
Identifying Condition Indicators 
for Artificially Intelligent Fault 
Classification in Rolling Element 
Bearings 

Mohd Atif Jamil and Sidra Khanam 

Abstract Bearing condition monitoring is significant in industries due to increased 
machine reliability and decreased production loss due to machinery breakdown. With 
the advancement of Artificial Intelligence (AI), Machine Learning (ML) techniques 
are reasonably useful to build condition monitoring systems for real-world applica-
tions. ML algorithms help distinguish faulty bearings from healthy ones and clas-
sify the related fault types using the extracted time-domain and frequency-domain 
features. This study recognizes distinctive features or condition indicators that effec-
tively separate different fault groups and are worthy of training an ML model. Box 
plot and scatter plot of fault features are used to identify these condition indicators. 
Vibration datasets representing various faults are taken from the open-source Case 
Western Reserve University (CWRU) bearing database. A number of time-domain 
features are extracted from the ensemble data of bearing fault classes, consisting of 
healthy bearing, inner race fault, ball fault, and outer race fault. Our investigation 
indicates that more than one condition indicator is better for separating the fault cate-
gories. Six different ML models are trained using the condition indicators and the 
best-performing model is found through the classification accuracy, training time, 
and prediction speed of the classifier. 
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I F Impulse Factor 
Ku Kurtosis 
REB Rolling Element Bearing 
Sk Skewness 
X Mean 
σ Standard Deviation 

1 Introduction 

Modern machinery has a high starting cost, and its efficient operation depends on 
minimal operating and maintenance expenses. Rotating machinery must have rolling 
element bearings (REBs). As Rolling Element Bearings (REBs) are essential compo-
nent of rotating machinery, their health monitoring is essential to reduce unintentional 
machinery shutdowns, minimize downtime for maintenance, and to enhance relia-
bility and safety. Condition monitoring and fault diagnostics of REBs have emerged 
as key characteristics to meet these requirements. Condition monitoring is a proce-
dure of knowing machinery health by capturing the operational information and 
examining it to put a figure/label on the state of equipment. It helps to detect and 
diagnose potential problems early in their development and fixing them by suitable 
recovery activities before they become hazardous enough to cause machine failure 
and other severe consequences. Subsequently, there is a requirement for a large 
amount of data for analysis. But the relationship between the bearing health and the 
condition monitoring data produced is not always well understood [1]. So, it is a dare 
to extract meaningful information from the data for condition monitoring. 

For machine monitoring and diagnosis, a number of reliable techniques are 
well-established. These techniques include visual examination, stator current anal-
ysis, temperature monitoring, and vibration-based monitoring. The most often used 
parameter for identifying damage and monitoring machine condition is the vibration 
signature [2, 3]. Condition monitoring of bearings is also carried out using acoustic 
emission [4], non-contact infrared thermography [5, 6], and laser Doppler vibrometer 
[7]. Recent advances in sensing technology and the internet of things have introduced 
an intelligent framework to monitor bearing healthiness [8]. The bearing fault diag-
nosis is more problematic than detection because different faults can have analogous 
characteristics and different faults can happen at the same time. The two stages of 
the fault diagnosis procedure are vibration feature extraction and the classification 
of defects. Typically, features are retrieved using the Fast Fourier Transform (FFT), 
Hilbert Transform (HT), Short-Time Fourier Transform (STFT), Wavelet Transform 
(WT), both in continuous and discrete form, and the envelope analysis [9]. In order to 
identify the most important features, effective dimensionality reduction and feature 
selection methods have been used, namely, linear discriminant analysis, Principal 
Components Analysis (PCA), Sequential Floating Forward Selection (SFFS) [10], 
and Genetic Algorithm (GA), etc. Using ML techniques, fuzzy logic, and Deep
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Learning (DL) approaches, fault classification deals with detecting bearing fault 
category. For condition monitoring of REBs, many AI techniques have been used, 
such as Artificial Neural Network (ANN) [11], Support Vector Machine [12, 13], 
K-Nearest Neighbors (KNN) [14, 15], and Hidden Markov Model (HMM) [16]. 
The Deep Neural Network (DNN) has also been documented in recent literature to 
determine the Remaining Useful Life (RUL) of bearings [17]. 

The identification of condition indicators, or features in the bearing data whose 
behavior change predictably as the bearing deteriorates due to presence of defects, 
is a crucial stage in the creation of condition monitoring algorithms. It may be 
recognized whether a bearing is healthy or defective using condition indicators. For 
fault classification and RUL estimation, they can be extracted from preprocessed data. 
The objective of feature extraction is to identify the most condensed and informative 
set of features (distinct patterns) to improve the effectiveness of the ML classifier, 
thereby achieving accurate classification. 

To diagnose faulty and healthy rolling element bearing states, statistical char-
acteristics of time signals can be used as condition indicators. The mean value of 
a particular signal or the standard deviation of the signal, for instance, may shift 
by a significant amount as the health of the bearing deteriorates. The worsening in 
the bearing healthiness may also be visible in some higher-order moments, such as 
kurtosis and skewness of the signal. The threshold values that differentiate healthy 
operation from defective one can be defined with such features, or changes in the 
bearing state can also be revealed by sudden or abrupt changes in the corresponding 
values. In the present analysis, the time-domain features namely, mean, median, 
kurtosis, skewness, crest factor, and impulse factor, are extracted to check their indi-
vidual and combined effectiveness in classifying different fault categories using box 
plot and scatter plot approach, respectively. 

2 Experimental Data and Machine Learning 
Implementation 

Figure 1 illustrates the setup used to collect vibration data for healthy and defective 
ball bearings available at the bearing data centre of Case Western Reserve University 
(CWRU). The arrangement at its left has a 2 hp induction, a torque transducer in 
the center, and a dynamometer attached on the right. Single point faults of 0.007'', 
0.014'', 0.021'', and 0.028'' in diameter were formed artificially on the inner race, 
rolling balls, and outer race of test bearings by electro-discharge machining (EDM).

At sampling frequencies of 12,000 and 48,000 Hz, vibration data was obtained 
for motor speeds of 1797 to 1720 rpm using two accelerometers that are positioned 
on the fan and drive ends of the housing of motor. The CWRU bearing data center 
documented the data and made it accessible to the public [18]. It can be used as a 
benchmark dataset to assess how well ML algorithms perform.
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Fig. 1 Setup for CWRU bearing data collection [18]

2.1 Data Subset 

The subset of CWRU data considered for the present analysis consists of 10 samples 
of 6000 data points/observations, each from four fault categories; healthy bearing, 
inner race fault, ball fault, and outer race fault located at 6 o’clock angular position. 
The fault codes 1, 2, 3, and 4 are assigned to these fault categories. Samples are 
collected at 12,000 samples per second at an average motor speed of 1772 rpm, and 
the fault size is 0.007''. 

2.2 Fault Features 

The features used have a significant impact on the effectiveness of ML-based bearing 
defect detection techniques. The time-domain features described in Table 1 have been 
extracted from the raw vibration data and are assessed to be used to train the ML 
models for bearing fault classification.

xi corresponds to some time-series data for i = 1, 2, …, n; n is the total no. of 
observations in a sample, x = 1 n

∑n 
i=1|xi | represents the absolute mean, σ denotes 

the standard deviation, and xmax = max|xi |.
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Table 1 Description of 
time-domain features 
extracted from bearing 
vibration data 

S. No Feature Feature description 

1 Mean X = 1 n
∑n 

i=1xi 

2 Median Med  = (n+1)th  

2 term; n is  even 

Med  = 
nth  
2 term+( n 2 +1)th  term  

2 ; n is  odd  
3 Kurtosis Ku =

∑n 
i=1(xi−x)4 

(n−1)σ 4 

4 Skewness Sk =
∑n 

i=1(xi−x)3 

(n−1)σ 3 

5 Crest factor CF  = xmax 
xrms  

6 Impulse factor I F  = xmax 
x

2.3 Cross-Validation Approach 

The k-fold cross-validation procedure is implemented to assess machine learning 
models by splitting the original sample into k equal-sized subsamples. A single 
subsample is retained as the validation data, and the remaining k − 1 subsamples 
are used as training data. The cross-validation process is then repeated k times, with 
each of the k subsamples used exactly once as the validation data. The k outcomes 
from the folds are then combined to produce a single estimation. A 8-fold cross-
validation is used on 40 samples, 10 each from the four fault categories considered 
in the present work. 

3 Results and Discussion 

Ensembled raw vibration data and power spectrum of different fault categories are 
presented. Boxplots are used to understand how each of the time-domain features; 
mean, median, kurtosis, skewness, crest factor, and impulse factor perform indi-
vidually in differentiating between types of faults. Scatter plots of the combination 
of features are obtained to investigate how well a particular combination separates 
different kinds of faults and can be used as condition indicators to train machine 
learning models. Finally, the best-performing ML classifier that has been trained 
with the extracted features is shown by its confusion matrix. 

3.1 Raw Data 

Figure 2 shows the ensemble vibration signal of about 50 ms and the power spectrum 
containing measurements of healthy bearings corresponding to fault code 1 and faulty
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bearings with three fault types: inner race fault, ball fault, and outer race fault located 
at the 6 o’clock position, each with a size of 0.007''. These fault classes are assigned 
with fault codes 2, 3, and 4. 

The time-domain ensemble vibration plot includes data of all the healthy and 
faulty conditions. The trend in the raw vibration signals of different fault categories 
gives an idea of their relative amplitude. As shown in the power spectrum plot, the 
resonance due to impact caused by interaction of the respective defect with the mating 
element excites the resonant frequencies of the bearing. The resonant frequency band

Fig. 2 a Ensemble vibration signal and b Power spectrum for different fault categories designated 
as 1, 2, 3, and 4, shown by blue, red, yellow, and purple colors, respectively 
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is almost the same for the inner race fault, ball fault, and outer race fault, in contrast 
to the healthy bearing. 

3.2 Box Plot 

A box plot, commonly referred to as a box and whisker plot, is a form of a chart 
that is used in explanatory data analysis in descriptive statistics. Box plots use the 
quartiles (or percentiles) of the data and averages to visually depict the distribution of 
numerical data. Box plots are used to display numeric data distributions, particularly 
when comparing values between various groups. In the present work, the box plots 
of individual features are compared with respect to fault classes of the bearing to 
check whether a feature can be considered as a condition indicator to train a ML 
classifier. 

The box plots of time-domain features, mean, median, kurtosis, skewness, crest 
factor, and impulse factor, are shown in Fig. 3. In the case of (a) Mean and (d) 
Skewness, it can be observed that box plots for fault class 3 and 4 overlap, which 
implies that the distribution of mean and skewness values for these two fault classes 
are in the same respective ranges and therefore they may not distinguish between 
fault classes 3 and 4. Likewise, the (b) Median and (e) Crest Factor for the fault 
classes 2 and 4 are not very effective in classifying them because they lie in the same 
range owing to their corresponding overlaying box plots. For (c) Kurtosis, it can be 
seen that the box plots for fault classes 1 and 3 somewhat overlap, suggesting that 
the distribution of kurtosis values for these two fault classes is in the same range. As 
a result, they may not be able to differentiate between these classes.

As the boxes don’t overlap for any of the four fault classes in the plot of (f) 
Impulse Factor only, there is a difference between the associated data groups, so 
Impulse Factor can be used to distinguish the fault categories under consideration. 
The other five features may not be considered promising for classifying the faults 
when used individually. 

3.3 Scatter Plot 

To indicate how much one variable affects another, scatter plots are used to exhibit 
data points on a horizontal and a vertical axis. A marker is used to represent each 
row in the data table, and the position of the marker depends on the values of the 
columns that are set up on the X and Y axes. 

The scatter plots of the time-domain features in combination with each other are 
presented in Fig. 4. The scatter plot of (a) Skewness versus Mean shows a significant 
overlapping of data samples of fault classes 3 and 4, which indicates that these two 
classes are not clearly distinguished by Skewness and Mean. Similar is the case 
of (b) Kurtosis versus Impulse Factor where the fault classes 1 and 3 are not well
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(a) 

(c) 

(e) 

(b) 

(d) 

(f) 

10 

Fig. 3 Box plot of time-domain features for fault classification—a Mean b Median c Kurtosis 
d Skewness e Crest factor and f Impulse factor

differentiated. The plot of (c) Crest Factor versus Mean shows a somewhat better 
separation of the fault classes but with a minor closeness of the samples of fault classes 
3 and 4. On the other hand, the scatter plots of (d) Impulse Factor versus Mean, (e) 
Kurtosis versus Skewness, and (f) Kurtosis versus Mean show good parting of all 
the fault classes with maximum separation in the case of (f) Kurtosis versus Mean.
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Thus, these are good condition indicators and may be used to train the ML models 
for fault classification. 

(a) 

(c) 

(e) 

(b) 

(d) 

(f) 

Fig. 4 Scatter plots for different pairs of time-domain features—a Skewness versus Mean 
b Kurtosis versus Impulse Factor c Crest Factor versus Mean d Impulse Factor versus Mean 
e Kurtosis versus Skewness f Kurtosis versus Mean
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3.4 Confusion Matrix 

The confusion matrix of a ML classifier is a summary of classification problem 
prediction outcomes. Count values are used to describe the number of accurate and 
inaccurate predictions for each class. It gives an insight into the errors being made by 
the classifier. The confusion matrices for (a) K-Nearest Neighbor, (b) Decision Tree, 
(c) Ensemble Classifier, (d) Discriminant Analysis, (e) Support Vector Machine, and 
(f) Gaussian Naïve Bayes models are shown in Fig. 5. The associated results of fault 
classification accuracy, time to train the classifier, and the corresponding prediction 
speed of these classification models are reported in Table 2.

It is worth noting that the classification accuracy obtained by SVM and Gaussian 
Naïve Bayes is the same, but the latter outperforms in terms of training time and 
prediction speed. The same is applicable when comparing the Ensemble Classifier 
and Discriminant Analysis. Overall, the Gaussian Naïve Bayes model performs best 
in the current analysis. 

4 Conclusions 

Investigating different fault types using a box plot shows that a single time-domain 
feature may not be sufficient to classify the faulty behavior, especially in multi-class 
fault classification problems. One cannot distinguish between all the fault types 
as the box plots of some of the time-domain features overlap, due to which these 
features are not enough to set fault types apart. The scatter plot of a combination 
of features reveals that two condition indicators are better than one for separating 
different faults. Different combinations of features may be tried to see which ones 
are better at classifying the defects. 

In the present analysis, all the time-domain features except the impulse factor are 
insufficient to classify the fault categories when used independently. However some 
of their combination in different pairs may successfully distinguish between the fault 
classes, which can be easily understood from the scatter plots. Further, the combina-
tion of mean and kurtosis results in the best prediction of different fault categories. 
Therefore, these time-domain features and the other extracted features showing a 
bit lesser prediction are good candidates to train ML models. The condition indi-
cators thus identified are used to train the ML models. Finally, the best-performing 
model may be selected by checking its accuracy using a confusion matrix. In case 
the accuracy of two or more classifiers match, the training time and prediction speed 
parameters may be used to recognize the best classifier. In this case, out of 6 ML 
classifiers, namely, k-Nearest Neighbors (k-NN), Support Vector Machines (SVM), 
Naïve Bayes classifier, Discriminant Analysis, Ensemble Classifier, and Decision 
Trees. The Gaussian Naïve Bayes is discovered to be the most effective. 

There is no pre-determined number regarding how many features are enough to 
train a machine learning model. So, as a future direction, the feature extraction step
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(a) 

(c) 

(e) 

(b) 

(d) 

(f) 

Fig. 5 Confusion matrices showing fault classification results—a K-nearest neighbor b Decision 
tree c Ensemble classifier d Discriminant analysis e Support vector machine f Gaussian Naïve 
Bayes

may be reconsidered, and machine learning models be trained with different sets of 
features to check for the possible improvement in the accuracy of ML models. It is 
also important to remember that ML models can benefit from a high-dimensional set 
of distinguishing features and can effectively differentiate the fault types.
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Table 2 Performance results of different ML models 

ML classifier Accuracy 
(%) 

Training time 
(S) 

Prediction speed 
(Obs/S) 

K-nearest neighbor 
(KNN) 

90 0.69843 640 

Decision tree 92.5 9.6881 1200 

Ensemble classifier 95 1.8984 350 

Discriminant analysis 95 0.72548 1000 

Support vector machine (SVM) 97.5 0.79327 730 

Gaussian Naïve Bayes 97.5 0.64558 980
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