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1 Introduction 

Let f (w) = ∑m 
j=0 c j w j be a polynomial of degree m and let 

Max( f, r ) = max|w|=r 
| f (w)|. 

If f (w) has no zero in |w| < ρ,  ρ ≥ 1, Malik [8] proved that 

Max
(
f ′, 1

) ≤ m 

1 + ρ 
Max( f, 1), (1) 

for which the equality holds for the polynomial (w + ρ)m . 
A natural question that arise is whether there exists an analogous inequality of (1) 

for f (w) having no zero in |w| < ρ, ρ ≤ 1. In this regard, Govil [5, 6] proved the 
following two results. 

Theorem 1 [5] If f (w) is a polynomial of degree m having no zero in |w| < ρ, 
ρ ≤ 1, then 

Max
(
f ′, 1

) ≤ 
m 

1 + ρm 
Max( f, 1), (2)
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provided that
∣
∣ f ′(w)

∣
∣ and

∣
∣F ′(w)

∣
∣ attain their maxima at the same point on the 

circle |w| = 1, where 

F(w) = wm f

(
1 

w

)

. 

Theorem 2 [6] If f (w) is a polynomial of degree m having all its zeros on |w| = 
ρ,  ρ  ≤ 1, 

Max
(
f ′, 1

) ≤ m 

ρm + ρm−1 
Max( f, 1). (3) 

In literature we find refinements, generalizations and extensions of Theorems 1 
and 2 by involving some coefficients of the polynomial f (w) (see [2–4]). 

Definition 1 Let f (w) be a polynomial of degree m and let β be any complex number. 
The polar derivative of f (w) with respect to the point β, denoted by Dβ f (w), is  
defined as 

Dβ f (w) = m f  (w) + (β − w) f ′(w). 

Dβ f (w) is a polynomial of degree at most m − 1. It can be considered as a 
generalized form of the ordinary derivative of f (w) with respect to w due to the fact 
that 

lim 
β→∞ 

Dβ f (w) 
β

= f ′(w). 

Polar derivative extension of (1) was proved by Aziz [1], who under the same 
hypothesis on f (w) proved that 

Max
(
Dβ f (w), 1

) ≤ m
(

ρ + |β| 
1 + ρ

)

Max( f, 1), where |β| ≥ 1. (4) 

2 Lemmas  

We need the following results to prove our results. 
The following lemma is due to Govil and Rahman [7]. 

Lemma 1 [7] If f (w) is a polynomial of degree m having all its zeros on |w| = ρ, 
ρ ≤ 1, then on |w| = 1.

∣
∣ f ′(w)

∣
∣ + ∣

∣F ′(w)
∣
∣ ≤ m Max( f, 1). (5)
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The next two lemmas are due to Barchand et al. [3]. 

Lemma 2 [3] If f (w) = ∑n 
j=0 c j w j is a polynomial of degree m having all its 

zeros in |w| ≤ ρ,  ρ ≤ 1, then 

1 

ρm

(
cm− j 

cm

)

≤ 1. (6) 

Lemma 3 [3] If f (w) = ∑n 
j=0 c j w j is a polynomial of degree m having all its 

zeros on |w| = ρ,  ρ ≤ 1, then on |w| = 1. 

Max
(
f ′, 1

) ≤ m 

ρm + ρm−1 
Eρ Max( f, 1), (7) 

where 

Eρ = (1 + |t |)(ρ2 + |t |) + ρ(m − 1)
∣
∣s − t2

∣
∣

(1 − |t |)(1 − ρ + ρ2 + ρ|t |) + ρ(m − 1)
∣
∣s − t2

∣
∣
, 

t = 
1 

ρm

(
cm−1 

cm

)

s = 2 

ρ2m(m − 1)

(
cm−2 

cm

)

. 

Lemma 3 is, in fact, a refinement of Theorem 2 due to Govil [6] (see Remark 3). 

Remark 1 
Under the hypothesis of Lemma 3, we have (see [3, Lemma 2.6]). 

|t | = 
1 

ρm

∣
∣
∣
∣
cm−1 

cm

∣
∣
∣
∣ ≤ 1. 

The following lemma was proved by Malik [8]. 

Lemma 4 [8] If f (w) is a polynomial of degree m having no zero in |w| < ρ, 
ρ ≥ 1, then 

ρ
∣
∣ f ′(w)

∣
∣ ≤ ∣

∣F ′(w)
∣
∣, (8) 

where F(w) = wm f
(
1 
w

)
. 

Lemma 5 If f (w) is a polynomial of degree m having all its zeros on |w| = ρ,  
ρ ≤ 1, then on |w| = 1.

∣
∣F ′(w)

∣
∣ ≤ ρ

∣
∣ f ′(w)

∣
∣. (9)
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Proof 
Since f (w) has all its zeros on |w| = ρ, ρ ≤ 1, then F(w) has all its zeros on 
|w| = 1 

ρ , 
1 
ρ ≥ 1. This implies that F(w) has no zeros in |w| < 1 

ρ , 
1 
ρ ≥ 1. Thus, 

applying Lemma 1 to the polynomial F(w) we get, on |w| = 1. 

1 

ρ

∣
∣F ′(w)

∣
∣ ≤ ∣

∣ f ′(w)
∣
∣. 

∴
∣
∣F ′(w)

∣
∣ ≤ ρ

∣
∣ f ′(w)

∣
∣. 

3 Main Results 

In this paper, we prove polar extensions of Theorem 2. Precisely, we prove the 
following result. 

Theorem 3 If f (w) = 
n∑

j=0 
c j w j is a polynomial of degree m having all its zeros on 

|w| = ρ,  ρ ≤ 1, and β ∈ C with |β| ≥ 1, then on |w| = 1. 

(a)

∣
∣Dβ f (w)

∣
∣ ≤ m

(

1 + 
|β| − 1 

ρm + ρm−1 
Eρ

)

Max( f, 1). (10) 

(b)

∣
∣Dβ f (w)

∣
∣ ≤ m

( |β| + ρ 
ρm + ρm−1 

Eρ

)

Max( f, 1). (11) 

where 

Eρ = (1 − |t |)(ρ2 + |t |) + ρ(m − 1)
∣
∣s − t2

∣
∣

(1 − |t |)(1 − ρ + ρ2 + ρ|t |) + ρ(m − 1)
∣
∣s − t2

∣
∣
, (12) 

t = 
1 

ρm

(
cm−1 

cm

)

(13) 

s = 2 

ρ2m(m − 1)

(
cm−2 

cm

)

. (14) 

Proof 
Let F(w) = wm f

(
1 
w

)
. Then on |w| = 1.
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∣
∣F ′(w)

∣
∣ = ∣

∣m f  (w) − w f ′(w)
∣
∣. (15) 

For β ∈ C, polar derivative of f (w) with respect to β is 

Dβ f (w) = m f  (w) + (β − w) f ′(w). 

Therefore,

∣
∣Dβ f (w)

∣
∣ = ∣

∣m f  (w) + (β − w) f ′(w)
∣
∣

≤ ∣
∣m f  (w) − w f ′(w)

∣
∣ + |β|∣∣ f ′(w)

∣
∣ (16) 

= ∣
∣F ′(w)

∣
∣ + |β|∣∣ f ′(w)

∣
∣ (17) 

= ∣
∣F ′(w)

∣
∣ + ∣

∣ f ′(w)
∣
∣ + (|β| − 1)

∣
∣ f ′(w)

∣
∣. (18) 

Using (5) of Lemma  1 in (18) we have on  |w| = 1
∣
∣Dβ f (w)

∣
∣ ≤ mMax( f, 1) + (|β| − 1)Max

(
f ′, 1

)
. (19) 

Now using (7) of Lemma 3 in (19) we have for  |w| = 1

∣
∣Dβ f (w)

∣
∣ ≤ m

(

1 + 
|β| − 1 

ρm + ρm−1 
Eρ

)

Max( f, 1), 

which proves (a). 
We now prove (b). 
Using (9) of Lemma  5 in (17), we get for |w| = 1

∣
∣Dβ f (w)

∣
∣

≤ ρ
∣
∣ f ′(w)

∣
∣ + |β|∣∣ f ′(w)

∣
∣ (20) 

≤ (|β| + ρ)Max
(
f ′, 1

)
. (21) 

Using (7) of Lemma  3, we obtain for |w| = 1.

∣
∣Dβ f (w)

∣
∣ ≤ m

( |β| + ρ 
ρm + ρm−1 

Eρ

)

Max( f, 1), 

which proves (b).
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Remark 2 
Dividing inequalities (10) and (11) by  |β| and taking |β| → ∞, both reduce to 

Max
(
f ′, 1

) ≤ m 

ρm + ρm−1 
EρMax( f, 1), 

which is the conclusion of Lemma 3, where Eρ is given by (12). 

Remark 3 
Inequalities (10) and (11) are improved extensions of inequality (3) to polar deriva-
tive. In other words, the ordinary form of (10) and (11) obtained in Remark 2 is an 
improvement of (3). To see this, it is sufficient to show that 

Eρ ≤ 1. 

That is, 

(1 − |t |)(ρ2 + |t |) + ρ(m − 1)
∣
∣s − t2

∣
∣

(1 − |t |)(1 − ρ + ρ2 + ρ|t |) + ρ(m − 1)
∣
∣s − t2

∣
∣

≤ 1. 

i.e., ρ2 + |t | ≤ 1 − ρ + ρ2 + ρ|t | 
which holds as ρ ≤ 1 and |t | ≤ 1 (by Remark 1). 
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