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1 Introduction 

Notion of inflation was established in the study of the very early cosmos to solve 
numerous cosmological problems such as flatness problem, entropy problem, horizon 
problem, monopole problem, and so on. Even though there are numerous competing 
solutions to the above-mentioned difficulties of hot Big Bang (BB) model, we don’t 
possess a fully functional inflationary model (IM). If an IM can reheat the cosmos, it 
is termed a feasible IM. When the inflationary phase has finished, reheating begins, 
raising the temperature of a very cold cosmos, making this period extremely important 
for our universe. No feasible model could tackle the challenges of hot BB model and 
the graceful exit issue of old IM until 1982. 

An IM was proposed by Linde [1] known as the “New” IM. This IM provided 
answers to the difficulties of a hot BB and elegant exit. In contrast to the old IM, 
which showed the cosmos to be inhomogeneous, the new IM depicts it as homo-
geneous. The Cosmic Microwave Background power spectrum has recently been 
observed to be identical to the order of 10−5 [2, 3] demonstrating greater success 
for the new IM than the old IM. Many model observations show that the cosmos is 
presently going through a period of accelerated expansion. Following the discovery 
that cosmic expansion is speeding up [4, 5] subsequent Balloon-born experiments 
such as Boomergang [6] and Maxima [7] have identified the anisotropic spec-
trum of the CMBR observation of a flat universe. This evidence suggests that 
present mainstream model of cosmology is influenced by dark energy, an unclus-
tered fluid with a huge -ve pressure that is reason for the universe’s expan-
sion. Spergel et al. [8] also discovered that the cosmos is spatially flat, which 
accounts for 70% of dark energy. Alternative theories to be found such as f (R) 
gravity [9–14] and f (T ) gravity [15, 16]. The Einstein-Hilbert (E–H) action has
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demonstrated the modifications of general relativity. Harko et al. [17] proved the 
greatest continuation of E–H action by adopting gravitational Lagrangian in the 
form of an arbitrary function of the R and matter LagrangianLm. f (R, T ) gravity 
is a generalised form of f (R) gravity [17]. Trace dependency must be caused by 
exotic imperfect fluid or quantum processes. They showed three different variations 
of arbitrary function f (R, T ). Ibotombi et al. [18, 19] provided power law and expo-
nential law based on bulk viscous cosmological models in Lyra’s manifold and scale 
covariant theory of gravity. Adhav [20] studied the anisotropic perfect fluid cosmo-
logical model within the context of this theory and Ahmed et al. [21] explored the 
BT-V model for particular form f (R, T ) = f 1(R)+ f 2(T ), where they took cosmo-
logical constant⌃ as a function of T . Sahoo et al. [22] investigated Locally Rotation-
ally Symmetric BT-I model in the context of this theory with variable ⌃(T) and got 
many surprising solutions. Sahoo et al. [23] examined the physical and geometrical 
solutions to the variable deceleration parameter in anisotropic cosmological models 
under this theory. Singh et al. [24] studied power law inflation on Lyra’s manifold 
with an anisotropic fluid and discovered that cosmos is non-isotropic at the begin-
ning of universe and becomes isotropic afterwards. Singh et al. [25] examined the 
dynamical properties of non-isotropic dark energy in gravity theory and discovered 
that values of matter and dark energy densities Ωm and Ω⌃ are in complete concil-
iation with WMAP statistics over the previous five years. For the very first time in 
this gravity theory, S. Bhattacharjee et al. [26] offered a modelling of inflationary 
scenarios. Singh [27] looked into the theory in a 5D universe and established that 
dark energy is important in the Kaluza–Klein world as wet dark fluid, as well as the 
fact that anisotropic and new isotropic models of the Kaluza–Klein universe can be 
developed. Another work by Singh [28] examined dark energy in the context of this 
modified theory from Locally Rotationally Symmetric BT-I metric. 

Current work was motivated by the previous work in order to investigate power law 
inflation in f (R, T ) theory and organised as follows: We derived FE of this theory in 
Sect. 2. In Sect. 3 model with power law has been discussed. Energy conditions and 
model’s observational parameters with power law are then discussed. The energy 
conditions and other model observational parameters are then discussed in Sect. 4. 
We examine our findings and concluded in Sect. 5. 

1.1 f (R, T )Gravity and Its FE 

Anisotropic Locally Rotationally Symmetric BT-I model is defined by the metric as 
in an orthogonal frame. 

ds2 = dt2 − A2 dx2 − B2
(
dy2 + dz2

)
(1) 

The cosmic scale factors are denoted by A and B. This metric exhibits symmetry 
about z-axis and has a symmetric plane in conjunction with xy-plane. Tensor of 
matter’s energy momentum is given as
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T i j = diagonal
[
ρ,  −ρx , −ρy, −ρz

]
. (2) 

And can be parametrized as 

T i j = diagonal
[
ρ,  −px , −py, −pz

]

= diagonal
[
1, −ωx , −ωy, −ωz

]
ρ 

= diagonal[1, −ω, −(ω + δ), −(ω + δ)]ρ (3) 

Energy density is denoted byρ, and the symbols px . ,  py , and pz respectively, stand 
for pressures across the x , y,. and z axes. ωx , ωy , and ωz, respectively, are fluid’s 
directional EoS parameters along x , y, and z axes. By establishing ωx = ωy = ωz , 
we can now parameterize the deviation from isotropy. The divergence from ω on 
the y and z axes is the skewness term δ, which is introduced after that. δ and ω 
ain’t necessary constants in this case, and they can be considered as functions of t 
(cosmic time). FE of this theory are determined using E–H variational principle. For 
this theory, Harko et al. [17] utilise subsequent action 

S = 
1 

16π 
∫ f (R, T ) 

√−gd4 x + ∫ Lm 
√−gd4 x 

= ∫ 
√−g

(
1 

16 
f (R, T ) + Lm

)
d4 x (4) 

with T as trace of energy momentum tensor Ti j  , R as scalar curvature, Lm is matter 
Lagrangian density and g denotes metric determinant. Taking f (R, T ) = R+2 f (T ), 
we vary action into Eq. (4) w.r.t gi j , and obtain the FE of the theory as 

Ri j  − 
1 

2 
gi j  R = 8π GTi j  + 2 fT Ti j  + [2 p fT + f (T )]gi j (5) 

here G denotes gravitational constant, Ri j  is Ricci scalar, and gi j  ui u j = 1. We let  
function f (T ) = μT with μ as constant, then for metric (1), obtain the FE as

(
Ḃ 

B

)2 

+ 2
(
Ȧ Ḃ 

AB

)
= −ρ[8π G + 2μ + 1 − 3ω − 2δ] − 2μp (6)

(
Ḃ 

B

)2 

+ 2 
B̈ 

B 
= ρ[(8π G + 2μ)(ω) − (1 − 3ω − 2δ)] − 2μp (7) 

Ä 

A 
+ 

B̈ 

B 
+ 

Ȧ Ḃ 

AB  
= ρ[(8π G + 2μ)(ω + δ) − (1 − 3ω − 2δ)] − 2μp (8) 

here the overhead indicates the differentiation w.r.t t . Spatial volume (V ) can be 
calculated as follows:
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V = a3 = AB2 

a = (AB2 ) 
1 
3 (9) 

a stands for the universe’s scalar factor. 
The following formula is used to compute average Hubble constant or parameter 

(H ): 

H = 
ȧ 

a 
= 

1 

3

(
Ȧ 

A 
+ 2 

Ḃ 

B

)
(10) 

In x, y, and z axes’ directions, directional H can be described as 

Hx = 
Ȧ 

A 
, 

Hy = Hz = 
Ḃ 

B 
(11) 

The shear term σ 2 and the expansion term θ are provided by 

θ = 
Ȧ 

A 
+ 2 

Ḃ 

B 
(12) 

and 

σ 2 = 
1 

2

[

H 2 

i − 3H 2
]

(13) 

When we deduct (7) from (8), we obtain 

d 

dt

(
Ȧ 

A 
− 

Ḃ 

B

)
+

(
Ȧ 

A 
− 

Ḃ 

B

)
V̇ 

V 
= −(8π G + 2μ)δρ (14) 

When we integrate the equation above, we get 

Ȧ 

A 
− 

Ḃ 

B 
= 

λ 
V 

exp ∫ 
(8π G + 2μ)

(
Ḃ 
B − Ȧ A

) ρδdt (15) 

where the integrating constant is λ. We assume the following form to determine the 
exact solution to Eq. (15): 

ρδ 
Ḃ 
B − Ȧ A 

= 
1 

t 
(16) 

from (15) and (16), we achieve
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Ȧ 

A 
− 

Ḃ 

B 
= 

λ 
V 
t (8π G+2μ) (17) 

2 Model with Power Law 

To thoroughly solve FE of f (R, T ), we assumed the following Power Law. a = a0tn 
so using value of a in (9), we get 

V = a3 

= AB2 

= a3 0 t
3n (18) 

where a0 > 0 and n ≥ 0 are constants. Using (18) in (17) and on integrating, it gives 

A = BC1 exp

[
λt (8π G+2μ−3n+1) 

a3 0 (8π + 2μ − 3n + 1)

]
(19) 

where integration constant is C1. From above expression of A and B, we see that 
their rates of expansion are different in the different directions. Using (18) and (19), 
we now get A and B as follows: 

A = a0tn C 
2 
3 
1 exp

[
2λt (8π G+2μ−3n+1) 

3a3 0 (8π G + 2μ − 3n + 1)

]
(20) 

B = 
a0tn 

C 
1 
3 
1 

exp

[ −λt (8π G+2μ−3n+1) 

3a3 0 (8π G + 2μ − 3n + 1)

]
(21) 

here integration constant is C1. The following are the directional H for this model: 

Hx = 
Ȧ 

A 
and Hy = 

Ḃ 

B 
. 

On solving we get, 

Hx = 
n 

t 
+ 

2λt (8π G+2μ−3n+1) 

3a3 0 
(22) 

and 

Hy = 
n 

t 
− 

λt (8π G+2μ−3n+1) 

3a3 0 
(23)
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H = 
1 

3

(
Ȧ 

A 
+ 

2 Ḃ 

B

)

= 
1 

3

[
Hx + 2Hy

]
(24) 

= 
n 

t 
(25) 

For n > 0, a > 0, H remains positive. This demonstrates that universe is expanding 
as it evolves. This observation is in accordance with latest observational data. The 
scalar expansion is denoted by the symbol θ where θ = 3H . So, 

θ =
(
Ȧ 

A 
+ 

2 Ḃ 

B

)

= 
3n 

t 
(26) 

It suggests that in the beginning, the universe expands at an unlimited rate and 
then expands and returns into the phase of initial singularity in later periods. The 
shear scalar σ 2 is written like this: 

σ 2 = 
1 

2

[

H 2 

i − 3H 2]

= 
1 

2

[
H 2 

x + 2H 2 
y − 3H 2

]
(27) 

Now in our model we are using the condition, 

ω + δ = 0 (28) 

Now using above condition and Eq. (22) and (23) in (6), (7), and (8), we get 

ρ = −1 

(8π G + 2μ)

[
2n 

t2 
− 

λt (8π G+2μ−3n−1) (8π G + 2μ) 
3a3 0 

− 6
(

λt (8π G+2μ−3n) 

3a3 0

)2
]

(29) 

p = −1 

8π G + 2μ

[
λt (8π G+2μ−3n−1)[9n + 3(8π G + 2μ − 3n)] 

3a3 0

]
(30) 

Now using the relations of equation of state, ω = p 
ρ using this on dividing p by 

ρ we get our ω as
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ω =
[

λt (8π G+2μ−3n−1)[9n+3(8π G+2μ−3n)] 
3a3 0

]

[
2n 
t2 − λt (8π G+2μ−3n−1)(8π G+2μ) 

3a3 0 
− 6

(
λt (8π G+2μ−3n) 

3a3 0

)2
] (31) 

From this mathematical expression, we see that plot of ω shifts from +ve quadrant 
to −ve quadrant. Thus shifting from deceleration to acceleration phase of universe 
is witnessed in this model. There are numerous options for obtaining values for 
a0, λ, μ, and n. Finding suitable values for these parameters is all that is required to 
develop physically viable cosmological models. In Fig. 1, time variation of directional 
parameters are plotted and are decreasing functions of time in positive domain. Plot 
of energy density versus time is displayed in Fig. 2 and is decreasing as the universe 
evolves. Pressure (p) with time is shown in Fig. 3 and is always negative which 
implies universe’s expansion. We see plot of EOS parameter against time in Fig. 4 
and there is the phase transition of deceleration to acceleration. 

Fig. 1 Time variation of Hx , Hy , and H for n = 0.5, λ = 1, μ = 0.01, 8π G = 0.5,a0 = 0.9
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Fig. 2 Time (t) versus Density (ρ) for  n = 0.5, λ = 1, μ = 0.1, 8π G = 0.1, a0 = 0.8 

Fig. 3 Time (t) versus Pressure (p) for  n = 0.5, λ = 1, μ = 0.01, 8π G = 0.5, a0 = 0.9
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Fig. 4 EOS Parameter (ω) versus time (t) for  n = 0.5, λ = 1, μ = 0.01, 8π G = 0.5, a0 = 0.9 

3 Energy Conditions and Some Observational Parameters 

a(t) = 1 
1+z is the observational setup, and the time-redshift relationship is stated as 

t = 
n 

α 
W 

⎡ 

⎣α 
n

(
1 

a0(1 + z)

) 1 
n 

⎤ 

⎦ (32) 

The Lambert W function, commonly called the product logarithm or omega func-
tion, is denoted by W. Using the above relationship, Redshift can be used to represent 
the parameters of the derived model. This kind of relationship is useful for putting 
the model to the test with real-world data. In general relativity, energy conditions 
are classified into four types: weak (WEC), null (NEC), strong (SEC), and dominant 
(DEC) and respectively defined by 

NEC ⇐ ρ + p ≥ 0 (33) 

WEC ⇐ NEC and ρ ≥ 0 (34)  

SEC ⇐ ρ + 3p ≥ 0 (35) 

DEC ⇐ ρ − p ≥ 0 (36)
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The density remains positive, as shown in Fig. 2 at both early and late times. NEC 
> 0, WEK  > 0, DEC  > 0, and SEC < 0 were found in Figs. 5, 6, and 7. SEC  is  
failed, whereas NEC, DEC, and WEC are all fulfilled. 

Fig. 5 3D plot of EC (ρ + p) versus time (t) for  n = 0.5, λ = 1, μ = 0.1, 8π G = 0.1, a0 = 0.15 

Fig. 6 3D plot of EC (ρ + 3p) versus time (t) for  n = 0.5, λ = 1, μ = 0.1, 8π G = 0.1, a0 = 0.2
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Fig. 7 3D plot of EC (ρ − p) versus time (t) for  n = 0.5, λ = 1, 8π G = 0.1, μ = 0.1, a0 = 0.15 

4 Conclusion 

We explored a generalised method of finding the exact solutions of Locally Rota-
tionally Symmetric BT-I space time in this theory by using power law cosmology. 
Here, we assume f (R, T ) = 2μT + R. In figures, energy density of universe is 
decreasing as ages of universe progress, and it demonstrates a positive condition that 
favours observation. Pressure is always negative. In Figs. 1 and 2, the parameters p 
and ρ becomes infinite at t → 0 which suggests that universe starts from Big Bang 
and these parameters becomes extremely small at t → ∞  which are consistent with 
observations. The derived model shows the characteristics of dark energy model as 
ω approaches to −1 with the evolution of time which is in agreement with present 
universe that is assumed to be dominated by dark energy. WEC, SEC, DEC, and 
NEC of model are found to be satisfied. The present model may be able to highlight 
behaviours of universe from the anisotropic behaviours at early universe to acceler-
ated expansion at late epoch. Although this model is simple, this investigation may 
lead to the cosmologists for further research in modified cosmology. 
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