
On the Principles
of Microservice-NoSQL-Based Design

for Very Large Scale Software: A
Cassandra Case Study

Duc Minh Le1(B), Van Dai Pham1, Cédrick Lunven2, and Alan Ho2

1 Department of Information Technology, Swinburne Vietnam, FPT University,
Hanoi, Vietnam

{duclm20,daipv11}@fe.edu.vn
2 DataStax, Inc., Santa Clara, USA

{cedrick.lunven,alan.ho}@datastax.com

Abstract. Developing very large scale distributed software systems is
challenging from both functional and data management perspectives.
Methods based on Microservices Architecture (MSA) have gained pop-
ularity for addressing the functional challenges. On the other hand,
cloud-aware, very large scale NoSQL data management systems have
also proved their effectiveness in tackling data management’s scalability
challenges. Recent work have studied the combined approach for specific
methods and systems. However, there has been no work that propose
a complete method or study the underlying design principles. In this
paper, we present the result of our initial research on this subject. We
choose Cassandra as a case study as it is a popular system that sup-
ports cloud-aware, very-large-scale NoSQL data management. We pro-
pose the CaMSAndra software development method that combines the
MSA and Cassandra methods. We define a UML metamodel for CaM-
SAndra and uses it as the basis for discussing the design principles. We
analyse the relationship between bounded context and application work-
flow and, based on this, define a hierarchical service design that builds
a service hierarchy by transforming an application workflow. We also
discuss a data-driven cluster design in connection to the microservices.
We demonstrate CaMSAndra with a well-known software domain called
Hotel Reservation. We contend that our method is promising for devel-
oping very large microservice-based, NoSQL-based systems in general.

Keywords: Software Design · Microservices Architecture · NoSQL ·
Cassandra

1 Introduction

Developing very large scale distributed software systems is challenging from both
functional and data management perspectives. Methods based on Microservices
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
T. D. L. Nguyen et al. (Eds.): ICISN 2023, LNNS 752, pp. 591–602, 2023.
https://doi.org/10.1007/978-981-99-4725-6_70

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-4725-6_70&domain=pdf
https://doi.org/10.1007/978-981-99-4725-6_70


592 D. M. Le et al.

Architecture (MSA) have gained popularity for addressing the functional chal-
lenges. On the other hand, cloud-aware, very large scale NoSQL data manage-
ment systems have also proved their effectiveness in tackling data management’s
scalability challenges. In fact NoSQL systems and their SQL counterparts have
been studied in the context of the well-known CAP theorem [2]. This theo-
rem basically states that distributed systems can at most achieve two out of the
following three design properties: consistency (C), availability (A) and partition-
tolerance (P). Most SQL-based systems are classified as CA with strict data con-
sistency rules. In contrast, CP and AP systems both focus on partition-tolerance
and provide non-strict forms of consistency. High consistency enforcement in very
large scale distributed systems is extremely difficult to achieve without incurring
some level of penalty in availability. In such systems, the continuity of operation
in the face of failures and network changes is given a higher priority. Popular
examples of AP systems include Cassandra, DynamoDB, CouchDB and Riak,
while CP systems include MongoDB, Redis and HBASE. Among these, Cassan-
dra, MongoDB and Redis are three popular very large scale NoSQL systems. In
particular, Cassandra prioritises availability over consistency to provide what is
known as eventual consistency [2].

Recent work have studied the combined approach for specific methods and
systems. However, there has been no work that propose a complete method or
study the underlying design principles. In this paper, we present the result of
our initial research on this subject. We choose Cassandra as a case study for two
main reasons. First, Cassandra is one of the most favourable NoSQL systems
[1] that supports cloud-aware, very large data management scaling. Second, the
authors have had extensive experiences in using and developing for this system.
In particular, a leading multi-cloud, database-as-a-service version of Cassandra,
named AstraDB, has been developed by Datastax.

We propose the CaMSAndra software development method that combines
MSA and the Cassandra data modelling method. We define a UML metamodel
for CaMSAndra and uses it as the basis to discuss the design principles. We
analyse the relationships between the key concepts of the two component meth-
ods and discuss the principles for combining these concepts in the metamodel.
In particular, we present a synthesis of bounded context and application work-
flow and, based on this, a hierarchical microservice design that transforms the
application workflow to build the microservice hierarchy of a software. Further,
we discuss a data-driven cluster design that explores the relationship between
microservice and data distribution cluster in Cassandra. We demonstrate CaM-
SAndra with a well-known software domain called Hotel Reservation. We contend
that our method is applicable to developing very large scale microservice- and
NoSQL-based software systems in general.

The paper is structured as follows. Section 2 reviews the background knowl-
edge and the related work. Section 3 presents an overview of our proposed our
CaMSAndra method. Sections 4.1–4.3 discuss the core design principles in the
context of CaMSAndra. Section 5 concludes the paper.



Principles for MSA-Based Software Design with Cassandra 593

2 Background and Related Work

In this section, we introduce a motivating example and review a number of
background concepts in the context of the related works. Contextualy, we define
very large-scale software as a microservice-based software that stores a very
large volume of data. The volume of data that is comparable to those managed by
such global-scale software systems as Facebook and Netflix. In this context, we
position our work as being related to Microservices Architecture and Cassandra.

2.1 Motivating Example: Hotel Reservation

To illustrate the concepts presented in this paper, we adopt the Hotel Reservation
software example from Carpenter and Hewitt [5].

Fig. 1. Conceptual model of the Hotel Reservation domain (Adapted from [5]).

Figure 1 shows an entity relationship diagram (ERD) that represent the con-
ceptual model of the hotel reservation domain. It consists of seven core concepts
and the relationships between them. A hotel is located near some points of inter-
ests (POIs) and this relationship is used to answer user search queries about
hotels and POIs. Once a hotel has been located, the user can proceed to make a
reservation for the available rooms, each of which offers a number of amenities.
Each reservation has a reservation period (start and end dates) and must include
the guest details. A guest is the user who made the reservation.

2.2 Microservices Architecture

Microservices Architecture (MSA) is a modern scalable Internet-based soft-
ware architecture. Each microservice represents a domain functionality that can
be performed with a high degree of autonomy. In MSA, the software development
process generally proceeds in a top down fashion, which starts with a high-level
design to identify the bounded contexts. A bounded context defines the bound-
ary of a microservice, which is represented by a domain model that captures



594 D. M. Le et al.

the requirements of a business function or capability. Once the bounded con-
texts have been identified, the development process proceeds to tactical design
to construct the domain model in each context. MSA has been discussed in
the literature [3,4,9,10] to possess the following properties: (1) service-based
componentisation, (2) business-capability-driven, (3) distributed development, (4)
modularity, (5) high autonomy, (6) infrastructure automation, (7) resilience, (8)
observable, and (9) evolutionary design.

Hierarchical Service Design. A number of recent works [4,8,13,15] have sug-
gested to use a layered MSA style, in which microservices are organised into lay-
ers based on their domain dependencies. Two main benefits of this architecture
style are that it helps (i) control the complexity of the system by reducing the
service dependency and (ii) ease security enforcement. The former has recently
been reported in [13] as a topic that requires further research. The latter is
recently studied in the IoT context [11,14], where secured and resource-efficient
access to the edge devices is a main concern. It is noted that both [11,14] use
a form of layered, tree-based architecture to effectively organise services and
manage the network complexity. A service tree [8] is a rooted tree in which
the root node is a service and the non-root nodes are either another service or
a non-service software module. An edge in the service tree represents functional
dependency between its two nodes.

2.3 Cassandra Method for Data Modelling

Among the key concepts of Cassandra that are relevant to software design are
query-driven data modelling with application workflow and peer-to-peer data
distribution.

Fig. 2. Query-driven domain modelling method of Cassandra (Adapted from [5]).

As far as software development methodology is concerned, a unique fea-
ture of Cassandra-based system is its query-driven domain modelling. We prefer
the more general term “domain modelling” to Cassandra’s “data modelling”
because, as will be explained below, in our view the method is actually a combi-
nation of data and behaviour modelling. In Cassandra, the idea is to combine the
traditional conceptual data modelling (typically expressed in entity-relationship
diagram (ERD) [6]) and the domain-specific behaviour requirements. These
requirements constitute what is called in the Cassandra’s literature the applica-
tion workflow. We define application workflow as a layered, directed graph



Principles for MSA-Based Software Design with Cassandra 595

that represents a functional decomposition of a software, in which the bottom-
level nodes are queries over the conceptual model of the software. In this paper,
we will call this graph the workflow model.

To ease discussion in this paper we will refer to the Cassanda’s domain mod-
elling method simply as the Cassandra method. Further, we will refer to the
aforementioned combined model of the Cassandra method as Cassandra domain
model. When the context is clear, we will refer to this simply as domain model.
Conceptually, we define the Cassandra domain model as a unified model
consisting of a data model, describing the domain concepts and relationships
among the concepts, and a relevant application behaviours that constitute a
query-driven directed graph of functional decomposition over this data model.

For example, Figs. 1 and 3 show two component models that make up the
domain model of hotel reservation. Figure 3, in particular, depicts the workflow
model, expressed as a directed graph of function decomposition. Following the
arrow paths lead us to the query functions that are defined in terms of the
concepts in the conceptual model. For instance, the query function “Q7. Find
reservation by guest name” defines a query on the two entities Reservation and
Guest and the relationship between them. To ease discussion, we will refer to
query function simply as query.

Fig. 3. Query-driven domain modelling for Hotel Reservation (Adapted from [5]).

Very Large Scale Data Management. As far as data management is con-
cerned, Cassandra is well-known for its very large, horizontal scaling data man-
agement method. The method employs a peer-to-peer (P2P) data distribution
scheme, which means that the overal storage capacity scale linearly with the
number of nodes that participate in the system. Horizontal scaling is easier to
manage than vertical scaling, which depends on a few high-performance server
nodes. In Cassandra, data records (a.k.a rows) that share the same key prefix
(called the partition key) form a data partition. Each partition is stored in a
node that is responsible for the target token range containing the partition key.
The partition key is hashed into token using a consistent hashing function.

DataStax Enterprise (DSE). DSE [7] and its cloud-based product line, named
AstraDB1, are highly scalable Cassandra-based data management systems. In
particular, AstraDB is a multi-cloud database-as-a-service platform that consists
1 https://www.datastax.com/products/datastax-astra.

https://www.datastax.com/products/datastax-astra


596 D. M. Le et al.

in a suit of tools to ease system administration. These include DataStax’s in-
house tools as well as other open-source tools, notably those from the Apache
Foundation.

3 Method Overview: CaMSAndra and the Metamodel

A key issue to address when designing microservice-based software with Cassan-
dra is how to map the MSA concepts to the Cassandra method. Figure 4 shows a
combined MSA-based and Cassandra-based software development method. We
call this the Cassandra-MSA method or CaMSAndra method for short.

Fig. 4. The CaMSAndra method: MSA modelling with Cassandra.

CAMSAndra both revises and extends the Cassandra method shown in Fig. 2
to take into account the MSA design concerns. The extension involves adding a
3-component flow at the bottom that pertains to microservice construction. The
three components of this flow are named after the corresponding three model
versions of the Cassandra method. As shown in the figure, both logical and
physical microservice models depend on the logical and physical data models for
data storage design. The revision includes replacing the “Mapping conceptual
to logical” component by the “Conceptual domain model” component, which
explicitly reflects the existence of the Cassandra domain model. In addition,
the “Optimisation and tuning” component is revised to consider both domain
modelling and microservice modelling aspects.

Fig. 5. The core CaMSAndra metamodel.



Principles for MSA-Based Software Design with Cassandra 597

In the remainder of this paper, we discuss a number of core design principles
in the context of the CaMSAndra method. Our discussion will focus on the rela-
tionships between key concepts of the Cassandra and MSA methods and how
they lead to design insights for MSA-based software. To assist this investiga-
tion, we construct a metamodel that provides the foundational structure for the
concepts under investigation. Figure 5 shows the UML diagram of the core meta-
model of the CaMSAndra method. This model represents the concepts pertaining
to microservices, workflow and data modelling components. The labelled curly
brackets displayed at the top of the figure explains the connection between the
metamodel and the models shown in Fig. 4. The two metamodel’s substructures
that pertain to logical and physical data models were constructed based on an
analysis of Carpenter and Hewitt [5]. More specifically, within the scope of this
paper we will investigate the principles that concern these essential relationships
in Sect. 4.

To achieve preciseness, we use the Object Constraint Language (OCL) [12]
to express the design rules associated with the metamodel. For conciseness, we
use a short-hand notation to write OCL expressions on the model elements.
For instance, the short-hand expression Partition.table.cols->size() (used in
formula 1 of Sect. 4.3) means to apply the OCL’s navigation rule to navigate
from the context of a Partition to its associated Table and then to the set of
Columns of this table and to perform the size() operation on this set.

4 Principles of CaMSAnda Design

4.1 Bounded Context Design with Workflow Model

Based on the definitions of bounded context and the Cassandra domain model,
we map bounded context to a top-level function (TLF) of the workflow model
that pertain to a well-defined domain behavior. Thus, as shown in Fig. 5, a work-
flow model consists in a set of TLFs. We argue that bounded context provides a
necessary layer of abstraction on top of the workflow model that eases domain
analysis and maintenance. Therefore, to extend domain requirements for new
functions, we map them to relevant contexts or create new ones and add them
to the corresponding workflow submodels. The general design rule is represented
in Fig. 5, which states: one bound context per TLF.

For example, in the Hotel Reservation domain model shown in Fig. 3, we
introduce two TLFs that represent two logical groupings of queries: hotel view-
ing and room booking. These TLFs represent the two bounded contexts of the
domain. Figure 6 shows the bounded contexts of the example as dashed bound-
ing boxes over two workflow submodels. The Hotel viewing context consists in
the functions Q1-Q5, while the Room booking context consists in the functions
Q6-Q9.



598 D. M. Le et al.

Fig. 6. Bounded contexts of Hotel reservation domain.

4.2 Hierarchical Microservice Design

After defining bounded contexts, the next step is to identify microservices. Typ-
ically, each bounded context contains one or more microservices. According to
Carpent Hewitt [5], the logical data model (LDM) should be constructed from
the domain model, and tables of the LDM are grouped to form the data bound-
aries of microservices. They recommend grouping denormalized tables represent-
ing the same data type to the same microservice.

We aim to generalize the identification of microservices in the conceptual
modeling phase and establish specific rules for identifying them. We build on
our recent work on hierarchical microservice design [8] and incorporate design
considerations from the Cassandra method. The hierarchical workflow model of
the Cassandra domain model serves as the basis for the service hierarchy. We
convert the workflow model into a service tree using a 2-step procedure, which
we call the service construction procedure:

1. Determine a service for each subset of functions that are associated to a
main concept. This step generalises the service identification step described
by Carpenter and Hewitt [5] to use the query functions in the workflow model.
This helps move service identification step from the logical modelling phase
to be performed earlier in conceptual modelling.

2. Transform the service structure (using the CRUD pattern) to expose
the underlying concepts and, based on this, form a service tree. This step
consolidates the functions to the underlying concept and makes this concept
explicit in the service design. Focusing on the concept rather than the indi-
vidual functions that it performs is necessary to avoid the anti-pattern of
too-fine-grained service [10].

For example, Figs. 7(A) and 7(B) illustrate procedure. In Fig. 7(A), step 1
involves identifying three microservices based on the main concepts: Hotel, Point
of Interest (POI), and Inventory. Step 2 involves transforming the Hotel service’s
structure to reveal the main concept and label it with the CRUD pattern. The
Hotel service consists of the first 3 functions and two associated queries (Q1,
Q2) that they serve. The POI service consists of one function that serves the
query Q3, and the Inventory service consists of two functions that serve queries
Q4 and Q5.



Principles for MSA-Based Software Design with Cassandra 599

Fig. 7. (A) H1 → H2: Transforming Hotel services (LHS) to a service tree (RHS);
(B) R1 → R2: Transforming Reservation services (LHS) to a service tree (RHS).

Similarly, Fig. 7(B) shows how the Reservation service tree is transformed
using the service construction procedure. Step 1 involves identifying two services,
Reservation and Guest. The Reservation service includes four functions and three
queries (Q6-Q8), while the Guest service includes one function and query Q9. In
step 2, the two services are transformed to reveal the underlying concepts and
their CRUD operations.

4.3 Data-Driven Physical Design

In CaMSAndra, we observe that service autonomy for data distribution in Cas-
sandra is limited to the cluster level, and beyond that lies the internal workings
of the system. The physical data model in Fig. 5 shows that a microservice’s data
is stored in a keyspace within a single cluster, which can be either dedicated or
shared [5]. However, microservices cannot control the placement of their data
within specific data centers, racks, or nodes, which are internal to the Cassandra
system and not the responsibility of the user application.

As far as microservice is concerned, therefore, an important cluster design
concern is how to estimate a cluster’s storage space based on the physical data
model. To this end, we adapt the estimation technique presented in Chaps. 5
and 13 of Carpenter and Hewitt [5], which consists in 4 formulas for estimating
the cluster size. Our contribution is to formulate the fourth formula (hinted
at but not defined in [5]) and express all formulas more precisely using the
CaMSAndra metamodel (see Fig. 5). In principle, the cluster size is estimated
based on an indirect relationship that Cluster has with Partition, via Key Space
and Cassandra Table, in the metamodel. Where suitable, we use OCL rules on
the metamodel’s structure to precisely express the formula terms.

Partition Size. Logically, the partition size (denoted by Pv) is determined by
the number of cells (values) that it holds:

Pv = Nr × Ng + Ns (1)



600 D. M. Le et al.

Where: Pv: number of values (or cells) in the partition, Nr = Partition.rows

->size(): number of rows of the current partition; Nc = Partition.table.cols

->size(): number of columns of the owner table; Npk: number of primary key
columns of the owner table; Ns: number of static columns of the owner table;
and Ng = Nc − Npk − Ns: number of regular columns of the owner table.

Physically, the partition size (denoted by Pt) is measured based on formula
1 as follows:

Pt =
∑

1≤i≤Npk

sizeOf (cki
) +

∑

1≤j≤Ns

sizeOf
(
csj

)

+ Nr ×
⎛

⎝
∑

1≤k≤Ng

sizeOf (crk) +
∑

1≤l≤Npk

sizeOf (ccl)

⎞

⎠

+ Pv × sizeOf (tavg)

(2)

Where: ck, cs, cr, cc: partition key columns, static columns, regular columns, and
clustering columns (resp.); tavg: the average number of bytes of metadata stored
per cell; Nr, Pv: number of rows and logical partition size (resp.) as per formula
1; and sizeOf(): function that returns the size (in bytes) of the CQL data type
of the involved columns.

Finally, taking into account the replication factor of each partition, the par-
tition size’s estimation becomes:

P = Pt × R × C (3)
Where: Pt: the physical partition size as per formula 2; R = Partition.table.

kspace.rep.factor: the replication factor of the keyspace containing the owner
table of the partition; and C = Partition.table.comp.factor ∈ {2, 1.25}: com-
paction factor of the compaction strategy of the owner table.

Cluster Size. The total storage size of a cluster is determined by summing the
sizes of all the partitions that are stored across all keyspaces and tables in that
cluster. Assume that the usable storage space of the disk can be estimated with
90% of the disk size, the cluster size (denoted by S) is measured as follows:

S =
∑

t∈P Pt

90%
(4)

Where:
P = Cluster.kspaces->collect(tables)->flatten()->collect(parts)->flatten

()->asSet(), i.e. the set of all the partitions across all tables and keyspaces
of the cluster.

Discussion. We can extend the above technique to estimate the data storage
size of a microservice and the storage size of a typical node. The relationship
between Microservice and Keyspace in the metamodel would help define the
former. On the other hand, the latter can be used, together with the cluster
size, to estimate the number of nodes in a cluster. We plan to investigate these
estimations in future work.



Principles for MSA-Based Software Design with Cassandra 601

5 Conclusion

In this paper, we presented CaMSAndra method for developing very large scale
microservice- and NoSQL-based software. Our method extended a state-of-the-
art query-driven NoSQL data modelling method to take into account microser-
vice design concerns. We constructed a UML metamodel for CaMSAndra and
used it as the basis to discuss the core design principles. These principles arise out
of the need to overcome the functional challenges associated with the metacon-
cepts and their relationships. Specifically, we presented a synthesis of bounded
context and application workflow and, based on this, a hierarchical microservice
design that transforms the application workflow to build the microservice hier-
archy of a software. In addition, we discussed a data-driven cluster design that
explores the relationship between microservice and data distribution cluster in
Cassandra. We chose Cassandra as a case study as it is a popular system that sup-
ports cloud-aware, very-large-scale NoSQL data management. We demonstrated
CaMSAndra with a well-known software domain called Hotel Reservation. We
contend that our method is applicable to developing very large microservice-
and NoSQL-based systems in general. Our plan for future work is to extend the
method’s scope to other comparable NoSQL systems that are in the CP and
AP categories (e.g. MongoDB and Redis). We also plan to apply the method to
develop real-world very large-scale software.

Acknowledgement. The authors wish to thank Jeffrey Carpenter [5] for granting us
the permission to use the Hotel Reservation example in this paper. The authors would
also like to thank the anonymous reviewers for their helpful feedbacks.

References

1. Ankomah, E., et al.: A comparative analysis of security features and concerns in
NoSQL databases. In: Ahene, E., Li, F. (eds.) FCS 202. CCIS, vol. 1726, pp. 349–
364. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-8445-7 22

2. Brewer, E.A.: Towards robust distributed systems. In: Proceedings of the 19th
Annual ACM Symposium on Principles of Distributed Computing, PODC 2000,
p. 7. ACM, New York (2000)

3. Bruce, M., Pereira, P.A.: Microservices in Action, 1st edn. Manning, Shelter Island
(2018)

4. Carnell, J., Sánchez, I.H.: Spring Microservices in Action, 2nd edn. Manning, Shel-
ter Island (2021)

5. Carpenter, J., Hewitt, E.: Cassandra: The Definitive Guide: Distributed Data at
Web Scale, 3rd edn. O’Reilly Media, Sebastopol (2022)

6. Chen, P.P.S.: The entity-relationship model - toward a unified view of data. ACM
Trans. Database Syst. 1(1), 9–36 (1976)

7. Kashliev, A.: Storage and querying of large provenance graphs using NoSQL DSE.
In: IEEE 6th International Conference on BigDataSecurity, HPSC and IDS, pp.
260–262 (2020)

8. Le, D.M.: Managing complexity in microservices architecture: a nested MultiTree
domain-driven approach. In: Proceedings of Conference on APSEC 2022, Japan.
IEEE Computer Society (2022)

https://doi.org/10.1007/978-981-19-8445-7_22


602 D. M. Le et al.

9. Lewis, J., Fowler, M.: Microservices (2014). https://martinfowler.com/articles/
microservices.html

10. Newman, S.: Building Microservices: Designing Fine-Grained Systems, 1st edn.
O’Reilly Media, Beijing; Sebastopol (2015)

11. Oma, R., Nakamura, S., Duolikun, D., Enokido, T., Takizawa, M.: A fault-tolerant
tree-based fog computing model. Int. J. Web Grid Serv. 15(3), 219–239 (2019)

12. OMG: Object Constraint Language Version 2.4 (2014). http://www.omg.org/spec/
OCL/2.4/

13. Waseem, M., Liang, P., Shahin, M.: A systematic mapping study on microservices
architecture in DevOps. J. Syst. Softw. 170, 110798 (2020)

14. Whaiduzzaman, M., Barros, A., Shovon, A.R., Hossain, M.R., Fidge, C.: A resilient
fog-IoT framework for seamless microservice execution. In: 2021 IEEE Interna-
tional Conference on Services Computing (SCC), pp. 213–221 (2021). ISSN 2474-
2473

15. Zhou, X., et al.: Benchmarking microservice systems for software engineering
research. In: Proceedings of 40th International Conference on Software Engineer-
ing, ICSE 2018, pp. 323–324. ACM, New York (2018)

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/OCL/2.4/

	On the Principles of Microservice-NoSQL-Based Design for Very Large Scale Software: A Cassandra Case Study
	1 Introduction
	2 Background and Related Work
	2.1 Motivating Example: Hotel Reservation
	2.2 Microservices Architecture
	2.3 Cassandra Method for Data Modelling

	3 Method Overview: CaMSAndra and the Metamodel
	4 Principles of CaMSAnda Design
	4.1 Bounded Context Design with Workflow Model
	4.2 Hierarchical Microservice Design
	4.3 Data-Driven Physical Design

	5 Conclusion
	References




