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1 Introduction 

Hydrologic models are valuable tools for planning and managing water resources in 
the river basin. These models are also helpful in understanding and simulating the 
hydrologic processes, assessing the effects of climatic and land use and land cover 
(LULC) changes, and investigating water quality in the river basin [1]. In recent 
research, hydrologic modeling has emerged as a critical achievement in watershed 
hydrological simulation with the development and incorporation of new tools like 
remote sensing (RS) and geographic information systems (GIS). The System Hydro-
logic European (SHE) model and the Soil and Water Assessment Tool (SWAT) model 
are a few such model applications widely used for hydrological modeling for river 
basin studies [2, 3]. 

Most rivers in the globe originate in high mountain regions, where snow and 
glaciers retain much water. In high snow and glacier catchments, melting water 
contributes more streamflow than rain [4, 5]. These rivers provide water for agri-
cultural, industrial, and municipal applications. Recent figures show that over 50% 
of all disaster, losses are due to connected disasters, with over 70% of flood-related 
deaths attributed to mountain torrents [6]. Snowmelt floods are frequent, yet they 
represent severe environmental and economic risks. 

Snowmelt hydrology is a crucial element in mountainous watersheds where 
melting snow is a significant source of stream flows. The simulation complexity leads 
to a perception that simulating snowmelt runoff in a mountainous area is challenging. 
Mountainous regions also frequently lack sufficient data, which increases computa-
tional simulation requirements [7, 8]. To represent the current complex mountainous 
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environmental situation, calibration–validation and uncertainty analysis are neces-
sary to effectively use the distributed hydrologic models [9]. Calibration is done by 
selecting model input parameters within acceptable ranges to signify the hydrolog-
ical process accurately. Comparing the model outputs for a particular collection of 
observed data allows for evaluating this calibration [10]. Once calibrated, water-
shed models enable evaluation of the effects of environmental changes caused by 
management or natural processes in a method that is not attainable through field 
experiments and direct observation. Simulation analysis of situations, before they 
are implemented, can help reduce management uncertainty. 

The two main approaches frequently employed in snowmelt runoff analysis are 
the temperature index and energy balance techniques. Whereas the energy balance 
method relies upon the quantity of energy input to the system, the temperature index 
strategy employs temperature as the primary driving element for snowmelt processes 
[11, 12]. The energy balance strategy is data-intensive and occasionally inappropriate 
owing to scarce data or unnecessary information, while the temperature index method 
is common, straightforward, and simple to utilize [13]. 

The Sutlej river basin contains many mountainous regions with complex topog-
raphy. Temperatures rise dramatically in the spring, which causes an increase in 
flooding frequency. Elevation variations tremendously impact snow cover processes 
and melt in hilly basins. In watersheds with complex terrain and significant elevation 
variations, simulated accuracy has been proven to be improved by defining elevation 
zones within the model’s subbasins [8]. The management of the water resources 
of the high mountain area needs to realize the connections between natural forests, 
snowpack, snowmelt, and streamflow production. Reliable modeling techniques are 
crucial for correctly reflecting the impacts of both the forest cover and the dynamics 
of snowmelt on runoff to calculate the streamflow hydrograph in these conditions. 
Temperature change is one of the most sensitive input characteristics to calculate 
snowmelt runoff in the high-altitude basin [14]. 

The primary snowfall-melting mechanism in SWAT was modified by adding snow 
accumulation, melting, areal snow coverage, and the ability to input snowfall and 
temperature as a proportion of elevation bands [8]. 

One of the more popular models is the SWAT, utilized in numerous nations world-
wide [15, 16]. The physical foundation of the hydrological model SWAT is semi-
distributed and continuous time. The SWAT model design and evolutionary method-
ology make it a good tool for examining how the management of rocky mountain 
forests affects the region’s water supplies. However, the SWAT has not been explored 
much with rocky mountain river basins, which have significant elevation differences 
and are mainly covered with snowfall, technologies that have considered elevations 
to improve SWAT capacity to model snowmelt processes.



Streamflow Assessment of Mountainous River Basin Using SWAT Model 3

Fig. 1 Pictorial representation of the study area 

2 Study Area 

The present study is performed for the Sutlej River Basin, which receives its water 
from Manasorovar Lake, located on the southern flanks of Mount Kailash on the 
Tibetan Plateau at an altitude of more than 4500 m above sea level. Moreover, it 
covers several regions with varied topographic and climatic characteristics, including 
Punjab in northern India. In addition, runs through several regions of Pakistan [23, 
24]. The area of the present study is 55,000 km2. In addition, the Bhakra gauging 
station is considered an output gauging station to calibrate and validate the model 
(Fig. 1). 

3 Methodology 

3.1 Model Setup 

This model was created to evaluate the effects on the water system in complex basins 
of long-term changes to the soil, Landover, and management practices. The flexible 
architecture of SWAT was created to employ easily accessible data to define a water-
shed’s physical and climatic properties. In remote, ungagged basins where calibra-
tion is impossible, SWAT can estimate reasonable outcomes using physically-based
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inputs. Because of the code’s high computing efficiency makes continuous simula-
tion over vast areas and lengthy timespan possible. The influence of management 
strategies can be assessed by simulating watershed processes over an extended period 
[10]. 

Digital Elevation Maps (DEM), land uses (LULC), soil maps, and details on 
meteorological data are the input data that the SWAT model requires. The watershed 
delineation was done using Shuttle radar topography mission (SRTM) data with a 
30 m × 30 m resolution. The Soil map taken from the FAO database with a 1 × 
1 km grid resolution and land use data from the NRSC/WRIS with a 1 × 1 km  
grid resolution was used. The meteorological data such as Rainfall data, maximum 
and low-temperature data, relative humidity, and sunshine hours data over 35 years 
were collected from the CFSR database (1979–2013) with a warmup period of three 
years. The soil and water conservation service (SCS) curve number (CN) approach 
has been adapted to calculate stormwater runoff. For calculating evapotranspiration, 
the Penman–Monteith approach has been used in this model [17] (PET). The Musk-
ingum routing technique approach determines channel routing [3]. Furthermore, 
the temperature index algorithm has been used to evaluate snowfall and snowmelt 
routine. The model has also been evaluated using two situations, one with elevation 
bands taken into account and the other without considering elevation bands in the 
model. 

3.2 Sensitivity Analysis 

In SUFI-2, the sequential and fitting approach based on the Bayesian framework 
is used to accomplish calibration and validation, respectively [18]. Observed data, 
model input, and model structure are just a few examples of the parameter uncertainty 
sources considered and described as uniform distributions in SUFI-2 [19]. Their p-
factor and r-factor are indices used to evaluate the model’s accuracy and uncertainty. 
The level of uncertainty is gauged using the p-factor, calculated via Latin hypercube 
sampling. The range of the p-factor is 0 to 100%, while the r-factor has an infinite 
range and should ideally be 1 and 0, respectively, whenever the model successfully 
reflects the observed data. An objective function is made, and the required termination 
rule is applied before doing an uncertainty analysis. 

3.3 Objective Function 

The present study KGE has been taken as the objective function to assess the degree 
to which actual and simulated streamflow was accurate. Since NSE uses the recorded 
mean as its baseline, it tends to overestimate model performance for solid seasonal 
parameters. To solve this problem between simulated and actual discharge, a new 
performance measure [20], KGE, based on the identical results of 3 significant
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components those are bias ratio (α), linear correlation (γ), and variance (β). 

KG  E  = 1 −
/

(γ − 1) + (α − 1) + (β − 1)2 (1) 

where, α = σ si  m 
σ obs , β = X

si m 
mean 

Xobs 
mean 

γ Is the coefficient of the linear regression between the simulated and observed 
value. 

3.4 Performance Indicators 

NSE: The normalized statistic difference between the residual variance and total 
variance of the observed and simulated data is how it is expressed [21]. Its values 
range from −1.0, with 1 representing the model’s optimal performance. 

NS (Maximize) = 1 -

n∑
i=1 

(Xm − Xs)
2 
i 

n∑
i=1

(
Xm,i − Xs

)2 (2) 

where, Xm = observed discharge, Xs = simulated discharge. 
R2: It is a statistic that expresses how closely calibrated data resembles the best-fit 

observed data. An improved model is indicated by a higher value ranging from 0 to 
1. 

R2 (Maximize) = 
Variance of the model 

Total variance
= 1 − 

SSres  
SStot  

= S2 xy  
Sxy  ∗ Syy 

(3) 

P-BIAS is the biased error percentage for both actual and simulated data. It is 
taken into account to be zero when choosing the most appropriate behavioral model. 
The performance of the model improves as the value decreases. 

PBIAS (Minimize) = 

⎡ 

⎢⎢⎣ 

n∑
i=1 

(Xm − Xs) 

n∑
i=1 

Xm 

∗ 100 

⎤ 

⎥⎥⎦ (4) 

where, Xm = observed discharge, Xs = simulated discharge.
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4 Result and Discussion 

The sensitivity analysis has been conducted using global sensitivity analysis, which 
explores the design space using a large set of samples. SWAT-CUP uses the values 
of t-stat and p-value to determine the relative importance of various parameters. 
High absolute values indicate greater sensitivity, whereas near zero indicates high 
significance levels. The most sensitive input parameters were identified using the 
global sensitivity technique has performed 1500 iterations using SUFI-2. Over 200 
hydrological parameters are included in the SWAT model. However, not all of them 
are likely to impact the results significantly. It is required to determine the most 
sensitive input parameters to simulate the streamflow and the ranges within which 
they fall. 22 parameters were identified initially, and their initial ranges were chosen 
in this study. The streamflow simulations produced by the SUFI-2 were satisfactory, 
showing some uncertainty in the calibration and validation results. The ground-water 
and soil parameters GWQMN, SOL-K, and SOL-AWC are identified as the most 
sensitive parameters influencing model output results. Because the present study 
area lies in a snow-dominated mountainous region, moreover SWAT model has the 
limitation that the infiltration in frozen soil (snowpack and glacier) is neglected. In 
an actual situation, it does not exist. Table 1 shows the top 10 sensitive parameters 
with their sensitive ranking in t-stat and p-value. 

The Himalayas mountain region of a river basin, i.e., the Sutlej river basin up 
to Bhakra, was modeled to determine how they would respond. Before applying 
elevation bands, the main problem was a persistent underestimation of both low and 
high flows during the calibration period. 

Figure 2 shows that the simulated streamflows in the Sutlej river basin were still 
below observed streamflows. Furthermore, the correlation statistics were poor (KGE: 
0.21 and NSE: 0.16). The underestimating issue was resolved using the elevation 
band approach [8]. An elevation band allows the model to consider their lapse rates 
according to elevation variance. The values of KGE and NSE for the calibration

Table 1 Sensitive ranking of 
SWAT parameters identified 
using SUFI-2 

Parameters Sensitivity rank t-stat p-value 

R_GWQMN 1 −27.52 0.00 

R-SOL-K 2 −26.51 0.00 

R_SOL_AWC 3 −18.09 0.00 

V-ALPHA_BF 4 −3.25 0.00 

R_GW_REVAP 5 −2.88 0.00 

R_CN2 6 −2.81 0.00 

R_SUB_SMFMN 7 1.88 0.05 

V_CH_K2 8 1.59 0.11 

V_GW_DELAY 9 1.34 0.17 

R_MSK_CO1 10 1.08 0.27 
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period after considering elevation bands are 0.91 and 0.81; moreover, validation 
values are between 0.87 and 0.75 and can be regarded as very good [22]. In addition, 
82 and 71% of observed data lie within the uncertainty band. Figure 3 despite not 
accurately replicating the peaks and the recession limbs, the hydrograph shape could 
be replicated satisfactorily overall (Fig. 4). Figure 5 is a uniform distribution of points 
observed about the 1:1 line connecting the recoded and estimated monthly streamflow 
in the calibration and validation data scatter plot. Some data points were not in line but 
mostly lay on the line, which indicates the excellent correlation coefficient between 
observed and simulated streamflow. As a result, the SWAT model can be treated as a 
valuable tool for simulating the discharge hydrograph and many components of the 
water balance for a mountainous river basin (Fig. 6). 

Fig. 2 95PPU plot of Sutlej river basin dung calibration period (1982–2000) before implementing 
elevation bands with KGE as the objective function 

Fig. 3 95PPU plot of Sutlej river basin dung calibration period after implementing elevation bands 
with KGE as the objective function
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Fig. 4 95PPU plot of Sutlej river basin dung validation period after implementing elevation bands 
with KGE as the objective function 

Fig. 5 Scatter plot between observed and simulated streamflow hydrographs during the calibration 
period after implementing elevation bands 

Fig. 6 Scatter plot between observed and simulated streamflow hydrographs during the validation 
period after implementing elevation bands
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5 Summary and Conclusions 

The semi-arid and mountainous watersheds in the Sutlej drainage basin, which 
are significantly influenced by snowmelt, are improved by the SUFI-2 technique 
employing KGE as the fitness function and combined with the SWAT model. Before 
implementing elevation bands to the model, the main problem was a persistent under-
estimating of low and high flows for the calibration period. Due to the SWAT model’s 
failure to account for the impact of snow melt, the estimated streamflows in the Sutlej 
river basin were still below the observed streamflows. Additionally, the correlation 
statistics were poor. The systematic underestimating issue was resolved using the 
elevation band technique, and the outcomes were supported [8]. In NSE, the observed 
mean is utilized as a baseline and may lead to an overestimation of model perfor-
mance for extremely seasonal variables. KGE was designed to address this issue. As 
a result, the KGE would be a better choice to employ as the objective function in a 
watershed where mountainous snowmelt predominates, such as the Sutlej watershed 
[25]. Despite producing good results, the present model does not adequately signify 
the infiltration and runoff processes related to snowmelt since it is predicted that 
infiltration does not occur in frozen soils. The model also performs poorly at times 
of base flow. By improving the components of the simulation that reflect ground-
water discharge, snowmelt infiltration, and runoff in base flow, the performance of 
the model, as well as the actual representation of hydrologic processes in this and 
comparable mountain streams, has been greatly improved. 

Further, a total of 35 years (1979 to 2013) of monthly streamflow data was 
collected from the Bhakra gauging station of the SRB and used for SWAT model cali-
bration and validation. The results obtained with the elevation band use in the SWAT 
model proved better compared to the model without elevation band use. The model 
performance statistics, such as KGE, R2, p-bias, and p-factor, show 0.91, 0.83, 2.30, 
and 0.82, respectively, with the use of elevation band, and 0.21, 0.47, 0.85, and 0.01, 
respectively, for without the elevation band use in the model, signifies the SWAT 
model poorly performed without the use of elevation band or natural topography 
of the river basin. It confirms that the topography shows a significant effect on the 
streamflows of the mountainous river basins. Therefore, this work will undoubtedly 
help the researchers to make them aware of the limitations of the SWAT model use 
while applying it to the mountainous river basins. 
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