
Chapter 3
Schur Functions

Abstract As a warmup for our discussion of Macdonald polynomials, we review
fundamental properties of Schur functions. We start here with two definitions of the
Schur functions, one by combinatorics of semi-standard tableaux, and the other in
terms of ratios ofVandermonde-type determinants. Thenwe establish the equivalence
of the two definitions by means of the Cauchy formula. It should be noted that the
theory of Macdonald polynomials is modeled in many respects on that of Schur
functions.

3.1 Definitions of the Schur Functions

3.1.1 Two Definitions

We now move on to the Schur functions sλ(x) (λ ∈ Pn); they are a family of sym-
metric polynomials indexed by the same set Pn of partitions λ with �(λ) ≤ n as in
the case of mλ(x). Each sλ(x) is homogeneous of degree |λ| and has the leading term
xλ with respect to the dominance order:

sλ(x) = xλ + · · · = mλ(x) + · · · . (3.1)

With this property, they also form a C-basis of the ring of symmetric polynomials:

C[x]Sn =
⊕

λ∈Pn

C sλ(x). (3.2)

As we will see below, sλ(x) are in fact symmetric polynomials with nonnegative
integer coefficients, i.e. sλ(x) ∈ N[x]Sn .

We give two definitions of the Schur functions here, denoting them by scomb
λ (x)

and sdetλ (x) respectively, and show later that they in fact coincide.
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22 3 Schur Functions

Definition 3.1 (combinatorial) For each λ ∈ Pn , we define the Schur function
scomb
λ (x) as the sum

scomb
λ (x) =

∑

T ∈SSTabn(λ)

xwt(T ) (3.3)

of monomials xwt(T ) over the set SSTabn(λ) of all semi-standard tableaux T of shape
λ in letters {1, . . . , n}.
We explain below the precise meaning of a semi-standard tableauT and its weight
wt(T ). By definition we have scomb

λ (x) ∈ N[x], but it is not obvious why it should
be symmetric since this definition depends strongly on the ordering of the indexing
set {1, . . . , n}.
Definition 3.2 (determinantal) For each λ ∈ Pn , we define the Schur function
sdetλ (x) as the ratio of two determinants of Vandermonde type:

sdetλ (x) =
det

(
x

λ j +n− j
i

)n

i, j=1

det
(
xn− j

i

)n

i, j=1

=
det

(
x

λ j +n− j
i

)n

i, j=1

�(x)
, (3.4)

where �(x) = ∏
1≤i< j≤n(xi − x j ) stands for the difference product.

Since the numerator det
(
x

λ j +n− j
i

)n

i, j=1 ∈ Z[x] is an alternating polynomial in

Z[x]Sn ,sgn, it is divisible by �(x) in the polynomial ring Z[x] with integer coef-
ficients. Hence the resulting sdetλ (x) is a symmetric polynomial with coefficients in
Z, i.e. sdetλ (x) ∈ Z[x]Sn (seeRemark 2.2). It is not obvious, however, why they should
have coefficients in N = Z≥0.

Theorem 3.1 For any λ ∈ Pn, we have scomb
λ (x) = sdetλ (x).

Namely, the two definitions of the Schur functions give the same polynomials, which
wedenote by sλ(x). An immediate consequence of this theorem is that the Schur func-
tions are symmetric polynomials with coefficients in N = Z≥0, i.e. sλ(x) ∈ N[x]Sn .
The equivalence of the two definitions will be established later in Sect. 3.5 on the
basis of Cauchy’s formula.

3.1.2 Combinatorial Definition

By a semi-standard tableau T of shape λ in letters {1, . . . , n}, we mean a mapping
T : D(λ) → {1, . . . , n} such that the numbersT (s) (s ∈ D(λ)) areweakly increasing
along the rows and strictly increasing along the columns.1 For example,

1 T is called a column strict tableau in the terminology of Macdonald [20].
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T =
1 1 2 3 4
2 3 3
4

a ≤ b

>

c
(3.5)

Namely, T should satisfy

T (i, j) ≤ T (i, j + 1) (1 ≤ i ≤ �(λ), 1 ≤ j < λi ),

T (i, j) < T (i + 1, j) (1 ≤ j ≤ λ1, 1 ≤ i < λ′
j ). (3.6)

We denote by SSTabn(λ) the set of all semi-standard tableaux of shape λ in letters
{1, . . . , n}. For each semi-standard tableauT , we denote by wt(T ) the composition
(multi-index)

μ = (μ1, . . . , μn) ∈ N
n, μi = # {s ∈ D(λ) | T (s) = i} (i = 1, . . . , n) (3.7)

obtained by counting the number of i’s in the tableauT for each i ; wt(T ) is called
the weight of T . In the example of T in (3.5), we have

wt(T ) = (2, 2, 3, 2), xwt(T ) = x2
1 x2

2 x3
3 x2

4 . (3.8)

scomb
λ (x) attached to columns and rows

(1) Single column λ = (1r ): (r = 0, 1, 2, . . .)

scomb
(1r ) (x) =

∑

1≤i1<···<ir ≤n

xi1 · · · xir = er (x). (3.9)

(2) Single row λ = (l): (l = 0, 1, 2, . . .)

scomb
(l) (x) =

∑

1≤ j1≤···≤ jl≤n

x j1 · · · x jr = hl(x). (3.10)

Example of scomb
λ (x): n = 3, λ = (2, 1, 0)

When n = 3 and λ = (2, 1, 0), there are 8 semi-standard tableaux of shape λ.

1 1
2

x2
1 x2

1 1
3

x2
1 x3

1 2
2

x1x2
2

1 2
3

x1x2x3

1 3
2

x1x2x3

1 3
3

x1x2
3

2 2
3

x2
2 x3

2 3
3

x2x2
3

(3.11)



24 3 Schur Functions

Hence we have

scomb
(21) (x) = x2

1 x2 + x2
1 x3 + x1x2

2 + x1x2
3 + x2

2 x3 + x2x2
3 + 2x1x2x3

= m(21)(x) + 2m(13)(x). (3.12)

Note that the definition of scomb
λ (x) strongly depends on the ordering of 1, 2, . . . , n.

By definition we have scomb
λ (x) ∈ N[x], but why are they symmetric?

For each μ ∈ N
n with |μ| = |λ|, we set

SSTabn(λ)μ = {T ∈ SSTabn(λ) | wt(T ) = μ}. (3.13)

The number
Kλ,μ = #SSTabn(λ)μ ∈ N (3.14)

of semi-standard tableaux of shape λ with weight μ is called the Kostka number.
Then we have

scomb
λ (x) =

∑

μ∈Nn

(
#SSTabn(λ)μ

)
xμ =

∑

μ∈Nn

Kλ,μ xμ. (3.15)

In fact we have
scomb
λ (x) = xλ +

∑

μ<λ

Kλ,μ xμ, (3.16)

namely, scomb
λ (x) has the leading term xλ with respect to the dominance order.

Exercise 3.1 Let λ ∈ Pn . Prove the following:
(1) If T ∈ SSTabn(λ) and wt(T ) = μ, then μ ≤ λ.
(2) Kλ,λ = 1, and Kλ,μ > 0 if and only if μ ≤ λ.

Remark 3.1 As we mentioned already, each scomb
λ (x) is in fact a symmetric poly-

nomial. This statement is equivalent to Kλ,μ = Kλ,σ.μ (μ ∈ N
n) for any permu-

tation σ ∈ Sn . We remark that, for each adjacent transposition si = (i, i + 1)
(i = 1, . . . , n − 1), there is a bijection

SSTabn(λ)μ
∼→ SSTabn(λ)si .μ (3.17)

called the Bender–Knuth involution. It implies that Kλ,μ = Kλ,si .μ (μ ∈ N
n) for

i = 1, . . . , n − 1, and hence Kλ,μ = Kλ,σ.μ (μ ∈ N
n) for any σ ∈ Sn . For a com-

binatorial proof ofSn-invariance of this sort, see Sagan’s textbook [31, Proposition
4.4.2] for example.
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3.1.3 Determinantal Definition

For each λ ∈ Pn , we defined sdetλ (x) as the ratio of two determinants in Definition
3.2. We denote by δ = (n − 1, n − 2, . . . , 0) the staircase partition of n − 1 parts so
that δi = n − i (i = 1, . . . , n). Then the definition of sdetλ (x) can be rewritten as

sdetλ (x) =
det

(
x

(λ+δ) j

i

)n

i, j=1

det
(
x

δ j

i

)n

i, j=1

. (3.18)

We give here a remark on the strict partition l = λ + δ appearing in the numerator.2

The sequence l = (l1, . . . , ln), l j = λ j + n − j ( j = 1, . . . , n), can be read off from
the boundary of the Young diagram as shown below.

0

1

2

3

4 5 6 7 8 9 10

�
�

�
�

�
�
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�
�

�
�

�
�

��

•
0

•
2

•
5

•
8

0
1
2
3
4
5
6
7
8
9

n = 4
λ = (5, 3, 1, 0)
δ = (3, 2, 1, 0)

λ + δ = (8, 5, 2, 0)

(3.19)

The subset M = {l1, . . . , ln} ⊆ N is often called the Maya diagram attached to λ.

Example of sdetλ (x): n = 3, λ = (2, 1, 0)

Since λ + δ = (4, 2, 0), we have

sdet
(21)(x) = det

⎡

⎢⎣
x41 x21 1

x42 x22 1

x43 x23 1

⎤

⎥⎦
/

det

⎡

⎢⎣
x21 x1 1

x22 x2 1

x23 x3 1

⎤

⎥⎦ = �(x21 , x22 , x23 )

�(x1, x2, x3)
. (3.20)

Hence

sdet(21)(x) = (x21 − x22 )(x21 − x23 )(x22 − x23 )

(x1 − x2)(x1 − x3)(x2 − x3)
= (x1 + x2)(x1 + x3)(x2 + x3)

= x21 x2 + x21 x3 + x1x22 + x1x23 + x22 x3 + x2x23 + 2x1x2x3
= m(21)(x) + 2m(13)(x). (3.21)

2 A partition λ = (λ1, λ2, . . .) with �(λ) = l is called strict if λ1 > λ2 > · · · > λl > 0.
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Exercise 3.2 Show that sdet
(1k )

(x) = ek(x), sdet(k) (x) = hk(x) (k = 0, 1, 2, . . .).

A possible approach would be to use the following identities:

n∏

j=1

(u − x j ) · �(x1, . . . , xn) = �(u, x1, . . . , xn),

�(x1, . . . , xn)∏n
i=1(1 − xi u)

= det

(
xn− j

i

1 − xi u

)n

i, j=1

. (3.22)

Exercise 3.3 Prove that both scomb
λ (x) and sdetλ (x) carry the following properties.

(1) For any λ ∈ Pn and k ∈ N, sλ+(kn)(x) = (x1 . . . xn)
ksλ(x), where (kn) = (k, . . . ,

k) denotes the n × k rectangle.
(2) Let λ ∈ Pn and m < n. Then we have

sλ(x1, . . . , xm, 0, . . . , 0) =
{

sλ(x1, . . . , xm) (�(λ) ≤ m),

0 (�(λ) > m).
(3.23)

3.2 Principal Specialization and Self-duality

Before giving a proof of Theorem 3.1, we explain some consequences of the equiv-
alence of the two definitions of Schur functions. From this section on, we set
sλ(x) = sdetλ (x).

3.2.1 Principal Specialization: Evaluation at x = tδ

According to the combinatorial definition, the Schur function scomb
λ (x) counts the

semi-standard tableaux T of shape λ with weights xwt(T ). In particular, we have

sλ(1, . . . , 1) = scomb
λ (1, . . . , 1) =

∑

T ∈SSTabn(λ)

1 = #SSTabn(λ). (3.24)

In terms of the determinantal definition, the evaluation of sλ(x) at x = (1, . . . , 1) is
a subtle question since the denominator�(x) vanishes at this point. In order to avoid
this singularity, we first evaluate sλ(x) at t δ = (tn−1, tn−2, . . . , 1) and then take the
limit as t → 1.

Proposition 3.1 (Principal specialization) For each λ ∈ Pn, we have

sλ(t
δ) = �(tλ+δ)

�(t δ)
= tn(λ)

∏

1≤i< j≤n

1 − tλi −λ j + j−i

1 − t j−i
, (3.25)

where n(λ) = ∑n
i=1(i − 1)λi .
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Proof In fact, we have

sλ(t
δ) =

det
(
t δi (λ+δ) j

)n

i, j=1

�(t δ)
= �(tλ+δ)

�(t δ)

=
∏

1≤i< j≤n

tλi +n−i − tλ j +n− j

t n−i − tn− j
=

∏

1≤i< j≤n

tλ j
1 − tλi −λ j + j−i

1 − t j−i
. (3.26)

�

We are now allowed to take the limit as t → 1 in (3.25), to obtain an explicit
formula

#SSTabn(λ) = sλ(1, . . . , 1) = �(λ + δ)

�(δ)
=

∏

1≤i< j≤n

λi − λ j + j − i

j − i
(3.27)

for the number of semi-standard tableaux of shape λ.

3.2.2 Hook Length Formula

Formulas (3.25) and (3.27) can be rewritten into a combinatorial expression of the
Young diagram. For each square s = (i, j) ∈ D(λ), we define the content cλ(s) and
the hook length hλ(s) by

cλ(s) = j − i, hλ(s) = λi + λ′
j − i − j + 1. (3.28)

Note that, in terms of thearm length aλ(s) = λi − j and the leg length lλ(s) = λ′
j − i ,

the hook length is expressed as hλ(s) = aλ(s) + lλ(s) + 1.

si λi

j

λ′
j

aλ(s)

lλ(s)

aλ(s) = λi − j

lλ(s) = λ′
j − i

hλ(s) = aλ(s) + lλ(s) + 1

��

�
�

(3.29)

In terms of the Maya diagram M = {l1, . . . , ln}, a square s ∈ λ is in one-to-one
correspondence with a pair (k, l) of nonnegative integers such that k < l, k /∈ M ,
l ∈ M ; the hook length is then interpreted as hλ(s) = l − k.

Proposition 3.2 (Hook length formula) For each λ ∈ Pn, we have

sλ(t
δ) = tn(λ)

∏

s∈λ

1 − tn+cλ(s)

1 − thλ(s)
, (3.30)
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and

sλ(1, . . . , 1) = #SSTabn(λ) =
∏

s∈λ

n + cλ(s)

hλ(s)
. (3.31)

Proof We show

∏

1≤i< j≤n

λi − λ j + j − i

j − i
=

∏

s∈λ

n + cλ(s)

hλ(s)
. (3.32)

Setting li = λi + n − i (i = 1, . . . , n), consider the Maya digram M = {l1, . . . , ln}
attached to λ. In terms of M , we see

∏

1≤i< j≤n

λi − λ j + j − i

j − i
=

∏

1≤i< j≤n

li − l j

j − i
=

∏
0≤k<l;k,l∈M(l − k)
∏

0≤k<l<n(l − k)
(3.33)

and ∏

s∈λ

hλ(s) =
∏

0≤k<l
k /∈M,l∈M

(l − k). (3.34)

Since ∏

0≤k<l
l∈M

(l − k) =
∏

0≤k<l
k,l∈M

(l − k)
∏

0≤k<l
k /∈M,l∈M

(l − k), (3.35)

we have

∏

1≤i< j≤n

λi − λ j + j − i

j − i
·
∏

s∈λ

hλ(s) (3.36)

=
∏

0≤k<l;k,l∈M(l − k)
∏

0≤k<l; k /∈M,l∈M(l − k)
∏

0≤k<l<n(l − k)

=
∏

0≤k<l;l∈M(l − k)
∏

0≤k<l<n(l − k)
=

∏n
i=1(λi + n − i)!∏n

i=1(n − i)!

=
n∏

i=1

(n − i + 1)λi =
∏

s∈λ

(n + cλ(s)), (3.37)

wherewe have used the notation of shifted factorials (a)k = a(a + 1) · · · (a + k − 1)
(k = 0, 1, . . .). The same proof applies to the formula for sλ(t δ) as well. �
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Hook length formula

(1) n = 3, λ = (2, 1, 0).

∏

s∈λ

n + cλ(s)

hλ(s)
=

3 4
2

3 1
1

= 2 · 4 = 8.

(3.38)

(2) n = 4, λ = (5, 3, 1, 0).

∏

s∈λ

n + cλ(s)

hλ(s)
=

4 5 6 7 8
3 4 5
2

7 5 4 2 1
4 2 1
1

= 360.

(3.39)

Exercise 3.4 Confirm that the hook length formula implies the following:

(1) Single column λ = (1r ): s(1r )(1, . . . , 1) =
(

n

r

)
(r ≥ 0).

(2) Single row λ = (l): s(l)(1, . . . , 1) =
(

n + l − 1

l

)
(l ≥ 0).

3.2.3 Self-duality

The values of sλ(x) at the discrete set x = tμ+δ (μ ∈ Pn) have a remarkable duality
property (evaluation symmetry).

Proposition 3.3 (Self-duality) For any pair of partitions λ,μ ∈ Pn, we have

sλ(tμ+δ)

sλ(t δ)
= sμ(tλ+δ)

sμ(t δ)
. (3.40)

Proof Since sλ(t δ) = �(tλ+δ)/�(t δ), we have

sλ(tμ+δ)

sλ(t δ)
=

�(t δ) det
(
t (μ+δ)i (λ+δ) j

)n

i, j=1

�(tλ+δ)�(tμ+δ)
. (3.41)

This formula is symmetric with respect to exchanging λ and μ. �
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Regarding x = t δ as a base point, we set

s̃λ(x) = sλ(x)

sλ(t δ)
(3.42)

so that s̃λ(t δ) = 1. Then Proposition 3.3 implies that s̃λ(tμ+δ) = s̃μ(tλ+δ) for any
pair of partitions λ,μ ∈ Pn . Namely, regarded as a function of (λ, μ) ∈ Pn × Pn ,
s̃λ(tμ+δ) is invariant under the exchange of the arguments λ and μ.

3.3 Cauchy Formula

In this section, we give a proof of the Cauchy formula for Schur functions; it will be
used in Sect. 3.5 to establish the equivalence of two definitions of the Schur functions.

3.3.1 Cauchy Determinant

Lemma 3.1 (Cauchy) For two sets of variables x = (x1, . . . , xn) and y = (y1, . . . ,
yn), we have

det

(
1

xi + y j

)n

i, j=1

= �(x)�(y)∏n
i, j=1(xi + y j )

, (3.43)

det

(
1

1 − xi y j

)n

i, j=1

= �(x)�(y)∏n
i, j=1(1 − xi y j )

. (3.44)

�

The two formulas of Lemma 3.1 are equivalent to each other; the second formula is
obtained from the first by change of variables xi → −x−1

i (i = 1, . . . , n) and vice
versa.

Exercise 3.5 Prove Cauchy’s lemma (3.43) by means of the property of alternating
polynomials.

Exercise 3.6 (1) For any n × n matrix
(
ai j

)n

i, j=1 with ann 	= 0, its determinant is
expressed as follows by a determinant of 2 × 2 minors (a variant of the Dodgson
condensation):

det
(
ai j

)n

i, j=1 = a−n+2
nn det

(
ai j ann − ainanj

)n

i, j=1 . (3.45)

(2) Use (3.45) to give an inductive proof of Cauchy’s lemma.

Remark 3.2 Lemma 3.1 can be extended to the following family of determinant
formulas involving an extra parameter u:
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det

(
u + xi + y j

u(xi + y j )

)n

i, j=1

= u + ∑n
i=1 xi + ∑n

j=1 y j

u

�(x)�(y)∏n
i, j=1(xi + y j )

, (3.46)

det

(
1 − uxi y j

(1 − u)(1 − xi y j )

)n

i, j=1

= 1 − ux1 · · · xn y1 · · · yn

1 − u

�(x)�(y)∏n
i, j=1(1 − xi y j )

,(3.47)

det

(
σ(u + xi + y j )

σ (u)σ (xi + y j )

)n

i, j=1

= σ(u + ∑n
i=1 xi + ∑n

j=1 y j )

σ (u)

∏
1≤i< j≤n σ(xi − x j )σ (yi − y j )∏n

i, j=1 σ(xi + y j )
, (3.48)

where σ(z) = σ(z|�) stands for the Weierstrass sigma function attached to a period
lattice � = Zω1 ⊕ Zω2 ⊂ C of rank two (Im(ω2/ω1) > 0), defined by

σ(z|�) = z
∏

ω∈�, ω 	=0

(
1 − z

ω

)
ez/ω+z2/2ω2

(z ∈ C). (3.49)

These three variations (rational, trigonometric and elliptic) play crucial roles in var-
ious situations of integrable systems. Here, formula (3.47) is called trigonometric in
the sense of additive variables θi such that xi = e

√−1θi .

3.3.2 Cauchy Formula for Schur Functions

In what follows, we use the notation of Schur functions sλ(x) for sdetλ (x).

Theorem 3.2 (Cauchy formula) For two sets of variables x = (x1, . . . , xn) and y =
(y1, . . . , yn), the following identity holds in the ring C[[x, y]] of formal power series
in x and y:

n∏

i, j=1

1

1 − xi y j
=

∑

λ∈Pn

sλ(x)sλ(y). (3.50)

Proof We make use of the multiplicative version (3.44) of Cauchy’s lemma.

�(x)�(y)∏n
i, j=1(1 − xi y j )

= det

(
1

1 − xi y j

)∞

i, j=1

=
∑

σ∈Sn

sgn(σ )
1

(1 − xσ(1)y1) · · · (1 − xσ(n)yn)

=
∑

σ∈Sn

sgn(σ )
∑

k1,...,kn≥0

(xσ(1)y1)
k1 · · · (xσ(n)yn)

kn
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=
∑

k1,...,kn≥0

⎛

⎝
∑

σ∈Sn

sgn(σ )xk1
σ(1) · · · xkn

σ(n)

⎞

⎠ yk1
1 · · · ykn

n

=
∑

k1,...,kn≥0

�k1,...,kn (x) yk1
1 · · · ykn

n , (3.51)

where we have used the notation of determinants

�k1,...,kn (x) = det
(

x
k j

i

)n

i, j=1
(3.52)

of Vandermonde type (alternating polynomials of monomial type (k1, . . . , kn)). Note
that �n−1,n−2,...,0(x) = �(x). Since �k1,...,kn (x) is alternating in (k1, . . . , kn), we
have only to consider the cases where k1, . . . , kn are mutually distinct. In such a
case, there exists a unique sequence (l1, . . . , ln) ∈ N

n and a permutation σ ∈ Sn

such that
l1 > · · · > ln ≥ 0, (k1, . . . , kn) = (lσ(1), . . . , lσ(n)). (3.53)

Then we have

�k1,...,kn (x) = �lσ(1),...,lσ(n)
(x) = sgn(σ )�l1,...,ln (x). (3.54)

Hence,

�(x)�(y)∏n
i, j=1(1 − xi y j )

=
∑

l1>...>ln≥0

∑

σ∈Sn

sgn(σ )�l1,...,ln (x) y
lσ(1)

1 · · · y
lσ(n)

n

=
∑

l1>...>ln≥0

�l1,...,ln (x)
∑

σ∈Sn

sgn(σ )y
lσ(1)

1 · · · y
lσ(n)

n

=
∑

l1>...>ln≥0

�l1,...,ln (x)�l1,...,ln (y). (3.55)

Each l = (l1, . . . , ln) ∈ N
n with l1 > · · · > ln ≥ 0 is uniquely expressed in the form

l = λ + δ with λ ∈ Pn , and we have �l(x) = �λ+δ(x) = �(x)sλ(x) by the defini-
tion of sλ(x) = sdetλ (x). Hence we obtain

�(x)�(y)∏n
i, j=1(1 − xi y j )

=
∑

λ∈Pn

�λ+δ(x)�λ+δ(y)

= �(x)�(y)
∑

λ∈Pn

sλ(x)sλ(y), (3.56)

as desired. �
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It is convenient to introduce the signed version

fk1,...,kn (x) = �k1,...,kn (x)

�(x)
(k1, . . . , kn ∈ N) (3.57)

of sλ(x) with alternating indices (k1, . . . , kn). Note that, if l = (l1, . . . , ln) ∈ N
n is

strict in the sense l1 > . . . > ln ≥ 0, thenwe have fl1,...,ln (x) = sλ(x) for the partition
λ ∈ Pn such that l = λ + δ. In terms of these functions, Cauchy’s formula is written
as

�(y)∏n
i, j=1(1 − xi y j )

=
∑

λ∈Pn

sλ(x)�λ+δ(y)

=
∑

k1,...,kn≥0

fk1,...,kn (x) yk1
1 · · · ykn

n . (3.58)

This formula will be used in Sect. 3.5 to establish equivalence of the two definitions
of Schur functions.

We also remark that Cauchy’s formula can be generalized to the case of two sets
of variables with unequal dimensions: For two sets of variables x = (x1, . . . , xm)

and y = (y1, . . . , yn),

m∏

i=1

n∏

j=1

1

1 − xi y j
=

∑

�(λ)≤min{m,n}
sλ(x1, . . . , xm) sλ(y1, . . . , yn). (3.59)

This formula is obtained from the m = n case by setting unnecessary variables to
zero, thanks to the stability property of Exercise 3.3 (2).

3.4 Recurrence on the Number of Variables

We recall the combinatorial definition of Schur functions:

scomb
λ (x) =

∑

T ∈SSTabn(λ)

xwt(T ). (3.60)

Given a semi-standard tableau T ∈ SSTabn(λ) of shape λ in letters {1, . . . , n}, let T ′
be the sub-tableau of T consisting of letters in {1, . . . , n − 1}. Then by the condition
of a semi-standard tableau, the shape μ = (μ1, μ2, . . .) of T ′ is a partition satisfying
the interlacing property

λ1 ≥ μ1 ≥ λ2 ≥ μ2 ≥ λ3 ≥ · · · . (3.61)



34 3 Schur Functions

A pair (λ, μ) of partitions inPwithμ ⊆ λ (i.e.μi ≤ λi for all i ≥ 1) is referred to
as a skew diagram λ/μ; we also use the notation λ\μ for the set-theoretic difference
D(λ)\D(μ) of diagrams.

We say that a skew diagram λ/μ is a horizontal strip (“h-strip” for short) if the
pair (λ, μ) satisfies the interlacing property (3.61). In terms of the Young diagrams,
this condition is equivalent to saying that the difference λ\μ has at most one square
in each column. In this terminology, scomb

λ (x) can be expanded in the form

scomb
λ (x) =

∑

λ/μ: h-strip

∑

T ′∈SSTabn−1(μ)

(x ′)wt(T ′) x |λ|−|μ|
n (3.62)

=
∑

λ/μ: h-strip
scomb
μ (x ′) x |λ|−|μ|

n , (3.63)

where x ′ = (x1, . . . , xn−1). Namely,

scomb
λ (x1, . . . , xn) =

∑

λ/μ: h-strip

scomb
μ (x1, . . . , xn−1) x |λ/μ|

n , (3.64)

where |λ/μ| = |λ| − |μ|. The combinatorial Schur functions scomb
λ (x) are completely

determined by this recurrence formula with respect to the number of variables.
In order to establish the equivalence of the two definitions of Schur functions, we

prove that sλ(x) = sdetλ (x) satisfy the same recurrence formula. Since

sλ(x) = (x1 · · · xn)
λn sλ−(λn

n)
(x), scomb

λ (x) = (x1 · · · xn)
λn scomb

λ−(λn
n)
(x), (3.65)

we have only to consider the case where λn = 0.

Theorem 3.3 The Schur functions sλ(x) satisfy the following recurrence formula
with respect to the number of variables n : For any λ ∈ Pn,

sλ(x1, . . . , xn) =
∑

μ⊆λ
λ/μ: h-strip

sμ(x1, . . . , xn−1) x |λ/μ|
n , (3.66)

where the sum is over all partitions μ ⊆ λ such that λ/μ is a horizontal strip.

Recurrence formulas of this kind are called branching formulas as well. We give a
proof of this theorem in Sect. 3.5.

Applying this recurrence formula repeatedly, we obtain an alternative expression
of the tableau representation of sλ(x):

sλ(x) =
∑

∅=λ(0)⊆λ(1)⊆···⊆λ(n)=λ

|λ(i)/λ(i−1)|: h-strip

n∏

i=1

x |λ(i)/λ(i−1)|
i (3.67)
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where the sum is taken over all weakly increasing sequences of partitions ∅ = λ(0) ⊆
λ(1) ⊆ · · · ⊆ λ(n) = λ connecting ∅ (empty diagram) and λ by n steps such that the
successive skew diagrams λ(i)/λ(i−1) are all horizontal strips. It is also convenient to
display such a sequence of partitions λ(1), . . . , λ(n) as a table

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

λ
(n)
1 λ

(n)
2 λ

(n)
3 . . . λ(n)

n

λ
(n−1)
1 λ

(n−1)
2 . . . λ

(n−1)
n−1

· · ·
λ

(2)
1 λ

(2)
2

λ
(1)
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(3.68)

with interlacing property λ
(i)
j ≥ λ

(i−1)
j ≥ λ

(i)
j+1 for 1 ≤ j < i ≤ n, called a Gelfand–

Tsetlin pattern.

3.5 Equivalence of the Two Definitions

In this section, we give a proof of Theorem 3.3, thereby establishing the equivalence
of two definitions of Schur functions.

The recurrence formula (3.66) for sλ(x) (with λn = 0) can be proved by means
of Cauchy’s formula (3.58) for fl1,...,ln (x) = �l1,...,ln (x)/�(x):

∑

l1,...,ln≥0

fl1,...,ln (x1, . . . , xn) yl1
1 · · · yln

n = �(y1, . . . , yn)∏n
i, j=1(1 − xi y j )

. (3.69)

In this formula, we set yn = 0 to obtain

∑

l1,...,ln−1≥0

fl1,...,ln−1,0(x1, . . . , xn) yl1
1 · · · yln−1

n−1

= �(y1, . . . , yn−1)∏n−1
i, j=1(1 − xi y j )

y1 · · · yn−1∏n−1
j=1(1 − xn y j )

=
⎛

⎝
∑

k1,...,kn−1≥0

fk1,...,kn−1(x1, . . . , xn−1)yk1
1 · · · ykn−1

n−1

⎞

⎠

·
⎛

⎝
∑

r1,...,rn−1≥0

x
∑

j r j

n yr1+1
1 · · · yrn−1+1

n−1

⎞

⎠ . (3.70)

Wenow look at the coefficient of yl1
1 · · · yln−1

n−1 assuming that l1 > l2 > · · · > ln−1 ≥ 0:
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fl1,...,ln−1,0(x1, . . . , xn)

=
∑

k1,...,kn−1≥0
0≤ki <li

fk1,...,kn−1(x1, . . . , xn−1) x
∑

j l j −∑
j k j −(n−1)

n (3.71)

where the sum is taken over all (k1, . . . , kn−1) ∈ N
n−1 such that 0 ≤ ki < li (i =

1, . . . , n − 1), namely

(k1, . . . , kn−1) ∈ [0, l1) × [0, l2) × · · · × [0, ln−1), (3.72)

where we have used the symbol [a, b) = {k ∈ Z | a ≤ k < b} for an interval of
integers. Notice that, in the expression

fl1,...,ln−1,0(x1, . . . , xn)

=
∑

(k1,k2,...,kn−1)∈[0,l1)×[0,l2)×···×[0,ln−1),

fk1,...,kn−1(x1, . . . , xn−1) x
∑

j l j −∑
j k j −(n−1)

n , (3.73)

the summand fk1,...,kn−1(x1, . . . , xn−1) is alternating with respect to the permutation
of k1, . . . , kn−1. Thanks to this alternating property, the sum over the first two indices
k1, k2 reduces as

∑

(k1,k2)∈[0,l1)×[0,l2)
fk1,...,kn−1(x1, . . . , xn−1) x

∑
j l j −∑

j k j −(n−1)
n

=
∑

(k1,k2)∈[l2,l1)×[0,l2)
fk1,...,kn−1(x1, . . . , xn−1) x

∑
j l j −∑

j k j −(n−1)
n , (3.74)

since the sum of an alternating function over a symmetric region gives zero (Fig. 3.1).
Repeating this procedure with (k2, k3) ∈ [0, l2) × [0, l3) and so on, we finally

obtain

Fig. 3.1 Reducing the region of summation indices
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fl1,...,ln−1,0(x1, . . . , xn)

=
∑

(k1,k2,...,kn−1)∈[l2,l1)×[l3,l2)×···×[0,ln−1),

fk1,...,kn−1(x1, . . . , xn−1) x
∑

j l j −∑
j k j −(n−1)

n , (3.75)

where the sum is taken over all (k1, . . . , kn−1) such that

l1 > k1 ≥ l2 > k2 ≥ l3 > · · · ≥ ln−1 > kn−1 ≥ 0. (3.76)

Then passing to the expressions by partitions λ = (λ1, . . . , λn−1, 0) ∈ Pn and μ =
(μ1, . . . , μn−1) ∈ Pn−1 such that

li = λi + n − i, ki = μi + n − i − 1 (i = 1, . . . , n − 1), (3.77)

we obtain
λ1 ≥ μ1 ≥ λ2 ≥ μ2 ≥ · · · ≥ λn−1 ≥ μn−1 ≥ 0, (3.78)

and hence
sλ(x1, . . . , xn) =

∑

μ⊆λ
λ/μ: h-strip

sμ(x1, . . . , xn−1) x |λ|−|μ|
n , (3.79)

as desired.

3.6 Dual Cauchy Formula

We propose two versions of the dual Cauchy formula for Schur functions.

Theorem 3.4 (Dual Cauchy formulas) For two sets of variables x = (x1, . . . , xm)

and y = (y1, . . . , yn), we have

m∏

i=1

n∏

j=1

(1 + xi y j ) =
∑

λ⊆(nm )

sλ(x)sλ′(y), (3.80)

m∏

i=1

n∏

j=1

(xi + y j ) =
∑

λ⊆(nm )

sλ(x)sλc(y), (3.81)

where the sum is over all partitions λ contained in the m × n rectangle (nm) =
(n, . . . , n); λ′ denotes the conjugate partition of λ (see Sect.2.4), and λc = (m −
λ′

n, m − λ′
n−1, . . . , m − λ′

1).

We call λc the complementary partition of λ in the m × n rectangle.
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λ1
λ2

.

.

.

λm

λc1λc2. . .λcn

λc = (λc
1, . . . , λ

c
n)

= (m − λ′
n, . . . , m − λ′

1)

�λ

�

λc

(3.82)

For the proof of these formulas, we use a lemma on determinants. For an N × N
matrix Z = (zi, j )

N
i, j=1, we denote by

det Zi1,...,ir
j1,..., jr

= det
(
zia , jb

)r

a,b=1 (3.83)

the r × r minor determinant of Z with row indices i1, . . . , ir and column indices
j1, . . . , jr . When (i1, . . . , ir ) = (1, . . . , r), we simply write det Z j1,..., jr for
det Z1,...,r

j1,..., jr
. Also, for two subsets I, J ⊆ {1, . . . , N } of indices with |I | = |J | =

r , we use the notation det Z I
J = det Zi1,...,ir

j1,..., jr
and det Z J = det Z j1,..., jr taking the

increasing sequences i1 < . . . < ir and j1 < . . . < jr such that I = {i1, . . . , ir } and
J = { j1, . . . , jr }.
Lemma 3.2 Setting N = m + n, let X = (xi, j )1≤i≤m,1≤ j≤N be an m × N matrix,
and Y = (yi, j )1≤i≤n,1≤ j≤N an n × N matrix. Define the N × N matrix
Z = (zi, j )1≤i, j≤N by

zi j = xi, j (1 ≤ i ≤ n), zm+i, j = yi, j (1 ≤ i ≤ n) (3.84)

for all j = 1, . . . , N. Then the determinant of Z is expressed as

det Z =
∑

K�L={1,...,N }
|K |=m, |L|=n

ε(K ; L) det X K det YL (3.85)

in terms of minor determinants of X and Y , where the sum is over all pairs of
subsets K , L ⊆ {1, . . . , N } such that |K | = m, |L| = n and K � L = {1, . . . , N },
and ε(K ; L) denotes the sign defined by

ε(K ; L) = (−1)�(K ;L), �(K ; L) = # {(k, l) ∈ K × L | k > l}. (3.86)

For the proof of this lemma, we refer the reader to [25], for example. �

Proof (ofTheorem 3.4)Taking thevariables x = (x1, . . . , xm) and y = (y1, . . . , yn)

as in Theorem 3.4, we apply this lemma to the matrices

X = (
x j−1

i

)
1≤i≤m;1≤ j≤N , Y = (

y j−1
i

)
1≤i≤n;1≤ j≤N , N = m + n. (3.87)



3.6 Dual Cauchy Formula 39

Then we have

(−1)(
N
2) det Z = �(x, y) = �(x)�(y)

m∏

i=1

n∏

j=1

(xi − y j ). (3.88)

On the other hand, by Lemma 3.2 we have

det Z =
∑

K�L={1,...,N }
|K |=m,|L|=n

ε(K ; L) det X K det YL . (3.89)

Hence we obtain

(−1)(
N
2)

m∏

i=1

n∏

j=1

(xi − y j ) =
∑

K�L={1,...,N }
|K |=m,|L|=n

det X K

�(x)

det YL

�(y)
. (3.90)

Taking two sequences k1 > k2 > . . . > km ≥ 0 and l1 > l2 > . . . > ln ≥ 0 such that
K = {km + 1, . . . , k1 + 1} and L = {ln + 1, . . . , l1 + 1}. Then we have

det X K = (−1)(
m
2) det

(
x

k j

i

)m

i, j=1 = (−1)(
m
2)�k1,...,km (x)

det YL = (−1)(
n
2) det

(
y

l j

i

)n

i, j=1 = (−1)(
n
2)�l1,...,ln (x). (3.91)

For each pair (K , L), we take two partitionsμ ∈ Pm and ν ∈ Pn such that ki = μi +
m − i (i = 1, . . . , m) and li = νi + n − i (i = 1, . . . , n). Then one can show that
ν = (m − μ′

n, . . . , m − μ′
1) = μc and ε(K ; L) = (−1)|μ|. Hence, we can rewrite

(3.90) as

(−1)mn
m∏

i=1

n∏

j=1

(xi − y j ) =
∑

μ∈(nm )

(−1)|μ|sμ(x)sμc(y). (3.92)

Replacing y j by −y j , we obtain the dual Cauchy formula (3.81). Formula (3.80) is
obtained from (3.81) by the relation

(y1 · · · yn)
msλ′(y−1) = sλc(y), (3.93)

which can be verified directly from the determinantal definition of the Schur
function. �
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3.7 Jacobi–Trudi Formula

From the Cauchy and the dual Cauchy formulas, one can read off various properties
of Schur functions. For example, one can derive a determinant formula, called the
Jacobi–Trudi formula, which represents a general Schur function sλ(x) in terms of
complete homogeneous symmetric functions hk(x) or elementary symmetric func-
tions ek(x)

Theorem 3.5 (Jacobi–Trudi formula) Let λ ∈ Pn and �(λ′) ≤ m. Then we have

(1) sλ(x) = det
(
hλi + j−i (x)

)n

i, j=1. (3.94)

(2) sλ(x) = det
(
eλ′

i + j−i (x)
)m

i, j=1. (3.95)

In these formulas, we understand hk(x) = 0, ek(x) for k < 0. Explicitly,

sλ = det

⎡

⎢⎢⎢⎣

hλ1 hλ1+1 . . . hλ1+n−1

hλ2−1 hλ2 . . . hλ2+n−2
...

. . .
...

hλn−n+1 hλn−n+2 . . . hλn

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

eλ′
1

eλ′
1+1 . . . eλ′

1+n−1

eλ′
2−1 eλ′

2
. . . eλ′

2+n−2
...

. . .
...

eλ′
n−n+1 eλ′

n−n+2 . . . eλ′
n

⎤

⎥⎥⎥⎦ .

(3.96)
Note that the size of the determinant can be reduced as

sλ(x) = det
(
hλi + j−i (x)

)�(λ)

i, j=1, sλ(x) = det
(
eλ′

i + j−i (x)
)�(λ′)

i, j=1, (3.97)

since the (i, j) entries of the matrix vanish for i > �(λ) (or i > �(λ′)) and j < i .

Proof (1) We rewrite the Cauchy formula (3.50) as

�(x)

n∏

i, j=1

1

1 − xi y j
=

∑

λ∈Pn

�λ+δ(x)sλ(y). (3.98)

Then sλ(y) is the coefficient of xλ+δ in the right-hand side. On the other hand,

�(x)

n∏

i, j=1

1

1 − xi y j
= �(x)

n∏

i=1

(1 + xi h1(y) + x2
i h2(y) + · · · ) (3.99)

=
∑

σ∈Sn

sgn(σ )xσ.δ
∑

μ∈Nn

xμhμ(y), (3.100)
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where hμ(y) = hμ1(y) · · · hμn (y). Taking the coefficient of xλ+δ , we obtain

sλ(y) =
∑

σ∈Sn

sgn(σ )hλ+δ−σ.δ(y)

= det
(
hλi +δi −δ j )

n
i, j=1 = det

(
hλi + j−i (y)

)n

i, j=1, (3.101)

which proves (3.94).
(2) We rewrite the dual Cauchy formula (3.80) as

�(x)

m∏

i=1

n∏

j=1

(1 + xi y j ) =
∑

λ⊆(nm )

�λ+δ(x) sλ′(y). (3.102)

Then sλ′(y) is the coefficient of xλ+δ in the right-hand side. On the other hand,

�(x)

m∏

i=1

n∏

j=1

(1 + xi y j ) = �(x)

m∏

i=1

(1 + xi e1(y) + · · · + xn
i en(y))

=
∑

σ∈Sm

sgn(σ )xσ.δ
∑

μ∈Nm

xμeμ(y), (3.103)

where eμ(y) = eμ1(y) · · · eμn (y). Taking the coefficient of xλ+δ in this formula, we
obtain

sλ′(y) =
∑

σ∈Sm

sgn(σ )eλ+δ−δ.σ (y)

= det
(
eλi +δi −δ j

)n

i, j=1 = det
(
eλi + j−i

)n

i, j=1, (3.104)

as desired. �

3.8 q-Difference and Differential Equations

For each i = 1, . . . , n, we define the q-shift operator Tq,xi in xi by

Tq,xi ϕ(x1, . . . , xi , . . . , xn) = ϕ(x1, . . . , qxi , . . . , xn) (i = 1, . . . , n) (3.105)

leaving x j for j 	= i unchanged. For r = 0, 1, . . . , n, we define the q-difference
operators D(r)

x by
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D(r)
x =

∑

I⊆{1,...,n}
|I |=r

T I
q,x (�(x))

�(x)
T I

q,x

=
∑

I⊆{1,...,n}
|I |=r

q(r
2)

∏

i∈I ; j /∈J

qxi − x j

xi − x j

∏

i∈I

Tq,xi , (3.106)

where T I
q,x = ∏

i∈I Tq,xi . As we will see below, the q-difference operators D(r)
x (r =

1, . . . , n) commutes with each other. We remark that these q-difference operators
D(r)

x are the special case of Macdonald–Ruijsenaars operators with q = t to be
discussed from the next chapter on.

Theorem 3.6 For each λ ∈ Pn, the Schur function sλ(x) satisfies the system of q-
difference equations

D(r)
x sλ(x) = er (q

λ+δ)sλ(x) (r = 0, 1, . . . , n), (3.107)

where the eigenvalues er (qλ+δ) are the elementary symmetric functions of qλi +n−i

(i = 1, . . . , n).

In fact, the q-shift operator Tq,xi acts on monomials in x = (x1, . . . , xn) by

Tq,xi (xμ) = qμi xμ, μ = (μ1, . . . , μn) ∈ N
n (3.108)

for i = 1, . . . , n. Hence, for each polynomials f (ξ) ∈ C[ξ ] in ξ = (ξ1, . . . , ξn), the
q-difference operator f (Tq,x ) = f (Tq,x1 , . . . , Tq,xn ) acts on monomials by

f (Tq,x )xμ = f (qμ)xμ (μ ∈ N
n). (3.109)

If f (ξ) isSn-invarinat, then f (Tq,x ) acts onmonomial symmetric functionsmλ(x) =∑
μ∈Sn .λ

xμ by
f (Tq,x )mλ(x) = f (qλ)mλ(x) (λ ∈ Pn), (3.110)

since f (qμ) = f (qσ.λ) = f (qλ) for μ = σ.λ, σ ∈ Sn . Taking elementary symmet-
ric functions er (ξ) for f (ξ), we obtain

er (Tq,x )mλ(x) = er (q
λ)mλ(x) (λ ∈ Pn, r = 0, 1, . . . , n). (3.111)

Similarly, the alternating polynomials �λ+δ(x) = ∑
μ∈Sn .λ

sgn(σ )xσ.(λ+δ) (λ ∈ Pn)

satisfy

f (Tq,x )�λ+δ(x) = f (qλ+δ)�λ+δ(x) (λ ∈ Pn) (3.112)



3.8 q-Difference and Differential Equations 43

for all f (ξ) ∈ C[ξ ]Sn . By conjugation, we introduce the q−difference operators

D f
x = �(x) f (Tq,x )�(x)−1. (3.113)

Then,we see that the Schur functions sλ(x) = �λ+δ(x)/�(x) satisfy theq-difference
equations

D f
x sλ(x) = f (qλ+δ)sλ(x) (λ ∈ Pn) (3.114)

for all symmetric polynomials f (ξ) = C[ξ ]Sn . The q-difference operators D(r)
x of

(3.106) are the special cases of D f
x , where f = er (r = 0, 1, . . . , n). We also remark

that the q-difference operators D f
x for all f (ξ) ∈ C[ξ ]Sn pairwise commute since

they are conjugations of f (Tq,x ) by �(x).

The differential operators xi∂xi = xi∂/∂xi acts onmonomials in x = (x1, . . . , xn)

by
xi∂xi x

μ = μi x
μ, μ = (μ1, . . . , μn) ∈ N

n (3.115)

for i = 1, . . . , n. Hence for any polynomial f (ξ) ∈ C[ξ ] in ξ = (ξ1, . . . , ξn), we
have

f (x∂x )xμ = f (μ)xμ (μ ∈ N
n). (3.116)

Hence for all f (ξ) ∈ C[ξ ]Sn , we have

f (x∂x )mλ(x) = f (λ)mλ(x), f (x∂x )�λ+δ(x) = f (λ + δ)�λ+δ(x). (3.117)

By conjugation, we introduce the differential operator

L f
x = �(x) f (x∂x )�(x)−1. (3.118)

Then, we see that the Schur functions satisfy the differential equations

L f
x sλ(x) = f (λ + δ)sλ(x) (λ ∈ Pn) (3.119)

for all f (ξ) = C[ξ ]Sn . In particular, for L(r)
x = Ler

x we have

L(r)
x sλ(x) = er (λ + δ)sλ(x) (λ ∈ Pn, r = 0, 1, . . . , n), (3.120)

where

L(r)
x =

∑

|K |=r

1

�(x)
(x∂x )

K �(x) =
∑

|K |=r

∑

I�J=K

(x∂x )
I (�(x))

�(x)
(x∂x )

J (3.121)

with the notation (x∂x )
I = ∏

i∈I xi∂xi .
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3.9 Link to the Representation Theory of GLn (Overview)

In this section, we outline how the Schur functions arise, and how their properties
are interpreted, in the context of representation theory of general linear groups. For
the detail, see Goodman–Wallach [9] for example.

By a representation of a group G, we mean a C-vector space M endowed with
a group homomorphism πM : G → GLC(M), where GLC(M) denotes the group of
invertibleC-linear transformations of M . In this situation, we also say that M is a G-
module, and use the notation of the left action g.v = πM(g)(v) of g ∈ G on v ∈ M .
Suppose that M is finite-dimensional, and fix a C-basis v1, . . . , vN of M . For each
g ∈ G, we take the matrix representation �(g) = (

ϕi j (g)
)N

i, j=1 of πM(g) : M → M
with respect to the basis (v1, . . . , vN ):

g.v j = πM(g)(v j ) =
N∑

i=1

viϕi j (g) (i = 1, . . . , N ). (3.122)

Then we obtain an N × N matrix �M(g) = �(g) whose entries are functions on G
satisfying the condition

�(1G) = IN , �(g1g2) = �(g1)�(g2), �(g−1) = �(g)−1. (3.123)

3.9.1 Polynomial Representations of GLn

Weconsider the case of the general linear groupGLn = GLn(C)of degreen. Express-
ing a general element of GLn as g = (gi j )

n
i, j=1, we regard gi j (1 ≤ i, j ≤ n) as

the canonical coordinates of GLn . A representation M of GLn is called a polyno-
mial representation if the matrix elements ϕi j (g) are all polynomials of the coor-
dinates gi j (1 ≤ i, j ≤ n). It is known that any polynomial representation is com-
pletely reducible, and the isomorphism classes of irreducible representations are
parametrized by the partitions λ ∈ P with �(λ) ≤ n. Namely, for each λ ∈ Pn , there
exists an irreducible polynomial representation V (λ) = Vn(λ) (with highest weight
λ), uniquely determined up to isomorphism, such that V (λ) 	� V (μ) if λ 	= μ, and
that any polynomial representation M is decomposed into a direct sum of the form

M �
⊕

λ∈Pn

V (λ)⊕mλ (3.124)

with somemultiplicities mλ ∈ N. We remark that V (1r ) = V (�r ),�r = ε1 + · · · +
εr (fundamental weights) (r = 0, 1, . . . , n) attached to single columns are the alter-
nating tensor representation �r (V ) of the vector space V = C on which GLn is
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defined, and V ((l)) = V (lε1) (l = 0, 1, 2, . . .) attached to single rows are the sym-
metric tensor representation Sl(V ).

We denote by Hn ⊆ GLn the diagonal subgroup of GLn . Expressing a general
element of Hn as gx = diag(x1, . . . , xn), we regard x = (x1, . . . , xn) as coordinates
of Hn , and identify Hn with (C∗)n ,C∗ = C\ {0}. For each polynomial representation
M of GLn , we define the function chM(x) of x = (x1, . . . , xn) ∈ Hn = (C∗)n by

chM(x) = tr(πM(gx) : M → M) = tr�M(gx), (3.125)

and call it the character of the representation M . For each μ ∈ N
n , we denote by

Mμ = {v ∈ M | gx .v = xμv (x ∈ Hn)} ⊆ M (3.126)

the subspace of weight μ. Since M decomposes into the direct sum M = ⊕
μ∈Nn Mμ

of weight subspaces, we have

chM(x) =
∑

μ∈Nn

(dimCMμ)xμ ∈ C[x]. (3.127)

In this sense, the character chM(x) provides the generating function for counting the
weight multiplicities in M . Note that chM(1) = dimC M . Also, for two polynomial
representations M, N , the character of the tensor product representation M ⊗ N
is given by the multiplication of the two characters as functions on Hn , namely
chM⊗N (x) = chM(x)chN (x).

A fundamental fact in the representation theory of GLn is that the Schur function
sλ(x) attached to each λ ∈ Pn appears as the character of the irreducible polynomial
representation V (λ), namely, chV (λ)(x) = sλ(x).

3.9.2 Weyl Character Formula and Branching Rules

In the context of representation theory, the determinant representation

sλ(x) = det(x
λ j +n− j
i )n

i, j=1

det(xn− j
i )n

i, j=1

= �λ+δ(x)

�(x)
(3.128)

is called the Weyl character formula. The combinatorial description of sλ(x) in terms
of semi-standard tableaux arises from the branching rule for the restriction of V (λ)

along the tower of subgroups

GLn ⊃ GLn−1 ⊃ · · · ⊃ GL1. (3.129)
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In fact, if we restrict the representation V (λ) = Vn(λ) (λ ∈ Pn) from GLn to GLn−1,
it decomposes into the direct sum

Vn(λ) �
⊕

μ∈Pn−1, λ/μ: h-strip
Vn−1(μ) (λ ∈ Pn) (3.130)

of irreducible GLn−1-modules. Passing to the level of characters, this multiplicity-
free decomposition of Vn(λ) gives rise to the recurrence formula for Schur functions
of Theorem3.3with respect to the number of variables. Repeating this restriction pro-
cedure,wefind thatV (λ) = Vn(λ) for eachλ ∈ Pn has aC-basis vT (T ∈ SSTabn(λ))
parameterized by the semi-standard tableaux of shape λ such that gx .vT = xwt(T )vT :

V (λ) =
⊕

μ∈Nn

V (λ)μ, V (λ)μ =
⊕

T ∈SSTabn(λ)μ

C vT . (3.131)

This gives rise to the tableau representation

sλ(x) =
∑

T ∈SSTabn(λ)

xwt(T ) =
∑

μ∈Nn

Kλ,μ xμ (3.132)

of the character sλ(x); in particular, the Kostka numbers count the multiplicities of
weights in V (λ), i.e. Kλ,μ = dimC V (λ)μ. In the language of representation theory,
we have shown in this chapter that, from the Weyl character formula, one can derive
the combinatorial description of the weight subspaces of irreducible representations
V (λ) (λ ∈ Pn)

3.9.3 (GLm,GLn) Duality

We also give a remark on the Cauchy formula for Schur functions. We consider
the space Matm,n = Matm,n(C) of all m × n matrices. Denoting a general element
of Matm,n as T = (

ti j
)
1≤i≤m; 1≤ j≤n , we regard ti j as the canonical coordinates of

Matm,n . Then the coordinate ring of Matm,n is identified with the ring of polynomials
in ti j , i.e. A(Matm,n) = C[ti j (1 ≤ i ≤ m, 1 ≤ j ≤ n)]. We regard A(Matm,n) as
a representation of the product group GLm × GLn through the action of (g, h) ∈
GLm × GLn defined by

((g, h).ϕ)(T ) = ϕ(gt T h) (ϕ ∈ A(Matm,n), T ∈ Matm,n). (3.133)

Then it turns out that A(Matm,n) has the irreducible decomposition

A(Matm,n) �
⊕

�(λ)≤min{m,n}
Vm(λ) ⊗ Vn(λ), (3.134)
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where the sum is over all partitions λwith �(λ) ≤ min {m, n}. From this (GLm,GLn)

duality, we obtain the identity

chA(Matm,n)(x, y) =
∑

�(λ)≤min{m,n}
chVm (λ)(x) chVn(λ)(y) (3.135)

for the (formal) character of the GLm × GLn-moduleA(Matm,n), which is precisely
the Cauchy formula (3.59) for Schur functions. In fact, for each (x, y) ∈ Hm × Hn ,
the action of (gx , gy) ∈ GLm × GLn on the coordinates ti j is given by

(gx , gy).ti j = xi ti j y j (1 ≤ i ≤ m, 1 ≤ j ≤ n). (3.136)

Hence, (gx , gy) acts on themonomials t A = ∏m
i=1

∏n
j=1 t

ai j

i j attached to A = (ai j )i j ∈
Matm,n(N) by

(gx , gy).t
A =

m∏

i=1

n∏

j=1

(xi ti j y j )
ai j = xμ(A)t A yν(A), (3.137)

where the weights μ(A) ∈ N
m and ν(A) ∈ N

n are the row sum and the column sum
of A respectively, i.e. μ(A)i = ∑n

j=1 ai j , ν(A) j = ∑m
i=1 ai j . Noting that

A(Matm,n) =
⊕

A∈Matm,n(N)

C t A, (3.138)

we obtain

chA(Matm,n)(x, y) =
∑

A∈Matm,n(N)

xμ(A)yν(A)

=
∑

A=(ai j )

m∏

i=1

n∏

j=1

(xi y j )
ai j =

m∏

i=1

n∏

j=1

1

1 − xi y j
. (3.139)

Since chVm (λ)(x) = sλ(x) and chVn(λ)(y) = sλ(y), formula (3.134) implies theCauchy
formula

m∏

i=1

n∏

j=1

1

1 − xi y j
=

∑

�(λ)≤min{m,n}
sλ(x) sλ(y). (3.140)
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