
Chapter 6
Self-duality, Pieri Formula and Cauchy
Formulas

Abstract Self-duality (evaluation symmetry), which we are going to discuss below,
is one of themost characteristic properties ofMacdonald polynomials. In this chapter,
we explain how the Pieri formulas (multiplication formula by er ) are obtained from
the action of Macdonald–Ruijsenaars operators D(r)

x through the self-duality. We
also investigate the Cauchy formula and the dual Cauchy formula for Macdonald
polynomials and the relevant kernel identities.

6.1 Self-duality and Pieri Formula

We have seen in the previous chapter that, for generic q, t ∈ C
∗ the Macdonald

polynomials Pλ(x) = Pλ(x; q, t) (λ ∈ Pn) are joint eigenfunctions of the commuting
family of Macdonald–Ruijsenaars q-difference operators D(r)

x (r = 1, . . . , n), and
that they form a C basis of the ring of symmetric polynomials C[x]Sn :

C[x]Sn =
⊕

λ∈Pn

C Pλ(x), Dx (u)Pλ(x) = dλ(u)Pλ(x). (6.1)

Note that, under our assumption |q| < 1, the genericity condition for t is fulfilled
if t k /∈ qZ<0 for k = 1, . . . , n − 1, and in particular, if |t | < 1. Also, if we regard
q, t as variables (indeterminates), the (monic) Macdonald polynomials Pλ(x) are
determined uniquely as symmetric polynomials with coefficients in the fieldQ(q, t)
of rational functions in (q, t); their coefficients are regular in the domain |q| < 1,
|t | < 1.

6.1.1 Principal Specialization

As to the values of Schur functions sλ(x) at the base point x = t δ , we gave two explicit
formulas in Propositions 3.1 and 3.2. Those evaluation formulas are generalized to
the case of Macdonald polynomials as follows.
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Theorem 6.1 (Principal specialization)For anyλ ∈ Pn, the value of Pλ(x) at x = t δ

is given explicitly by

Pλ(t
δ) = tn(λ)

∏

s∈λ

1 − tn−l ′λ(s)qa′
λ(s)

1 − t lλ(s)+1qaλ(s)
= tn(λ)

∏n
i=1(t

n−i+1; q)λi∏
1≤i≤ j≤n(t

j−i+1qλi−λ j ; q)λ j−λ j+1

, (6.2)

wheren(λ) = ∑n
i=1(i − 1)λi and, for each s = (i, j) ∈ λ, l ′λ(s) = i − 1anda′

λ(s) =
j − 1 denote the co-leg length and the co-arm length, respectively.

The proof of this evaluation formula at x = t δ will be given in Sect. 6.3, under the
assumption that Theorem 6.2 (below) of self-duality holds.

6.1.2 Self-duality

At this moment, we know at least that Pλ(t δ) �= 0 as a rational function of (q, t),
since the Schur functions are the special case of Macdonald polynomials where
t = q, i.e. Pλ(x; q, q) = sλ(x). Keeping this in mind, we normalize the Macdonald
polynomials as

P̃λ(x) = Pλ(x)

Pλ(t δ)
(λ ∈ Pn) (6.3)

so that P̃λ(t δ) = 1. Then we have the following self-duality (evaluation symmetry).

Theorem 6.2 (Self-duality) The normalized Macdonald polynomials P̃λ(x) =
Pλ(x)/Pλ(t δ) satisfy

P̃λ(t
δqμ) = P̃μ(t δqλ) (6.4)

for all pairs (λ, μ) ∈ Pn × Pn.

We regard x = t δqλ as the position variables and ξ = t δqμ as the spectral variables.
Then (6.4) means that the normalized Macdonald polynomial P̃λ(t δqμ), regarded
as a function of (λ, μ) ∈ Pn × Pn , is invariant under the exchange of position and
spectral variables on the discrete set.

We include a proof of Theorem 6.2 due to Koornwinder [14, 20] in Sect. 6.4.

6.1.3 Pieri Formula

For each λ ∈ Pn , the Macdonald polynomial Pλ(x) multiplied by an elementary
symmetric function er (x) (r = 1, . . . , n) can be expanded into a linear combination
of Macdonald polynomials:
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er (x)Pμ(x) =
∑

λ∈Pn
λ≤μ+(1r )

ψ ′
λ/μ Pλ(x), (6.5)

with some coefficients ψ ′
λ/μ ∈ Q(q, t). This type of expansion formula is called the

Pieri formula. In order to describe the expansion coefficients in the Pieri formula,
we introduce certain rational functions in (q, t).

For each pair λ,μ ∈ P of partitions with μ ⊆ λ (i.e. μi ≤ λi for all i ≥ 1), we
define a rational function ψλ/μ(q, t) ∈ Q(q, t) by

ψλ/μ(q, t) =
∏

1≤i≤ j≤�(μ)

(t j−i+1qμi−μ j ; q)λi−μi

(t j−i qμi−μ j+1; q)λi−μi

(t j−i qμi−λ j+1+1; q)λi−μi

(t j−i+1qμi−λ j+1; q)λi−μi

, (6.6)

and set
ψ ′

λ/μ(q, t) = ψλ′/μ′(t, q). (6.7)

Recall that a skew diagram λ/μ is called a horizontal strip (“h-strip” for short) if
the complement λ\μ contains at most one square in each column. Similarly, we say
that a skew diagram λ/μ is a vertical strip (“v-strip” for short) if the complement
λ\μ contains at most one square in each row. Note that ψλ/μ(q, t) = 0 unless λ/μ

is a horizontal strip, and that ψ ′
λ/μ(q, t) = 0 unless λ/μ is a vertical strip.

Theorem 6.3 (Pieri formula) For each μ ∈ Pn and r = 1, . . . , n, Pμ(x) multiplied
by er (x) is expanded in terms of Macdonald polynomials as

er (x)Pμ(x) =
∑

λ/μ: v-strip
|λ/μ|=r

ψ ′
λ/μ Pλ(x) (6.8)

with coefficientsψ ′
λ/μ = ψ ′

λ/μ(q, t) in (6.6)–(6.7), where the sum is over all partitions
λ ∈ Pn withμ ⊆ λ, |λ| = |μ| + r , such that the skew diagram λ/μ is a vertical strip.

Theorem 6.3 will be proved in Sects. 6.2 and 6.3 before Sect. 6.4, assuming that
Theorem 6.2 holds.

6.2 Self-duality Implies the Pieri Formula

Note that the fact that Pλ(t δ) �= 0 (as a rational function of (q, t)) follows from
the principal specialization of the special case t = q, where Pλ(x |q, q) = sλ(x).
Assuming that the self-duality (6.4) has been established, we explain here how one
can obtain the Pieri formula (6.8) and the evaluation formula (6.2) from the q-
difference equations for Pλ(x), by way of the self-duality.
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For each r = 1, . . . , n, the eigenfunction equation

D(r)
x P̃λ(x) = er (t

δqλ)P̃λ(x) (6.9)

implies ∑

|I |=r

AI (x)P̃λ(q
εI x) = er (t

δqλ)P̃λ(x), (6.10)

where εI = ∑
i∈I εi . Evaluating this formula at x = t δqμ (μ ∈ Pn), we obtain

∑

|I |=r

AI (t
δqμ)P̃λ(t

δqμ+εI ) = er (t
δqλ)P̃λ(t

δqμ). (6.11)

Suppose that ν = μ + εI is not a partition, i.e. μi−1 = μi for some i ∈ {2, . . . , n}
with i ∈ I and i − 1 /∈ I . In such a case, we have

AI (t
δqμ) = t(

|I |
2 )

∏

i∈I, j /∈J

tn−i+1qμi − tn− j qμ j

t n−i qμi − tn− j qμ j
= 0 (6.12)

since t xi − x j = tn−i+1qμi − tn−i+1qμi−1 = 0 (i ∈ I, j = i − 1 /∈ I ). This means
that the sum in the left-hand side of (6.10) is over all I ⊆ {1, . . . , n} with |I | = r
such that ν = μ + εI is a partition. A skew partition ν/μ is a vertical strip if and
only if ν = μ + εI for some I ⊆ {1, . . . , n}. In the following, for each pairμ, ν ∈ Pn

with μ ⊆ ν, we set Aν/μ = AI (t δqμ) if ν/μ is a vertical strip with ν = μ + εI and
Aν/μ = 0 otherwise. Then we have

∑

ν/μ: v-strip, |ν/μ|=r

Aν/μ P̃λ(t
δqν) = er (t

δqλ)P̃λ(t
δqμ). (6.13)

We now apply the self-duality (6.4) to obtain

∑

ν/μ: v-strip, |ν/μ|=r

Aν/μ P̃ν(t
δqλ) = er (t

δqλ)P̃μ(t δqλ). (6.14)

This means that equality

er (x)P̃μ(x) =
∑

ν/μ: v-strip, |ν/μ|=r

Aν/μ P̃ν(x) (6.15)

holds for x = t δqλ (λ ∈ Pn). It also implies that (6.15) is an identity in the ring
C[x]Sn of symmetric polynomials, since a polynomial f (x) ∈ C[x] such that
f (t δqλ) = 0 for all λ ∈ Pn must be zero as a polynomial in x . Namely, if the self-
duality (6.4) has been established, the q-difference equations (6.9) forλ ∈ Pn implies
the Pieri formulas (6.15) for the normalized Macdonald polynomials P̃μ(x) with
coefficients Aν/μ.
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Exercise 6.1 Prove: if a polynomial f (x) ∈ C[x] vanishes at all points x = t δqλ

(λ ∈ Pn), then f (x) = 0 as a polynomial in x .

Supposing that λ/μ is a vertical strip, we express λ as λ = μ + εI with a subset
I ⊆ {1, . . . , n} with |I | = |λ/μ| = r . In this setting, we derive an explicit formula
for the Pieri coefficient

Aλ/μ = AI (t
δqμ) (6.16)

for P̃μ(x). Since 	(x) = ∏n
b=1 x

b−1 ∏
1≤a<b≤n(1 − xa/xb), we have

Aλ/μ = AI (t
δqμ) = 	(t δ+εI qμ)

	(t δqμ)

= tn(εI )
∏

1≤a<b≤n
a∈I,b/∈I

1 − tb−a+1qμa−μb

1 − tb−aqμa−μb

∏

1≤a<b≤n
a /∈I,b∈I

1 − tb−a−1qμa−μb

1 − tb−aqμa−μb
. (6.17)

We use the conjugate partitions λ′, μ′ ∈ P, noting that they satisfy the interlacing
property

n ≥ λ′
1 ≥ μ′

1 ≥ λ′
2 ≥ μ′

2 ≥ λ′
3 ≥ . . . . (6.18)

Then, the subset I ⊆ {1, . . . , n} and its complement J = {1, . . . , n} \I are
parametrized as

λ′
k+2

μ′
k+1

λ′
k+1

μ′
k

λ′
k

μ′
k−1

λ′
k−1

.........................

..................................................

.........................I =
⊔

k≥1

Ik, Ik = (μ′
k, λ

′
k],

J =
⊔

k≥1

Jk, Jk = (λ′
k, μ

′
k−1]

(λ′
0 = μ′

0 = n)

k − 1 k k + 1

Ik

Jk

(6.19)

in the notation of an interval (a, b] = {k ∈ Z | a < k ≤ b} of integers. Note that,
μi = k − 1, λi = k if i ∈ Ik and μ j = λ j = k − 1 if j ∈ Jk). Then we have

Aλ/μ = tn(εI )
∏

j≤i
a∈Ii
b∈J j

1 − tb−a+1qi− j

1 − tb−aqi− j

∏

i< j
a∈J j
b∈Ii

1 − tb−a−1q j−i

1 − tb−aq j−i

= tn(εI )
∏

j≤i

(tμ
′
j−1−λ′

i+1qi− j ; t)λ′
i−μ′

i

(tλ
′
j−λ′

i+1qi− j ; t)λ′
i−μ′

i

∏

i< j

(tμ
′
i−μ′

j−1q j−i ; t)μ′
j−1−λ′

j

(tλ
′
i−μ′

j−1q j−i ; t)μ′
j−1−λ′

j

(6.20)
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and finally

Aλ/μ = = tn(εI )
∏

j≥1

(tn−λ′
j+1q j−1; t)λ′

j−μ′
j

·
∏

i< j (t
μ′
i−λ′

j+1q j−i−1; t)λ′
j−μ′

j∏
i≤ j (t

λ′
i−λ′

j+1q j−i ; t)λ′
j−μ′

j

∏
i≤ j (t

μ′
i−μ′

j q j−i+1; t)μ′
j−λ′

j+1∏
i≤ j (t

λ′
i−μ′

j q j−i+1; t)μ′
j−λ′

j+1

. (6.21)

In combinatorial terms of Young diagrams, this can be written alternatively as

Aλ/μ = tn(λ)
∏n

i=1(t
n−i+1; q)λi

t n(μ)
∏n

i=1(t
n−i+1; q)μi

·
∏

s∈μ∩Rλ/μ
(1 − t lμ(s)+1qaμ(s))

∏
s∈λ∩Rλ/μ

(1 − t lλ(s)+1qaλ(s))

∏
s∈μ\Rλ/μ

(1 − t lμ(s)qaμ(s)+1)
∏

s∈λ\Rλ/μ
(1 − t lλ(s)qaλ(s)+1)

, (6.22)

where Rλ/μ = I × Z>0 denotes the union of rows intersecting with the vertical strip
λ/μ.

6.3 Principal Specialization: Evaluation at x = tδ

The normalized Macdonald polynomials P̃λ(x) can be written as

P̃λ(x) = 1

aλ

Pλ(x) = 1

aλ

mλ(x) + (lower-order terms), aλ = Pλ(t
δ). (6.23)

We compare the coefficients of mλ(x) of the both sides of (6.15) for λ = μ + 
r ,

r = ε1 + · · · + εr = (1r ). Then we obtain

1

aμ

= Aλ/μ

1

aλ

, i.e. aλ = aμAλ/μ (6.24)

for λ = μ + 
r .
We make use of this recurrence formula for the case where �(μ) ≤ r and λ =

μ + 
r . Since

Aλ/μ = t(
r
2)

r∏

i=1

1 − tn−i+1qμi

1 − tr−i+1qμi
= tn(
r )

∏

s∈λ\μ

1 − tn−l ′λ(s)qaλ(s)

1 − t lλ(s)+1qaλ(s)
, (6.25)

by aλ = aμAλ/μ, we obtain

aλ = aμ · tn(
r )
∏

s∈λ\μ

1 − tn−l ′λ(s)qaλ(s)

1 − t lλ(s)+1qaλ(s)
, (6.26)
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if �(μ) ≤ r and λ = μ + 
r . Noting that any λ ∈ Pn is expressed as λ = 
λ′
1
+

· · · + 
λ′
l
, l = λ1, we can apply the recurrence formula (6.26) to obtain

aλ = tn(λ)
∏

s∈λ

1 − tn−l ′λ(s)qaλ(s)

1 − t lλ(s)+1qaλ(s)
=

∏

s∈λ

t l
′
λ(s) − tnqa′

λ(s)

1 − t lλ(s)+1qaλ(s)
(6.27)

for any λ ∈ Pn . In terms of the components of λ, aλ is expressed alternatively as

aλ = tn(λ)
∏n

i=1(t
n−i+1; q)λi∏

1≤i≤ j≤n(t
j−i+1qλi−λ j ; q)λ j−λ j+1

. (6.28)

Note that the pair (i, j) of indices with 1 ≤ i ≤ j ≤ n in the denominator covers
the sequence of squares s = (i, k) with k ∈ (λ j+1, λ j ], for which lλ(s) = j − i and
aλ(s) = λi − k.

i

j

λi

λ j
λ j+1

.........................
.........................

.........................

(6.29)

Formulas (6.26)–(6.27) are the explicit formulas for Pλ(t δ) = aλ in Theorem 6.1.
Also, the Pieri coefficients ψ ′

λ/μ in (6.8) for λ = μ + εI , I ⊆ {1, . . . , n} are
obtained from (6.15) by

ψ ′
λ/μ = aμ

aλ

Aλ/μ, Aλ/μ = AI (t
δqμ). (6.30)

Writing down this formula in terms of λ,μ ∈ Pn , we obtain the explicit formula for
ψ ′

λ/μ = ψ ′
λ/μ(q, t) as in (6.6). By (6.22) and (6.27) we obtain

ψ ′
λ/μ = aμ

aλ

Aλ/μ

=
∏

s∈λ(1 − t lλ(s)+1qaλ(s))∏
s∈μ(1 − t lμ(s)+1qaμ(s))

·
∏

s∈μ∩Rλ/μ
(1 − t lμ(s)+1qaμ(s))

∏
s∈λ∩Rλ/μ

(1 − t lλ(s)+1qaλ(s))

∏
s∈μ\Rλ/μ

(1 − t lμ(s)qaμ(s)+1)
∏

s∈λ\Rλ/μ
(1 − t lλ(s)qaλ(s)+1)

=
∏

s∈λ\Rλ/μ

1 − t lλ(s)+1qaλ(s)

1 − t lλ(s)qaλ(s)+1

∏

s∈μ\Rλ/μ

1 − t lμ(s)qaμ(s)+1

1 − t lμ(s)+1qaμ(s)
. (6.31)
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In terms of the components of λ, μ, this formula can be rewritten as

ψ ′
λ/μ =

∏

i≤ j

(tλ
′
i−μ′

j+1q j−i ; t)μ′
j−λ′

j+1

(tλ
′
i−μ′

j q j−i+1; t)μ′
j−λ′

j+1

(tμ
′
i−μ′

j q j−i+1; t)μ′
j−λ′

j+1

(tμ
′
i−μ′

j+1q j−i ; t)μ′
j−λ′

j+1

=
∏

i≤ j

(tμ
′
i−λ′

j+1+1q j−i ; t)λ′
i−μ′

i

(tμ
′
i−λ′

j+1q j−i+1; t)λ′
i−μ′

i

(tμ
′
i−μ′

j q j−i+1; t)λ′
i−μ′

i

(tμ
′
i−μ′

j+1q j−i ; t)λ′
i−μ′

i

. (6.32)

This gives a proof of Theorem 6.3 (under the assumption that Theorem 6.2 holds).
Note that the two expressions in (6.32) are transformed into each other through the
formula

(qla; q)k

(a; q)k
= (a; q)k+l

(a; q)k(a; q)l
= (qka; q)l

(a; q)l
(k, l ∈ N) (6.33)

for q-shifted factorials.

6.4 Koornwinder’s Proof of Self-duality

In this section, we present Koornwinder’s inductive argument which proves the self-
duality and the Pieri formula for P̃λ(x) simultaneously (see Macdonald [20] and
Koornwinder [14]).
For μ ∈ Pn and r = 0, 1, . . . , n, we consider the expansion of er (x)P̃μ(x) in terms

of P̃λ(x) (λ ∈ Pn):

er (x)P̃μ(x) =
∑

λ∈Pn , λ≤μ+
r

Bλ/μ P̃λ(x). (6.34)

The coefficients Bλ/μ are defined for all λ ∈ Pn such that λ ≤ μ + 
r ; we set Bλ/μ =
0 otherwise. For each pair λ,μ ∈ Pn with μ ⊆ λ, we set Aλ/μ = AI (t δqμ) if λ/μ is
a vertical strip with λ = μ + εI , I ⊆ {1, . . . , n}, and Aλ/μ = 0 otherwise.

Weprove the following two statements forλ ∈ Pn simultaneously by the induction
on |λ| combined with the dominance order of partitions:

(a)λ P̃λ(t δqμ) = P̃μ(t δqλ) for all μ ∈ Pn .
(b)λ Suppose that r ∈ {1, . . . , n} and λ − 
r ∈ Pn , and set κ = λ − 
r .

Then, Bν/κ = Aν/κ for any ν ∈ Pn with ν ≤ λ = κ + 
r .

For the induction, we use the partial order ν 
d-dom μ for ν, μ ∈ Pn defined by

ν 
d-dom μ ⇐⇒ |ν| < |μ| or (|ν| = |μ| and ν ≤ μ). (6.35)

Statement (a)μ holds for μ = 0 since P̃λ(t δ) = 1 for all λ ∈ Pn , while (b)μ is empty
for μ = 0.
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Assuming that λ ∈ Pn and |λ| > 0, we first prove (b)λ. Suppose that κ ∈ Pn ,
r ∈ {1, . . . , n} and λ = κ + 
r . By the argument of Sect. 6.2, (6.13), we know

er (t
δqμ)P̃μ(t δqκ) =

∑

ν/κ: v-strip
|ν/κ|=r

Aν/κ P̃μ(t δqν) (μ ∈ Pn). (6.36)

Note that we have ν ≤ κ + 
r = λ if ν/μ is a vertical strip with |ν/κ| = r . On the
other hand, we have

er (t
δqμ)P̃κ(t

δqμ) =
∑

ν≤λ

Bν/κ P̃ν(t
δqμ) (μ ∈ Pn) (6.37)

by (6.34). Since |κ| < |λ|, we have P̃κ(t δqμ) = P̃μ(t δqκ) by the induction hypoth-
esis. Also, we have P̃ν(t δqμ) = P̃μ(t δqμ) for all pair μ, ν ≤ λ by the induction
hypothesis; in fact we have μ < λ or ν < λ if μ �= ν. Hence we have

er (t
δqμ)P̃μ(t δqκ) =

∑

ν≤λ

Bν/κ P̃μ(t δqν) (μ ∈ Pn, μ ≤ λ). (6.38)

From (6.36) and (6.38), we obtain

∑

ν/κ:v-strip
|ν/κ|=r

Aν/κ P̃μ(t δqν) =
∑

ν≤λ

Bν/κ P̃μ(t δqν) (μ ∈ Pn, μ ≤ λ). (6.39)

Then, statement (b)λ follows if we confirm that det
(
P̃μ(t δqν)

)
μ,ν≤λ

�= 0, which will
be proved below in Lemma 6.1.

Knowing that (b)λ holds, we can rewrite (6.37) as

er (t
δqμ)P̃κ(t

δqμ) =
∑

ν/μ: v-strip
|ν/μ|=r

Aν/κ P̃ν(t
δqμ) (μ ∈ Pn). (6.40)

We now compare (6.36) and (6.40) for arbitraryμ ∈ Pn . Since P̃μ(t δqκ) = P̃κ(t δqμ)

and P̃μ(t δqν) = P̃ν(t δqμ) for any ν < λ = κ + 
r , we obtain

Aλ/κ P̃μ(t δqλ) = Aλ/κ P̃λ(t
δqμ). (6.41)

Since Aλ/κ �= 0, we obtain P̃μ(t δqλ) = P̃λ(t δqμ) for all μ ∈ Pn , as desired.

Lemma 6.1 For any λ ∈ Pn, det
(
P̃μ(t δqν)

)
μ,ν≤λ

�= 0.

Proof This statement is equivalent to det
(
Pμ(t δqν)

)
μ,ν≤λ

�= 0 since P̃μ(x) =
Pμ(x)/aμ, and further to det

(
mμ(t δqν)

)
μ,ν≤λ

�= 0 since Pμ(x) = mμ(x) +
(lower order terms with respect to ≤). Note that
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mμ(t δqν) = t 〈μ,δ〉q〈μ,ν〉 + (lower degree terms in t), (6.42)

and hence

det
(
mμ(t δqν)

)
μ,ν≤λ

= det
(
t 〈μ,δ〉q〈μ,ν〉)

μ,ν≤λ
+ (lower degree terms in t)

= t
∑

μ≤λ〈μ,δ〉 det
(
q〈μ,ν〉)

μ,ν≤λ
+ (lower degree terms in t). (6.43)

Setting N = # {μ ∈ Pn | μ ≤ λ}, parametrize all μ ∈ Pn with μ ≤ λ as μ(1), . . . ,

μ(N ). Then we have

det
(
q〈μ,ν〉)

μ,ν≤λ
= det

(
q〈μ(i),μ( j)〉)N

i, j=1 =
∑

σ∈SN

sgn(σ )q
∑N

i=1〈μ(i),μ(σ(i))〉

= q
∑N

i=1〈μ(i),μ(i)〉 + (lower degree terms in q). (6.44)

In fact, for σ �= 1, inequality
∑N

i=1〈μ(i) − μ(σ(i)), μ(i) − μ(σ(i))〉 > 0 implies∑N
i=1〈μ(i), μ(i)〉 >

∑N
i=1〈μ(i), μ(σ(i))〉. Hence we have det (q〈μ,ν〉)

μ,ν≤λ
�= 0. �

We remark that the self-duality of Theorem 6.2 can also be proved by means of
the Cherednik involution of the double affine Hecke algebra (see Sect. 8.5).

6.5 Cauchy Formula and Dual Cauchy Formula

The Cauchy formula of Theorem 3.2 and the dual Cauchy formula of Theorem 3.4
for Schur functions can be generalized to the case of Macdonald polynomials.

Theorem 6.4 (Cauchy formula) For two sets of variables x = (x1, . . . , xm) and
y = (y1, . . . , yn), we have

m∏

i=1

n∏

j=1

(t xi y j ; q)∞
(xi y j ; q)∞

=
∑

�(λ)≤min{m,n}
bλPλ(x)Pλ(y), (6.45)

where λ runs over all partitions with �(λ) ≤ min {m, n}, and the coefficients bλ are
given by

bλ =
∏

s∈λ

1 − t lλ(s)+1qaλ(s)

1 − t lλ(s)qaλ(s)+1
=

∏

1≤i≤ j≤�(λ)

(t j−i+1qλi−λ j ; q)λ j−λ j+1

(t j−i qλi−λ j+1; q)λ j−λ j+1

. (6.46)
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We remark that, when q = t , formula (6.45) reduces to the Cauchy formula

m∏

i=1

n∏

j=1

1

1 − xi y j
=

∑

�(λ)≤min{m,n}
sλ(x)sλ(y), (6.47)

with coefficients bλ = 1. In Sect. 6.6, we give a proof of the fact that the left-hand
side of (6.45) has an expansion formula of the form (6.45) for some constants bλ

(λ ∈ Pn); a derivation of the explicit formula (6.46) for bλ will be given in Sect. 7.3.
In Macdonald’s monograph [20], the notation Qλ(y) = bλPλ(y) for the “dual” Mac-
donald polynomials is consistently used in view of their roles in duality arguments.

Theorem 6.5 (Dual Cauchy formula) For two sets of variables x = (x1, . . . , xm)

and y = (y1, . . . , yn), we have

m∏

i=1

n∏

j=1

(1 + xi y j ) =
∑

λ⊆(nm )

Pλ(x; q, t)Pλ′(y; t, q), (6.48)

m∏

i=1

n∏

j=1

(xi + y j ) =
∑

λ⊆(nm )

Pλ(x; q, t)Pλc(y; t, q), (6.49)

where the sum is over all partitions λ contained in the m × n rectangle (nm); λ′ =
(λ′

1, . . . , λ
′
n) and λc = (m − λ′

n, . . . ,m − λ′
1) denote the conjugate partition of λ

and the complementary partion of λ in (nm) respectively.

In what follows, we set

m,n(x; y) =
m∏

i=1

n∏

j=1

(t xi y j ; q)∞
(xi y j ; q)∞

(6.50)

and regard m,n(x; y) as a formal power series in C[[x, y]]Sm×Sn .1 We also set

∨
m,n(x; y) =

m∏

i=1

n∏

j=1

(1 + xi y j ) ∈ C[x, y]Sm×Sn . (6.51)

It is sometimes more convenient to use the generating function

�m,n(x; y) =
m∏

i=1

n∏

j=1

(xi + y j ) ∈ C[x, y]Sm×Sn . (6.52)

1 In fact, m,n(x; y) is a meromorphic function on C
m × C

n under our assumption |q| < 1. It is
also holomorphic in the domain |xi y j | < 1 for i ∈ {1, . . . ,m} , j ∈ {1, . . . , n}.
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Since

�m,n(x; y) = (y1 · · · yn)m
m∏

i=1

n∏

j=1

(1 + xi y
−1
j ) = (y1 . . . yn)

m∨
m,n(x; y−1), (6.53)

formula (6.48) is equivalent to

m∏

i=1

n∏

j=1

(xi + y j ) =
∑

λ∈(nm )

Pλ(x; q, t)(y1 · · · yn)m Pλ′(y−1; t, q). (6.54)

By Proposition 5.1, for each partition λ ⊆ (nm) we have

(y1 · · · yn)m Pλ′(y−1; t, q) = Pλc(y; t, q), (6.55)

where
λc = ((mn) − λ′)∨ = (m − λ′

n, . . . ,m − λ′
1) (6.56)

denotes the complementary partition of λ in the m × n rectangle. Hence formula
(6.48) is equivalent to (6.49). We give a proof of the dual Cauchy formula (6.49) in
the second half of Sect. 6.6.

6.6 Kernel Identities

6.6.1 Kernel Identity for the Cauchy Formula

We consider the case where m = n. We first remark that there exists an expansion
formula as (6.45)with some constantsbλ, if andonly if(x; y) = n,n(x; y) satisfies
the kernel identity

Dx (u)(x; y) = Dy(u)(x; y). (6.57)

Expand (x; y) in terms of Macdonald polynomials Pλ(x) (λ ∈ Pn) as

(x; y) =
∑

λ∈Pn

Pλ(x)Qλ(y), Qλ(y) ∈ C[y]Sn (λ ∈ Pn). (6.58)

Since

Dx (u)(x; y) =
∑

λ∈Pn

Pλ(x)Qλ(y)
n∏

i=1

(1 − utn− j qλ j ),

Dy(u)(x; y) =
∑

λ∈Pn

Pλ(x)Dy(u)Qλ(y), (6.59)
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identity (6.57) implies Dy(u)Qλ(y) = Qλ(y)
∏n

i=1(1 − utn− j qλ j ) and hence,
Qλ(x) = bλPλ(x) for some bλ ∈ C.

Proposition 6.1 For two sets of variables x = (x1, . . . , xn), y = (y1, . . . , yn), the
formal power series

(x; y) =
n∏

i=1

n∏

j=1

(t xi y j ; q)∞
(xi y j ; q)∞

∈ C[[x, y]]Sn×Sn (6.60)

satisfies the kernel identity

Dx (u)(x; y) = Dy(u)(x; y). (6.61)

Proof Recall that

Dx (u) =
∑

I⊆{1,...,n}
(−u)|I |t(

|I |
2 )

∏

i∈I, j /∈I

t xi − x j

xi − x j

∏

i∈I
Tq,xi ,

Dy(u) =
∑

K⊆{1,...,n}
(−u)|K |t(

|K |
2 )

∏

k∈K , l /∈K

tyk − yl
yk − yl

∏

k∈K
Tq,yk . (6.62)

Since

∏

i∈I
Tq,xi (x; y) =

∏

i∈I

n∏

l=1

1 − xi yl
1 − t xi yl

· (x; y),

∏

k∈K
Tq,yk(x; y) =

∏

k∈K

n∏

j=1

1 − x j yk
1 − t x j yk

· (x; y), (6.63)

Equation (6.61) is equivalent to the source identity

∑

I⊆{1,...,n}
(−u)|I |t(

|I |
2 )

∏

i∈I ; j /∈I

t xi − x j

xi − x j

∏

i∈I

n∏

l=1

1 − xi yl
1 − t xi yl

=
∑

K⊆{1,...,n}
(−u)|K |t(

|K |
2 )

∏

k∈K ; l /∈K

tyk − yl
yk − yl

∏

k∈K

n∏

j=1

1 − x j yk
1 − t x j yk

.

(6.64)

An important observation is that this identity does not involve q. This means that, in
order to prove (6.64), it is sufficient to prove (6.61) for q = t . However, we already
know that (6.61) holds when q = t by the Cauchy formula for Schur functions. �

The existence of an expansion formula of the form (6.45) for difference num-
ber of variables m, n follows from the stability of Macdonald polynomials as in
Exercise 4.2. Also, for a given partition λ ∈ P, the coefficient bλ of Pλ(x)Pλ(y) in
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(6.45) is determined independently of the choice of m, n such that
m ≥ �(λ), n ≥ �(λ).

It should be noted thatwe need someother arguments to obtain the explicit formula
(6.46) for bλ; a proof of (6.46) will be given in Sect. 7.3, on the basis of compatibility
of the Cauchy and the dual Cauchy formula for Macdonald polynomials.

In the setting of Theorem 6.4, suppose that m ≥ n. Then for each λ ∈ Pn , we
have

Dx (u)Pλ(x) = Pλ(x)
n∏

i=1

(1 − utm−i qλi )

m∏

i=n+1

(1 − utm−i )

Dy(v)Pλ(y) = Pλ(y)
n∏

i=1

(1 − vtn−i qλi ). (6.65)

We also remark that (6.45) for the case where m ≥ n corresponds to the kernel
identity

Dx (u)m,n(x; y) = (u; t)m−nDy(ut
m−n)m,n(x; y). (6.66)

Remark 6.1 We have used here the kernel identity for m,n(x; y) to prove the
Cauchy formula for Macdonald polynomials. Another important application of the
kernel identity is the integral transform of the form

ϕ(x) = 1

(2π
√−1)n

∫

Tn

m,n(x; y)ψ(y)w(y)
dy1 · · · dyn
y1 · · · yn . (6.67)

It transforms joint eigenfunctions ψ(y) of the Macdonald–Ruijsenaars operators
Dy(v) in y variables to joint eigenfunctions ϕ(x) of Dx (u) in x variables. This
property is a consequence of the kernel identity for m,n(x; y) combined with the
self-adjointness of Dy(v) with respect to the weight function w(y).

6.6.2 Kernel Identity for the Dual Cauchy Formula

Here we give a proof of formula (6.49) which is equivalent to (6.48), on the basis of
a relevant kernel identity.

For two sets of variables x = (x1, . . . , xm) and y = (y1, . . . , yn), we set

Pμ(x) = Pμ(x; q, t) (μ ∈ Pm), P◦
ν (y) = Pν(y; t, q) (ν ∈ Pn). (6.68)

We also denote by

D◦
y =

n∑

k=1

∏

1≤l≤n; l �=k

qyk − yl
yk − yl

Tt,yk (6.69)

the t-difference operator obtained from Dy by exchanging q and t .
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Note that the polynomial

�m,n(x; y) =
m∏

i=1

n∏

j=1

(xi + y j ) ∈ C[x, y]Sm×Sn (6.70)

is of degree mn in (x, y), and symmetric both in x and in y. Since �m,n(x; y) is of
degree ≤ n in each xi and of degree ≤ m in each y j , it can be expressed as

�m,n(x; y) =
∑

μ⊆(nm ); ν⊆(mn)

cμ,νPμ(x)P◦
ν (y) (6.71)

with someconstants cμ,ν . For eachpartitionμ ⊆ (nm),wedefined the complementary
partition μc in the m × n rectangle by μc = (m − μ′

n, n − μ′
n−1, . . . ,m − μ′

1) (see
the figure in (3.82)). In this setting, we show that cμ,ν = 0 unless ν = μc, namely

�m,n(x; y) =
m∏

i=1

n∏

j=1

(xi + y j ) =
∑

λ⊆(nm )

cλPλ(x)P
◦
λc(y) (6.72)

for some constants cλ ∈ C.
In the eigenfunction equation

Dx Pλ(x) = dλPλ(x), dλ =
m∑

i=1

tm−i qλi , (6.73)

the eigenvalue dλ has the following combinatorial meaning:

1

q − 1

(
dλ − tm − 1

t − 1

)
= 1

q − 1

m∑

i=1

tm−i (qλi − 1)

=
m∑

i=1

λi∑

j=1

tm−i q j−1 =
∑

s=(i, j)∈D(λ)

tm−i q j−1. (6.74)

Similarly, as for the eigenvalue d◦
λc in the equation

D◦
y P

◦
λc(y) = d◦

λc P◦
λc(y), d◦

λc =
n∑

j=1

qn− j tλ
c
j , (6.75)

we have

1

t − 1

(
d◦

λc − qn − 1

q − 1

)
=

n∑

j=1

λc
i∑

i=1

t i−1qn− j =
∑

s=(i, j)∈D(λ)c

tm−i q j−1, (6.76)
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where D(λ)c stands for the complement of D(λ) in the rectangle {1, . . . ,m} ×
{1, . . . , n}. Since

∑

s=(i, j)∈(nm )

tm−i q j−1 = tm − 1

t − 1

qn − 1

q − 1
, (6.77)

the existence of a formula in the form (6.72) is equivalent to

(
1

q − 1

(
Dx − tm − 1

t − 1

)
+ 1

t − 1

(
D◦

y − qn − 1

q − 1

))
�m,n(x; y)

= tm − 1

t − 1

qn − 1

q − 1
�m,n(x; y), (6.78)

namely,

( 1

q − 1
Dx + 1

t − 1
D◦

y

)
�m,n(x; y) = tmqn − 1

(t − 1)(q − 1)
�m,n(x; y). (6.79)

Proposition 6.2 For two sets of variables x = (x1, . . . , xm) and y = (y1, . . . , yn),
the polynomial

�m,n(x; y) =
m∏

i=1

n∏

j=1

(xi + y j ) ∈ C[x, y]Sm×Sn (6.80)

satisfies the kernel identity

( 1

q − 1
Dx + 1

t − 1
D◦

y

)
�m,n(x; y) = tmqn − 1

(t − 1)(q − 1)
�m,n(x; y). (6.81)

Proof This kernel identity is equivalent to the following identity of rational func-
tions:

1

q − 1

m∑

i=1

∏

j �=i

t xi − x j

xi − x j

n∏

l=1

qxi + yl
xi + yl

+ 1

t − 1

n∑

k=1

∏

l �=k

qyk − yl
yk − yl

m∏

j=1

x j + t yk
x j + yk

= tmqn − 1

(t − 1)(q − 1)
, (6.82)

which can be verified directly by the residue calculus combined with induction on
the number of variables. In fact, equality (6.82) for n = 0 is the same as (4.2). When
n > 0, we regard the left-hand side as a rational function of yn . Then, we see that
the residues at yn = yk (k = 1, . . . , n − 1) and at yn = −xi ( i = 1, . . . ,m) are all
zero. We can also verify that the limit as yn → 0 gives the value of the right-hand
side, by using the induction hypothesis of the case (m, n − 1). �
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Finally, we show that cλ = 1 for all λ ⊆ (nm). We denote by Am,n the set of
all m × n integer matrices A = (ai j )1≤i≤m; 1≤ j≤n such that ai j ∈ {0, 1} for all i, j .
Also, for a pair of multi-indices (μ, ν) ∈ N

m × N
n , we denote byAμ,ν the set of all

A = (ai j ) ∈ Am,n such that

n∑

j=1

ai j = μi (i = 1, . . . ,m),

m∑

i=1

ai j = ν j ( j = 1, . . . , n). (6.83)

Then �m,n(x; y) can be expanded as follows:

�m,n(x; y) =
∑

A=(ai j )∈Am,n

m∏

i=1

n∏

j=1

(x
ai j
i y

1−ai j
j )

=
∑

μ∈Nm ,ν∈Nn

(#Aμ,ν) x
μy(mn)−ν =

∑

μ∈Nm ,ν∈Nn

(#Aμ,(mn)−ν) x
μyν

=
∑

μ,ν⊆(nm )

(#Aμ,(mn)−νc) mμ(x)mνc(y). (6.84)

Since (mn) − νc = (ν ′
n, . . . , ν

′
1) is the reversal of ν ′ = (ν ′

1, . . . , ν
′
n), we obtain

�m,n(x; y) =
∑

μ,ν⊆(nm )

(#Aμ,ν ′) mμ(x)mνc(y). (6.85)

We now look at the coefficients of mμ(x)mμc(y) for partitions μ ⊆ (nm).

Lemma 6.2 For each partition μ ⊆ (nm), #Aμ,μ′ = 1.

Proof Define A = (ai j )1≤i≤m,1≤ j≤n by

ai j = 1 (1 ≤ j ≤ μi ), ai j = 0 (μi < j ≤ n) (6.86)

for all i ∈ {1, . . . ,m}, so that
{
s = (i, j) ∈ {1, . . . ,m} × {1, . . . , n} | ai j = 1

} = D(μ). (6.87)

Then, one can verify that this matrix A it is the only element ofAμ,μ′ . �



μ1
μ2

.

.

.

μm

μ′
n. . .μ′

2μ′
1

(6.88)
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This lemma implies that, for each partition μ ⊆ (nm), the coefficient of xμyμc
in the

expansion of�m,n(x; y) is precisely 1. In the right-hand side of (6.72), themonomial
xμyμc

arises only if there exists a partition λ ∈ (nm) such that μ ≤ λ and μc ≤ λc.
One can directly verify that the conditionμc ≤ λc impliesμ′ ≤ λ′, and henceμ ≥ λ.
Together withμ ≤ λ, we obtain λ = μ. This implies that the monomial xμyμc

arises
only from the term Pμ(x)P◦

μc(y). This also means that the coefficient of xμyμc
on

the right-hand side is given by cμ. Hence we have cμ = 1 for all partitionsμ ⊆ (nm).
This completes the proof of the dual Cauchy formula (6.49) of Theorem 6.5, and
also the proof of (6.48).
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