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1 Introduction 

The aim of mathematical modelling varies based on the discipline one approaches 
it from. Physicists, for instance, create simulations at the atomistic level, which, 
in theory, could determine the entire macroscopic behaviour of a material, such as 
its thermal conductivity, deformation, fracture etc. Engineers, on the other hand, 
approach mathematical modelling with a pragmatic outlook, primarily concerned 
with predicting the behaviour of material vis-à-vis its intended engineering use. 

Multiscale modelling is an approach which follows this general philosophy. A 
multiscale model takes into consideration the atomic or microscopic properties of 
a material, but does so with the aim of increasing its predictive accuracy, while at 
the same time making sure it is computationally cost effective. This paper focuses 
on multiscale PDEs known as homogenization problems, which deal with materials 
whose properties are represented by highly oscillating functions. Homogenization 
refers to the mathematical process of converting such problems into an averaged 
version to be modelled at the macroscopic level. It is a rich area of research, but 
falls short in terms of real-world application as homogenizing, or averaging, these 
highly oscillating material coefficients are a challenging task. The overarching goal 
of multiscale methods is to overcome this difficulty, thereby enabling its application 
to a much wider range of problems [8]. 

Model Problem. LetὨ ⊂ RN , N = 1, 2, 3 denote a region with boundary ∂Ὠ, where 
the Dirichlet boundary conditions are prescribed on TD ⊂ ∂Ὠ and the Neumann 
boundary conditions on TN = ∂Ὠ\TD. If Ὠ represents a linearly elastic material in 
static equilibrium when acted upon by body forces f ∈ L2(Ὠ)N and surface traction 
g ∈ H−1/2(TN)N , find uε ∈ H 1 

0 (Ὠ)N such that 
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for i = 1, . . . ,  N , where aε (x) is a fourth order symmetric tensor and ε represents 
the parameter characterizing the heterogeneity of the material. 

The linear strain tensor e is given by 

ei j  (ϕ) = 
1 

2

(
∂ϕi 

∂x j 
+ 

∂ϕ j 
∂xi

)
, ∀ i, j = 1, . . . ,  N , (2) 

or any ϕ = (ϕ1, . . . , ϕN ). Then, Hooke’s law gives us the stress tensor defined as, 

σi j  = bi jkhekh(ϕ) = bi jkh  
∂ϕk 

∂xh 
. (3) 

The variational form of the problem becomes: Find uε ∈ H 1 
0 (Ὠ)N such that 

Bε(uε , v) def =
{
Ὠ

aε (x)e(uε ) : e(v) dx  =
{
Ὠ

f · v dx  +
{
TN 

g · v ds  

def = F(v), ∀ v ∈ H 1 
0 (Ὠ)N . (4) 

Homogenization. A detailed theory of homogenization can be found in [7]. When 
homogenized, uε converges to u0, the solution to the variational formulation for the 
homogenized problem given by: Find uε ∈ H 1 

0 (Ὠ)N such that 

B0
(
u0 , v

) def =
{
Ὠ

a0 (x)e
(
u0

) : e(v) dx  = F(v), ∀ v ∈ H 1 
0 (Ὠ)N , (5) 

where, a0 is the homogenized coefficient. 

2 Finite Element Heterogeneous Multiscale Method 

Using the classical (single-scale) FEM to solve (1) becomes computationally unten-
able if the scale ε is small (as is the case for microscopically heterogenous materials), 
since the mesh size h is required to be << ε. On the other hand, finding an explicit 
expression for a0 is a challenge, which makes applying the homogenization proce-
dure to a variety of problems difficult. The strength of multiscale methods lies in
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the fact that it eliminates both issues. We apply one such multiscale method, the 
finite element heterogeneous multiscale method (FE-HMM) to problems of type (1). 
The FE-HMM gives an approximate solution without the need to find the homoge-
nized tensor a0, while at the same time, being much more computationally cheaper 
compared to the standard FEM. 

2.1 The FE-HMM Algorithm 

The theoretical formulation of the FE-HMM is available in [1–4]. Here we provide 
an explicit computer algorithm for implementing the FE-HMM to problems of linear 
elasticity in two dimensions, and conduct numerical experiments using the algorithm. 

Step 1. Define the macro and micro finite element spaces and their basis. The  
first step of the algorithm can be described in points as follows. 

• Define the macro finite element space: 

V p (Ὠ, TH ) =
{
vH ∈ H 1 

0 (Ὠ)N ; vH
||
K ∈ Rp (K )N , ∀ K ∈ TH

}
, (6) 

with macro elements K ∈ TH . Rp(K ) is either of the spaces P p(K ) or Qp(K ) of 
polynomials for simplicial elements and quadrilateral elements respectively, with 
degree p in each variable. 

• Define the macro basis: 
Let

{
ϕ H i

}N f x+N f y  
i=1 denote the macro FE basis V p (Ὠ, TH ) where, 

ϕ H i = (
ϕ H i , 0

)
, ϕ H N f x+ j 

= (
0, ϕ  H j

)
, i = 1, . . . ,  N f x  , j = 1, . . . ,  N f y . (7) 

ϕ H i are the usual basis functions for the scalar finite element space and N f x  and 
N f y  denote the total number of unconstrained nodes in the x and y dimensions 
respectively. 

• Define the micro finite element space: 

Sq
(
Kδ

(
xl,K

)
, Th

) = {
zh ∈ W

(
Kδ

(
xl,K

)); zh |T , ∈ Rq (Q)N , Q ∈ Th
}
, (8) 

where, 

– xl,K ∈ K are integration nodes. 
– Kd

(
xl,K

) = xl,K + δ I are sampling domains around each xl,K ; 

– I = (− 1 
2 , 

1 
2

)N 
and δ ≥ ε, 

– and, the W
(
Kδ

(
xl,K

))
determines the macro–micro coupling and boundary 

conditions, with, 
– W

(
Kδ

(
xl,K

)) = W per
(
Kδ

(
xl,K

))
for periodic coupling and, 

– W
(
Kδ

(
xl,K

)) = H 1 
0

(
Kδ

(
xl,K

))N 
for Dirichlet coupling, where,
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W per (Y ) = 

⎧⎨ 

⎩v ∈ H 1 
per (Y )

N ;
{
Y 

vi dy  = 0, i = 1, . . . ,  N 

⎫⎬ 

⎭. (9) 

• Define the micro basis: 
Let

{
ψh 

k,Kδ

}2n 
k=1 

denote the basis of the micro FE space Sq
(
Kδ

(
xl,K

)
, Th

)
, 

where 

ψh 
k =

(
ψh 

k , 0
)
, ψh 

n+k =
(
0, ψh 

k

)
k = 1, . . . ,  n. (10) 

ψ H k are the usual basis functions for scalar micro space Sq
(
Kδ

(
xl,K

)
, Th

)
and n 

denotes the number of nodes in the discretized micro-domain. 

Step 2. Compute the macrostiffness matrix. The local macrostiffness matrix AK 

is defined for each K ∈ TH as follows: 

AK 
def = BH

(
ϕ H i , ϕ H j

)2i D 
i, j=1 

= 

⎛ 

⎜⎝∑l

l=1 

ωl,K||Kδ

(
xl,K

)||
{

Kδ(xl,K ) 

aε (x)e
(
ϕh

l,Kδ

) : e(ϕh
l,Kδ

)
dx  

⎞ 

⎟⎠ 

2iD 

i, j=1 

, (11) 

where ϕh 
il,Kδ 

and ϕh 
jl,Kδ 

are solutions of the micro problem for each 2iD micro nodes, 

having coefficients αi
l = (

αi 
1,l, . . . , α

i 
2n,l

)T 
. The local macrostiffness matrices are 

then assembled to compute the global macrostiffness matrix as given in the algorithm 
below (Table 1).

Step 3. Solve the macro-problem. The variational form for the macro-problem is 
written as [1]: Find uH ∈ V p 

(Ὠ, TH ) such that 

BH
(
uH , vH

) = F
(
vH

)
, ∀ vH ∈ V p (Ὠ, TH ), (12) 

which can be done by any solver package for linear systems [6, 9], now that we have 
computed AK , and thereby, BH

(
uH , vH

)
.
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Table 1 Computer algorithm to compute the global macrostiffness matrix

(continued)
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Table 1 (continued)

(continued)
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Table 1 (continued)

obtained from any classical FEM package [6], [9]. 
49 end for 
50 return 
51 end function

3 Numerical Experiments 

We apply the multiscale method to two linear elastic plane strain problems. For the 
first problem, we compare the multiscale solution to a homogenized solution. To 
achieve this, we first need to compute the coefficients for the homogenized elasticity 
tensor, which is done as follows [10]. 

For the problem (1), aε is assumed to represent a linear elastic isotropic material 
in plane strain condition whose coefficients vary along only one direction. Then, 
the coefficients of the corresponding homogenized tensor a0 is given by, for MY =
1 

|Y |
{
Y dy  

a0 1111 =
1 

MY
(
1
/
a1111

) , a1112 = a1222 = 0, 

a0 1122 = 
MY

(
a1122

/
a1111

)
MY

(
1
/
a1111

) , a0 1212 =
1 

MY
(
1
/
a1111

) , 

a0 2222 = MY (a2222) − MY

(
a2 1122 
a1111

)
+

(
MY

(
a1122

/
a1111

))2 
MY

(
1
/
a1111

) , (13)
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where the components of a(y2) are given by 

a1111 = a2222 = E(1 − ν) 
(1 + ν)(1 − 2ν) 

, a1122 = Eν 
(1 + ν)(1 − 2ν) 

, 

a1212 = E 

2(1 + ν) 
, a1112 = a1222 = 0, 

and E = E(y2) denotes the Young’s modulus of the material while ν = ν(y2) denotes 
its Poisson’s ratio. 

Problem 1 Consider the problem (1), where the domain Ὠ is defined as a 2D region 
occupied by the points (0, 0), (4800, 4400) (0, 4400), (4800, 6000), where the unit 
of distance is mm. Dirichlet boundary conditions are imposed at the end x = 0, and 
the body is subjected to a shearing load g = (0, 5) N/mm2 at the end x = 4800. 
The volume force f is assumed to vanish and the material is taken to be linear elastic 
and isotropic. Further, aε is assumed to vary along only one direction. Finally, the 
Young’s modulus and Poisson’s ratio are defined by the functions 

E(y2) = 8.35
(
1 + (0.2 + 0.1cos(2π y2)) 

(0.2 + 0.15sin(2π y2))

)
kN/mm2 , 

ν(y2) = 0.2 + 0.1cos(2π y2). 

From (13), the tensor a0 can be written (in Voigt Notation) as 

a0 = 

⎛ 

⎝ 
56.4099 14.6599 0 
14.6599 83.2061 0 

0 0 20.8750 

⎞ 

⎠. 

The error between u0 and uH for macro order p = 1 and micro order q = 1 is 
plotted in Fig. 1, and the convergence rate is verified to be linear in the H 1-norm 
and quadratic in the L2-norm [1]. The deformed mesh for the homogenized and 
multiscale solutions is shown in Fig. 2, while Fig. 3 compares the strain energy 
density for both solutions.

Problem 2 Consider (1), where the domain is defined by Ὠ = (0, 1) × (1, 0)\B(0, 
0.5) where the unit of distance is metres. Dirichlet boundary conditions in the x 
dimension are imposed at the end x = 0, and in the y dimension at y = 0. The 
body is subjected to shearing load g = (1E + 5, 0) kN/m2 at the end y = 1 and 
the volume force f is assumed to vanish and the material is taken to be linear elastic 
and isotropic. Further, aε is assumed to be non-uniformly periodic with coefficients 
(Fig. 4) 

a1111 = a2222 = (3E + 7)
(
1.5 + sin(2π x/ε) 
1.5 + sin(2π y/ε) 

+ 
1.5 + sin(2π y/ε) 
1.5 + cos(2π x/ε) 

+ sin(4xy) + 1
)

,
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Fig. 1 Plot of Young’s modulus E(y2) (left) and error between u0 and uH (right) 

Fig. 2 Deformed mesh for the homogenized solution (left) versus multiscale solution (right) 

Fig. 3 Strain energy density for the homogenized solution (left) versus multiscale solution (right)
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a1122 = (1E + 7)
(
1.5 + sin(2π y/ε) 
1.5 + cos(2π x/ε) 

+ sin(4xy)
)

, 

a1212 = (1E + 7)
(
2.1 + 2 

1.5 + cos(2π x/ε) 
+ sin(4xy)

)
. 

Problem 2 is solved using a classical finite element algorithm from [9] with a 
discretization having a degree of freedom of N = 7.87968E + 5 and FE space of 
order p = 4. It is also solved using the algorithm presented above with varying macro 
degree of freedom N and order of macro FE space p and micro degree of freedom n 
and order of micro FE space q as shown in Tables 2 and 3. The energy and infinity 
norms of the fine scale solution and multiscale solutions are compared in Table 4. 

Fig. 4 Plot of material coefficient a1111 (left) and deformed mesh for multiscale solution (right) 

Table 2 Energy and infinity norms for the multiscale solutions with fixed micro d.o.f. n and varying 
macro d.o.f. N 

Sl. no. Multiscale solution 

1 n = 9 N = 9 N = 25 N = 81 N = 289 
2 ||u||E 22.1207 30.5297 36.7621 39.6875 

3 ||u||∞ 0.0040546 0.0073341 0.010037 0.011269 

Table 3 Energy and infinity norms for the multiscale solutions with fixed micro d.o.f. N and 
varying macro d.o.f. n 

Sl. no. Multiscale solution 

1 N = 25 n = 9 n = 25 n = 81 n = 289 
2 ||u||E 30.5297 30.8687 30.9272 31.2386 

3 ||u||∞ 0.0073341 0.0075347 0.0075635 0.0077384
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Table 4 Energy and infinity norms for the multiscale solutions versus fine scale solution 

Sl. no. Multiscale solution Fine scale solution 

1 n = 25 
N = 25 

p = 1 
q = 1 

p = 2 
q = 2 

p = 3 
q = 3 

p = 4 
q = 4 

N = 7.87968E + 5 
p = 4 

2 ||u||E 30.5297 39.7142 40.642 41.475 42.4995 

3 ||u||∞ 0.0073341 0.011486 0.01186 0.012032 0.012417 

4 Conclusion 

We have implemented a multiscale method for plane strain problems in linear elas-
ticity. A computer algorithm to implement the method has also been presented. Two 
problems have been solved using the algorithm and their results have been compared 
with the homogenized and fine scale solutions. The results show that the multiscale 
solution is much more computationally economical in comparison with the standard 
fine scale finite element solution. We have shown that a fine scale solution with 
degree of freedom N= 7.87968E + 5 and order of FE space p= 4 is comparable 
with the multiscale solution with degrees of freedom n = 25, N = 25, and order of 
macro FE space p = 4, and micro FE space q = 4, which is a striking difference. 
However, at present, the method is limited to linear problems in elasticity. It may 
be further developed for multiscale non-linear problems, multiscale phenomena in 
damage and fracture of materials etc. 
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