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1 Introduction 

The problems of real world natural phenomena are usually express by nonlinear 
equation which exact roots are infeasible due to inherent complexities. Analytical 
methods for solving equations are not applicable for such type of equations. Due to 
this inconvenience, we use iterative methods for solving nonlinear equation. Most 
of researchers in Numerical Analysis are trying to construct iterative methods for 
solving nonlinear equations. 

Newton’s method is one popular iterative method for solving nonlinear equations, 
which quadraticaly converges for simple roots but linear for multiple roots. For a 
nonlinear equation ζ (υ) = 0 having multiple roots with multiplicity ω ≥ 1 modified 
Newton’s methods is given as: 

υn+1 = υn − ω 
ζ (υn) 
ζ '(υn) 

, (1) 

This iterative method (1) is quadraticaly convergence [1, 2]. 
Chebyshev’s Method for multiple is given as follows: 

υn+1 = υn − 
ω(3 − ω) 

2 

ζ (υn) 
ζ '(υn) 

− 
ω2 

2

(
ζ (υn)

2
)
ζ '(υn) 

ζ '(υn)
3 , (2) 

which is third order of convergence [1]. However, these are one point iteration func-
tions. The one point iteration functions required higher-order derivative to increase
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the order of convergence (see in Traub [1] and Ostrowski [2]). To reduce this diffi-
culties, several research scholar whose are in the field of Numerical Analysis, are 
trying to get multipoint iteration function of higher-order [3]. 

In the year 2009, Shengguo et al. [4] construct an iterative scheme for multiple 
root which is fourth-order of convergence. 

yn = υn − 
2ω 

ω + 1 
ζ (υn) 
ζ '(υn) 

υn+1 = υn − 
1 
2 ω(ω − 2)

(
ω 

ω+2

)ω 
ζ '(yn) − ω2 

2 ζ
'(υn) 

ζ '(υn) −
(

ω 
ω+2

)ω 
ζ '(yn) 

(3) 

Li et al. [5] introduced a fourth-order scheme for multiple roots, in 2010. 

yn = υn − 
2ω 

ω + 2 
ζ (υn) 
ζ '(υn) 

υn+1 = υn − a3 
ζ (υn) 
ζ '(yn) 

− ζ (υn) 
b1ζ '(υn) + b2ζ '(yn) 

(4) 

where 

a3 = −  
(ω − 2)ω

(
ω 

ω+2

)ω 
(ω + 2)3 

2
(
ω3 − 4ω + 8

)

b1 = −
(
ω3 − 4ω + 8

)2 

ω
(
ω2 + 2ω − 4

)(
ω4 + 4ω3 − 4ω2 − 16ω + 16

)

b2 =
ω2

(
ω 

ω+2

)−ω(
ω3 − 4ω + 8

)

(
ω2 + 2ω − 4

)(
ω4 + 4ω3 − 4ω2 − 16ω + 16

)

In 2019, Bhel and Al-Hamadan [5] presented a fourth-order method for multiple 
roots which is optimal: 

yn = υn − ω 
ζ (υn) 
ζ '(υn) 

zn = υn − ω 
ζ (yn) 
ζ '(υn)

(
1 − μ 
1 − 2μ

)
Q(μ). (5) 

where μ =
(

ζ (yn ) 
ζ (υn )

) 1 
ω 
and Q(μ) is weight function. 

In this article, we present an optimal fourth-order iterative scheme for multiple 
roots using weight function. We check the behaviour of the developed scheme a 
using numbers nonlinear examples. Form the result, it is notice that the developed
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method perform better as compare to other standard iterative schemes available in 
the literature. The remaining part of this article is sort out as follows. In the second 
section, we are presenting two fourth-order iterative schemes function using weight 
function and the proof is also provided. In the third section, we present the comparison 
result of existing methods with the new methods. Conclusion is presented in the last 
section. 

2 Development of the Method 

In the year 2019, Francisco et al. [6] present an iterative scheme which is written as 
follows: 

yn = υn − 
ζ (υn) 
ζ (υn) 

υn+1 = υn − 
ζ (2) (υn) + ζ (υn)ζ (yn) + 2ζ (2) (yn) 

{ζ (υn)ζ '(υn)} (6) 

The order of convergence of the scheme defined in Eq. (6) is four for the nonlinear 
functions having simple roots. We are trying to improve the method in Eq. (6) to an  
iterative scheme for solving nonlinear equations having multiple roots. The scheme 
is given as follows: 

yn = υn − ω 
ζ (υn) 
ζ '(υn) 

υn+1 = υn − ω[(tn) 
ζ 2(υn) + ζ (υn)ζ (yn) + 2ζ 2(yn) 

ζ (υn)ζ '(υn) 
(7) 

where tn =
(

ζ (yn ) 
ζ (υn )

) 1 
ω 

Theorem 1 If ζ : R → R has a multiple zero β with multiplicity ω = 2 and is 
sufficiently differentiable function in the neighbourhood of the roots β. . Then, the 
order of convergence of iterative methods defined in Eq. (7) is four, if [(tn) satisfies
[(0) = 1, ['(0) = 1, and [''(0) = 2, then (7) has the following error equation 

υn+1 − β =
(

− 
1 

48 
k3 1

(
[(3) (0) − 27

) − 
k2k1 
4

)
e4 n + O

(
e5 n

)
(8) 

Proof 
Since β is a root of ζ (υ) with multiplicity ω = 2, let  en = υn − β be the error at the 
nth iteration. Using Taylor’s series expansion on ζ (υn) and ζ '(υn) we get:
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ζ (υn) = 
ζ ''(β) 
2! e2 n

(
1 + enk1 + e2 nk2 + e3 nk3 + e4 nk4 + O(en)

5
)

(9) 

And 

ζ '(υn) = 
ζ (2) (β) 

2! e2 n(2 + 3k1en + 4k2e2 n + 5k3e3 n + 6k4e4 n + O(en)
5 (10) 

where ki = 2! 
(2+i)! 

ζ (2+i ) (β) 
ζ (2)(β) , i = 1, 2, 3, ... 

Using (9) and (10) in the second step of (7) 

yn − β = 
k1e2 n 
2 

+
(
k2 − 

3k2 1 
4

)
e3 n +

(
9k3 1 
8 

− 
5k2k1 
2

+ 
3k3 
2

)
e4 n + O

(
e5

)
(11) 

Taylor’s expansion of ζ(yn) about β, we have  

ζ (yn) = 
ζ (2) (β) 

2! e2 n

(
1 

4 
k2 1e

2 
n + k1

(
k2 − 

3k2 1 
4

)
e3 n +

(
29k4 1 
16 

− 4k2k2 1 + 
3 

2 
k3k1 + k2 2

)
e4 n

)

+ O
(
e5 n

)
(12) 

Using (9) and (12), we get 

υn+1 − β = (1 − [(0))en + 
1 

2 
k1

(
[(0) − ['(0)

)
e2 n 

+
(
k2

(
[(0) − ['(0)

) − 
1 

8 
k2 1

(−10 ['(0) + [''(0) + 8[(0)
))

e3 n 

+ 
1 

48

(
k3 1

(
27

(−5 ['(0) + [''(0) + 4 [(0)
) − [(3) (0)

)

− 12 k2 k1
(−17 ['(0) + 2 [''(0) + 14 [(0)

) + 72 k3
(
[(0) − ['(0)

)

)

e4 n 

+ O
(
e5 n

)
(13) 

Using (9) (12) and (13) in the last step of (7). 

υn+1 − β = (1 − [(0))en + 
1 

2 
k1

(
[(0) − ['(0)

)
e2 n 

+
(
k2

(
[(0) − ['(0)

) − 
1 

8 
k2 1

(−10['(0) + [''(0) + 8[(0)
))

e3 n 

+ 
1 

48

(
k3 1

(
27

(−5['(0) + [''(0) + 4[(0)
) − [(3) (0)

)

− 12k2k1
(−17['(0) + 2[''(0) + 14[(0)

) + 72k3
(
[(0) − ['(0)

)

)

e4 n 

+ O
(
e5 n

)
(14) 

If we are putting [(0) = 1, ['(0) = 1 and [''(0) = 2, error equation become
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υn+1 − β =
(

− 
1 

48 
k3 1

(
[(3) (0) − 27

) − 
k2k1 
4

)
e4 n + O

(
e5 n

)
(15) 

Thus the proof is completed. 

Theorem 2 If ζ : R → R has a multiple zero β with multiplicity ω ≥ 3 and is 
sufficiently differentiable function in the neighbourhood of the roots β. Then, the 
order of convergence of iterative methods defined in Eq. (7) is four, if [(tn) satisfies
[(0) = 1, ['(0) = 1, and [''(0) = 4, then (7) has the following error equation 

υn+1 − β =
(
k3 1

(
[(3) (0) + 3ω + 27

) − 6k2k1ω 
6ω3

)

e4 n + O
(
e5 n

)
(16) 

Proof 
The proof is same as the proof of theorem 1. 

3 Numerical Results 

In this section, we deal with computational aspects of the proposed scheme with 
other existing methods such as fourth-order methods given in Eq. (3) denoted 
as (LM), method in Eq. (4) denoted as (LCM) and Behl Method (BM) given in 
Eq. (5) by applying on various nonlinear examples. In Tables 1, 2, 3 and 4 we 
have presented |ζ (υn)|, absolute of difference between the successive iterations 
|υn − υn−1|. Approximate roots. (υn). obtained after completion of 4 iterations and 
the computational order of convergence (COC) for each example are also presented. 
The COC is obtained by using the following formula [1]: 

ρ ≈ 
Log

|
|| υn+1−β 

(υn−β)

|
||

Log
|
|| υn−β 
υn−1−β

|
||

Table 1 Convergence behaviour for ζ1(υ) 
Method υ4 |υn − υn−1| |ζ (υ)| COC 

LM 1.2917332924436028 5.5927 × 10−40 1.1200 × 10−312 4.0000 

LCM 1.2917332924436028 6.1797 × 10−36 1.1200 × 10−312 4.0000 

BM 1.2917332924436028 1.1567 × 10−38 2.0891 × 10−301 4.0000 

NMM 1.2917332924436028 7.0179 × 10−41 7.664 × 10−319 4.0000
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Table 2 Convergence behaviour for ζ2(υ) 
Method υ4 |υn − υn−1| |ζ (υ)| COC 

LM 2.0000000000000000 6.0530 × 10−57 3.5493 × 10−11259 4.0000 

LCM 2.0000000000000000 2.9024 × 10−57 3.3971 × 10−11259 4.0000 

BM 2.0000000000000000 4.8282 × 10−59 8.1432 × 10−11619 4.0000 

NMM 2.0000000000000000 7.0179 × 10−61 7.6647 × 10−11719 4.0000 

Table 3 Convergence behaviour for ζ3(υ) 
Method υ4 . |υn − υn−1| |ζ (υ)| COC 

LM 2.8500000000000000 6.3883 × 10−84 7.5412 × 10−370 4.0000 

LCM 2.8500000000000000 6.3883 × 10−84 7.5412 × 10−370 4.0000 

BM 2.8500000000000000 1.3949 × 10−49 9.8347 × 10−396 4.0000 

NMM 2.8500000000000000 1.4067 × 10−49 1.0569 × 10−397 4.0000 

Table 4 Convergence behaviour for ζ4(υ) 
Method υ4 |υn − υn−1| |ζ (υ)| COC 

LM 2.4905398276083051 1.0312 × 10−19 2.3983 × 10−1505 4.0000 

LCM 2.4905398276083051 4.0539 × 10−20 8.8944 × 10−1538 4.0000 

BM 2.4905398276083051 1.9627 × 10−19 1.7767 × 10−1477 4.0000 

NMM 2.4905398276083051 1.9627 × 10−19 2.1011 × 10−1667 4.0000 

The numerical result has been carried out with Mathematica $12$ software, * 
denotes for divergence. 

Example 1 
ζ1(υ) = (

9 − 2υ − 2υ4 + cos2υ
)(
5 − υ4 − sin2υ

)
, υ0 = 1.5, ω  = 2. 

Example 2 
ζ2(υ) = (

(υ − 1)3 − 1
)50 

, υ0 = 2.1, ω  = 50 

Example 3 
ζ3(υ) = υ4 + 11.50υ3 + 47.49υ2 + 83.06325υ + 51.23266875, υ0 = −2.7 and ω 
= 2. 

Example 4 

ζ4(υ) =
(
e−υ2+υ+3 − υ + 2

)20 
, υ0 = 2.1 and ω = 20,
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4 Conclusion 

We construct a new fourth-order iterative method base on Newton’s and Francisco’s 
methods using weight functional approach. It attends its optimal order. We test, 
by comparing the newly developed methods with other methods having the same 
convergence are order using several nonlinear equations having multiple roots. The 
results obtained from the comparison tables illustrate the superiority of the method 
over the existing methods, despite choosing the same test problem and the same 
initial guess. Tables confirm that our iterative method has smaller value of |ζ (υ)| 
and |υn − υn−1|. 
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