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Abstract This paper describes the development of intelligent fault diagnosis for 
electromechanical systems (EMS) and examines various combinations of mechanical 
and electrical faults in such systems. Specifically, the study focuses on a three-phase 
asynchronous motor (IM) with an outer rotor bearing system. The faults investigated 
in this study include a healthy system (F1), healthy motor with outer bearing faults 
(F2), healthy motor with unbalance in outer rotor (F3), bearing fault in the motor 
with healthy outer rotor (F4), inner motor bearing and outer rotor bearing fault (F5), 
motor bearing fault with outer unbalanced rotor (F6), motor stator fault with outer 
healthy rotor (F7), motor stator fault with outer unbalanced rotor (F8), motor stator 
fault with outer bearing fault (F9), and motor bearing fault with outer bearing fault 
and unbalanced rotor (F10). In order to detect combined faults in the motor-rotor-
bearing assembly, the paper proposes using wavelet characteristics extracted from 
the current and vibration signals, which are used to develop a support vector machine 
(SVM)-based defect detection system. Finally, the paper concludes with a discussion 
of the research results. 
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1 Introduction 

EMS comprises electrical and mechanical components and is extensively used in 
light as well as heavy industry. EMS is exposed to various kinds of stresses that 
cannot be avoided at work, resulting in various types of electrical and mechanical 
breakdown of the body. A minor fault of these, if not detected and rectified in a timely 
manner, can cause serious damage to the EMS, resulting in downtime of the entire 
production process, loss of production, and sometimes serious injury. Therefore, 
early diagnosis of EMS failure is important to avoid its serious consequences [1, 2]. 

In the last two decades, multiple diagnostic techniques have been developed to 
prevent any kind of malfunction in EMS, including FFT, high-resolution spectral 
analysis, wavelet transform, Hilbert transform, Park vector method, and Hilbert-
Hong transform [3, 4]. These tests are based on signal analysis and utilize a range of 
signals such as vibration, stator current, induced voltage, air gap torque, acoustics, 
and others [5]. Note that current and vibration techniques are most prevalent and 
favored due to its higher accuracy and simplicity of measurement [6]. It is important 
to remember that traditional methods are not always consistent because they are 
influenced by many factors such as defect levels, motor running conditions, noise, 
and others [4]. Another fault diagnosis method based on mathematical modeling of 
the machine has also been developed. However, many assumptions need to be made to 
construct reliable mathematical models to deal with nonlinear and stochastic systems, 
but this is still weak in the presence of distortions and noise [7]. 

In order to diagnose defects in machines using signals and computational models, 
one needs to have adequate knowledge and experience gained through practice. 
However, with the constant rotation of machines for all kinds of industries, it is 
challenging to fulfill the need for skilled professionals. Consequently, in the last 
decade, new diagnostic methods utilizing machine learning (ML) technology have 
been developed and adopted in the machinery field. These methods aim to automate 
traditional diagnostic techniques, increase reliability and accuracy, and lower costs 
[8]. ML techniques are data-driven techniques that do not involve knowledge of 
models. Several AI techniques, including ANN, fuzzy logic, hidden Markov model, 
genetic algorithm (GA), and SVM, have been applied in the identification of system 
defects [9, 10]. In ML, the support vector machine has attractive features such as 
classification efficiency, short duration, and strong flexibility compared to other ML 
techniques [11]. 

To use ML-based diagnostics, different processing methods have been developed 
for example time-domain, frequency-domain, and multi-time frequency methods 
such as wavelets. Time domain and frequency domain theory assumes signal stability 
and system linearity; However, differences and inconsistencies and/or changes in 
electronic components may occur during normal operation of the EMS. Due to 
many faults, EMS operates in unstable conditions. Time–frequency or wavelet-based 
feature extraction methods are also used to solve complex and non-local problems 
[12]. For defect detection, three types of wavelets, namely, WPT, CWT, and DWT 
are employed [13]. In all the above studies, fault detection is determined at constant
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speed of the motor and less diagnostic for ramp speed problem. In addition, fault iden-
tification of EMS is limited in the literature. In addition, fault detection of electrical 
and mechanical defects is rare in AI-based EMS [14–16]. 

Therefore, in the current study, defect detection of EMS is attempted based 
on wavelet and SVM. Ten different combinations of EMS defects are considered. 
Wavelets (continuous wavelets) are considered for diagnosis due to their special 
properties of simultaneously processing time and frequency information. SVMs are 
used with RBF kernel. Since the accuracy of the SVM is influenced by the kernel & 
SVM parameters, the optimal values of parameters are selected by grid search & 
cross-validation algorithm. Also, performance evaluation also depends on the input, 
so here three important wavelet properties are measured for research. Lastly, identi-
fication was performed to confirm the effectiveness of the method at various motor 
operating conditions. 

2 SVM Introduction 

SVM is a statistical learning method that leverages examples to assign labels to data 
points [17]. It was proposed by Vapnik in 1995 and is characterized by four main 
points: the hyperplane with the maximum margin, the separating hyperplane, the 
flexible margin, and the kernel function. In high-dimensional space, a separating 
hyperplane is a boundary that divides two object classes. The objective of SVM is 
aimed to determine the hyperplane that provides the maximum or best separation 
between the classes. The margin, as depicted in Fig. 1, is defined as the gap between 
the separator hyperplane and the data point which is closer to it from each class.

The optimal hyperplane is achieved using the subsequent optimization problem;

Fig. 1 The 
maximum-margin 
hyperplane 
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Minimum [τ(w)] =  
1 

2
‖w‖2 + C 

m∑

j=1 

ξ j (1) 

Subjected to, y j (w.x j + b) ≥ 1 − ξ j , ξ  j ≥ 0, j = 1, 2, ..., m (2) 

where training datasets is defined by
{
(x j , y j )

}m 

j=1x j ∈ Rl , y j ∈ {−1, 1}, input 
vectors is defined by x j , label of x j is defined by y j , w represents normal direction 
of a hyperplane, scaler is defined by b, positive slack variables is defined by ξ j , and 
C represents the generalization parameter. Linear discriminate function for SVM 
training can be written as 

f (x) = w∗ · x + b∗ = 
m∑

i=1 

{yi α
∗ 
i xi , x} +  b∗ (3) 

The optimization problems mentioned above are designed for linearly separable 
data only. However, real-world data may not always be linearly separable and may 
exhibit complex patterns in the input space. In such cases, Support Vector Machine 
(SVM) algorithms can generate hyperplanes that allow for larger margin of sepa-
ration even in nonlinearly separable data. One of the key advantages of support 
vector machines (SVMs) is their ability to transform data from an input space with a 
lower number of dimensions to a feature space with a higher number of dimensions, 
using kernel functions. This enables more flexible decision boundaries and facilitates 
the capture of complex relationships between data points. Various kernel functions 
k(x, xi ) = φ(x)φ(xi ), including Gaussian RBF, polynomials, and sigmoid functions, 
can be utilized to map data into higher-dimensional spaces. This transformation can 
aid in reducing computational load by retaining the effects of Multidimensional trans-
formations. In the present study, the RBF (Radial Basis Function) kernel, which is a 
popular and widely used option, is employed. 

k(x, xi ) = exp
(−γ ‖x − xi‖2

); γ = 
1 

2σ 2 
> 0 (4)  

The parameter σ in the RBF kernel represents the width of the kernel. While 
basic SVMs are designed for binary classification tasks, in reality, there may be 
scenarios where multiple classes need to be classified. Several methods have been 
proposed to tackle this issue, including the OAO, OAA, and DAGS algorithms [18]. 
These approaches break down multinomial classification problem into a sequence of 
bivariate classification problems. The OAA method involves training k-SVM models, 
where k represents the number of classes, while the OVO method requires training 
k(k − 1)/2 SVM models, with each model differentiating between two classes. Hsu 
and Lin [18] compared the hybrid method with three binary classification-based 
methods (OVO, OAA, and DAGS) and concluded from their experiments that OAO 
and DAGS are effective in practice.
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3 Experimental Setup 

Tests were conducted using a Mechanical Failure Simulator (MFS) as illustrated 
in Fig. 2. The MFS consists of a 0.5 hp, 50 Hz three-phase asynchronous motor 
induction motor connected to a rotor bearing system through an elastic coupling. A 
pulley connects the motor shaft to the gearbox, and an electromagnetic brake clutch 
is connected to the gearbox to deploy external load to the IM. A speed controller is 
connected to the IM for changing the speed. Three AC current probes and a triaxial 
accelerometer are used to record the current and vibration signals, respectively. Data 
acquisition was carried out using a National Instruments data acquisition system 
(DAQ). A tachometer with constant DC power was used to measure motor speed. 
The acquired data were analyzed using NI-LabVIEW data acquisition software. 

The tests were conducted to simulate various fault conditions, including healthy 
system (F1), healthy motor with outer bearing faults (F2), healthy motor with unbal-
ance in outer rotor (F3), bearing fault in the motor with healthy outer rotor (F4), 
inner motor bearing and outer rotor bearing fault (F5), motor bearing fault with outer 
unbalanced rotor (F6), motor stator fault with outer healthy rotor (F7), motor stator 
fault with outer unbalanced rotor (F8), motor stator fault with outer bearing fault 
(F9), and motor bearing fault with outer bearing fault and unbalanced rotor (F10). 
Raw data was collected at a sampling rate of 20,480 Hz in the time domain, resulting 
in a total of 80 raw data sets (80 × 20,480 sampling points) for all the defect condi-
tions. Data was recorded for different motor running conditions, including ramp-up 
speeds up to 10, 20, 30, and 40 Hz, under two different torque conditions: without 
load and high load (0% of rated load; 0.55% of rated load).

Fig. 2 Experimental test-rig 
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4 Feature Calculation Based on CWT 

In order to achieve accurate results, this article employs the inference method based 
on Continuous Wavelet Transform. CWT is a significant approach for analyzing 
time–frequency information as it transforms time-domain information into time– 
frequency information. The fundamental concepts of CWT and its application for 
defect identification have been extensively discussed in numerous articles [19, 20]. 
CWT is utilized by combining the signal with the wavelet family, and it can be 
described as follows: 

ω(s, τ  )  = 
+∞∫

−∞ 

x(t)ψ∗(t)dt (5) 

with 

ψ∗(t) = 
1 √
s 
ψ(  

t − τ 
s 

) (6) 

Among these, the master wavelet, also known as the window function, is denoted 
by ψ(t). The parameter “s” that controls the scale is related to the frequency charac-
teristics of the compressed or expanded signal, with higher scales indicating lower 
frequencies and vice versa. The parameter “τ” that controls the translation is used 
to determine the position of the window as it moves through the signal, analogous 
to the direction of the red light. The wavelet transform utilizes the master wavelet 
function to break down the signal into a weighted set of scaled wavelet energies. 
While wavelets and Fourier transforms share similarities, the wavelet family differs 
in that it employs an infinite number of fundamental functions to transform sine and 
cosine functions. 

Time–frequency information can be extracted from time-series data [19]. In this 
study, HAAR wavelets are utilized to obtain time–frequency information. The time-
series data is initially decomposed into 2^7 sub-signals, yielding wavelet coefficients 
that are associated with each parameter. Each individual data point, for instance, 
containing 10,000 data points, encompasses the wavelet coefficients for each param-
eter, resulting in a matrix of coefficients for the dataset. It is important to note that 
calculating wavelet coefficients for each parameter requires significant storage space 
and time due to the large amount of data involved. Furthermore, choosing the appro-
priate wavelet scale can be challenging as an indicator chosen from a negative (or 
positive) scale may not fully capture the wave, while other scales might be over-
looked. Hence, in this study, relative wavelet power (RWE) was employed as a 
criterion for selecting a suitable scale. Based on the RWE criteria, the wavelet scale 
with the highest energy is considered as the appropriate scale. RWE is a time– 
frequency measure that can describe specific events in the time–frequency domain. 
Mathematically, RWE is defined as the energy allocation given by
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pm = 
E(m) 
Eoverall 

(7) 

where
∑
m 

pm = 1, & overall energy is 

Eoverall =
∑

m

∑

i

∣∣Cm, j
∣∣2 =

∑

n 

E(m) (8) 

where Cn, j represents “j” denotes the wavelet coefficient corresponding to the “n”th 
scale, “m” represents the quantity of wavelet coefficients, where m = 1, …, n,. Total 
energy of detail signal can be represented by 

E(m) = 
n∑

j=1

∣∣Cm, j
∣∣2 (9) 

Power is now calculated for each scale. Then, the RWE of each parameter was 
calculated by Eq. (7). Select the ratio with the largest RWE as the best ratio. Now the 
wavelet coefficients of all data corresponding to the best measurement are obtained. 
Wavelet features may be extracted from the wavelet coefficients. This function uses 
three parameters such as standard deviation (σ), skewness (χ), and kurtosis (k). 

5 Results and Discussion 

In this study, one-on-one SVM is utilized to complement the diagnosis of multiple 
faults in EMS. A total of 80 datasets containing statistical data are split into training 
and testing subsets, with 80% utilized for training and 20% for testing. SVM training 
is conducted for each speed and load condition, using the training data for each 
fault. It should be noted that the RBF kernel is employed for SVM training, which 
involves two initial hyperparameters: kernel parameter γ and Lagrangian multiplier 
C. These parameters need to be optimized for error detection. In this study, grid 
search and cross-validation methods are used to fine-tune these two measures. Various 
combinations of (C, γ) are attempted, and the one that produces the greatest level 
of accuracy or education is chosen. This optimization process is performed for each 
wavelet feature one at a time. Figure 3 illustrates the optimization of (C, γ) during 
training at 10 Hz ramp-up and high torque condition, showing that the SVM training 
accuracy is 82.5%. It should be noted that the final estimate may be influenced by 
the training of the distributor. Once the best (C, γ) pair is selected, it is used for the 
final training. The SVM model that has been trained is then utilized to categorize or 
detect ten faults. The SVM prediction function is represented by the percentage of 
the predictive value, which is the number of successful test data among all the test 
data.
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Fig. 3 Cross-validation accuracy for 40 Hz and T2 load 

In the next step, the SVM model is evaluated at the same velocity and load condi-
tions as during training. The selected wavelet features are fed one by one, and diag-
nosis is performed. The solution is evaluated by checking the performance of various 
functions of the IM, including four ramp-up and two torque conditions. Three main 
features, namely, standard deviation (σ), kurtosis (k), and skewness (χ) are utilized 
in this work. Fault detection is initially carried out in the zero load environment, 
and the outcomes are presented in Fig. 4a. The lowest accuracy achieved is 70.7%, 
while the highest accuracy is 99.3%, both of which are obtained at 40 and 10 Hz. All 
faults, except SWF_HR and SWF_UR, were successfully classified for all speeds 
with more than 80% accuracy. The average classification accuracy based on the 
no-load condition is 87.3%.

The analysis was also performed for high load conditions, and the results are 
presented in Fig. 4b. The lowest and highest classification accuracies achieved were 
94% and 66%, which were obtained at 20 and 40 Hz ramp-up conditions, respectively. 
All faults, except MBF_UR, MBF_HR, and SWF_HR, were successfully classified 
for all speeds with more than 80% accuracy. The overall mean performance at high 
torque conditions was 85.5%. This indicates that the dispersion of misclassifications 
is slightly higher, by around 2%, in high torque conditions compared to no-torque 
conditions. In general, the identification of faults using the three main features of 
Haar wavelets was successful in predicting the faults even at different load levels. 

6 Conclusions 

Here, Haar wavelet features are calculated to evaluate combined defects of EMS using 
OAO SVM technique. Three characteristic standard deviations, skewness, skewness, 
and signal current are used for EMS diagnostics. Finally, diagnostics were performed 
for various speed tests at mechanical loads under different engine conditions, to 
determine the diagnostics of the EMS in an emergency. The average performance 
is 85.5 and 87.5% for high and zero load environment, individually. This study 
presents that the integration of wavelet properties & SVM can detect EMS defects 
at all loads, even at ramp-up speeds. Here, single Haar wavelet was utilized in EMS



Machine Learning-Based Fault Prediction of Electromechanical System … 321

0.0 

20.0 

40.0 

60.0 

80.0 

100.0 
Pe

rf
or

m
an

ce
, %

 
(a) Zero load case 

10 Hz 20 Hz 30 Hz 40 Hz Average 

0.0 

20.0 

40.0 

60.0 

80.0 

100.0 

Pe
rf

or
m

an
ce

, %
 

(b) High Load Case 

10 Hz 20 Hz 30 Hz 40 Hz Average 

Fig. 4 Result for present diagnosis

defect analysis, but Shannon, Gaussian, and other wavelet functions may be further 
utilized. 
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