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1 Introduction 

With the concern of provision of low latency, high capacity and massive connec-
tion in wireless communication, non-orthogonal multiple access (NOMA) is being 
considered as one of the techniques for 5G wireless networks [1]. Before NOMA 
came into the picture, wireless communication systems have been utilizing orthog-
onal multiple access (OMA) techniques. In OMA [2], allocation of resources to 
multiple UE’s takes place orthogonally. OMA techniques include time-division 
multiple access (TDMA), frequency-division multiple access (FDMA), code-
division multiple access (CDMA). In TDMA, multiple users undergo time-division 
technique by distributing the same frequency channel. In FDMA, multiple UEs follow 
the frequency-division multiplexing technique where communications are allowed 
only during their particular frequency slot. In CDMA, multiple users share the entire 
time and frequency, they are differentiated by the codes. As the OMA technique 
considers orthogonality, each UE has been allocated one resource block at a time 
which in turn does not give the desired high capacity and low latency [3]. 

Contrary to OMA, NOMA provides sharing of resources to multiple UEs which 
ensures high spectral efficiency, low transmission latency by allocating one frequency 
channel at the same time. NOMA techniques include power-domain NOMA and 
code-domain NOMA [4]. In code-domain NOMA, multiplexing is based on different 
code levels whereas in power-domain NOMA, multiplexing is done based on different 
power levels. This paper focuses mainly on power-domain NOMA that utilizes super-
position coding (SC) and successive interference cancellation (SIC) at the transmitter 
and receiver side, respectively. NOMA allows multiple UEs to transmit and receive
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information simultaneously using the same frequency. This feature is only possible 
due to SC and SIC [5]. 

1.1 Benefits of NOMA 

This subsection presents how NOMA is superior to OMA in several ways [6, 7], 
such as. 

a. NOMA achieves higher spectral efficiency by utilizing the same frequency and 
time resource for multiple users and interference mitigation through SIC, 

b. NOMA supports higher connection density by superimposing the signal of 
multiple UE’s on the same resource block, 

c. When compared to OMA, NOMA has lower latency as it does not require separate 
time slot for transmitting information and 

d. As less power is assigned to stronger UE and more power is assigned to weaker 
UE. Thus, NOMA maintains user fairness. 

2 NOMA System Model 

In this section, an overview of uplink and downlink NOMA is introduced, as shown 
in Fig. 1. For simplicity purpose, the system model of NOMA is analysed with a 
single antenna at the base station (BS) and two users (UE). 

2.1 Downlink NOMA Network 

In downlink NOMA, the transmitter is the BS while the receiver will be the two UEs. 
The BS transmits the superposed signal to both the UEs. The multiple UEs sharing the

Fig. 1 Uplink and downlink 
communication 
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same time and frequency resources are then retrieved at the receiver side. Hence, this 
process caused increased in spectral efficiency [8]. The superposed signal, which is 
the combination signals of the two UEs, is allocated with different power coefficients. 
Power coefficients are allocated according to their channel condition or the interval 
between the BS and the UE’s, in inversely proportional way. The UE which is far 
from the BS is allocated larger power and lesser power to the other. Also, the channel 
gain is quasi-static, i.e. constant over the entire transmission time interval [4]. The 
sum of Pi is equal to Ptotal [9]. 

Here, assuming that UE-1 is closer to the base station, so it is allocated lower 
power in comparison with UE-2, which is farther from base station. 

The superposed signal is represented as [10, 11]. 

xs = 
N∑

i=1 

Pi xi , (1) 

where Pi indicates the allocated power for symbol xi of the ith UE, and N denotes 
the number of UE’s. 

At the receiver side of downlink NOMA, the decoding of UE’s message from the 
superposed signal takes place. This process is single input multiple output (SIMO) 
[4]. The received signal at the ith UE’s [12, 13] is  

yi = 
N∑

i=1 

hi 
√
ai xi + ni , (2) 

where ai is the power scaling factors express in terms of amplitude, and hi is the 
channel gain experienced by ith UE. 

2.2 Uplink NOMA Network 

In uplink NOMA, the transmitter will be the UE’s while the receiver is the BS. 
Depending upon the channel condition or the distance between the BS and the UEs, 
signals of the UEs are transmitted with different power levels. The user experiencing 
lower channel gain transmits higher power, whereas the user that experienced higher 
channel gain transmits low power [14]. Assuming the same for uplink case, the 
channel is quasi-static [4]. Now, the superposed signal from both the users is being 
received by the BS which will be decoded accordingly. This process is multiple 
input single output (MISO) [4]. In both uplink and downlink, both the user signals 
are weighted with different powers. 

The superposed signal received by the BS [14, 15] is.
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Fig. 2 Far-user processing 

Fig. 3 Near-user processing 

xBs = 
N∑

i=1 

Pi xi + n. (3) 

The superposed signal comprises of UE-1’s signal x1 and UE-2’s signal x2 and 
also the noise, n. Following the power-domain NOMA principle [15], at the receiver 
side, i.e. at the BS, it has to perform SIC of the superposed signal which is transmitted 
from the UE’s according to their respective power levels. A simple figure showing 
the processing of far-user signal in Fig. 2, and near-user processing in Fig. 3, are  
shown, respectively. 

3 Algorithm Analysis in Power-Domain NOMA 

In this section, some ideas about SC and SIC are discussed. These two main 
techniques play a major role in appreciating power-domain NOMA. 

3.1 Superposition Coding (SC) 

Superposition coding is a process of simultaneously communicating multiple users’ 
information at the same time by a single source [1]. Simply, it is power domain 
multiplexing. SC process is always implemented at the transmitter side, whether it 
may be uplink or downlink communication. 

The process of superposition coding is as follows: 

a. Consider two users x1 for UE-1 and x2 for UE-2 which are going to communicate 
simultaneously, 

b. The user’s data x1 and x2 undergo digital modulation before transmission,
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c. The user’s data x1 and x2 are multiplied with the required power scaling factors, 
which are expressed in terms of amplitude. The power scaling factors for UE—i 
must follow the condition that

∑N 
i=1 ai = 1 [1] and 

d. The user’s data along with the power scaling factors are then added to form the 
SC signal. 

3.2 Successive Interference Cancellation (SIC) 

Successive interference cancellation is an algorithm where information is succes-
sively decoded according to their power levels [1], while the rest are treated as inter-
ference [16]. It is used for detecting the desired signals. SIC process is implemented 
at the receiver side always. 

When SIC is applied, the UE signal which has the largest power is decoded first, 
while treating the rest as interference [9]. The required signal is then subtracted 
from the combined signal in order to decode the next UE’s signal and so on. Before 
applying SIC, UEs are sequenced in accordance with their respective signal strength 
so that the stronger signal is decoded first by the receiver [7]. In brief [17], the process 
of decoding the superposed signal is expressed as follows: 

a. The superposed signal xBs is received and is first decoded by demodulation tech-
nique. From this step, the user’s signal which has been allocated higher power is 
detected and treated the rests as interference, 

b. The decoded signal is then multiplied with its respective weight and then sub-
tracted from xBs and 

c. By applying the demodulation technique to the result from step (b), gives the 
resulting user signal which has been allocated lower power. 

4 Result 

The simulation analysis was carried out in MATLAB R2019a. For the simulation 
of the two UE signals, the value of a1 and a2 has been allocated 0.75 and 0.25, 
respectively. It is assumed that the transmission bandwidth and power for the overall 
system is one Hertz and one Watt, respectively. 

In Fig. 4, user  x1 and x2 are allocated 16 bits which undergoes digital modulation, 
multiplied with its corresponding weight and added to give the superposed signal. 
Figure 5 shows the graphical representation of x1 and x2 signals. Figure 6 shows the 
simulated result of the superposed signal, xBs. Figures 7 and 8 show the decoded 
signal of user x1 and x2.
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Fig. 4 User data x1 and x2 and the SC signal xBS 

Fig. 5 Graphical representation of x1 and x2 signal 

Fig. 6 Simulated result of the SC signal
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Fig. 7 Result of the far-user (x1′) after applying SIC 

Fig. 8 Result of the near-user (x2′) after applying SIC 

5 Conclusion 

In this paper, two UEs are considered for the analysis. The UEs are allocated 16 
bits of data which are multiplied with its corresponding weight to give the perfect 
SC at the transmitter. SIC is then applied to the resultant SC signal to give error-
free user signals at the receiver. Thus, it illustrates how NOMA requires SC at the 
transmitter side and SIC at the receiver side in order to give every individual user 
separate messages. 
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