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Abstract In terms of performance and range, electric vehicles (EVs) have lately 
improved. Several commercial models are now on the market, and the number of 
EVs on the road is constantly rising. Although the majority of electric vehicles are 
currently charged via electric cables, the companies like Tesla, BMW, and Mercedes 
Benz have started to design and manufacture electric vehicles that are charged wire-
lessly and that do not necessitate the use of inconvenient wires. Wireless charging 
further broadens the scope of dynamic charging, which includes charging when 
driving. When this is discovered, EVs’ electric driving range will be unrestricted, 
and battery capability requirements will be drastically reduced. This has been empha-
sized and endorsed around the world, with the United Kingdom, Germany, and South 
Korea leading the way. This study provides a comprehensive analysis of the liter-
ature on electric vehicle wireless charging. Wireless charging’s key technological 
components are summed up and equated, including compensation configurations, 
coil styling, and connectivity. To boost the charging power, a novel way to using 
superconductivity materials in coil designs is examined, as well as their possible 
effects on wireless charging. Besides that, the health and safety risks associated with 
wireless charging, and the rules that regulate them, are addressed. From an economic 
aspect, the costs of various wireless charging technologies have also been summed 
up and analyzed. 

Keywords Wireless Charging · Electric Vehicle ·Wireless Power Transfer ·
Coupled Magnetic Resonance · Infrastructure Allocation · Charging Station 

1 Introduction 

Transportation is a major cause of climate change and carbon dioxide emissions. In 
2017, transportation accounted for about 60% of global oil usage, necessitating the 
development of a clean alternative. Electric vehicles (EVs) are a critical component
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in the transformation to a green power society [1]. In terms of reliability and range, 
electric vehicles have come a long way recently. Several models are currently avail-
able for purchase on the car market. With the growing number of electric vehicles 
on the road, figuring out how to power them rapidly and easily remains a difficulty, 
putting a strain on electric networks. Electric cables are used to charge almost all 
current electric vehicles. For charging, whether at home or on the road, cables must 
be physically attached to the EVs [2–4]. 

The very first wireless device, a wireless lightning lamp, was invented by Nicola 
Tesla in the late 1800s. Tesla used alternating current (AC) potentials among two 
metal plates that were near but not touching to power the bulb. This innovation 
helped pave the way for new wireless charging options. Unresolved technological 
issues, such as low powered density and low transfer efficiency as distances rise, 
have hampered the development of this WPT technology [5]. 

Two advancements in Wireless power transfer technology have enabled wireless 
charging over ranges greater than 2 m using strongly linked coils after two decades. 
Inductive and capacitive power transfer are the two most common WPT technologies. 
Power can be transferred without the use of sturdy links using WPT, which consists 
of conductive power transfer and inductively power transfer [5, 6]. 

Several types of wireless charging systems for electric vehicles are static, semi-
dynamic, and the dynamic systems of charging. Static charging technologies are 
equivalent to existing plug-in chargers, but they have several perks, such as the 
ability to “park and charge” [7]. The conductive charging method is replaced by an 
on-board acquiring device and a peripheral charging device in the asphalt. While 
vehicles are in motion, Dynamic WPT systems charge them. According to sources, 
the necessary capacity of the battery can be lowered by up to 25%, decreasing the 
upfront cost of a new electric vehicle. As a result, WPT appeals to EVs and has the 
potential to boost EV adoption [7–9]. 

Wireless charging system (WCS) can provide additional benefits in terms of 
simplicity, dependability, and accessibility when compared to plug-in charging solu-
tions. Wireless charging systems have the drawback of being able to be used only 
when the automobile is stopped or in a static mode, for instance, in parking lots, car 
ports, or at red lights [10]. Furthermore, stationary Wireless charging system must 
contend with issues like electromagnetic compatibility (EMC), low power transfer, 
hefty constructions, shorter range, and higher efficiency. The WCS for EV’s inter-
active method of functioning has been investigated so as to boost the two aspects 
of range and battery storage capacity. This technology allows for the charging of 
battery memory modules when the vehicle is moving. The car has a larger range of 
transportation and requires less expensive battery storage volume [11, 12]. 

This study focuses on apparently-dynamic and dynamic wireless charging, as 
previously indicated. While there are a couple of effective electric vehicle systems 
with wireless charging in the market, like the “KAIST On-Line Electric Vehicle”, 
which are designed specifically for adaptable wireless charging, the bulk of apparent-
and dynamic Electric vehicle systems that are charged wirelessly have been converted 
from fixed wireless charging apparatus or are based on static advances. As a result, for 
some prototypes and simulation designs, distinguishing the type of wireless charging
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is difficult. This section discusses some of the treatments that were created for static 
charging but are now frequently addressed in wireless charging research. 

2 State of Art in Research 

A variety of obstacles are preventing EV development and adoption. The battery 
is simultaneously the most vital and the most dangerous component of an electric 
car. Current electric vehicle batteries are expensive, have a short life duration, have a 
restricted driving range, and take a long time to charge as compared to ICEV batteries 
[13]. Additionally, batteries are still frequently large and underutilized, resulting 
in additional weight, volume, and inventory costs. Battery technology could help 
enhance battery longevity, power efficiency, and cost-effectiveness [5, 14]. 

The transfer of energy between an electrical outlet and an electric vehicle during 
wireless charging is accomplished using an electromagnetic field. There is no direct 
interaction between the electric vehicle and the source of power when using this 
charging methodology [15]. The leading disadvantage of this method is that it is less 
efficient than conductive charging and is more expensive. Wireless charging inno-
vation, on the other hand, has been depicted to be approx. 85% efficient in charging 
points [15–18]. The main requirement for charging electric vehicles remains the 
distance it can transmit the charge. Inductive charging, Coupled Magnetic Reso-
nance (CMR), laser, and radio wave are just a few of the charging innovations that 
have already been established for electric vehicle’s batteries. [19]. 

To charge an electric vehicle wirelessly, the magnetic induction coupling employs 
the principle of electromagnetic induction. Its configuration consists of two coils. 
The acquiring coil sends a current to the transmitter coil, which stimulates a current 
in the transmitting coil, which can be used in charging of the electric vehicle. The 
transmitting and receiving coils must be close to one other and well linked to increase 
inductive coupling efficiency [20–22]. 

Environmental conditions have no effect on IPT systems, making them perfect in 
any situation and removing the need for maintenance. Due to core failures, the IPT 
requires ferrites for thermal assistance, requiring this to perform at lower frequency 
and resulting in a smaller size [23, 24]. Besides that, magnetic induction technology 
wirelessly transmits power from a stationary transmitter to a large number of relo-
cating secondary receivers [25]. The magnetic coupling effect between the coils 
varies due to the huge air separation between the transmitter and reception coils. 
This leads to a loss in system stability due to the changing charging loops of the 
electrical characteristics. Because of the power requirements, it can hardly be a one-
phase or three-phase supply. A wireless power transfer mechanism normally includes 
the following components: battery, transmitting coil, receiving coil, electrical grid, 
microcontrollers, sensors system, and related circuit. IPT modules are disseminated 
or endured based on the magnetic configuration of the coil [25, 26]. 

The current state of research is examined from a variety of angles:
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. Infrastructure allocation for charging.

. Analytical and evaluation techniques for wireless charging technology for 
extending the driving range.

. A cost–benefit survey of wireless charging for electric vehicles versus alternative 
modes of transportation. 

3 Charging Infrastructure Allocation 

In traditional EV systems and operations research, the subject of charging infrastruc-
ture distribution or allocation is one of the most effectively addressed subjects. This 
also applies to electric vehicles that can be charged wirelessly [27]. The allocation 
problem poses a challenge in providing logistical perspectives to produce reports 
aimed at ideal charging framework distribution. The allocation issue is divided into 
two categories: microscopic allocation models and macroscopic allocation models, 
depending on the extent of the modeling. The microscopic allocation model, also 
known as micro-allocation, aims to locate the best charging infrastructure position 
on a vehicle’s route or path. The design contemplates scenarios in which electric 
vehicles (EVs) with wireless charging only move along a defined route or path. The 
prototype is exemplified with a passenger bus (Fig. 1) [28]. More detailed modeling 
can be constructed on the basis of this micro-allocation. When determining critical 
areas for wireless charging routes or power outlets throughout the design stage of 
a wireless charging transport vehicle, micro-allocation techniques are very effective 
[29]. The model’s goal is to provide a technical tool to help with mechanism findings 
for the wireless charging-based transport station. The macro-allocation version, often 
known as macro-allocation, looks at things at a higher level. The main objective of 
this form of modeling is to deliver scientific glimpse into the wireless charging elec-
tric vehicle as a whole, as well as to examine how the integration of EVs into larger 
transit networks impacts overall traffic behavior [30, 32]. Arithmetical optimization 
is frequently applied to solve allocation issues, whether they are macroscopic or 
microscopic. This methodology approach is used to either instantly find charging 
infrastructure sites or to provide alternative stages of the project of identifying the 
appropriate allotment. The use of an optimization technique to assess the user equi-
librium assignment is an example of the latter circumstance [33, 34]. Despite the 
fact that Wireless Power Transfer has a variety of technical implementations, their 
conceptual setups are slightly different from the one shown in the figure, which can 
be used for both dynamic and quasi-dynamic wireless charging Electric vehicles. 
The following provides an explanation of the standard configuration’s definitions 
and purposes:

Power Transmitting Unit The charging unit that transmits power to the vehicle 
via electromagnetic field or magnetic coupling from the grid is referred to as a power 
transmitting system. It is composed of a transmitting unit—the long track used to 
transmit power that is typically installed beneath the road—and a power supply unit 
that transfers grid power to the power track.
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Fig. 1 Configuration of wireless power transfer in EV [20]

Table 1 The distance covered and time needed to fully charge the EV [31] 

Scenario speed 
(km/h) 

One coil receiver Two coils receivers 

Needed distance 
(km) 

Needed time (h) Needed distance 
(km) 

Needed time (h) 

10 166 40 833 20 

100 400 83 2000 41 

Power Pickup System The part that acquires power from the power transmitting 
unit is referred to as the power pickup system. It consists of a receiving coil or 
the pickup unit that is attached to the underside of the vehicle to obtain power and 
additional units like rectifiers and regulators that transfer power from the pickup to 
the traction motor and battery. 

According to Table 1, if the lower speed is chosen and two receivers will be used, 
it will take 20 h to fully charge the vehicle. However, if only one receiver is used, 
40 h would be required, assuming that the path is 1666 km long, has a WPT system, 
and that there is a 1.5 m space between each pair of transmitters. If two receivers 
are used, the vehicle can only be fully charged on a road that is 833 km long and 
has a WPT system with the same spacing between the transmitter coils that is 1.5 m. 
Based on these statistics, the suggested solution can assist in lowering the cost of 
Wireless power transfer pavement infrastructure and aid in proficiently charging the 
electric vehicles [31]. 

4 Driving Range Extension Analyses 

This study makes use of a basic driving cycle, which is defined as an acceleration 
characteristics of a particular type of automobile offered by a government or organiza-
tion that reflects driving styles. This article provides experiments in which the cost of 
charging infrastructure is calculated using a generalized driving cycle with the accep-
tance that the charging infrastructure is ideally assigned [35]. The goal of boosting is
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to shorten the charging lane’s overall length while increasing the life of battery. The 
model predicts that the amount of protection necessary for power tracks changes 
dramatically depending on the driving conditions of the vehicles. A car equipped 
with 8 KWH batter requires only 0.47% reporting under the typical driving cycle 
condition, however, a heavily loaded vehicle in a mountain terrain needs up to 64.5% 
of the coverage [35, 36]. Despite the fact that the research does not look at financial 
expenses, it does analyses the notion of the power track availability in aspects of the 
reportage of road to obtain a desired range of driving. A case study is conducted out to 
ascertain the preliminary expenditure of a running of wireless charging electric buses 
with a driving range of 400 km. The study proposes a sound cost model for invest-
ment projects. Simulations and regression are used to determine the expenditure of 
the power track. Standard driving cycles are first simulated with varied parameters. 
Regression analysis is then used to analyze the connection between the proportion 
of charging station coverage over the mandatory road and the status of the battery at 
the end of the ride using the simulated results. Several scenarios are assessed using 
various characteristics, including charging facility road coverage, battery capacity, 
halting periods, and charging power level a 500-kilowatt-hour battery is suggested in 
the analysis [37]. A dynamic Electric vehicle with wireless charging with a 24 kWh 
battery is put to the test on three different traffic road contexts, each with its own 
traffic flow that is intensity speed and length. According to the analysis, the energy 
delivered to the EV in the city is roughly 0.6 kWh/km on average, but 0.25 kWh/km 
on the highway [37, 38]. 

5 Evaluation of Battery Stand by Time 

As smaller batteries can be used by the wireless charging electric vehicles, so 
their adoption may not guarantee the system’s long-term economic efficiency [39]. 
According to studies, the batteries which are too tiny have an adverse impact 
on battery performance as a whole because they are more susceptible to more-
discharging cycles, which accelerate the depletion of battery, and batteries that have 
short life will need to be replaced more frequently, resulting in higher overall battery 
costs. As a result, larger batteries could save money in the long term. This little 
example emphasizes how important it is to consider battery life while constructing 
wireless charging EV systems. The capacity of a battery diminishes dramatically with 
time, according to independent studies. As a result, unlike when modeling wireless 
charging devices in the past, studies no longer consider battery capability as a param-
eter. Battery capability, on the other hand, must be viewed as a dynamic metric that 
declines over time [39, 40]. 

The issue of battery drain was first investigated, but few follow-up studies have 
been published, owing to the fact that Incorporating battery life into the model results 
in a strong nonlinear property, rendering the review mathematically irreconcilable 
and making the development of standard costing and optimal allocation models 
particularly difficult. Incorporating battery life into the study also demands specialist
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knowledge of different battery kinds and capabilities. This necessitates increased 
coordination between battery experts, activities, and systems investigators [41]. 

6 Conclusion 

This report offers the first comprehensive overview of the current status in wireless 
charging EV operations and systems research. Investigations of present research 
efforts are crucial since technology and operations and systems-related research 
are still in their early stages. This surveying has a wide range of applications for 
researchers, industry, regulatory authorities, and policy experts. This section also 
goes over the notations, terms, and definitions used in the existing publications before 
delving deeper into the components of the wireless charging Electric vehicle. Because 
these ideas and classifications are not yet standardized, technology surveys at this 
level require precise design. It also demonstrates how variable terms and concepts 
are utilized in other polls. 

The study’s primary section reviewed existing journal articles from five distinct 
points of view: charging infrastructure appropriation, enhancement of the range of 
driving, evaluations of cost and benefits, existing parameters, and various view-
points. A single article can be evaluated from multiple perspectives using the 
perspective-based review method. The most advanced research topic is charging 
allocation evaluations, which suggest methodologies for ideal charging infrastructure 
distribution. 

Almost all of the journals studied saw dynamic wireless charging as a feasible 
choice for future electric vehicles. Rapid charging has the potential to reduce the 
cost of wireless charging infrastructure by simply increasing the charging amount 
per distance of wireless charging road, allowing as much power to be transmitted with 
a shorter recharging road. Another crucial topic is the impact of rapid charging on 
the economics of wireless charging electric vehicles. To summarize, wireless power 
transfer used to electric cars poses several risks and opportunities. Investigating these 
difficulties with analytical rigor will be a challenge for the future.
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