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1 Introduction 

Random numbers are required in virtually all cryptographic operations. Initialization 
vectors, block padding, nonces, and keys are all encrypted structures that require a 
randomly generated sequence of numbers. Since the majority of the data created 
by the random number generator (RNG) are communicated in the open domains, a 
passive hacker has enough opportunity to evaluate the RNG’s findings and exploit 
any flaws discovered. Consequently, RNG employed in cryptographic operations 
must constantly be regarded as a crucial element of the encrypted algorithm. A 
defect or malfunction in the RNG could cause the entire system to fail [1]. The 
infamous Netscape V2.0 website compromise is a prime example of an effective 
assault on a vulnerable RNG architecture [2]. Despite an increasing reliance on data 
collected from different applications, digital phones, and devices, communication 
infrastructure security becomes crucial. Consumers’ privacy must be appropriately 
secured by implementing an RNG that is both secure and reliable, such as the TRNG. 
RNGs are essential parts of every cryptographic algorithm, as used in block ciphers, 
digital signatures [3] as well as in one-time padding. The field of RNG also addressed 
the deterministic random bit generators (DRBGs) built on a hash algorithm and the 
SHA-256 encryption technique [4]. Our proposal has two significant advantages 
over previous concepts: It is vendor-independent and eliminates the need for human 
installation and channeling throughout the production process, making the generator 
more compact. A TRNG’s development shouldn’t be dependent on any specific 
technology. Recently, Cherkaoui et al. [5], inspired by Sunar et al., devised a novel 
design in which ROs were replaced with a Self-Timed Ring (STR). Cret et al. expand 
on the core concept of utilizing only 2 ROs [6]. In this method, the writer uses
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a multiplexer to split the sampling pulse. All digital phase lock loops (ADPLL)-
based TRNGs have a number of advantages over PLL-based TRNGs, including 
low-power consumption, reduced area requirements, simple synthesizability, as well 
as the capability to be quickly modified. In contrast, LFSR has the most widespread 
application in communications and cybersecurity. 

LFSRs are typically composed of a D flip-flop and two input XOR gates. It could 
be done in two steps: using either the Fibonacci algorithm or the D flip-flop algorithm. 
The LFSR uses a feedback loop to shift the bits of binary data rely on the current 
state of the register and a predetermined set of feedback rules. This allows for the 
generation of a sequence of random numbers that are difficult to predict or reproduce 
Murali Krishna et al. [7] Outcome assessment suggests that envisaged LFSR with 
and without seed value provides superior results, reduced power intake, as well as 
increased unpredictability in runtime with Partial Reconfiguration (PR).TRNG based 
on an LFSR and an ADPLL is a hardware-based random number generator that uses 
the principles of both LFSR and an ADPLL to generate random numbers. It offers 
a higher degree of randomness and unpredictability than an LFSR alone, making it 
useful for applications where true randomness is important, such as cryptography. 
Therefore, TRNGs employing FPGA digital logic design have additional freedom, 
performance, and convenience than TRNGs employing analog circuitry [8]. Because 
of the different sources of unpredictability utilized in the production of stochastic 
randomized sequence, such as acquired Jitter [9], metastability [10], and transitional 
impacts [11] from different resources like PLL, ROs, and FFs which all greatly influ-
ence the TRNG’s speed. The strong level of security provided by the cryptographic 
system is based on generations of random and unique digital key sequences [12]. This 
work aims to establish and implement a 15-bit LFSR with ADPLL-based TRNG (15-
LAT) architecture on the FPGA platform, as explained in the sections below: Sect. 1: 
Introduction, Sect. 2: Summary of an ADPLL used in proposed TRNG (15-LAT) 
Architecture, Sect. 3: Proposed design for implementing TRNG based on ADPLL 
with LFSR, Sect. 4: FPGA realization of TRNG design centered on ADPLL with 15-
bit LFSR, Sect. 5: Experiment results, Sect. 6: Comparison among different TRNGs, 
Sect. 7: Conclusion. 

1.1 Random Number Generators Type 

RNGs are typically divided into 2 different categories. 

Pseudo-Random Number Generators (PRNGs) 
A PRNG is a probabilistic algorithm that generates an unpredictable bitstream of data 
from a non-repetitive sequence of random bits. It is generated via specific software 
instructions and is activated by a function that generates a predictable key stream 
[13]. As a consequence, a continuous, cyclical, and repeated sequence of a random 
sequence is generated that approximates the properties of earlier generated arbitrary 
sequences. PRNGs employ a preset technique to generate a series of outcomes based
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on the previous entropy seed [14]. It takes an initial number (the “seed”), performs 
a series of calculations on it, and then outputs a sequence of numbers that seem to 
be random. The sequence of numbers is dependent on the seed, so if the seed thus 
generated is known, then the generated numbers can be reproduced. 

True Random Number Generators (TRNGs) 
Whereas TRNG is a method of producing unexpected randomized numbers that rely 
on both physical processes and a non-deterministic source. These physical processes 
range from measuring thermal noise in resistors to observing radioactive decay. Addi-
tionally, the absence of similarity between the recently generated bitstream as well 
as the most recently created data sequence [10] provides TRNG with high robustness 
over PRNG. This architecture receives its output entirely from an asynchronous phys-
ical process occurring under the surface. Because no intermediate data is preserved 
in the generator, the result is entirely dependent on the physical operation and never 
upon any predefined information. TRNGs provide a guarantee of unpredictability 
that PRNGs cannot provide. 

2 A Summary of an ADPLL Used in the Proposed TRNG 
(15-LAT) Architecture 

We combine our LFSR using an ADPLL layout comprising ring oscillators and flip-
flops to provide the requisite total entropy seed for the stochastic sequence generation 
of the proposed TRNG. ADPLL is an electronic circuitry technique that permits the 
functional reproduction of the basic digital block on the Field programming Gate 
Array board. ADPLL implements phase-locked loops (PLLs) entirely digitally [15]. 
It is consist of 3 basics element, i.e., Phase detectors (PDs), Loop filters (LFs) as 
well as Digital Control Oscillators (DCOs). XOR-Gate act as the phase detector (PD) 
[16]. ADPLL makes use of PD to reduce the amount of difference that exists between 
the 2 streams. 

To remove undesired frequency components, K counter is utilized as a loop filter 
[18]. ID counters operate in the same way to DCOs such that they modify the frequen-
cies based on the LF input result. Figure 1 depicts the overall circuit diagram of an 
ADPLL. Mfo, the clock frequency driving the K counter, is the same as the K clock. 
The ID counter’s clock signal is 2Nfo, while M and N represent the K counter and 
ID counter’s modulus controls, correspondingly. M is often set to 8, 16, 32, …, with 
M = 2N used to fix the N values. The XOR gate’s XOR out signal is fed into the K 
counter, which generates a carry signal (ca) [15].



278 H. B. Meitei and M. Kumar

Fig. 1 Circuit diagram of an ADPLL used in ACT architecture [17] 

Fig. 2 Block diagrammatic 
form of K counter used as 
loop filters in our proposed 
(15-LAT) architecture [16] 

2.1 K Counter as Loop Filter (LF) Used for ADPLL 

A K counter, as shown in Fig. 2, is a type of LF or integrator that operates in tandem 
with an EXOR or JK phase detector. It is made up of 2 distinct counters, an up counter 
as well as a down counter, that both count upward. The K-modulus counter has a k 
range of 0 to k − 1, and its value equals M times the center frequency. For the down 
counter to be enabled, the DN/UP condition must always be high, while for the up 
counter to be enabled, the DN/UP condition must always be low [19]. 

2.2 Digital Control Oscillator (DCO) Used in ADPLL 

DCOs are a form of adaptive oscillator that use the output of the loop filter to alter 
the input signal’s frequency [19]. Figure 3 depicts the DCO network configuration 
of the ADPLL. The final output of DCO is known as id out [15].
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Fig. 3 DCO circuit diagram [17] 

3 Proposed Design for Implementing TRNG Architecture 
Based on ADPLL with 15-LFSR 

A LFSR is a form of a shift register that generates a sequence of binary numbers 
via feedback. The sequence is decided by the feedback function, which is a Boolean 
function that accepts the current state of the shift register as an input and returns a new 
bit that is shifted into the register. It is possible to develop an LFSR capable of gener-
ating a stream of random numbers by carefully configuring the feedback function. 
Theoretically, an LFSR is a series of connected FFs, with each flip-input flop’s being 
the output of the previous one [20]. It is produced by combining XOR gates within 
the feedback of a series of flip-flops. The initial number of the LFSR, also known 
as the seed number, consists of both 1s and 0s. Even if the seed number influences 
following random variables, it is essential to choose a number with minimal energy 
usage. Figures 4a and b exhibit the architectures of LFSR1 and LFSR2, respec-
tively. Exclusive-OR (XOR) with a single bit is used as a linear function. LFSR is 
composed of XOR gates with DFF. Typical LFSR polynomials are characterized by 
XOR positions. P(x) = x5+x4+x +1. An LFSR with a properly selected feedback 
mechanism can generate a seemingly unpredictable bitstream. The starting value of 
the LFSR is referred to as the seed; the sequence of integers generated by the shift 
register depends on its prior or present configuration. Due to the register’s limited 
number of stages, it subsequently reaches a cycle. The maximum size of an LFSR 
series is 2n minus one, producing a randomized periodic pattern [21]. The feedback 
function of an LFSR is often represented by a simple polynomial. The maximum 
feasible LFSR generates the greatest number of PRPG configurations with a design 
count of 2n − 1, where n is the number of register components in the LFSR.

Figure 4 illustrates the fundamental structural design of the 15-bit-LFSR utilized 
in our suggested architecture. Additionally, TRNG shouldn’t be overly dependent on 
technology. Nevertheless, because the PLL is not available across all FPGA types, it is 
challenging for engineers. In addition, PLL-based TRNG needs additional energy and 
occupies greater storage [21] over ADPLL-based TRNG. Due to its ADPLL-based 
digitized structure, our Noval 15-LAT design may be created as well as improved in 
a short time.
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Fig. 4 a 15-bit linear feedback sift register 1 (15-Bit LFSR1) [7]. b 15-bit linear feedback sift 
register 2 (15-Bit LFSR2) [7]

ADPLLs configured separately using dual 15-bit LFSRs connected in series using 
the ring oscillator comprise our design proposal. In our RO architecture, we imple-
mented a pulse generator consisting of 51 inverters in order to generate the clock 
signal for the suggested 15-LAT structure. Using VHDL, 15-bit LFSR and ADPLL-
based TRNG implementations are constructed. In additional to the flip-flop and 
metastability criterion, explore all important types of entropy, such as disruption by 
ADPLLs [22] and proposed rings oscillators [17]. Figure 5 depicts the suggested 
TRNG design-based ADPLL with 15-bit LFSR. The system clock is set to 100 MHz 
and is supplied to the divide by two counters on the pulse generator circuit.

Here, 100 MHz is used as the operating system CLK and is sent to the pulse 
generator circuit’s divide by two counter. Now, a 50 MHz pulse is received by a 
circuit in which a pulsing signal oscillates amongst 2 voltage states signifying true 
and false. XORing the jitter output produced by two cascading ring-oscillators and 
a 15-bit LFSR using the 400 MHz ID output pulse (DCO output) of the ADPLL as
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Fig. 5 Proposed TRNG architecture with 15-bit LFSR based on ADPLL (15-LAT)

well as the Q1 of DFF1 feedback loop. The outcome of Q1 of DFF1 is therefore 
supplied to d2 of DFF2 together with the counter’s produced CLK pulse. By using 
an ADPLL in conjunction with an LFSR, it is possible to create a TRNG that has a 
higher degree of randomness and unpredictability than an LFSR alone. Q2 of DFF2 
yields a random bitstream that is transmitted for post-processing to verify that the 
sampler’s outputs random numbers are unbiased. 

4 FPGA Realization of TRNG Design Based on ADPLL 
with 15-Bit LFSR 

The inquiry utilizes an Artrix-7 FPGA system (XC7A35T CPG236-1) and an oscil-
loscope (DSO-X3012A) to record the pattern. Table 1 lists the FPGA pinouts for 
the TRNG solution based on ADPLL with CS phenomenon. Figure 6 shows the 
experimental setup for an ACT-TRNG. The total system clock is generated utilizing 
the W5 input mode as well as the V17 T-FF inputs. The outcomes are connected to 
JB1:A14, which serves as the DSO’s live probe, and JB5:GND, which serves as the 
ground probe. 

Table 1 Pins information for 
the integrated proposed 
TRNG architecture centered 
on ADPLL with 15-bit LFSR 

Symbol Details Mode Pinned mode 

CLK Operating-clock Input W5 

t T-FF Input V17 

rst Reset Input V16 

q3 Resulted random data Output A14 

Vcc Power supply USB port
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Fig. 6 Experimental configuration of the FPGA-DSO interface for the 15-LAT architecture 

5 Experiment Results 

The suggested TRNG centered on ADPLL with 15-bit LFSR is schematically 
depicted in Fig. 7. All schematic designs were generated in Vivado v.2015.2, and 
simulations were run on an Artrix-7 FPGA board with the xc7a35tcpg236-1 module. 
Figure 8 and Fig. 9 illustrates the TRNG output waveforms along with the FFT 
waveform respectively collected by DSO of the proposed 15-LAT architecture 
(Table 2). 

Fig. 7 Schematic diagram for the proposed 15-LAT architecture
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Fig. 8 The envisioned TRNG’s output waveform is constructed upon ADPLL and LFSR (15-LFSR) 

Fig. 9 FFT output waveform of TRNG build on ADPLL along with LFSR (15-LFSR) architecture 

Table 2 NIST (SP 800-22) 
test result NIST-test p-value Result 

Frequencies 0.9990 Passed 

Block-frequencies 0.9999 Passed 

Run 0.9990 Passed 

Rank 0.0000* Failed 

DFT 0.o218 Passed 

Serial test 0.9936 Passed 

Linear-complexities test 0.0000* Failed 

Longest-run test 0.0500 Passed 

Approximate-entropy test 0.0000* Failed 

Cumulative-sum test 0.9990 Passed 

* NIST failed whenever the p value is 0.000
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6 Comparison Between Existing TRNG with Proposed 
TRNG Based on ADPLL with 15-Bit LFSR 

Tables 3 and 4 compares the new 15-LAT architecture to the previous TRNGs archi-
tectures. The performance of numerous TRNGs is compared in the Table 3. Our  
presented TRNG architecture-based ADPLL with 15-bit LFSR made better use of 
existing hardware capacity even though utilizing minimum power.

7 Conclusion 

Our method makes a substantial contribution toward the growing utilization of 
FPGAs in encryption methods. The system’s overall security is strengthened by 
having the capacity to completely enclose a TRNG architecture with the FPGA. In 
this paper, we introduced a unique entropy source for the 15-LAT architecture that 
significantly reduces engineering complexity. We empirically confirmed the archi-
tecture’s viability and showed that achieving the stochastic model’s entropy needs is 
always possible, especially whenever placing constraints are removed or the archi-
tecture is ported to a different generation of FPGAs. This characteristic provides the 
TRNG a good candidate for inclusion into wider crypto methodologies. Random-
ized bits are generated and are statistically valid using NIST 800-22 test. By using 
15-bit LFSR along with ADPLL in the TRNG design, we can reduce hardware 
resources while increasing the efficacy of the FPGA chips, as shown in Table 3. With 
this study, the potential of cybersecurity via ADPLL-based TRNG with 15-LFSR 
appears to be optimistic, giving it a more dependable and secure solution for a variety 
of applications.
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