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Abstract Moving vehicle excites the bridge with dynamic force which is realised 
as a stationary process when the vehicle velocity is constant. However, this condi-
tion is not always true when the vehicle speed varies with time while travelling over 
the bridge. In this paper, the bridge response to non-stationary excitation has been 
studied considering speed variation, uneven pavement and also random arrival rate 
of the vehicle. The bridge vehicle interaction has been modelled using continuum 
approach and the solution has been obtained using orthogonal polynomial expan-
sion method. The generalised co-ordinates of the system response are expressed in 
terms of orthogonal polynomial series, which offered certain advantages to arrive 
at the expression of first and second order statistics of system response using the 
properties of the polynomial. The movement of multiple vehicles has been consid-
ered in different time windows assuming their arrival rate follows a Poisson process. 
Response statistics- mean and standard deviation has been studied for a single cell 
box girder section of single span bridge in different time windows to observe the 
effect of vehicle arrival rate, vehicle speed and acceleration and pavement uneven-
ness. The amplification of maximum static flexural stress due to dynamic effect has 
been obtained incorporating the standard error of the mean. Sequence of accelerating 
vehicles is found to cause higher stress in a bridge with poor maintenance of surface. 
The segment of response history in an optimal time window is found to decrease the 
computational cost since the presence of total number of vehicles over the bridge 
were dependent on the vehicle speed and their arrival rate. 
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Nomenclature 

DAF Dynamic Amplification Factor 
SEM Standard Error of the Mean 
DI Dynamic Increment 
As Amplitude of cosine wave 
cs Suspension damping 
cw Tyre damping 
C Damping matrix 
Cmean Mean values of damping matrix 
F Force vector 
Fdynamic Maximum dynamic response on the bridge 
Fmean Mean values of force vector 
Fstatic Maximum static response of the bridge 
h(x̃) Bridge deck profile 
hmean(x̃) Deterministic mean surface profile 
hroad( x̃) Random road roughness of the pavement 
ks Suspension stiffness 
kw Trye stiffness 
K Ztiffness matrix 
Kmean Mean values of stiffness matrix 
L Span of the bridge 

Ln 
l

(∼ 
λ tn

)
Orthogonal function considered 

ms Sprung mass 
mw Unsprung mass 
M Mass matrix 
n Shape parameter of Gamma distribution and represents number of 

vehicle arrivals 
nd Number of degrees of freedom 
N Number of terms used to construct the road surface roughness 
Ns Number of samples 

N1 Number of basic functions with respect to 
∼ 
λ tn 

ptn(t) Probability density function of the arrival time 
Qil(t) Time variation of displacement 
x̃ Spatial distance 
tn Vehicle arrival time on the bridge 
v Velocity of vehicle 
y( ̃x, t) Displacement of the bridge at time instant, t at location, x̃ 
z1 Displacement of sprung mass 
z2 Displacement of unsprung mass 
δlk Kronecker delta function 
G Gamma function∼ 
λ Mean arrival rate
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μ(
∼ 
λ tn) Mean arrival time 

μf( ̃x, t) Mean of bridge response 
σf( ̃x, t) Standard deviation of bridge response 
θs Independent random phase angle uniformly distributed from 0 to 2π
ΩL Lower cut off frequencies of spatial unevenness
Ωs Spatial frequency (c/m)
ΩU Upper cut off frequencies of spatial unevenness 

1 Introduction 

The dynamic response of bridge considering vehicular movement has been studied 
by various researchers. Most of them have idealised bridge as a beam which can be 
simply supported or continuous [1]. In all of these models, the vehicle loads have 
been idealised as several concentrated loads [1]. However, in these works the effect 
of interaction between bridge and vehicle is not considered. In order to take the effect 
of bridge vehicle interaction, the vehicle has been modelled as spring mass dashpot 
system [2, 3] and the same has been considered in obtaining the bridge dynamic 
response [2, 4, 5]. In the above works, the effect of road surface roughness has not 
been considered, which also plays an important role in the dynamic response of the 
bridge. The effect of road surface roughness and bridge vehicle interaction has been 
considered to evaluate the dynamic response of the bridge and it has been observed 
from the studies that the dynamic response of the bridge is affected by the road 
surface roughness [6, 7]. 

In the above studies, the bridge response was obtained by taking deterministic 
vehicular loads [6–9]. However, the vehicular loads arriving on the bridge in terms 
of number of vehicles, axle weight, axle interval and vehicle velocity are random 
in nature. Hence, some of the researchers have studied the bridge dynamic response 
due to the random nature of the vehicles passing on the bridge assuming vehicle 
arrival to be a random variable [10, 11]. It was also observed from the studies 
that the response of vehicle induced by pavement irregularity becomes a stationary 
random process in time domain when the vehicle velocity is assumed to be constant. 
The response of vehicle induced by pavement irregularity becomes a non-stationary 
random process in time domain when the vehicle velocity is varying with time [12– 
16]. The non-stationary response of a vehicle travelling on homogeneous road surface 
has been analysed using state space approaches [12, 13]. The non-stationary response 
of vehicle was also obtained in which the equations of motion were first established 
in space domain and then covariance of the response was computed in time domain 
[14]. A Monte Carlo simulation technique was used to simulate the deck profile for 
generating input samples in numerical integration of the system equations. This was 
used to obtain the non-stationary response of the vehicle [16]. 

Thus it is evident from the studies conducted that very less work has been done 
to evaluate the non-stationary response of the bridge when the vehicle travels at
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variable velocity. In addition, it has been observed that most of the vehicular loads 
on the bridge are taken as deterministic in nature and have considered the effect of 
single vehicular movement. Hence, this paper presents a methodology to evaluate the 
bridge response considering random vehicular loads, multiple vehicular movement 
and variable velocity. Further, DAF has been evaluated for different bridge and vehicle 
parameters. 

2 Methodology 

In the present work, the vehicle arrival time is assumed as a random variable 
following Poisson process. The bridge response considering random vehicle arrival 
time and bridge vehicle interaction is obtained using Orthogonal Polynomial Expan-
sion Method. The bridge considered in the study is a simply supported bridge with 
single span. It is idealised as a Euler–Bernoulli beam with uniform cross section. The 
vehicle is modelled as a quarter car model. The road surface roughness is assumed to 
be Gaussian process with zero mean and is represented by a power spectral density 
function. In addition to the road surface roughness, the mean surface of the bridge 
deck has been considered as a half sine wave. This represents the pre-chamber of the 
bridge. 

2.1 Theoretical Formulation 

The multiple vehicle movement modelled as quarter car model on the single span 
bridge has been shown in Fig. 1. 

The deck profile is represented by, 

h( ̃x) = hmean( ̃x) + hroad  ( ̃x) (1)

Fig. 1 Vehicle movement on bridge 
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The position of vehicle from the reference station along the bridge span at any 
time instant is given by 

x̃(t) = 
m∑
p=0 

apt 
p (2) 

In Eq. (2), the coefficients ap represent different conditions of the vehicle motions. 
The coefficients a0 and a1 have non-zero values while the remaining coefficients are 
zero when the vehicle velocity is constant. The velocity of the vehicle at any time 
instant is obtained by taking the first derivative of Eq. (2) with respect to x. 

A series of cosine terms with random phase angles and a certain probability density 
function have been used to calculate the road surface roughness [17], which is given 
by 

hr ( ̃x) = 
N∑

s=1 

As cos(2πΩs x̃ + θs) (3) 

The parameters As and Ωs are taken from Yin et al. [17]. 
The governing differential equation is written after expanding C, K and F using 

Taylor series [18] as  

M ¨̃x +
[
Cmean + Cλ̃tn

{
λ̃tn − μ

(
λ̃tn

)}] ˙̃x +
[
Kmean + Kλ̃tn

{
λ̃tn − μ

(
λ̃tn

)}]
x̃ = 

Fmean(t) + Fλ̃tn

{
λ̃tn − μ

(
λ̃tn

)}
(4) 

where, C, K and F with subscript λtn represent the differentiation of the variable 
with respect to λ̃tn , which is computed at t = λ̃tn . M, C and K are the mass matrix 
consisting of bridge and vehicle mass, damping matrix consisting of bridge and 
vehicle damping and stiffness matrix consisting of bridge and vehicle stiffness. The 
response X̃ is expressed as the summation of product of transformed time dependent 
coordinate and orthogonal polynomial function as, 

X̃ j (t) = 
N1∑
l=0 

Q jl  (t)L
n 
l

(
λ̃tn

)
; j = 1, 2, ..., ndof (5) 

Since, the vehicle arrival time follows Poisson process, the distribution of arrival 
time is Gamma distribution. The probability density function of λ̃tn is given as [19] 

pλ̃tn

(
λ̃t

)
= 

tn−1 exp(−t)

[(n) 
(6) 

Since the distribution of arrival time is Gamma distribution, Associated Laguerre 
Polynomial is the orthogonal polynomial function considered [20] in the present
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study which is found to satisfy the orthogonality condition. The response statistics 
have been found using the recurrence relationships [20] shown  in  Eq. (7). 

λ̃tn L
n 
l

(
λ̃tn

)
= αl−1L

n 
l

(
λ̃tn

)
+ βl L

n 
l

(
λ̃tn

)
+ 

γl+1L
n 
l

(
λ̃tn

)

αl−1 = −(l − 1 + n) 
γl+1 = −(l + 1 + 1) 
βl = (2l) + n + 1 (7)  

Substitute Eq. (5) in Eq.  (4), 

M 
N1∑
l=0 

Q̈l (t)L
n 
l

(
λ̃tn

)
+

(
Cmean + C

λ̃tn

{
λ̃tn − μ

(
λ̃tn

)}) N1∑
l=0 

Q̇l (t)L
n 
l

(
λ̃tn

)

+
(
Kmean + K

λ̃tn

{
λ̃tn − μ

(
λ̃tn

)}) N1∑
l=0 

Ql (t)L
n 
l

(
λ̃tn

)
= F(t)mean + F(t)

λ̃tn

{
λ̃tn − μ

(
λ̃tn

)}
(8) 

In order to find the response statistics of the bridge, Eq. (8) has to be multiplied 

by Ln 
k

(
λ̃tn

)
. Further, the recurrence relation shown in Eq. (7) has to be used and the 

resulting equation has to be multiplied by probability density function pλ̃tn

(
λ̃t

)
and 

integrated in the domain of the random variable using the orthogonality property of 
the polynomial considered. The resulting equation is given as, 

M 
N1∑

l=0 

Q̈l (t)d
2 
l δlk  

+ 
N1∑

l=0 

Q̇l (t)
[
Cmean d

2 
l δlk  + C

λ̃tn

(
αl−1d

2 
l−1δl−1k + βl d2 l δlk  + γl+1d

2 
l+1δl+1k

)
− C

λ̃tn 
μ

(
λ̃tn

)
d2 l δlk

]

+ 
N1∑

l=0 

Ql (t)
[
Kmean d

2 
l δlk  + K

λ̃tn

(
αl−1d

2 
l−1δl−1k + βl d2 l δlk  + γl+1d

2 
l+1δl+1k

)
− K

λ̃tn 
μ

(
λ̃tn

)
d2 l δlk

]

= F(t)meand
2 
0 δ0k + F(t)

λ̃tn

(
αk−1d

2 
0 δ0k−1 + β0 d2 0 δ0k + γ0+1d

2 
0+1δ0+1k

)
− F(t)

λ̃tn 
μ

(
λ̃tn

)
d2 0 δ0k (9) 

where, 

d2 
l = [(l + n + 1)

[(l + 1)[(n + 1) 
(10) 

In Eq. (10), the value of k changes from 0 to N1. Newmark’s Method [21] has 
been used to solve Eq. (10) to obtain the time variation of displacement Q.



Non-stationary Response of a Bridge Due to Moving Vehicle … 105

2.1.1 Expectation of the Response Vector 

Using the property of orthogonal polynomial function, the expectation of the response 
has been evaluated and is shown below, 

E
[
X̃i (t)

]
= Qi0(t)d

2 
0 ; i = 1, 2, ..., ndof (11) 

2.1.2 Standard Deviation of the Elements of the Response Vector 

The covariance of the elements of the response vector is written as, 

Cov
(
X̃i (t1), X̃i (t2)

)
= E

[
X̃i (t1) X̃i (t2)

]
− E

[
X̃i (t1)

]
E

[
X̃i (t2)

]
; i = 1, 2, ..., ndof  

(12) 

In Eq. (12), 

E
[
X̃i (t1) X̃i (t2)

]
= 

N1∑
l=0 

N1∑
m=0 

Qil  (t1)Qim (t2)E
[
L j l

(
λ̃t j

)
L j m

(
λ̃t j

)]
; i = 1, 2, ..., ndof  

(13) 

Equation (13) is simplified using the property of orthogonal polynomials and is 
given as 

E
[
X̃i (t1) X̃i (t2)

]
= 

N1∑
l=0 

N1∑
m=0 

Qil  (t1)Qim(t2)d
2 
l δlm ; i = 1, 2, ..., ndof (14) 

The covariance of the elements of the response vector is written by substituting 
Eqs. (18) and (15) in Eq.  (16) which is shown below, 

Cov(Xi (t1), Xi (t2)) = 
N1∑
l=0 

N1∑
m=0 

Qil  (t1)Qim (t2)d
2 
l δlm−Qi0(t1)Qi0(t2)d

4 
0 ; i = 1, 2, ..., nd 

(15) 

Due to the presence of Kronecker delta, Eq. (15) is simplified further and is given 
as, 

Cov
(
X̃i (t1), X̃i (t2)

)
= 

N1∑
l=o 

Qil  (t1)Qil  (t2)d
2 
l − Qi0(t1)Qi0(t2)d

4 
0 ; i = 1, 2, ..., ndof  

(16)
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The variance of the elements of the response vector is evaluated by substituting 
t1 = t2 = t in Eq. (16), and is given as 

Var
[
X̃i (t)

]
= 

N1∑
l=0 

[Qil  (t)]
2 d2 

l − [Qi0]
2 d4 

0 ; i = 1, 2, ..., ndof (17) 

DAF is evaluated using the obtained response statistics of the bridge, which is the 
mean and standard deviation. 

3 Dynamic Amplification Factor (DAF) 

In bridge design, dynamic analysis is not considered. This is because several codes 
have suggested DAF to amplify the static effect. It is also observed that the DAF 
suggested in various codes only depends on the span length. However, parameters 
such as vehicle velocity, road surface roughness and vehicle acceleration have not 
been considered in the evaluation of DAF [22]. From the previous study, it is observed 
that DAF depends on the above parameters [23]. In the present work, the effect of 
DAF on the mentioned parameters has been studied. 

The DAF is evaluated considering the effect of mean and standard deviation of 
flexural stresses, which is given as, 

DAF  = 
Fstatic  + Fdynamic  

Fstatic  
= 1 + 

Fdynamic  

Fstatic  
= 1 + DI (18) 

The static response is obtained by traversing the vehicles at 5 km/hr. The maximum 
dynamic response is given as, 

Fdynamic  =
||μ f ( ̃x, t) + E f ( ̃x, t)

|| (19) 

where, Ef (x, t) is the standard error of the mean (SEM) defined as [23] 

E f (x, t) = 
σ f (x, t) √
Ns

/
4 

(20) 

The maximum dynamic response in Eq. (19) takes into account the effect of mean 
and standard deviation of flexural stresses.



Non-stationary Response of a Bridge Due to Moving Vehicle … 107

4 Numerical Study 

The bridge considered for study is a single span box girder of span length 30 m with 
twin cell cross section. The ratio of vehicle suspension and tyre stiffness ratio is 4.0; 
fundamental natural frequency of the bridge is 4.5 Hz; vehicle weight is 40 tonnes; 
for the road surface roughness, ΩL is taken as 0.1 cycle/m and ΩU is taken as 2 
cycle/m [24]. The mean profile is assumed to be sinusoidal with an amplitude of 
0.01 m. The response is evaluated when the vehicle is at the mid-span of the bridge. 
The road roughness coefficient considered for good and very poor road case is 32 × 
10–6 m2/cycle/m and 1024 × 10–6 m2/cycle/m respectively [25]. 

To account for multiple vehicular movement on the bridge, the flexural stresses 
are obtained for different time windows. The vehicle velocity considered is 20 km/hr, 
40 km/hr and 60 km/hr. The window kept for vehicle movement is changed from 10 
to 25 s. The comparison of mean flexural stresses for the time windows is shown in 
Table 1 for good and very poor road conditions. The comparison of standard deviation 
of flexural stresses for the above-mentioned time windows is shown in Table 2 for 
good and very poor road conditions. The numerical analysis has been done using 
MATLAB. 

Table 1 Comparison of mean flexural stresses for different time windows 

Vehicle velocity 
(km/hr) 

Road roughness coefficient (m2/cycle/m 
× 10–6) 

Mean flexural stress (MPa) 

10 
secs 

15 
secs 

20 
secs 

25 
secs 

20 32 11.8 14.4 15.6 15.6 

1024 16 22.5 28 28 

40 32 8.2 9 10 10 

1024 12 15 18 18 

60 32 5.8 5.8 5.8 5.8 

1024 9 9 9 9 

Table 2 Comparison of standard deviation of flexural stresses for different time windows 

Vehicle velocity 
(km/hr) 

Road roughness coefficient (m2/cycle/m 
× 10–6) 

Standard deviation of flexural 
stress (MPa) 

10 
secs 

15 
secs 

20 
secs 

25 
secs 

20 32 0.2 0.2 0.2 0.2 

1024 0.8 0.8 0.8 0.8 

40 32 1.18 1.18 1.18 1.18 

1024 3.2 3.2 3.2 3.2 

60 32 1.64 1.64 1.64 1.64 

1024 4.2 4.2 4.2 4.2
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From Tables 1 and 2, it is observed that the mean and standard deviation of the 
flexural stresses do not vary significantly as time window changes from 20 to 25 
secs. The time window for evaluating DAF may be reasonably taken not above 20 
secs. The DAF varying the arrival rate of the vehicle, road surface roughness, vehicle 
velocity and acceleration of the vehicle is obtained. 

4.1 Parametric Variations 

The factors that are varied to observe the effect on Dynamic Amplification Factors 
are: 

1. Variable vehicle velocity 
2. Arrival rate of the vehicle 
3. Road surface roughness. 

4.1.1 Variable Vehicle Velocity 

The variable vehicle velocity is obtained using Eq. (2). The vehicle is made to accel-
erate at 0.5 m/s2, 1 m/s2 and 1.5 m/s2. The mean flexural stresses obtained after 
varying the acceleration are then compared with the mean flexural stress for a constant 
vehicle velocity. The comparison plot for 20 km/hr vehicle velocity and very poor 
road condition is shown in Fig. 2. The arrival rate of the vehicle is considered as 2 
vehicles per second. 

The maximum value of mean stress when there is no acceleration is 19.3 MPa, 
0.5 m/s2 is 20 MPa, 1 m/s2 is 23 MPa and 1.5 m/s2 is 28 MPa. The increase in 
acceleration values increases the mean flexural stresses. This is because it increases 
the longitudinal vibration of the bridge.

Fig. 2 Comparison of mean 
stress for different values of 
acceleration for velocity 
20 km/hr and very poor road 
surface 

1.5 m/s2 0.5 m/s2 * 1 m/s2 0 
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The mean flexural stresses and the standard deviation of flexural stresses for good 
and very poor for acceleration of the vehicle 1.5 m/s2 and varying the vehicle velocity 
are shown in Figs. 3, 4, 5 and 6. 

It is observed from Figs. 3 and 4 that the mean flexural stresses are higher for 
lower velocity since the duration of loading is more for lower velocity as compared 
to higher velocity. The standard deviation of the flexural stresses does not follow the 
same trend as shown in Figs. 5 and 6. The DAF for varying the acceleration of the 
vehicle for different initial vehicle velocities and arrival rate of 2 vehicles per second 
for very poor road case is shown in Fig. 7.

It is observed from Fig. 7 that the mean flexural stresses are higher for lower 
velocity since the duration of loading is more for lower velocity as compared to

Fig. 3 Comparison of mean 
stress for varying velocity 
with acceleration 1.5 m/s2 

and good road surface 

20 km/hr 40 km/hr 60 km/hr 

Fig. 4 Comparison of mean 
stress for varying velocity 
with acceleration 1.5 m/s2 

and very poor road surface

20 km/hr 40 km/hr 60 km/hr 
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Fig. 5 Comparison of 
standard deviation of flexural 
stress for varying velocity 
with acceleration 1.5 m/s2 

and very good road surface 

20 km/hr 40 km/hr 60 km/hr 

Fig. 6 Comparison of 
standard deviation of flexural 
stress for varying velocity 
with acceleration 1.5 m/s2 

and very poor road surface

20 km/hr 40 km/hr 60 km/h r 

higher velocity leading to higher DAF for lower vehicle velocity. Also, there is a 
significant change in the DAF when the vehicle velocity is considered constant and 
when the vehicle velocity is variable as seen from Fig. 7. 

4.1.2 Arrival Rate of the Vehicles 

The arrival rate of the vehicles is varied from 1 vehicle per second to 3 vehicles per 
second for initial vehicle velocity of 20 km/hr and vehicle acceleration of 1.5 m/s2. 
The road condition considered is very poor. The mean and standard deviation of the 
flexural stresses for different arrival rates are shown in Figs. 8 and 9.
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0 

0.5 

1 

1.5 

2 

2.5 

3 

0  0.5 1 1.5  

D
A

F 

Acceleration of the vehicle (m/s2) 

20 km/hr 40 km/hr 60 km/hr 

Fig. 7 Comparison of DAF with acceleration of the vehicle for different initial vehicle velocities 
and arrival rate of 2 vehicles per second for very poor road conditions

Fig. 8 Comparison of mean 
stress for varying arrival rate

2 vehicles 
per second 

1 vehicle 
per second 

3 vehicles 
per second 

It is observed from Fig. 8 that higher arrival rates signify more vehicular movement 
on the bridge leading to higher dynamic stresses. The standard deviation of the 
flexural stresses follows the same pattern as the mean flexural stresses for varying 
arrival rates as shown in Fig. 9. The DAF for varying arrival rates for initial vehicular 
velocities 20 km/hr, 40 km/hr and 60 km/hr is shown in Fig. 10.

It can be observed from Fig. 10 that the DAF increases upto 2 vehicles per second 
and decreases till arrival rate 3 vehicles per second. The increase in DAF can be due 
to an increase in the dynamic forces. However, as the arrival rate increases from 2 
vehicles per second, the static forces also increase leading to a decrease in the DAF.
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2 vehicles 
per second 

1 vehicle 
per second 

3 vehicles 
per second 

Fig. 9 Comparison of standard deviation of flexural stress for varying arrival rate

0 

0.5 

1 

1.5 

2 

2.5 

3 

1 1.5  2 2.5  3  

D
A

F 

Arrival rate (vehicles per second) 

20 km/hr 40 km/hr 60 km/hr 

Fig. 10 Comparison of DAF with arrival rate of the vehicle for very poor road conditions

4.1.3 Road Surface Roughness 

The deterioration in road surface condition leads to higher flexural stresses as the 
dynamic forces due to the vibratory motion of the vehicle on the bridge increases as 
shown in Figs. 3, 4, 5 and 6. The DAF for different road surface roughness for an 
initial vehicle velocity of 20 km/hr and arrival rate of 2 vehicles per second is shown 
in Fig. 11.
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2.35 

2.4 

2.45 

2.5 

2.55 

2.6 

2.65 

2.7 

0 0.5  1  1.5  

D
A

F 

Acceleration of the vehicle (m/s2) 

Good Road Very Poor Road 

Fig. 11 Comparison of DAF with acceleration of the vehicle for initial vehicle velocity 20 km/hr 
and arrival rate of 2 vehicles per second for good and very poor road conditions 

It is observed from Fig. 11 that the DAF increases with deteriorating road surface 
conditions. This is because bridge experiences higher dynamic forces due to very 
poor road surface condition. 

5 Conclusions 

The present study outlines an approach for the evaluation of response statistics of 
a single span bridge for random arrival time of the vehicles based on orthogonal 
polynomial expansion method. The DAF is evaluated using the response statistics 
obtained from the method. Parameters such as vehicle velocity, arrival rate of the 
vehicles, acceleration of the vehicles and road surface roughness are considered to 
study the effect on DAF. Based on the results obtained from the study described 
above, the main conclusions are as follows: 

1 The optimum time window to evaluate the DAF is considered as 20 secs. 
2 The mean flexural stresses are higher for lower vehicle velocity. 
3 The DAF increases with the road surface irregularity and decreases with increase 

in vehicle velocity for a single span bridge. 
4 The DAF increases for arrival rate up to 2 vehicles per second and then decreases 

further for a single span bridge. 
5 The DAF increases for higher acceleration of the vehicles. Vehicle acceleration 

may contribute significantly to bridge response and the resulting DAF may exceed 
those adopted in current design codes.
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