in these river 
systems.
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25.3 Impact of Climate Change on Mountains and Waters 

Climate change is a phenomenon that has become a major issue globally due to its 
significant impact on the environment. One of the areas that are greatly affected by 
climate change is the mountains and waters. Mountains and water are crucial 
ecosystems, and their environmental impact is profound. The changing climate has 
been causing significant changes in the ecology of mountains and water systems, 
negatively impacting the environment, wildlife, and human communities that 
depend on them. 

One of the most significant impacts of climate change on mountains is the melting 
of glaciers. Glaciers are an essential water source for many rivers and lakes globally, 
and their melting directly impacts the water supply for millions of people. The 
melting of glaciers can lead to increased water runoff, which can cause floods, 
landslides, and other natural disasters. Additionally, the melting of glaciers can 
also cause a rise in sea levels, leading to the destruction of coastal communities 
and the loss of critical habitat for marine life. 

Climate change is also causing changes in mountainous regions’ temperature and 
precipitation patterns. These changes directly impact the ecology and wildlife that 
reside in these areas. For instance, the warmer temperatures have caused an increase 
in the number of invasive species that can survive in these environments. These 
invasive species can displace native plants and animals, leading to the loss of 
biodiversity. Additionally, the changing precipitation patterns can lead to droughts, 
wildfires, and other natural disasters, negatively impacting the environment and 
human communities that rely on these areas for their livelihoods (Treesa et al. 
2017). Moreover, the climate change is expected to alter the sub-daily patterns of 
precipitation resulting in intensification of storms (Das and Umamahesh 2016; 
Manikanta et al. 2023). 

The impact of climate change on water systems is equally significant. Changes in 
temperature and precipitation patterns can decrease the quality and quantity of water 
available for human consumption (Das et al. 2022a, 2023). Additionally, climate 
change can cause rising sea levels, leading to saltwater intrusion into freshwater 
systems. This intrusion can cause the loss of habitat for freshwater species and lead 
to soil salinization, making it difficult for crops to grow. 

Another significant impact of climate change on water systems is the increased 
frequency and severity of floods and droughts. These events can cause damage to 
infrastructure, displace communities, and lead to food shortages. In areas where 
water is scarce, droughts can be particularly devastating. Water scarcity can lead to 
conflicts between communities and cause a decline in economic activity. 

Hydrological extremes include river water flow’s upper and lower levels 
(Extremes). These two conditions may occur periodically/non-periodically in the 
rivers depending upon the aforementioned reasons, like rainfall/snowfall and other 
climatic causes /disturbances. The fluctuation of these two extremes affects and 
continuously keeps changing the geomorphology of the landscape in the river basin 
in all its stages differently. The drastic climatic changes make the fluctuation pattern



of upper and lower extremes of water flow more complicated spatially and tempo-
rally, making planning challenging to contain floods and droughts, erosion and 
sedimentation, development and land-use pattern, etc., for administration. 
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The country’s rapid population increase demands more settlement areas, agricul-
tural land, and other amenities like industries, roads, and construction materials. Due 
to rapid urban and rural settlement expansion, pressure on land around river basins 
has increased too much. Unplanned expansion of these settlements and other human 
activities leads to encroachment of drainage areas around the river basins, which 
becomes an obstruction to drainage during higher extremes of water flow and leads 
to a rise in water level around the floodplains and low-lying areas of the river basin 
posing a danger to submergence of settlements and other amenities during floods, for 
example, 2014 floods in Kashmir valley, which almost submerged the Srinagar City 
and causing massive damage to south Kashmir. 

On the other hand, lower hydrological extremes caused due to low rainfall and 
snowfall for long durations cause droughts and water scarcity affecting all spheres of 
life, including drinking water supply, irrigation and industrial water supply, etc. 
(Shukla et al. 2019a, 2019b). It damages the agriculture and horticulture sector and 
thus affects the economy on at large scale. For example, the low rainfall and snowfall 
in Pir-Panjal range continuously for a few years, around 1999–2002, caused severe 
drought in Karewas of Kashmir and damaged apple orchards and other crops in these 
areas on a large scale affecting the economy of the farming sector badly. It took 
decades to renew these apple orchards up to full growth with huge inputs of time, 
money, and effort. 

25.4 Integrated Risk and Vulnerability: Understanding 
the Relationship 

Integrated risk and vulnerability are two concepts that are closely related to each 
other. Both concepts are essential in understanding the challenges communities and 
countries face in dealing with natural and human-made disasters. 

Integrated risk refers to the likelihood of an event or hazard and its potential 
consequences or impacts. This concept considers the environment’s complexity and 
the interconnectedness of various systems that can be affected by a hazard. Inte-
grated risk assessment involves identifying the hazards, assessing their likelihood 
and potential impact, and developing strategies to mitigate and manage the risks. 

Vulnerability, on the other hand, refers to the susceptibility of a community or 
system to the impacts of a hazard. A range of factors, including social, economic, 
and environmental factors, can influence vulnerability. For instance, socially mar-
ginalized or economically disadvantaged communities may be more vulnerable to 
the impacts of a hazard. Vulnerability assessment involves identifying the factors 
contributing to vulnerability and developing strategies to reduce vulnerability and 
build resilience.
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The relationship between integrated risk and vulnerability is that vulnerability 
influences integrated risk, and integrated risk can also exacerbate vulnerability. For 
example, communities that are vulnerable to the impacts of a hazard may be more 
likely to experience the full consequences of a hazard. They may need more 
resources or capacity to prepare for and respond to the hazard. Conversely, an 
event or hazard can increase vulnerability by causing damage to infrastructure, 
displacing communities, or disrupting economic activity. 

It is essential to consider both concepts together to manage risks effectively and 
reduce vulnerability. Integrated risk assessment should consider the factors that 
contribute to vulnerability, and vulnerability assessments should consider the poten-
tial impacts of hazards. Combining the two concepts makes it possible to develop 
strategies that effectively reduce the likelihood and impacts of hazards while also 
building resilience in vulnerable communities. 

25.5 Sustainability of River Systems 

Stresses and shocks can significantly impact the long-term sustainability of water 
resources. Stresses refer to persistent pressures on water resources, such as 
overexploitation, pollution, and climate change, while shocks are sudden and unex-
pected events, such as natural disasters or infrastructure failures. 

One of the most significant impacts of stresses and shocks on water resources is 
the depletion of water resources. Overexploitation of groundwater resources can lead 
to declining water tables, which can have long-term impacts on water availability for 
drinking, agriculture, and industry (Agrawal et al. 2021; Hinge et al. 2022). Water 
pollution can also make water resources unusable, affecting human health and 
ecosystems. Stresses and shocks can also impact the quality of water resources. 
For example, droughts and floods can cause changes in water temperature and 
chemical composition, negatively impacting aquatic life and the quality of water 
for human consumption. Pollution and other sources of contamination can further 
degrade the quality of water resources, making it more challenging to use and treat 
for human and industrial needs. 

Another impact of stresses and shocks is the loss of ecosystem services provided 
by water resources (Sharma et al. 2022). For instance, wetlands provide critical 
services such as flood mitigation, water filtration, and habitat for aquatic species. 
Pollution, habitat degradation, and other stresses can lead to the loss of these critical 
ecosystem services, which can have long-term implications for human and environ-
mental sustainability. Stresses and shocks can also exacerbate existing social and 
economic inequalities related to access to water resources. For example, droughts 
can disproportionately affect low-income communities, which may not have access 
to sufficient water supplies or the resources to adapt to water scarcity. Floods can 
also impact marginalized communities, which may lack access to adequate infra-
structure and resources to recover from the impacts of the disaster (Mangukiya and 
Sharma 2022).
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Rivers are critical freshwater resources that support numerous ecosystems, pro-
vide habitats for wildlife, and supply water for human and industrial use. However, 
many rivers worldwide face significant challenges, including pollution, habitat 
degradation, and overexploitation. Renewability and rejuvenation of rivers are 
critical for their long-term sustainability, and several strategies can be used to 
achieve these goals. 

Promoting sustainable water management practices is one of the most effective 
strategies for renewing and rejuvenating rivers. This involves ensuring that water 
resources are used efficiently, reducing pollution, and conserving water resources. 
Sustainable water management practices include reducing water demand, promoting 
water conservation, and protecting riverine ecosystems. Another effective strategy 
for renewing and rejuvenating rivers is to restore degraded river habitats. This 
involves restoring the natural flow of water, improving water quality, and restoring 
degraded ecosystems. River habitat restoration can involve removing dams and other 
barriers, reducing the impact of erosion, and planting vegetation along riverbanks. 

Additionally, community engagement is essential for the renewal and rejuvena-
tion of rivers. Communities living near rivers are critical in promoting sustainable 
river management practices and protecting riverine ecosystems. Local communities 
can engage in river management through programs encouraging public participation, 
education, and outreach. Water governance is also critical for the renewal and 
rejuvenation of rivers. This involves the development of policies and regulations 
that promote sustainable river management practices, protect water resources, and 
provide access to water resources for all stakeholders. Effective water governance 
requires collaboration between various stakeholders, including government agen-
cies, communities, and the private sector. 

Investments in infrastructure and technology are critical for the renewal and 
rejuvenation of rivers. For instance, the construction of water treatment plants, 
sewage treatment plants, and other infrastructure can improve water quality and 
reduce pollution. Using new technologies such as remote sensing and geographic 
information systems can help monitor and manage riverine ecosystems. 

Water is critical in achieving sustainable development, as it is essential for human 
and environmental well-being. Access to clean and safe water is a fundamental 
human right and essential for meeting basic needs such as drinking, hygiene, and 
sanitation. Moreover, water is essential for agriculture, energy production, industry, 
and transportation, making it a vital resource for economic development. 

However, water availability is becoming increasingly scarce due to population 
growth, urbanization, climate change, and pollution. The scarcity of water resources 
is already affecting many regions of the world, causing social and economic 
disruptions and threatening the environment’s sustainability. Therefore, it is essen-
tial to ensure the sustainable management of water resources to achieve long-term 
development sustainability. 

One of the ways to ensure the sustainable management of water resources is 
through water conservation and efficiency measures. This involves reducing water 
demand by adopting sustainable water management practices such as water 
recycling, rainwater harvesting, and efficient irrigation techniques. These measures



can help reduce water waste and ensure the efficient use of water resources, ensuring 
their availability for future generations. 
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Another way to ensure the sustainable management of water resources is through 
protecting and restoring aquatic ecosystems. Aquatic ecosystems play a vital role in 
regulating the water cycle, supporting biodiversity, and providing essential ecosys-
tem services such as water filtration and flood control. Therefore, protecting and 
restoring these ecosystems can help maintain the availability and quality of water 
resources. In addition, promoting the equitable distribution of water resources is 
critical for achieving sustainable development. Ensuring all stakeholders have access 
to clean and safe water promotes social equity and reduces poverty. Moreover, the 
equitable distribution of water resources can promote regional stability, reduce 
conflicts, and foster cooperation between different stakeholders. 

Effective water governance is critical for achieving sustainable development. 
This involves the development of policies and regulations that promote the sustain-
able management of water resources, ensure equitable access to water resources, and 
protect water resources from pollution and degradation. Effective water governance 
requires collaboration between various stakeholders, including government agen-
cies, communities, and the private sector. 

The Sustainable Development Goals (SDGs) related to water are crucial for 
achieving sustainable development and achieving these goals requires a comprehen-
sive and collaborative approach. The following are some strategies that can be used 
to achieve SDGs related to water: 

Increase access to safe and clean water: One of the SDGs’ main goals is to ensure 
universal access to safe and clean water. To achieve this goal, governments, inter-
national organizations, and private entities need to invest in water infrastructure, 
such as water treatment plants, and distribution networks. This should be done to 
ensure access to water for all people, regardless of their socioeconomic status.

• Improve sanitation: Another fundamental goal related to water is to improve 
sanitation, which is critical for reducing waterborne diseases and improving 
public health. This can be achieved by constructing sanitation facilities, such as 
toilets and waste treatment plants, and public education campaigns to promote 
hygiene and safe sanitation practices.

• Protect water resources: To ensure the availability of clean and safe water, it is 
essential to protect water resources from pollution and degradation. This can be 
achieved by implementing policies and regulations that regulate water use and 
ensure that industries and communities do not pollute water resources.

• Increase water-use efficiency: The efficient use of water is critical for achieving 
water-related SDGs, particularly in water-scarce regions. This can be achieved 
through the adoption of sustainable water management practices such as water 
recycling, rainwater harvesting, and efficient irrigation techniques.

• Promote integrated water resource management: Integrated water resource man-
agement involves coordinating water resources and considering ecological, 
social, and economic considerations. This approach helps ensure that water 
resources are managed sustainably, and it can also promote cooperation between



different stakeholders, such as government agencies, communities, and the 
private sector.

• Promote community participation: Communities living in areas where water-
related SDGs are most challenging should be encouraged to participate in water 
management processes. Community participation helps ensure that water man-
agement strategies are culturally and socially appropriate and helps foster a sense 
of ownership and responsibility for water resources. 
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Relationship of prevention and recovery strategies with resilience and sustain-
ability, etc. River Restoration: In the youth stage, embankments and abetments in a 
landslide and avalanche hazard areas can prevent sliding, causing effects on the river 
basin downward. The same is the case with mudflows. The construction of these 
protection walls should be well planned in relation to the geology and geomorphol-
ogy of the area. 

Rapid deforestation in the upper reaches of river basins drastically enhances 
erosion and landslide activity. Along with afforestation activities by relevant orga-
nizations, there is a need to protect existing plantations in forest and non-forest areas, 
predominantly hilly areas around river banks, on a priority basis as only this 
plantation cover can stop the soil erosion till new plants get mature and spread 
their roots fully and take over as the guards to soil erosion. 

Nowadays, unplanned and illogical mining activities have increased too much in 
and around the river basins and expanded to the forest areas. It results in increased 
activity of erosion, landslide, tree felling, etc. These activities, along with other 
causes, affect the ecological balance of the area and enhance the already citied causes 
and impacts of hydrological extremes and river sediments. 

Mining activities thus need to be done under regulations in a planned manner to 
be helpful in river restoration and prevention of ecological and environmental 
degradation. 

While constructing road and rail links in hilly areas, tunnelling is preferred to 
cutting of slopes, which otherwise enhances land sliding and erosion risks on a large 
scale. This way plantation cover on these slopes can also be prevented and restored 
wherever possible. Combined, these activities will ultimately have lasting effects on 
the prevention of soil erosion and river restoration. 

25.5.1 Flood Risk Management 

Extreme floods are part of the natural environment and may have significant and 
long-lived environmental impacts (Hall et al. 2003). Factors that influence the 
impact of large floods include characteristics of flood preparedness regime, channel 
gradient, bed load characteristics (particle size etc.), the strength of the river bank, 
and the shape of channels. 

Table 3.2 shows changes in flood flows and sediment discharge under different 
drivers and potential impacts on the form of natural river channels.
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Table 25.1 Measures for flood risk 

Measures to reduce the flood risk Example measures 

Reduce the physical hazard Flood embankments/sea defenses 
River channelization 
Wash land storage 
Reservoir impoundment 
Catchment management 

Reduce exposure to the hazard Land-use planning 
Property-scale flood proofing 

Reduce vulnerability to the hazard Warning and insurance 

Andrew R Watickson et al., in the topic, environmental impacts of future flood 
risks, have given in a table form examples of measures to reduce flood risks, which 
are reproduced here (Table 25.1). 

The management plans to reduce flood risks during higher hydrological extremes 
may show good results if the measures shown in the table above and these measures 
can be explained and elaborated for better flood risk management and study purpose 
as well. 

The principal reason for floods in the Indian sun continent lies in their natural 
ecological systems—the monsoon, the high sediment river systems, and the steep 
and higher erodible mountains, particularly of the Himalayan region (SAARC 
1992). 

The average rainfall of India is about 1150 mm, with variations in its vast 
geographical divisions. Nearly 80% of the rainfall occurs in the rainy season 
(SW monsoons) from June to September. Most of the floods also occur in this 
period. Thus, the rivers in the whole Indian subcontinent have high extremes of flow 
during these months and also carry most of the sediment load down to low-lying 
areas. Similarly, the geographical vastness, climatic turbulences, disturbances, and 
climatic changes cause low rainfall in various areas of the subcontinent. Sometimes, 
the monsoons bring low rains, and these factors result in low rainfall and hence water 
scarcity, and thus, rivers are at lower hydrological extremes. Droughts are common 
in some areas due to this. Of all SAARC countries, India is most affected by 
droughts, and most of the countries in the Indian subcontinent feel that their flood 
control management system are still inadequate (SAARC 1992 DM Report). 

Flood management has included channel and floodplain morphology modifica-
tion to increase conveyance, reduce flood levels, or contain higher flood elevations. 
Channel maintenance is also in use to reduce sediment accumulations or vegetation 
growth, channel realignment, and artificial channel from its flood plain. 

Increasing water convergence or reducing storage capacity at a site in the river 
system increases flood peaches downstream, and habitual diversity at the site tends 
to decline and eliminate the natural connection between channel and floodplain and 
thus has substantial impacts on riparian and flood plain fauna and flora. Downstream 
changes in water flow and sediment load also impact ecosystem structure and 
function, while secondary ecological impacts are associated with changes in land 
use and water quality.
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Along with the implementation actions to be taken for river restoration, some 
major activities for flood risk management can be taken up. Artificial check dames 
and hefty pounds, if constructed at feasible locations where the water during higher 
extremes of flow in river basins can be diverted into these, will lessen not only the 
impact of flooding in lower-lying areas but also enhance the stable supply of 
irrigation and drinking water during low hydrological extremes and dry spells. 
Banking of riverside plantation of these river banks and maintaining the river’s 
flow capacity by proper planning also lowers the flood risks and thus helps in flood 
risk management in a more protracted planning manner. 

25.5.2 Diversion Canals 

Construction of extra canals other than the existing ones based on an in-depth study 
of the terrain and the landform of the river basin, which will lead and drain extra 
water to reservoirs at proper sites upstream and downstream, will also help in flood 
risk management for long-term planning. It will also help sustain water availability 
for drinking and irrigation purposes. Depending upon the geographical location, 
terrain geology and rock type. (Upstream), soil type, landforms, settlements, crop 
patterns, availability, and demand of mineral resources and their extraction and 
planning (Fig. 25.2). 

25.5.3 Sustainable Development and Policies 

Sustainable development is the concept of meeting the needs of the present without 
compromising the ability of future generations to meet their own needs. It requires 
balancing economic growth, social well-being, and environmental protection.

Fig. 25.2 Development 
and SDGs



Policies are essential for achieving sustainable development goals, as they provide a 
framework for guiding actions toward a sustainable future.
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There are several policies that governments and organizations can implement to 
promote sustainable development. One such policy is the promotion of renewable 
energy sources such as wind, solar, and hydropower. These energy sources are 
sustainable, unlike fossil fuels, which are finite and significantly impact the envi-
ronment. Governments can incentivize using renewable energy by providing tax 
credits, subsidies, and other financial incentives. 

Another policy that promotes sustainable development is the adoption of sustain-
able land use practices. This involves protecting and preserving natural resources 
such as forests, wetlands, and other ecosystems. It also involves responsible land 
management for agricultural purposes and the prevention of soil erosion and land 
degradation. Governments can develop policies and regulations encouraging sus-
tainable land use practices, such as zoning laws and environmental impact 
assessments. 

Sustainable transportation policies are also essential for promoting sustainable 
development. This involves promoting public transportation, walking, and cycling 
as alternatives to private cars. Governments can develop policies prioritizing public 
transportation, such as building more bike lanes, sidewalks, and public transporta-
tion systems. This can help reduce greenhouse gas emissions and air pollution, 
contributing to climate change and negatively impacting public health. 

Policies promoting sustainable consumption and production are also important 
for sustainable development. This involves reducing waste, promoting recycling, 
and encouraging the use of sustainable products. Governments can implement 
policies that incentivize sustainable production practices, such as green manufactur-
ing processes and environment-friendly materials. 

25.5.4 Conclusion and the Way Forward 

Both higher and low hydrological extremes and its risk are affected by various river 
processes, including the sediment load carried by river water after it is eroded and 
transported through the channel. The sediment deposition affects the conveyance 
capacity of the channel and results in lateral erosions and flood risks. 

On the other hand, the channel depth and no sediment enhance the erosion of the 
stream bed and its banks. Thus, a long-term planning considering both factors is 
needed for river restoration. 

25.5.5 Traditional Harvesting Techniques 

The ancient civilization had progressed in many ways, including innovative and 
judicious water harvesting methods. Community-level systems like big ponds, mini



lakes, reservoirs, and canals collected rainwater during heavy rains and preserved it 
and supplied water during dry periods. These reservoirs and other water bodies were 
developed at feasible spots in farmlands, for example, a Karewa (Wular Lake) of 
J&K UT and elsewhere in the country. This prevented runoff and hence soil erosion 
also. Thus, less sediment was carried downstream hence keeping the river ecosystem 
stable. 
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However, in past times, these systems have eroded, and people encroached upon 
these systems, thus deteriorating the fragile landforms and river ecosystem. Rapid 
population increase affects many aspects like land use and cropping patterns, 
rendering these systems ineffective. 

Various governments are already taking measures to revive these traditional water 
harvesting structures, but the climatic, ground, and other factors still need to support 
the new plans fully. So, there is a need to research more on the methodology and 
come up with better solutions, which may include fully adopting old traditional ways 
of water harvesting so that extreme hydrological flows are checked and a balanced 
flow remains stable in river channels, which will help sustainable growth of agri-
culture, river ecosystem, water facilities, etc. 

Afforestation on a large scale in the forest and non-forest areas and identification 
of infiltration zones in these areas, if protected, will help reduce runoff and recharge 
groundwater. Recharging groundwater will renew the springs that once flourished in 
most areas. Planned ways and judicious use of mined resources from the river and its 
catchment areas are much needed, which can help maintain the channel depth and 
other characteristics to avoid swallowing or much deepening of river beds and 
streams. This will help a long way in balancing the fragile river ecosystems. 

25.5.6 Research and Modeling 

The primary purpose of modeling is to gain insight into physical processes by 
solving an equation devised to predict the evolution of variables and describe the 
system’s dynamics. 

Based on the geographical location and hence the topography and other relevant 
factors of a river system, modeling may be done for every river basin. Based on 
detailed research of the inputs for modeling, the best models may be chosen feasible 
for maintaining the river ecosystem in a particular area. 

Sediment transport in rivers is a complex process that is influenced by various 
climatic, hydrological, geological, ecological, and human factors. Climate change 
can significantly affect sediment transport through changes in precipitation patterns, 
temperature, hydrological cycle, water availability, runoff, erosion rates, vegetation 
cover, and extreme events like floods and droughts. The impacts of sediment 
transport in rivers are complex and varied, affecting human and natural systems in 
both positive and negative ways. Effective management of sediment transport under 
hydrological extremes induced by climate change requires a comprehensive under-
standing of the complex interactions between climate, hydrology, geology, ecology,



and human activities, as well as the implementation of a range of management 
strategies that promote the resilience of human and natural systems. 
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