
Chapter 5
Orthogonality and Higher-Order
q-Difference Operators

Abstract We show that the Macdonald polynomials satisfy the orthogonality rela-
tion with respect to a certain scalar product on the ring of symmetric polynomials.
We also explain how this orthogonality is related with the existence of commuting
family of higher-order q-difference operators for which Macdonald polynomials are
joint eigenfunctions.

5.1 Scalar Product and Orthogonality

As always, we fix the parameters q, t ∈ C
∗ with |q| < 1. Also, keeping the conven-

tion of the previous chapter, we suppose that the parameters q, t satisfy the genericity
condition (4.10).

5.1.1 Weight Function and Scalar Product

We define a meromorphic function w(x) = w(x; q, t) on (C∗)n by

w(x) =
∏

1≤i< j≤n

(xi/x j ; q)∞
(t xi/x j ; q)∞

(x j/xi ; q)∞
(t x j/xi ; q)∞

. (5.1)

Note that w(x) isSn-invariant and also w(x−1) = w(x). We assume |t | < 1 so that
w(x) is holomorphic in a neighborhood of the n-dimensional torus

T
n = {

x = (x1, . . . , xn) ∈ (C∗)n | |xi | = 1 (i = 1, . . . , n)
} ⊂ (C∗)n. (5.2)

For a pair of holomorphic functions f (x), g(x) in a neighborhood ofTn , we define
the scalar product (symmetric bilinear form)

〈
f, g

〉
as
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〈
f, g

〉 = 1

n!
1

(2π
√−1)n

∫

Tn

f (x−1)g(x)w(x)
dx1 · · · dxn
x1 · · · xn (5.3)

by the integral over Tn with orientation such that

1

(2π
√−1)n

∫

Tn

dx1 · · · dxn
x1 · · · xn = 1. (5.4)

The scalar product is alternatively expressed as

〈
f, g

〉 = 1

n!CT
[
f (x−1)g(x)w(x)

]
, (5.5)

in terms of the constant term CT (coefficient of 1) of the Laurent expansion of a
holomorphic function around T

n .

Theorem 5.1 Suppose that |t | < 1. Then, the Macdonald polynomials are orthog-
onal with respect to the scalar product defined by (5.3):

〈
Pλ, Pμ

〉 = δλ,μ Nλ (λ, μ ∈ Pn) (5.6)

for some constants Nλ ∈ C (λ ∈ Pn).

We remark that, if q, t ∈ R and |q| < 1, |t | < 1, theMacdonald polynomials have
real coefficients, and

〈
,

〉
defines a positive definite scalar product on R[x]Sn .

Remark 5.1 In Macdonald’s monograph [20, Sect. VI.9], the scalar product 〈 f, g〉
of (5.3) is called another scalar product and denoted by 〈 f, g〉′n . It should be noted
that our scalar product is different from Macdonald’s 〈 f, g〉n defined by [20, Chap.
VI, (2.20)].

5.1.2 Constant Term and Scalar Products

It is known [20, Sect. VI.9] that the constant term and the scalar products are deter-
mined explicitly as follows.

Theorem 5.2 For each λ ∈ Pn, the scalar product Nλ = 〈Pλ, Pλ〉 is explicitly eval-
uated as

Nλ =
∏

1≤i< j≤n

(qλi−λ j t j−i ; q)∞(qλi−λ j+1t j−i ; q)∞
(qλi−λ j t j−i+1; q)∞(qλi−λ j+1t j−i−1; q)∞

. (5.7)

In particular, the constant term of the weight functionCT
[
w(x)

]
= n!Nφ = n!〈1, 1〉

is given by
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CT
[
w(x)

]
= n!

(
(t; q)∞
(q; q)∞

)n n∏

i=1

(t i−1q; q)∞
(t i ; q)∞

. (5.8)

In this book, we will not go into the proof of these explicit formulas. For proofs of
this theorem, we refer the reader to Macdonald [20, Sect. VI.9], and Mimachi [21]
(see also Macdonald [22]).

5.2 Proof of Orthogonality

The orthogonality of Macdonald polynomials is a consequence of the facts that:

(1) The q-difference operator Dx is (formally) self-adjoint with respect to the
weight function w(x).
(2) The partitions λ ∈ Pn are separated by the eigenvalues of Dx , namely

dλ �= dμ for any distinct pair λ,μ ∈ Pn .

Along this idea, we explain step by step how the orthogonality of Theorem 5.1 can
be established.

5.2.1 Cauchy’s Theorem as a Basis of q-Difference de Rham
Theory

Let ϕ(z) be a holomorphic function in an neighborhood of a closed curve C in C
∗.

We suppose that the contour C can be deformed continuously to qC in a domain
where ϕ(z) is holomorphic. Note that this condition is satisfied either if the domain
of holomorphy of ϕ(z) is sufficiently large, or if q is sufficiently close to 1. Then, by
Cauchy’s theorem, we have

∫

C
ϕ(qz)

dz

z
=

∫

qC
ϕ(z)

dz

z
=

∫

C
ϕ(z)

dz

z
, (5.9)

namely

∫

C
Tq,z

(
ϕ(z)

)dz
z

=
∫

C
ϕ(z)

dz

z
, i.e.

∫

C
(Tq,z − 1)(ϕ(z))

dz

z
= 0. (5.10)

In particular, we have

∫

C
Tq,z

(
ϕ(z)

)
ψ(z)

dz

z
=

∫

C
ϕ(z)T−1

q,z

(
ψ(z)

)dz
z

. (5.11)

This formula plays the role of integration by parts.
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5.2.2 Formal Adjoint of a q-Difference Operator

Let Lx ∈ Dq,x = C(x)[T±1
q,x ] be a q-difference operator in x = (x1, . . . , xn) with

rational coefficients:

Lx =
∑

μ∈Zn

aμ(x)T μ
q,x (finite sum), aμ(x) ∈ C(x) (μ ∈ Z

n), (5.12)

where T μ
q,x = T μ1

q,x1 · · · T μn
q,xn . We define the formal adjoint L∗

x of Lx by

L∗
x =

∑

μ∈Zn

T−μ
q,x aμ(x), (5.13)

so that (LxMx )
∗ = M∗

x L
∗
x . Then, we have

∫

Tn

(Lx f )(x
−1)g(x)w(x)

dx

x

=
∫

Tn

(Lx−1 f (x−1))g(x)w(x)
dx

x

=
∫

Tn

f (x−1)
(
L∗
x−1g(x)w(x)

)dx
x

=
∫

Tn

f (x−1)
(
w(x)−1L∗

x−1w(x)g(x))w(x)
dx

x
, (5.14)

and hence 〈
L f, g

〉 = 〈
f, L†g

〉
, L† = w(x)−1L ∗

x−1w(x), (5.15)

provided that q is sufficiently close to 1 and that Cauchy’s theorem can be applied to
Lx . We say that Lx is formally self-adjoint with respect to w(x) if L†

x = Lx , namely
w(x)Lxw(x)−1 = L∗

x−1 .

5.2.3 Dx Is Self-Adjoint with Respect to w(x)

Note that

Tq,xi w(x)

w(x)
=

∏

j �=i

1 − t xi/x j

1 − xi/x j

∏

j �=i

1 − x j/qxi
1 − t x j/qxi

= Ai (x)

Tq,xi Ai (x−1)
(i = 1, . . . , n).

(5.16)
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This implies that

w(x)Dxw(x)−1 =
n∑

i=1

Ai (x)
w(x)

Tq,xi w(x)
Tq,xi =

n∑

i=1

(Tq,xi Ai (x
−1))Tq,xi

=
n∑

i=1

Tq,xi Ai (x
−1) = D ∗

x−1 .

(5.17)

It can be verified directly that
〈
Dx f, g

〉 = 〈
f, Dxg

〉
if |t | < |q| < 1. Note that the

poles of Ai (x) along �(x) = 0 are canceled by the zeros of w(x).

5.2.4 Orthogonality

Since Dx is self-adjoint with respect to the scalar product, for any λ,μ ∈ Pn we have
the equality 〈

Dx Pλ(x), Pμ(x)
〉 = 〈

Pλ(x), Dx Pμ(x)
〉
, (5.18)

and hence
dλ

〈
Pλ, Pμ

〉 = dμ

〈
Pλ, Pμ

〉
. (5.19)

Under our assumption that dλ �= dμ (λ �= μ), we obtain
〈
Pλ, Pμ

〉 = 0 (λ �= μ).

5.3 Commuting Family of q-Difference Operators

5.3.1 Macdonald–Ruijsenaars Operator of rth Order

For each r = 0, 1, . . . , n, we define the Macdonald–Ruijsenaars q-difference oper-
ator D(r)

x of r th order by

D(r)
x =

∑

I⊆{1,...,n}; |I |=r

AI (x)T
I
q,x , AI (x) = t(

|I |
2 )

∏

i∈I, j /∈I

t xi − x j

xi − x j
, (5.20)

where T I
q,x = ∏

i∈I Tq,xi , so that D
(0)
x = 1, D(1)

x = Dx and D(n)
n = t(

n
2)Tq,x1 · · · Tq,xn .
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Example: D(r)
x (n = 3, r = 1, 2, 3)

D(1)
x = (t x1 − x2)(t x1 − x3)

(x1 − x2)(x1 − x3)
Tq,x1 + (t x2 − x1)(t x2 − x3)

(x2 − x1)(x2 − x3)
Tq,x2

+ (t x3 − x1)(t x3 − x2)

(x3 − x1)(x3 − x2)
Tq,x3

D(2)
x = t

(t x1 − x3)(t x2 − x3)

(x1 − x3)(x2 − x3)
Tq,x1Tq,x2 + t

(t x1 − x2)(t x3 − x2)

(x1 − x2)(x3 − x2)
Tq,x1Tq,x3

+t
(t x2 − x1)(t x3 − x1)

(x2 − x1)(x3 − x1)
Tq,x2Tq,x3

D(3)
x = t3Tq,x1Tq,x2Tq,x3 (5.21)

Exercise 5.1 Show that the coefficients AI (x) can be expressed as

AI (x) = T I
t,x�(x)

�(x)
(I ⊆ {1, . . . , n}) (5.22)

in terms of the difference product �(x) = ∏
1≤i< j≤n(xi − x j ).

As we will see below, the q-difference operators D(r)
x (r = 1, . . . , n) commute

with each other, and are simultaneously diagonalized on C[x]Sn by the Macdonald
polynomials.

5.3.2 Fundamental Properties of D(r)
x

By the same method as we applied to Dx , one can directly verify:

(1) The q-difference operators D(r)
x (r = 1, . . . , n) are invariant under the

action of Sn .
(2)The linear operators D(r)

x : C(x) → C(x) stabilizeC[x]Sn , i.e.D(r)
x (C[x]Sn )

⊆ C[x]Sn .

As to the triangularity of D(r)
x , we have:

Lemma 5.1 The linear operators D(r)
x : C[x]Sn → C[x]Sn (r = 0, 1, . . . , n) are

triangular with respect to the dominance order of mλ(x) : For each λ ∈ Pn,

D(r)
x mλ(x) =

∑

μ≤λ

d(r)
λ,μ mμ(x) = d(r)

λ mλ(x) +
∑

μ<λ

d(r)
λ,μ mμ(x), (5.23)

where d(r)
λ = d(r)

λ,λ = er (t δqλ) are the elementary symmetric functions of degree r in
t δqλ = (tn−1qλ1 , tn−2qλ2 , . . . , qλn ).
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Proof We follow the same approach as in the case of Dx = D(1)
x (Lemma 4.1). For

each I ⊆ {1, . . . , n} with |I | = r , we have

AI (x) = t(
r
2)

∏

i< j
i∈I, j /∈I

t
1 − x j/t xi
1 − x j/xi

∏

i< j
i /∈I, j∈I

1 − t x j/xi
1 − x j/xi

= t
∑

i∈I (n−i) + (lower-order terms), (5.24)

where, for I = {i1 < · · · < ir }, the exponent of t is computed as

(
r

2

)
+ # {(i, j) | i < j, i ∈ I, j /∈ I }

=
(
r

2

)
+

r∑

k=1

((n − ik) + (r − k)) =
∑

i∈I
(n − i). (5.25)

Hence, we have

D(r)
x xμ =

∑

|I |=r

AI (x)q
∑

i∈I μi xμ

=
( ∑

|I |=r

t
∑

i∈I (n−i)q
∑

i∈I μi

)
xμ + lower-order terms (5.26)

= er (t
δqμ)xμ + (lower-order terms). (5.27)

This implies

D(r)
x mλ(x) = er (t

δqλ)mλ(x) + (lower-order terms) (λ ∈ Pn), (5.28)

as desired. �

It is convenient to introduce the generating function for D(r)
x (r = 0, 1, . . . , n)

with an extra parameter u:

Dx(u) =
n∑

r=0

(−u)r D(r)
x =

∑

I⊆{1,...,n}
(−u)|I |AI (x)T

I
q,x . (5.29)

Then, by Lemma 5.1, we have

Dx (u)mλ(x) = dλ(u)mλ(x) +
∑

μ<λ

dλ
μ(u)mμ(x),

dλ(u) =
n∑

r=0

(−u)r er (t
δqλ) =

n∏

i=1

(1 − utn−i qλi ). (5.30)
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5.3.3 Macdonald Polynomials as Joint Eigenfunctions

We prove the following two theorems in the subsequent sections.

Theorem 5.3 The q-difference operators D(r)
x (r = 1, . . . , n) commute with each

other:
D(r)

x D(s)
x = D(s)

x D(r)
x (r, s = 1, . . . , n), (5.31)

Theorem 5.4 For each λ ∈ Pn, the Macdonald polynomial Pλ(x) satisfies the joint
eigenfunction equations

D(r)
x Pλ(x) = d(r)

λ Pλ(x), d(r)
λ = er (t

δqλ) (r = 1, . . . , n). (5.32)

We have assumed the genericity condition (4.10) of parameters for the existence
of Macdonald polynomials, as well as |q| < 1. In this setting, Theorems 5.3 and 5.4
are equivalent. In fact:
Theorem 5.3 implies Theorem 5.4: By the commutativity of D(r)

x with Dx = D(1)
x ,

we have
Dx D

(r)
x Pλ(x) = D(r)

x Dx Pλ(x) = dλD
(r)
x Pλ(x), (5.33)

namely D(r)
x Pλ(x) is an eigenfunction of Dx with eigenvalue dλ. Since the eigenspace

of Dx inC[x]Sn with dλ is one-dimensional, we have D(r)
x Pλ(x) = εPλ(x) for some

constant ε ∈ C. Since Pλ(x) = mλ(x) + (lower-order terms) and also D(r)
x mλ(x) =

d(r)
λ mλ(x) + (lower-order terms), we conclude ε = d(r)

λ as desired. Conversely:
Theorem 5.4 implies Theorem 5.3. Since D(r)

x (r = 1, . . . , n) are simultane-

ously diagonalized by Pλ(x) (λ ∈ Pn), for any pair r, s ∈ {1, . . . , n} the commutator
[D(r)

x , D(s)
x ] = D(r)

x D(s)
x − D(s)

x D(r)
x is 0 as a linear operator on C[x]Sn . From this,

it follows that [D(r)
x , D(s)

x ] = 0 as a q-difference operator thanks to the following
lemma.

Lemma 5.2 Let Lx ∈ Dq,x = C(x)[T±1
q,x ] be a q-difference operator with rational

function coefficients, and suppose that Lx f (x) = 0 for all f (x) ∈ C[x]Sn . Then
Lx = 0 as a q-difference operator.

Proof Without losing generality, we may assume that Lx has the form

Lx =
∑

μ∈Nn :|μ|≤d

aμ(x)T μ
q,x , d ∈ N, (5.34)

namely, Lx ∈ C(x)[Tq,x ] and ord Lx ≤ d. Supposing that Lx |C[x]Sn = 0, we prove
Lx = 0 by the induction on d. Since this statement is obvious for d = 0, we assume
d > 0. Introducing variables y = (y1, . . . , yd), we consider the polynomial

F(x; y) =
n∏

i=1

d∏

k=1

(1 − xi yk) ∈ C[x]Sn [y] (5.35)
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in (x, y). Then we have Lx F(x; y) = 0, namely

∑

|μ|≤d

aμ(x)F(qμx; y) =
∑

|μ|≤d

aμ(x)
n∏

i=1

d∏

k=1

(1 − qμi xi yk) = 0. (5.36)

For each α ∈ N
n with |α| = d, we define the reference point ηα(x) ∈ (C∗)d by

ηα(x) = (1/x1, 1/qx1, . . . , 1/q
α1−1x1; . . . ; 1/xn, 1/qxn, . . . , 1/qαn−1xn). (5.37)

Then we have

F(qμx, ηα(x)) =
n∏

i=1

n∏

j=1

α j−1∏

ν=0

(1 − qμi xi/q
νx j )

=
n∏

i=1

n∏

j=1

(qμi−α j+1xi/x j ; q)α j (5.38)

Note that F(qμx; ηα(x)) contains
∏n

i=1(q
μi−αi+1; q)αi as diagonal factors. If |μ| ≤

d and μ �= α, there exists an index i ∈ {1, . . . , n} such that μi < αi , and hence
(qμi−αi+1; q)αi = 0. This means that, if |μ| ≤ d, F(qμx; ηα(x)) = 0 unless μ = α.
Also, we have F(qαx; ηα(x)) = ∏n

i, j=1(q
αi−α j+1xi/x j ; q)α j �= 0.Hence, evaluating

(5.36) at y = ηα(x), we obtain

Lx F(x, y)
∣∣
y=ηα(x)

= aα(x)F(qαx; ηα(x)) = 0. (5.39)

This implies that aα(x) = 0 for all α ∈ N
n with |α| = 0, namely ord Lx < d. Hence,

by the induction on d we conclude that Lx = 0. �

5.4 Commutativity of the Operators D(r)
x

In this section, we give two proofs of Theorem 5.3 of commutativity of the q-
difference operators D(r)

x (r = 1, . . . , n). One proof, due toMacdonald [20], is based
on the orthogonality of Macdonald polynomials, and the other is a direct proof due
to Ruijsenaars [30]. Theorem 5.4 follows from Theorem 5.3 as we already explained
in the previous section.



76 5 Orthogonality and Higher-Order q-Difference Operators

5.4.1 Orthogonality Implies Commutativity

One can show that, for each r = 1, . . . , n, D(r)
x is formally self-adjoint with respect

to the scalar product defined by w(x), by a method similar to the one we used in the
case of Dx = D(1)

x . Since D(r)
x : C[x]Sn → C[x]Sn is lower triangular with respect

to the dominance order, we have

D(r)
x Pλ(x) =

∑

μ≤λ

a(r)
λ,μPμ(x), (5.40)

for some a(r)
λ,μ ∈ C, with leading coefficient a(r)

λ,λ = d(r)
λ . Since

〈
D(r)

x Pλ, Pμ

〉 = a(r)
λ,μ

〈
Pμ, Pμ

〉
,

〈
Pλ, D

(r)
x Pμ

〉 = 0 (μ < λ), (5.41)

and
〈
Pμ, Pμ

〉 �= 0, we have a(r)
λ,μ = 0 for μ < λ. This means that D(r)

x Pλ(x) =
d(r)

λ Pλ(x). In this way, the linear operators D(r)
x : C[x]Sn → C[x]Sn (r = 1, . . . , n)

are simultaneously diagonalized by theMacdonald basis. This gives a proof of Theo-
rem 5.4, as well as Theorem 5.3 by the argument we already explained in the previous
section.

5.4.2 A Direct Proof of Commutativity

Here we explain a direct proof of Theorem 5.3 of commutativity, following the idea
of Ruijsenaars [30].

The composition D(r)
x D(s)

x is computed as

D(r)
x D(s)

x =
∑

|I |=r,|J |=s

AI (x)AJ (q
εI x)T εI+εJ

q,x , (5.42)

where εI = ∑
i∈I εi , εi = (δi, j )1≤ j≤n ∈ Z

n . Setting K = I ∩ J , L = (I ∪ J )\K ,
P = I\K , Q = J\K , we rewrite (5.42) as

D(r)
x D(s)

x

=
∑

K∩L=φ
|K |≤min{r,s}

( ∑

P�Q=L
|K |+|P|=r,|K |+|Q|=s

AK�P(x)AK�Q(qεK+εP x)
)
T 2εK+εL
q,x . (5.43)

Then the commutativity D(r)
x D(s)

x = D(s)
x D(r)

x is equivalent to the following state-
ment: For each K , L ⊆ {1, . . . , n} with K ∩ L = φ, and for any p, q ∈ Z≥0 such
that p + q = |L|,
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∑

P�Q=L
|P|=p,|Q|=q

AK�P(x)AK�Q(qεK+εP x)

=
∑

P�Q=L
|P|=p,|Q|=q

AK�Q(x)AK�P(qεK+εQ x). (5.44)

Analyzing this equality carefully, we show that the statement (5.44) is reduced to an
identity of rational functions, which we call the Ruijsenaars identity.

For each pair (I, J ) of subsets of {1, . . . , n} such that I ∩ J = φ, we set

AI,J (x) =
∏

i∈I ; j∈J

1 − t xi/x j

1 − xi/x j
(5.45)

so that
AI (x) = t(

|I |
2 )AI,I c(x), I c = {1, . . . , n} \I. (5.46)

We use below the properties that AI,J (x) is distributive in I and J in the sense

AI1�I2,J (x) = AI1,J (x)AI2,J (x), AI,J1�J2(x) = AI,J1(x)AI,J2(x), (5.47)

and that AI,J (x) depends on the ratios xi/x j (i ∈ I, j ∈ J ) only.
WesetM = {1, . . . , n} \(K � L), so that K � P � Q � M = {1, . . . , n}, to obtain

t−(|K�P|
2 )−(|K�Q|

2 )AK�P(x)AK�Q(qεK+εP x)

= AK�P,M�Q(x)AK�Q,M�P(qεK+εP x)

= AK ,M(x)AK ,Q(x)AP,M(x)AP,Q(x)

·AK ,M(qεK x)AK ,P(qεK+εP x)AQ,M(x)AQ,P(qεP x)

= AK ,M(x)AK ,P(x)AK ,Q(x)AP,M(x)AQ,M(x)AK ,M(qεK x)

·AP,Q(x)AQ,P(qεP x)

= AK ,M(x)AK ,L(x)AL ,M(x)AK ,M(qεK x) · AP,Q(x)AQ,P(qεP x). (5.48)

Exchanging the roles of P and Q, we have

t−(|K�Q|
2 )−(|K�P|

2 )AK�Q(x)AK�P(qεK+εQ x)

= AK ,M(x)AK ,L(x)AL ,M(x)AK ,M(qεK x) · AQ,P(x)AP,Q(qεQ x). (5.49)

Hence, equality (5.44) is equivalent to:

∑

P�Q=L
|P|=p,|Q|=q

AP,Q(x)AQ,P(qεP x) =
∑

P�Q=L
|P|=p,|Q|=q

AQ,P(x)AP,Q(qεQ x) (5.50)
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for any L ⊆ {1, . . . , n} and p, q with p + q = |L|.
Changing the notation, we see that the commutativity of the Macdonald–

Ruijsenaars operators is reduced to proving the identity

∑

I�J={1,...,n}
|I |=r,|J |=s

AI,J (x)AJ,I (q
εI x) =

∑

I�J={1,...,n}
|I |=r,|J |=s

AJ,I (x)AI,J (q
εJ ) (5.51)

for any r ,s such that r + s = n. To be explicit,

Lemma 5.3 (Ruijsenaars identity) For any r, s ∈ Z≥0 with r + s = n,

∑

I�J={1,...,n}
|I |=r, |J |=s

∏

i∈I
j∈J

(1 − t xi/x j )(1 − t x j/qxi )

(1 − xi/x j )(1 − x j/qxi )

=
∑

I�J={1,...,n}
|I |=r, |J |=s

∏

i∈I
j∈J

(1 − t x j/xi )(1 − t xi/qx j )

(1 − x j/xi )(1 − xi/qx j )
. (5.52)

Proof We denote by Fr,s(x) the left-hand side of (5.52):

Fr,s(x) =
∑

I�J=[n]
|I |=r, |J |=s

∏

i∈I
j∈J

FI,J (x), FI,J (x) =
∏

i∈I
j∈J

(t xi − x j )(qxi − t x j )

(xi − x j )(qxi − x j )
, (5.53)

where [n] = {1, . . . , n}. Then the right-hand side is given by Fr,s(x−1) = Fs,r (x).
We remark that Fr,s(x) is a symmetric function and �(x)Fr,s(x) is regular along the
divisors xi − x j = 0 (1 ≤ i < j ≤ n). From this fact it follows that Fr,s(x) itself is
regular along these divisors.

We prove by induction on n that Gr,s(x) = Fr,s(x) − Fr,s(x−1) = 0 for any pair
(r, s) such that r + s = n. We first remark that Gr,s(x) = 0 if r = 0 or s = 0, and
that Gr,s(x) = 0 for n = r + s = 0, 1. Assuming that r, s ≥ 1, we regard Fr,s(x) as
rational functions of xn:

Fr,s(x) =
∑

I�J=[n]
|I |=r,|J |=s, n∈I

∏

j∈J

(t xn − x j )(qxn − t x j )

(xn − x j )(qxn − x j )
FI\{n},J (xn̂)

+
∑

I�J=[n]
|I |=r,|J |=s, n∈J

∏

i∈I

(xn − t xi )(t xn − qxi )

(xn − xi )(xn − qxi )
FI\{n},J (xn̂), (5.54)
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where xn̂ = (x1, . . . , xn−1). Note that Fr,s(x) has at most simple poles at xn =
qxk, q−1xk for k = 1, . . . , n − 1; it is regular at xn = xk as mentioned above.1 We
look at the residues at xn = qxk :

Res(Fr,s(x)dxn|xn = qxk)

= (1 − t)(t − q)

q − 1

∑

I�J=[n]
|I |=r,|J |=s; k∈I,n∈J

∏

i∈I\{k}

(qxk − t xi )(t xk − xi )

(qxk − xi )(xk − xi )
FI,J\{n}(xn̂)

= (1 − t)(t − q)

q − 1

∑

I�J=[n]
|I |=r,|J |=s; k∈I,n∈J

∏

i∈I\{k}

(qxk − t xi )(t xk − xi )

(qxk − xi )(xk − xi )

·
∏

j∈J\{n}

(t xk − x j )(qxk − t x j )

(xk − x j )(qxk − x j )
. FI\{k},J\{n}(xn̂)

= (1 − t)(t − q)

q − 1

∏

l �=k,n

(t xk − xl)(qxk − t xl)

(xk − xl)(qxk − xl)

∑

I ′�J ′=[n]\{k,n}
|I ′|=r−1,|J ′ |=s−1

FI ′,J ′(xk̂ ,̂n), (5.55)

where xn̂ = (x1, . . . , xn−1) and xk̂ ,̂n = (x1, . . . , k̂, . . . , xn−1). Similarly, we compute

Res(Fr,s(x
−1)dxn|xn = qxk)

= (1 − t)(t − q)

q − 1

∏

l �=k,n

(t xk − xl)(qxk − t xl)

(xk − xl)(qxk − xl)

∑

I ′�J ′=[n]\{k,n}
|I ′|=r−1,|J ′ |=s−1

FJ ′,I ′(xx̂k ,̂n). (5.56)

Hence, for Gr,s(x) = Fr,s(x) − Fr,s(x−1) we have

Res(Gr,s(x)dxn|xn = qxk)

= (1 − t)(t − q)

q − 1

∏

l �=k,n

(t xk − xl)(qxk − t xl)

(xk − xl)(qxk − xl)

·
∑

I ′�J ′=[n]\{k,n}
|I ′|=r−1,|J ′ |=s−1

(
FI ′,J ′(xx̂k ,̂n) − FJ ′,I ′(xx̂k ,̂n)

) = 0 (5.57)

for k = 1, . . . , n − 1, by the induction hypothesis of the case of n − 2 variables. By
the same argument we obtain Res(Gr,s(x)dxn|xn = q−1xk) = 0 for k = 1, . . . , n −
1. This implies thatGr,s(x) is constant with respect to xn . SinceGr,s(x) is symmetric
with respect to x = (x1, . . . , xn), we conclude that Gr,s(x) is a constant, i.e. does
not depend on xi (i = 1, . . . , n). However, Gr,s(x) = Fr,s(x) − Fr,s(x−1) satisfies
Gr,s(x−1) = −Gr,s(x), and hence we obtain Gr,s(x) = 0. �

1 One can also show directly that Res(Fr,s(x±1)dxn |xn = xk) = 0 (k = 1, . . . , n − 1), by a com-
putation similar to the one presented below.



80 5 Orthogonality and Higher-Order q-Difference Operators

We remark that Ruijsenaars [30] proved the commutativity of the elliptic version
of D(r)

x (r = 1, . . . , n) along the same line as above, on the basis of the corresponding
identity for the Weierstrass sigma functions.

Remark 5.2 In Chap.8, we will explain a construction of the q-difference operators
D(r)

x as well as their commutativity, following the idea of Cherednik based on a
representation of the affine Hecke algebra.

5.5 Refinement of the Existence Theorem

Once commutativity of the Macdonald–Ruijsenaars operators D(r)
x (r = 1, . . . , n)

has been established, the existence theoremofMacdonald polynomials can be refined
as we formulate below. Here we fix the parameters q, t ∈ C

∗ with |q| < 1, and sup-
pose that the parameter t ∈ C

∗ satisfies the condition t k /∈ qZ<0 for k = 1, . . . , n − 1.
In this setting we give a proof of existence of the Macdonald polynomials, indepen-
dently of the previous existence theorem (Theorem 4.1).

Theorem 5.5 Suppose that the parameter t satisfies the condition that tk /∈ qZ<0

(k = 1, . . . , n − 1). Then, for each partition λ ∈ Pn there exists a unique symmetric
polynomial Pλ(x) ∈ C[x]Sn such that

(1) D(r)
x Pλ(x) = d(r)

λ Pλ(x) (r = 1, . . . , n), (5.58)

(2) Pλ(x) = mλ(x) +
∑

μ<λ

uλ
μ mμ(x) (uλ

μ ∈ C). (5.59)

We remark that, in terms of the generating function Dx (u) = ∑n
r=0(−u)r D(r)

x ,
the joint eigenfunction equations for Pλ(x) are unified in the form

Dx (u)Pλ(x) = dλ(u)Pλ(x), dλ(u) =
n∏

i=1

(1 − utn−i qλi ). (5.60)

Note that, for a pair λ,μ ∈ Pn , dλ(u) = dμ(u) as polynomials in u if and only if
there exists a permutation σ ∈ Sn such that

tn−i qμi = tn−σ(i)qλσ(i) (i = 1, . . . , n). (5.61)

Under our assumption |q| < 1, we have:

Lemma 5.4 Suppose that tk /∈ qZ<0 (k = 1, . . . , n − 1). Then, dλ(u) �= dμ(u) for
any distinct pair λ,μ ∈ Pn as polynomials in u, and also for generic u ∈ C.

Proof We first show that, if |t | ≤ 1, then dλ(u) �= dμ(u) as polynomials in u for
any distinct pair λ,μ ∈ Pn . Under the assumption |t | ≤ 1, the sequence |tn−i qλi |
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(i = 1, . . . , n) is weakly increasing for any λ ∈ Pn . From this it follows that, if
dλ(u) = dμ(u) for λ,μ ∈ Pn , then we have |tn−i qλi | = |tn−i qμi | (i = 1, . . . , n).
Hence, for i = 1, . . . , n, we have |q|λi = |q|μi and λi = μi since |q| < 1. Namely,
if |t | ≤ 1, then dλ(u) = dμ(u) implies λ = μ.

We now consider the case |t | > 1. Suppose that dλ(u) = dμ(u) as polynomials
in u for some distinct pair λ,μ ∈ Pn . Then, there exists a permutation σ ∈ Sn such
that

tn−i qμi = tn−σ(i)qλσ(i) (i = 1, . . . , n). (5.62)

Since λ �= μ, we have σ �= 1, and hence there exists an index σ(i) > i . Thenwe have
tσ(i)−i = qλσ(i)−μi ∈ qZ, which means t k ∈ qZ for k = σ(i) − i ∈ {1, . . . , n − 1}.
Since |t | > 1, t k ∈ qZ<0 for some k ∈ {1, . . . , n − 1}.

Suppose that dλ(u) �= dμ(u) for any distinct pair λ,μ ∈ Pn . Since the set

S = {
a ∈ C

∗ | dλ(a) = dμ(a) for some distinct pair λ,μ ∈ Pn
}

(5.63)

is countable, the complement C∗\S is non-empty. Then, for any c ∈ C
∗\S, we have

dλ(c) �= dμ(c) for any distinct pair λ,μ ∈ Pn . �

Proof (of Theorem 5.5) Under the assumption that t k /∈ qZ<0 for k = 1, . . . , n − 1,
by Lemma 5.4 we can find a constant c ∈ C such that dλ(c) �= dμ(c) for any
distinct pair λ,μ ∈ Pn . From the facts that Dx (c) : C[x]Sn → C[x]Sn is trian-
gular with respect to the dominance order and that the eigenvalues dλ(c) sepa-
rate Pn , it follows that for each λ ∈ Pn there exists a unique symmetric poly-
nomial Pλ(x) ∈ C[x]Sn such that Pλ(x) = mλ(x) + (lower-order terms) ∈ C[x]Sn

and Dx (c)Pλ(x) = dλ(c)Pλ(x). Note that Pλ(x) (λ ∈ Pn) form aC-basis ofC[x]Sn ,
and have mutually distinct eigenvalues dλ(c) with respect to the linear operators
Dx (c). We remark that these Pλ(x) do not depend on the choice of c, as we will see
below.

Since D(r)
x commutes with Dx (c) for r = 1, . . . , n, we have Dx (c)D(r)

x Pλ(x) =
D(r)

x Dx (c)Pλ(c) = dλ(c)D(r)
x Pλ(x). This means that D(r)

x Pλ(x) is an eigenfunc-
tion of Dx (c) with eigenvalue dλ(c), and hence D(r)

x Pλ(x) is a contant multi-
ple of Pλ(x) by the fact that the eigenspace of Dx (c) with eigenvalue dλ(c)
is one-dimensional. Since D(r)

x Pλ(x) = d(r)
λ mλ(x) + (lower-order terms), we have

D(r)
x Pλ(x) = d(r)

λ Pλ(x). Namely, we obtain

C[x]Sn =
⊕

λ∈Pn

C Pλ(x), Dx (u)Pλ(x) = dλ(u)Pλ(x). (5.64)

This also implies that the polynomials Pλ(x) do not depend on the choice of c ∈ C
∗

with which we started. �
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5.6 Some Remarks Related to Dx(u)

5.6.1 Macdonald Polynomials in x−1

Consider the q-difference operators D(r)
x−1 (r = 0, 1, . . . , n) in the variables x−1 =

(x−1
1 , . . . , x−1

n ) such that

D(r)
x−1 f (x

−1) = D(r)
x f (x)

∣∣∣
x→x−1

. (5.65)

These operators are then explicitly given by

D(r)
x−1 =

∑

|I |=r

t(
r
2)

∏

i∈I, j /∈I

t x j − xi
x j − xi

∏

i∈I
T−1
q,xi . (5.66)

Lemma 5.5 For each r = 0, 1, . . . , n,

D(r)
x = t (n−1)r−(n2)D(n−r)

x−1 Tq,x1 · · · Tq,xn . (5.67)

In terms of the generating function, we have

Dx (u) = (−u)nt(
n
2)Dx−1(u−1t−n+1)Tq,x1 · · · Tq,xn . (5.68)

We leave the proof of this lemma as an exercise.
Let λ ∈ Pn be a partition and suppose that λ is contained in the n × l rectangle

(λ1 ≤ l). Then we have

(x1 · · · xn)l Pλ(x
−1) = m(ln)−λ∨(x) + (lower-order terms) ∈ C[x]Sn , (5.69)

where λ∨ = (λn, . . . , λ1) denotes the reversal of λ = (λ1, . . . , λn).

Proposition 5.1 For each partition λ ∈ Pn with λ1 ≤ l, l ∈ N, we have

(x1 · · · xn)l Pλ(x
−1) = P(ln)−λ∨(x), λ∨ = (λn, . . . , λ1). (5.70)

One can verify the eigenfunction equation

Dx (u)(x1 · · · xn)l Pλ(x
−1) =

n∏

i=1

(1 − utn−i ql−λn+1−i ) · (x1 · · · xn)l Pλ(x
−1) (5.71)

by using Lemma 5.5.
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5.6.2 Determinant Representation of Dx(u)

The generating function Dx (u) of theMacdonald–Ruijsenaars q-difference operators
can alsobe expressed in termsof thedeterminant of amatrix ofq-differenceoperators.

For an n × n matrix L = (Li j )
n
i, j=1 with entires in a ring, possibly non-

commutative, we use the notation det(L) for the column determinant

det(L) =
∑

σ∈Sn

sgn(σ )Lσ(1)1 · · · Lσ(n)n. (5.72)

Theorem 5.6 Thegenerating function Dx (u) = ∑n
r=0(−u)r D(r)

x of theMacdonald–
Ruijsenaars operators is represented by the column determinant

Dx (u) = 1

�(x)
det

(
xn− j
i

(
1 − utn− j Tq,xi

))n

i, j=1

= 1

�(x)

∑

σ∈Sn

sgn(σ )

n∏

j=1

xn− j
σ( j)

(
1 − utn− j Tq,xσ( j)

)
.

(5.73)

We remark that the q-difference operators Li j = xn− j
i (1 − utn− j Tq,xi ) satisfy the

commutativity Li j Lkl = Lkl Li j (i �= k). This implies that the product
∏n

j=1 above
does not depend on the ordering.

For a q-difference operator Lx = ∑
μ∈Zn aμ(x)T μ

q,x ∈ C(x)[T±1
q,x ], we define its

symbol by

symb(Lx ) =
∑

μ∈Zn

aμ(x)ξμ ∈ C(x)[ξ±1], ξ = (ξ1, . . . , ξn). (5.74)

Note that two q-difference operators Lx , Mx coincide if symb(Lx) = symb(Mx ).
We compute the symbol of Dx(u) as follows:

symb(Dx(u))

=
∑

I⊆{1,...,n}
(−u)|I |

T εI
t,x�(x)

�(x)
ξ εI = 1

�(x)

( ∑

I⊆{1,...,n}
(−u)|I |ξεI T εI

t,x

)
�(x)

= 1

�(x)

n∏

i=1

(1 − u ξi Tt,xi )�(x) = 1

�(x)
det

(
xn− j
i (1 − u tn− jξi ))

n
i, j=1

= 1

�(x)

∑

σ∈Sn

sgn(σ )

n∏

j=1

xn− j
σ( j)(1 − u tn− jξσ( j)), (5.75)

which coincides with the symbol of the right-hand side of (5.73).
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5.6.3 Limit to the Differential (Jack) Case

If we set q = eε with a small parameter ε, we have

Tq,xi x
μ = qμi xμ =

∞∑

k=0

(μiε)
k

k! xμ

=
∞∑

k=0

(εxi∂xi )
k

k! xμ = eεxi ∂xi xμ = qxi ∂xi xμ. (5.76)

In view of this fact, we rewrite the q-shift operators as Tq,xi = qxi ∂xi by the
Euler operators xi∂xi = xi∂/∂xi (i = 1, . . . , n). Then we take the scaling limit of
Dx (u)/(1 − q)n as q → 1 with t = qβ , u = qv:

Sx (v) = lim
q→1

1

(1 − q)n

(
Dx (q

v)
∣∣
t=qβ

)

= 1

�(x)
lim
q→1

det
(
xn− j
i

1 − qv+(n− j)β+xi ∂xi

1 − q

)n

i, j=1
.

= 1

�(x)
det

(
xn− j
i (v + xi∂xi + (n − j)β)

)n

i, j=1
. (5.77)

The resulting operator Sx (v) satisfies

Sx (v)P (β)

λ (x) = P (β)

λ (x)
n∏

i=1

(v + λi + (n − i)β) (λ ∈ Pn), (5.78)

where P (β)

λ (x) = lim
q→1

Pλ(x; q, qβ) are the Jack polynomials. Denoting by S(r)
x the

coefficients of vn−r of Sx (v), we obtain a commuting family of differential operators
S(r)
x , called the Sekiguchi–Debiard operators, such that

S(r)
x P (β)

λ (x) = er (λ + βδ)P (β)

λ (x) (r = 0, 1, . . . , n), (5.79)

where δ = (n − 1, n − 2, . . . , 0). The eigenvalues er (λ + βδ) are the r th elementary
symmetric functions of λi + (n − i)β (i = 1, . . . , n).
From the determinant representation (5.77), by a computation similar to that of

(5.75) we obtain the following expression for the Sekiguchi–Debiard operators:

S(r)
x =

∑

|K |=r

∑

J⊆K

β |K\J | (x∂x )
K\J (�(x))

�(x)
(x∂x )

J (r = 0, 1, . . . , n), (5.80)
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where the sum is over all pairs (J, K ) of subsets of {1, . . . , n} such that |K | = r and
J ⊆ K .2 In particular, we have

S(1)
x =

n∑

i=1

xi∂xi + βe1(δ),

S(2)
x =

∑

1≤i< j≤n

xi∂xi x j∂x j + β

n∑

i=1

⎛

⎝e1(δ) −
∑

j �=i

xi
xi − x j

⎞

⎠ xi∂xi + β2e2(δ),(5.81)

where e1(δ) = 1
2n(n − 1) and e2(δ) = 1

24n(n − 1)(n − 2)(3n − 1). Recall that
power sums are represented as

p1 = e1, p2 = e21 − 2e2, p3 = e31 − 3e1e2 + 3e3, . . . , (5.82)

by elementary symmetric functions. In view of these formulas, we introduce the
differential operators L(k)

x (k = 1, 2, . . .) by

L(1)
x = S(1)

x , L(2)
x = (

S(1)
x

)2 − 2S(2)
x , L(3)

x = (
S(1)
x )3 − 3S(1)

x S(2)
x + 3S(3)

x , . . . .

(5.83)
Then we have

L(k)
x P (β)

λ (x) = pk(λ + βδ)P (β)

λ (x) (k = 1, 2, . . .), (5.84)

with eigenvalues pk(λ + βδ) = ∑n
i=1(λi + (n − i)β)k expressed by power sums.

Explicitly, L(1)
x and L(2)

x are given by

L(1)
x =

n∑

i=1

xi∂xi + βp1(δ),

L(2)
x =

n∑

i=1

(
xi∂xi

)2 + 2β
n∑

i=1

⎛

⎝
∑

j �=i

xi
xi − x j

⎞

⎠ xi∂xi + β2 p2(δ), (5.85)

where p1(δ) = 1
2n(n − 1) and p2(δ) = 1

6n(n − 1)(2n − 1).3 We now conjugate
these operators by the power �(x)β of the difference product:

2 For a differential operator Lx = ∑
μ∈Nn aμ(x)(x∂x )μ (finite sum), consider the symbol

symb(Lx ) = ∑
μ∈Nn aμ(x)λμ with λ = (λ1, . . . , λ) regarded as variables. Note also that Lx (xλ) =

symb(Lx )xλ.
3 Set Ui (x) = xi ∂xi (�(x))

�(x) = ∑
j �=i

xi
xi−x j

for each i , and Ui j (x) = xi∂xi (Uj (x)) = xi x j
(xi−x j )2

for

distinct pair i, j , so that
xi ∂xi x j ∂x j (�(x))

�(x) = Ui (x)Uj (x) +Ui j (x). Then we have
∑n

i=1Ui (x) =
p1(δ) and

∑n
i=1U

2
i − 2

∑
1≤i< j≤n Ui j (x) = p2(δ). Use these formulas to derive (5.81) and (5.85).
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P = �(x)βL(1)
x �(x)−β =

n∑

i=1

xi∂xi , (5.86)

H = �(x)βL(2)
x �(x)−β =

n∑

i=1

(
xi∂xi

)2 − 2β(β − 1)
∑

1≤i< j≤n

xi x j

(xi − x j )2
. (5.87)

Then the functions ψλ(x) = P (β)

λ (x)�(x)β (λ ∈ Pn) satisfy

Pψλ(x) = p1(λ + βδ)ψλ(x), Hψλ(x) = p2(λ + βδ)ψλ(x). (5.88)

The operators P and H are the momentum operator and the Hamiltonian for the
Calogero–Sutherland model with coupling constant β. Note that, in terms of the
angular coordinates θi (i = 1, . . . , n) such that xi = e

√−1θi , the operators P and H
are expressed as

P = 1√−1

n∑

i=1

∂θi H = −
n∑

i=1

∂2
θi

+ β(β − 1)

2

∑

1≤i< j≤n

1

sin2 θi−θ j

2

. (5.89)
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