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1 Introduction 

In the realm of numerical computations, a vast number of problems are expressed 
using nonlinear equations of the following form:

Ω(s) = 0, (1) 

whereΩ : D ⊆ R → R is a real function defined on D, an open interval. Finding the 
numerical solutions of these problems expressed by (1) has always been a challenging 
task but at the same time of great importance due to its numerous applications in 
various branches of science and engineering. Iterative methods are extensively used 
for solving these problems in order to get approximate solutions of (1) but with high 
accuracy. The following is one such iterative method, called the Newton’s method 
[1], which is widely used for finding the simple roots of (1): 

sn+1 = sn − Ω(sn)

Ω'(sn) 
, n = 0, 1, 2, . . . (2) 

It is a classical optimal one-point without memory method with quadratic order 
of convergence. However, due to the requirement of derivative evaluation and its 
low convergence order, the Newton’s method (2) is not suitable for many practical 
uses. As a result, various multi-point without memory methods have been developed
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and studied in literature which have higher convergence order with higher efficiency 
[2–4]. An iterative method is called optimal if it satisfies the unproved Kung–Traub’s 
conjecture [5] according to which an iterative without memory method requiring k 
function evaluations per iteration is optimal if it has the convergence order of 2k−1. 

In the past decade, various multi-point with memory methods for finding simple 
roots of nonlinear equations using accelerating parameters have gained much atten-
tion among researchers [6–10]. To theoretically determine the efficiency of an iter-
ative method, Ostrowski [11] introduced the efficiency index (EI) = p 1 k , where k 
is the number of function evaluations at each iteration and p is the order of conver-
gence. In fact, it was Traub who first introduces the with memory method, known as 
the Traub–Steffensen method [1], using a parameter as accelerating parameter. The 
method is given below: 

wn = sn + αnΩ(sn), αn /= 0 

sn+1 = sn − Ω(sn)

Ω[sn, wn] 
, (3) 

where Ω[sn, wn] = Ω(sn )−Ω(wn ) 
sn−wn 

and αn is the accelerating parameter calculated as 
follows: 

αn = − 1 

N '
1(sn)

; N1 = Ω(sn) + (s − sn)Ω[sn, wn], n ≥ 0. 

The method (3) has convergence order of 2.41 which is higher than the quadratic 
convergence order of Newton’s method. This is achieved without any additional 
function evaluation. Also, unlike Newton’s method, Traub–Steffensen method does 
not require any evaluation of the derivatives and is derivative-free. This has motivated 
us to develop new multi-point with and without memory iterative methods containing 
more number of accelerating parameters with increased order of convergence having 
high efficiency index of almost 2. 

In this paper, we introduce new derivative-free four-parametric families of four-
point with and without memory iterative methods for computing simple roots of 
nonlinear equations. Formulation of the family of with memory methods is based 
on the extension of the new family of without memory methods by using acceler-
ating parameters without any extra function evaluations. As a result, the convergence 
order increases from 8 to 15.5156. The accelerating parameters are approximated 
by Newton’s interpolatory polynomials through the best-saved points so as to obtain 
highly efficient family of with memory methods. 

The remaining content of the paper has been structured as follows. In Sect. 2 devel-
opment of the new derivative-free family of without memory methods is discussed, 
and the theoretical convergence properties are fully investigated. Section 3 deals with 
the development and convergence analysis of the new derivative-free family of with 
memory methods. Section 4 covers the numerical results and the comparison of the 
proposed families of with and without memory methods with other existing methods
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on some test functions. Some real-world problems have been included in this section 
to confirm the applicability of the proposed families of with and without memory 
methods. Finally, Sect. 5 presents some concluding remarks. 

2 Optimal Four-Parametric Family of Four-Point Without 
Memory Methods 

Let us first consider the following non-optimal three-point Newton steps of eighth-
order containing the first-order derivative. 

yn = sn − Ω(sn)

Ω'(sn) 

zn = yn − Ω(yn)

Ω'(yn) 

sn+1 = zn − Ω(zn)

Ω'(zn) 
(4) 

To minimize the number of function evaluations from the above Eq. (4), we first 
approximate Ω'(yn) using the following expression:

Ω'(yn) ≈ Ω'(sn) 
1 + Ω(yn )

Ω(sn )
Ω(sn )+(λ−1)Ω(yn )

Ω(sn )−Ω(yn ) 

, λ  ∈ R (5) 

Then, we approximate Ω'(sn) from the first two steps of the above Eq. (4) as  
follows: 

yn = sn − Ω(sn)

Ω[sn, wn] + βΩ(wn) 
, wn = sn + αΩ(sn) 

zn = yn −
(
1 + Ω(yn)

Ω(sn)

Ω(sn) + (λ − 1)Ω(yn)

Ω(sn) − Ω(yn)

)
Ω(yn)

Ω[yn, wn] + βΩ(wn) 

sn+1 = zn − Ω(zn)

Ω'(zn) 
, (6) 

where λ is any real parameter and α, β ∈ R − {0}. 
We want to make this Eq. (6) optimal as well as derivative-free. So, we approximate

Ω'(zn) in the last step of (6) by the following polynomial: 

Q(v) = l0 + l1(v − zn) + l2(v − zn)2 + l3(v − zn)3 , (7) 

where l0, l1, l2 and l3 are some unknowns to be determined by means of the following 
conditions:
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Q(sn) = Ω(sn), Q(yn) = Ω(yn), Q(wn) = Ω(wn), Q(zn) = Ω(zn). 

Now, solving Eq. (7) under the above conditions and simplifying, we obtain the 
values of l0, l1, l2 and l3 as follows: 

l0 = Ω(zn) (8) 

l3 = Ω[sn, yn, zn, wn] (9) 

l2 = Ω[yn, zn, wn] − l3(yn + wn − 2zn) (10) 

l1 = Ω[zn, wn] − l2(wn − zn) − l3(wn − zn)2 , (11) 

where Ω[x, y, z] = Ω[x,y]−Ω[y,z] 
x−z and Ω[x, y, z, v] = Ω[x,y,z]−Ω[y,z,v] 

x−v
are second and 

third divided differences, respectively. 
Using (9), (10) and (11), the approximation of Ω'(zn) from Eq. (7) is obtained as 

follows:

Ω'(zn) ≈ Q'(zn) = l1 = Ω[zn, wn] − l2(wn − zn) − l3(wn − zn)2 . (12) 

Now, substituting (12) in (6) and adding two new parameters γ,  δ  ∈ R −{0} in the 
last two steps, we obtain a new optimal derivative-free family of four-point without 
memory methods which are presented below. We shall denote it by FM8. 

wn = sn + αΩ(sn) 

yn = sn − Ω(sn)

Ω[sn, wn] + βΩ(wn) 

zn = yn −
(
1 + Ω(yn)

Ω(sn)

Ω(sn) + (λ − 1)Ω(yn)

Ω(sn) − Ω(yn)

)
×

Ω(yn)

Ω[yn, wn] + βΩ(wn) + γ (yn − sn)(yn − wn) 

sn+1 = zn − Ω(zn) 
Q'(zn) + δ(zn − sn)(zn − yn)(zn − wn) 

(13) 

It is evident that the new family of without memory methods (13) consumes only 
four function evaluations per full iteration and is completely derivative-free. Also, it 
preserves the optimal convergence order eighth with the efficiency index 8 

1 
4 ≈ 1.682. 

Now, we present the following theorem through which the convergence criteria of 
(13) are theoretically discussed. 

Theorem 1 Let ξ ∈ D be a simple root of a sufficiently differentiable real function
Ω : D ⊆ R → R, where D is an open interval. If an initial guess s0 is close enough to
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ξ , then the family of proposed methods defined by (13) has eighth-order convergence 
for any λ ∈ R and α, β, γ , δ ∈ R − {0}. And, it has the error equation given by: 

εn+1 = 1

Ω'(ξ )2
(
1 + Ω'(ξ )α

)4 
(β + d2)2

(−γ + Ω'(ξ )
(
1 + Ω'(ξ )α

)
β2 (−1 + λ) 

+ Ω'(ξ )
(
2β

(−2 + Ω'(ξ )α(−1 + λ) + λ
)
d2 

+(−3 + Ω'(ξ )α(−1 + λ) + λ
)
d2 
2 + d3

))
(
δ + d2

(−γ + Ω'(ξ )
(
1 + Ω'(ξ )α

)
β2 (−1 + λ) 

+ Ω'(ξ )
(
2β

(−2Ω'(ξ )α(−1 + λ) + λ
)
d2

)
+(−3 + Ω'(ξ )α(−1 + λ) + λ

)
d2 
2 + d3

))
−Ω'(ξ )d4

)
ε8 n + O

(
ε9 n

)
(14) 

where d j = 1 
j !

Ω j (ξ )
Ω'(ξ ) , j = 2, 3, ..., and εn = sn − ξ is the error at nth  iteration. 

Proof We construct and apply the following self-explained Mathematica code for 
the proof of the optimal eighth order of convergence of (13).

Ω
[
ε−

] := Ω'(ξ )
(
ε + d2ε2 + d3ε3 + d4ε4 + d5ε5 + d6ε6 + d7ε7 + d8ε8

); 

εw = ε + αΩ[ε] (∗εw = w − ξ∗) 

Out[1] :  (1 + Ω'(ξ )α)ε + O[ε]2

Ω
[
x−, y−

] := Ω[x] − Ω[y] 

x − y
;

Ω
[
x−, y−, z−

] := Ω[x, y] − Ω[y, z] 
x − z

; 

εy = Series
[
ε − Ω[ε]

Ω[ε, εw] + βΩ[εw] 
, {ε, 0, 8}

]
//Simplify 

Out[2] : (
1 + Ω'(ξ )α

)
(β + d2)ε2 + O[ε]3 

εz = εy −
(
1 + Ω

[
εy

]
Ω[ε]

Ω[ε] + (λ − 1)Ω
[
εy

]
Ω[ε] − Ω

[
εy

]
)

×

Ω
[
εy

]
Ω

[
εy, εw

] + βΩ[εw] + γ
(
εy − ε

)(
εy − εw

) //Simplify
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Out[3] : −1

Ω'(ξ )
(
1 + Ω'(ξ )α

)2 
(β + d2)

(−Ω'(ξ )β2 − Ω'(ξ )2 αβ2 − γ + Ω'(ξ )β2 λ 
+ Ω'(ξ )2 αβ2 λ + 2Ω'(ξ )β

(−2 + Ω'(ξ )α(−1 + λ) + λ
)
d2 

+Ω'(ξ )
(−3 + Ω'(ξ )α(−1 + λ) + λ

)
d2 
2 + Ω'(ξ )d3

)
ε4 + O[ε]5 

l3 = Ω
[
ε, εy, εz, εw

]; 

l2 = Series
[
Ω

[
εy, εz, εw

] − l3
(
εy + εw − 2εz

)
, {ε, 0, 8}]//Simplify; 

Q'(εz) = Series
[
Ω

[
εz, εw

] − l2(εw − εz) − l3(εw − εz)2 , {ε, 0, 8}
]
//Simplify; 

εn+1 = Series
[
εz − Ω[εz] 

Q'(εz) + δ(εz − ε)(εz − εy)(εz − εw) 
, {ε, 0, 8}

]
//FullSimplify 

Out[4] : 1

Ω'(ξ )2
(
1 + Ω'(ξ )α

)4 
(β + d2)2

(−γ + Ω'(ξ )
(
1 + Ω'(ξ )α

)
β2 (−1 + λ) + Ω'(ξ )(

2β
(−2 + Ω'(ξ )α(−1 + λ) + λ

)
d2 

+(−3 + Ω'(ξ )α(−1 + λ) + λ
)
d2 
2 + d3

)
(
δ + d2

(−γ + Ω'(ξ )
(
1 + Ω'(ξ )α

)
β2 (−1 + λ)

) − Ω'(ξ )d4
)

+Ω'(ξ )
(
2β

(−2Ω'(ξ )α(−1 + λ) + λ
)
d2

))
+(−3 + Ω'(ξ )α(−1 + λ) + λ

)
d2 
2 + d3

))
ε8 n + O

(
ε9 n

)

which shows that Eq. (13) is of optimal order eighth. 

3 Four-Parametric Family of Four-Point with Memory 
Methods 

From the error Eq. (14), the convergence order can be increased from 8 to 16 for the 
method (13) if  α = −  1

Ω'(ξ ) , β = −d2, γ = Ω'(ξ )d3 and δ = Ω'(ξ )d4. However, 
the exact value of ξ is not available to us. As such, we shall use α = αn , β = βn , 
γ = γn and δ = δn , where αn , βn , γn and δn are accelerating parameters which 
will be computed using the available information from the current and the previous 
iterations. 

Now, to approximate the accelerating parameters αn, βn, γn and δn , we use  
interpolation as follows.
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αn = − 1 

N
'
4(sn) 

, βn = −  
N

''
5(wn) 

2N'
5(wn) 

, γn = 
N

'''
6 (yn) 
6 

, δn = 
N

iv 
7 (zn) 
24 

, n = 0, 1, 2, . . .  

(15) 

where N j (t), j = 4, 5, 6, 7 are Newton’s interpolatory polynomials of j degrees set 
through the points, i.e., sn, yn, zn, wn, sn−1, yn−1, wn−1, zn−1. 

Now, by using (15) in the method (13), we obtain the following new derivative-free 
family of with memory methods. We shall denote it by FWM8. 

For a given s0, α0, β0, γ0, δ0, we have  w0 = s0 + α0Ω(s0). Then, 

αn = − 1 

N
'
4(sn) 

, βn = −  
N

''
5(wn) 

2N'
5(wn) 

, γn = 
N

'''
6 (yn) 
6 

, δn = 
N

i v 
7 (zn) 
24 

wn = sn + αnΩ(sn) 

yn = sn − Ω(sn)

Ω[sn, wn] + βnΩ(wn) 

zn = yn −
(
1 + Ω(yn)

Ω(sn)

Ω(sn) + (λ − 1)Ω(yn)

Ω(sn) − Ω(yn)

)
×

Ω(yn)

Ω[yn, wn] + βn Ω(wn) + γn(yn − sn)(yn − wn) 

sn+1 = zn − Ω(zn) 
Q'(zn) + δn(zn − sn)(zn − yn)(zn − wn) 

(16) 

Lemma 1 If αn = −  1 
N

'
4(sn ) 

, βn = −  N
''
5 (wn ) 

2N'
5(wn ) , γn = N

'''
6 (yn ) 
6 and δn = N

i v 
7 (zn ) 
24 , n = 

0, 1, 2, . . ., then the following estimates 

1 + αnΩ
'(α) ∼ εn−1εn−1,yεn−1,wεn−1,z (17) 

βn + d2 ∼ εn−1εn−1,yεn−1,wεn−1,z (18) 

Kn ∼ εn−1εn−1,yεn−1,wεn−1,z (19) 

Ln ∼ εn−1εn−1,yεn−1,wεn−1,z (20) 

hold, where 

Kn = −γn + Ω'(ξ )
(
1 + Ω'(ξ )αn

)
β2 
n (−1 + λ) 

+ Ω'(ξ )
(
2βn

(−2 + Ω'(ξ )αn(−1 + λ) + λ
)
d2 

+(−3 + Ω'(ξ )αn(−1 + λ) + λ
)
d2 
2 + d3

)
, 

Ln = δn + d2
(−γn + Ω'(ξ )

(
1 + Ω'(ξ )αn

)
β2 
n (−1 + λ)



320 G Thangkhenpau et al.

+ Ω'(ξ )
(
2βn

(−2 + Ω'(ξ )αn(−1 + λ) + λ
)
d2 

+(−3 + Ω'(ξ )αn(−1 + λ) + λ
)
d2 
2 + d3

)) − Ω'(ξ )d4, 

εn = sn − ξ,  εn,y = yn − ξ,  εn,w = wn − ξ,  εn,z = zn − ξ.  

Proof As for the proof, see Lemma 1 of [12]. 
Now, we present the following theorem for analyzing the R-order of convergence 

[13] of the derivative-free four-parametric family of four-point with memory methods 
(16). 

Theorem 2 If an initial guess s0 is sufficiently close to a root ξ of Ω(s) = 0, the  
parameters αn, βn, γn and δn are calculated by the expressions in (15), then the 
R-order of convergence of the methods (16) is at least 15.5156. 

Proof Let the sequence of approximations {sn} produced by (16) converges to the 
root ξ with the order r . Then, we can write 

εn+1 ∼ εr n, where εn = sn − ξ. (21) 

Then, 

εn ∼ εr n−1 (22) 

Thus, 

εn+1 ∼ εr n =
(
εr n−1

)r = εr2 n−1 (23) 

Let the iterative sequences {wn}, {yn} and {zn} have orders r1, r2 and r3, 
respectively. Then, using (21) and (22) gives  

εn,w ∼ εr1 n = (
εr n−1

)r1 = εrr1 n−1 (24) 

εn,y ∼ εr2 n = (
εr n−1

)r2 = εrr2 n−1 (25) 

εn,z ∼ εr3 n = (
εr n−1

)r3 = εrr3 n−1 (26) 

From Theorem 1, we have  

εn,w ∼
(
1 + αnΩ

'(ξ )
)
εn (27) 

εn,y ∼
(
1 + αnΩ

'(ξ )
)
(βn + d2)ε2 n (28)
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εn,z ∼
(
1 + αnΩ

'(ξ )
)2 

(βn + d2)Knε
4 
n (29) 

εn+1 ∼
(
1 + αnΩ

'(ξ )
)4 

(βn + d2)2 Kn Lnε
8 
n (30) 

Using the above Lemma 1 and (27)–(30), we get 

εn,w ∼
(
1 + αnΩ

'(ξ )
)
εn = εr+r1+r2+r3+1 

n−1 (31) 

εn,y ∼
(
1 + αnΩ

'(ξ )
)
(βn + d2)ε2 n = ε2r+2r1+2r2+2r3+2 

n−1 (32) 

εn,z ∼
(
1 + αnΩ

'(ξ )
)2 

(βn + d2)Knε
4 
n = ε4r+4r1+4r2+4r3+4 

n−1 (33) 

εn+1 ∼
(
1 + αnΩ

'(ξ )
)4 

(βn + d2)2 Kn Lnε
8 
n = ε8r+8r1+8r2+8r3+8 

n−1 (34) 

Now, comparing the corresponding powers of εn−1 on the right sides of (24) and 
(31), (25) and (32), (26) and (33), (23) and (34), we get 

rr1 − r − r1 − r2 − r3 − 1 = 0 
rr2 − 2r − 2r1 − 2r2 − 2r3 − 2 = 0 
rr3 − 4r − 4r1 − 4r2 − 4r3 − 4 = 0 
r2 − 8r − 8r1 − 8r2 − 8r3 − 8 = 0 (35) 

This system has the non-trivial solution r1 = 1.9394, r2 = 3.8789, r3 = 7.7578 
and r = 15.5156. Hence, the R-order of convergence of the proposed family of 
methods (16) is at least 15.5156. The proof is complete. 

4 Numerical Results 

In this section, we examine the performance and the computational efficiency of the 
newly developed with and without memory methods discussed in Sects. 2 and 3 and 
compare with some methods of similar nature available in literature. In particular, 
we have considered for the comparison, the following four-parametric methods: 
LAM8(3.31) [8], ZM8 (ZR1 from [9]) and ACM8 (M1 from [10]). All numerical 
tests are executed using the programming software Mathematica 12.2. Throughout 
the whole computation, we have chosen the same values of the parameters α0 = β0 = 
γ0 = δ0 = −1 and λ = 2 in all the test functions in order to start the initial iteration. 
These same values are used for the corresponding parameters of all the compared 
methods in order to have fair comparison. Numerical test functions which comprise
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some standard academic examples and real-life chemical engineering problems along 
with their simple roots (ξ ) and initial guesses (s0) are presented below. 

Example 1 A standard academic test function given by:

Ω1(s) = e−s2
(
1 + s3 + s6

)
(s − 2). (36) 

It has a simple root ξ = 2. We start with the initial guess s0 = 2.3. 

Example 2 A standard academic test function given by:

Ω2(s) = log
(
s2 + s + 2

) − s + 1. (37) 

It has a simple root ξ ≈ 4.1525907367571583. We start with the initial guess 
s0 = 4.5. 

Example 3 A standard academic test function given by

Ω3(s) = sin2 s + s (38) 

It has a simple root ξ = 0. We start with the initial guess s0 = 0.6. 

Example 4 The azeotropic point of a binary solution problem given by the following 
nonlinear equation (for details see [14]).

Ω4(s) = 
FG

(
G(1 − s)2 − Fs2

)
(s(F − G) + G)2 

+ 0.14845, (39) 

where F = 0.38969 and G = 0.55954. 
It has a simple root ξ ≈ 0.69147373574714142. We start with the initial guess 

s0 = 1.1. 

In Tables 1 and 2, we have displayed the absolute residual errors |Ω(sn)| at the 
first three iterations obtained by the compared methods. We also include the compu-
tational convergence order (COC) of each compared method which is computed by 
the following formula [15]: 

COC = 
log|Ω(sn)/Ω(sn−1)| 
log|Ω(sn−1)/Ω(sn−2)| . (40)

From the two Tables 1 and 2, the numerical results affirm the robust performance 
and high efficiency of the proposed with and without memory methods thus reaf-
firming their theoretical results. The proposed methods give better accuracy with 
high efficiency in terms of minimal residual errors after three iterations as compared 
to the other methods. Further, the COC supports the theoretical convergence order 
of the new proposed with and without memory methods in the test functions.
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Table 1 Comparison of the without memory methods on the test functions 

Methods Ω(s) |Ω(s1)| |Ω(s2)| |Ω(s3)| COC 

ZM8 Ω1(s) 0.00083523 8.4618 × 10−26 9.4210 × 10−202 8.0000 

ACM8 Ω1(s) 0.0061646 1.3517 × 10−20 7.6376 × 10−162 7.9986 

LAM8 Ω1(s) 0.000015809 7.9235 × 10−41 3.1542 × 10−323 8.0000 

FM8 Ω1(s) 9.6344 × 10−7 2.6067 × 10−49 7.4864 × 10−390 8.0000 

ZM8 Ω2(s) 0.19523 0.076326 3.9752 × 10−6 10.502 

ACM8 Ω2(s) 0.90214 0.13906 0.000042430 4.3292 

LAM8 Ω2(s) 0.014457 8.6044 × 10−13 1.5302 × 10−94 7.9948 

FM8 Ω2(s) 0.011023 7.2266 × 10−15 3.4512 × 10−112 7.9880 

ZM8 Ω3(s) 6.7546 × 10−7 2.7816 × 10−100 1.9034 × 10−1594 16.000 

ACM8 Ω3(s) 5.8728 × 10−7 2.9666 × 10−101 5.3325 × 10−1610 16.000 

LAM8 Ω3(s) 1.4810 × 10−6 7.9355 × 10−95 3.6632 × 10−1507 16.000 

FM8 Ω3(s) 1.9346 × 10−7 5.7032 × 10−109 1.8559 × 10−1733 16.000 

ZM8 Ω4(s) 0.074840 1.3522 × 10−10 1.4582 × 10−80 8.002 

ACM8 Ω4(s) Divergent Divergent Divergent − 
LAM8 Ω4(s) 0.012310 1.9635 × 10−16 8.0818 × 10−127 8.000 

FM8 Ω4(s) 0.0069383 2.2151 × 10−18 2.3818 × 10−142 8.001 

Table 2 Comparison of the with memory methods on the test functions 

Methods Ω(s) |Ω(s1)| |Ω(s2)| |Ω(s3)| COC 

ZM8 Ω1(s) 0.00083523 4.9114 × 10−50 4.7977 × 10−749 15.120 

ACM8 Ω1(s) 0.0061646 2.1885 × 10−39 1.3451 × 10−598 15.342 

LAM8 Ω1(s) 0.000015809 4.4940 × 10−80 5.0217 × 10−1237 15.520 

FWM8 Ω1(s) 9.6344 × 10−7 1.3319 × 10−96 5.0044 × 10−1498 15.596 

ZM8 Ω2(s) 0.19523 4.8315 × 10−25 3.1255 × 10−375 14.834 

ACM8 Ω2(s) 0.90214 3.6884 × 10−11 9.1383 × 10−174 15.653 

LAM8 Ω2(s) 0.014457 5.3706 × 10−43 8.9914 × 10−669 15.478 

FWM8 Ω2(s) 0.011023 1.1528 × 10−44 3.5410 × 10−695 15.496 

ZM8 Ω3(s) 6.7546 × 10−7 1.3098 × 10−95 5.0428 × 10−1467 15.459 

ACM8 Ω3(s) 5.872 × 10−7 8.5805 × 10−99 3.2362 × 10−1551 15.816 

LAM8 Ω3(s) 1.4810 × 10−6 2.2038 × 10−95 1.5131 × 10−1494 15.751 

FWM8 Ω3(s) 1.9346 × 10−7 7.6149 × 10−104 3.6249 × 10−1632 15.853 

ZM8 Ω4(s) 0.074840 4.6224 × 10−22 3.3998 × 10−330 15.247 

ACM8 Ω4(s) Divergent Divergent Divergent − 
LAM8 Ω4(s) 0.012310 4.0863 × 10−37 3.1559 × 10−569 15.433 

FWM8 Ω4(s) 0.0069383 1.3673 × 10−39 2.4610 × 10−609 15.522
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5 Concluding Remarks 

We have presented in this paper new derivative-free families of with and without 
memory methods for finding the solutions of nonlinear equations. The use of four 
accelerating parameters in the with memory methods has enabled us to increase the 
convergence order of the without memory methods from 8 to 15.5156 and obtain very 
high-efficiency index of 15.5156 

1 
4 ≈ 1.9847 without extra function evaluations. The 

numerical results further confirm the good performance, validity and applicability of 
the proposed with and without memory methods. They are found to be more efficient 
with better accuracy as compared to the existing methods in comparison in terms 
of minimal residual errors after three iterations for convergence toward the required 
simple roots. 
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