
Chapter 2
Preliminaries on Symmetric Functions

Abstract In this section, we recall some basic material on symmetric functions as
preliminaries to the theory of Schur functions and Macdonald polynomials.

2.1 Symmetric Functions ek(x), hk(x) and pk(x)

We first introduce three sequences of symmetric polynomials in n variables x =
(x1, . . . , xn) which are constantly used in the theory of symmetric functions. They
are the elementary symmetric functions ek(x) (k ≥ 0), the complete homogeneous
symmetric functions hk(x) (k ≥ 0), and the power sum symmetric functions pk(x)
(k ≥ 1):

ek(x) =
∑

1≤i1<i2<···<ik≤n

xi1xi2 · · · xik (k ≥ 0), ek(x) = 0 (k > n), (2.1)

hk(x) =
∑

μ1+μ2+···+μn=k

xμ1
1 xμ2

2 · · · xμn
n =

∑

1≤ j1≤···≤ jk≤n

x j1x j2 · · · x jk (k ≥ 0), (2.2)

pk(x) = xk1 + xk2 + · · · + xkn (k ≥ 1). (2.3)

Conventionally, we define ek(x) = 0, hk(x) = 0 for k < 0. As for the power sums,
we leave p0(x) undefined since it depends on the dimension n.

We introduce the generating functions

E(x; u) =
n∑

k=0

ek(x)u
k =

n∏

i=1

(1 + xiu), (2.4)

H(x; u) =
∞∑

k=0

hk(x)u
k =

n∏

i=1

1

1 − xiu
(2.5)

for the elementary and the complete homogenous symmetric functions, regarding
them as formal power series in u: E(x; u), H(x; u) ∈ C[x][[u]]. The first equality
(2.4) essentially represents the relationship between the coefficients of a general
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8 2 Preliminaries on Symmetric Functions

polynomial of degree n and its roots. The second equality (2.5) is verified as

n∏

i=1

1

1 − xiu
= 1

1 − x1u
· · · 1

1 − xnu

= (1 + x1u + x21u
2 + · · · ) · · · (1 + xnu + x2nu

2 + · · · )
=

∑

μ1,...,μn≥ 0

xμ1
i · · · xμn

n uμ1+···+μn

=
∞∑

k=0

⎛

⎝
∑

μ1+···+μn=k

xμ1
i · · · xμn

n

⎞

⎠ uk =
∞∑

k=0

hk(x)u
k . (2.6)

Note also that the two generating functions E(x; u), H(x; u) are related through the
formula

E(x;−u)H(x; u) = 1. (2.7)

The following identities of formal power series in z are frequently used in the
theory of symmetric functions:

log(1 + z) =
∞∑

k=1

(−1)k−1 z
k

k
, − log(1 − z) =

∞∑

k=1

zk

k
, (2.8)

and

exp

( ∞∑

k=1

(−1)k−1 z
k

k

)
= 1 + z, exp

( ∞∑

k=1

zk

k

)
= 1

1 − z
. (2.9)

We apply (2.9) to the generating function

P(x; u) =
∞∑

k=1

pk(x)
uk

k
(2.10)

of the power sum symmetric functions. Then we obtain

exp(P(x; u)) = exp

( ∞∑

k=1

pk(x)
uk

k

)
= exp

( ∞∑

k=1

n∑

i=1

xki
uk

k

)

=
n∏

i=1

exp

( ∞∑

k=1

xki u
k

k

)
=

n∏

i=1

1

1 − xiu
. (2.11)

Hence we have

exp(P(x; u)) = H(x; u), exp(−P(x; u)) = E(x;−u). (2.12)
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As we will see later, the identities (2.7), (2.12) of generating functions provide
powerful tools for analyzing the relationship among the three sequences of symmetric
functions ek(x), hk(x) and pk(x).

2.2 Fundamental Theorem of Symmetric Polynomials

We denote the ring of symmetric polynomials in x by

C[x]Sn = { f ∈ C[x] | σ( f ) = f (σ ∈ Sn)} ⊆ C[x]. (2.13)

Then the fundamental theorem of symmetric polynomials is formulated as follows:

Theorem 2.1 The ring C[x]Sn of symmetric polynomials in n variables is gener-
ated as a C-algebra by the elementary symmetric functions e1(x), . . . , en(x). Fur-
thermore, e1(x), . . . , en(x) are algebraically independent over C.

This means that for any symmetric polynomial f (x) ∈ C[x]Sn in x = (x1, . . . , xn)
there exists a unique polynomial F(y) ∈ C[y] in n variables y = (y1, . . . , yn) such
that

f (x) = F(e1(x), . . . , en(x)). (2.14)

We denote the C-vector space of alternating polynomials in x by

C[x]Sn ,sgn = { f ∈ C[x] | σ( f ) = sgn(σ ) f (σ ∈ Sn)} ⊆ C[x], (2.15)

where sgn(σ ) denotes the sign of a permutation σ ∈ Sn . Among all nonzero alter-
nating polynomials, the difference product (Vandermonde determinant)

�(x) =
∏

1≤i< j≤n

(xi − x j ) = det(xn− j
i )ni, j=1, degx �(x) =

(
n

2

)
(2.16)

has the smallest degree. In fact we have:

Theorem 2.2 Any alternating polynomial f (x) in x = (x1, . . . , xn) is expressed
as the product f (x) = �(x)g(x) of the difference product �(x) and a symmetric
polynomial g(x) ∈ C[x]Sn . Namely, C[x]Sn ,sgn = �(x)C[x]Sn .

Note that
σ(�(x)) = sgn(σ )�(x) (σ ∈ Sn), (2.17)
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and that sgn(σ ) is expressed as sgn(σ ) = (−1)�(σ ) in terms of the number of inver-
sions �(σ ) of σ defined by

�(σ ) = #
{
(i, j) ∈ {1, . . . , n}2 | i < j and σ(i) > σ( j)

}
. (2.18)

We will give proofs of Theorems 2.1 and 2.2 later in Sect. 2.5.

2.3 Wronski Relations and Newton Relations

Knowing that any symmetric polynomial can be expressed by elementary symmetric
functions, it would be natural to ask how the complete homogenous functions hk(x)
and the power sums pk(x) are expressed explicitly in terms of ek(x). Here are some
examples: Suppressing the dependence on the x variables, we have

h1 = e1, h2 = e21 − e2, h3 = e31 − 2e1e2 + e3,

h4 = e41 − 3e21e2 + 2e1e3 + e22 − e4, . . . , (2.19)

p1 = e1, p2 = e21 − 2e2, p3 = e31 − 3e1e2 + 3e3,

p4 = e41 − 4e21e2 + 4e1e3 + 2e22 − 4e4, . . . . (2.20)

Formulas of this kind can be generated by means of the formulas (2.7) and (2.12)
for the generating functions.

Formula (2.7) relating E(x; u) and H(x; u) is equivalent to the infinite number
of relations ∑

i+ j=k

(−1)i ei h j = 0 (k = 1, 2, 3, . . .), (2.21)

called Wronski’s relations. To be explicit,

h1 − e1 = 0, h2 − e1h1 + e2 = 0, , h3 − e1h2 + e2h3 − e3 = 0, . . . . (2.22)

Using these formulas recursively, we see that all hk are expressed in terms of
e1, . . . , ek , and vice versa. Wronski’s relations can also be formulated as the sys-
tem of linear equations

⎡

⎢⎢⎢⎢⎢⎣

1
e1 1 0
e2 e1 1
...

. . .
. . .

. . .

ek−1 . . . e2 e1 1

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

h1
−h2
h3
...

(−1)k−1hk

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

e1
e2
e3
...

ek

⎤

⎥⎥⎥⎥⎥⎦
. (2.23)

Then, by Cramer’s formula we obtain
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hk = (−1)k−1 det

⎡

⎢⎢⎢⎢⎢⎣

1 e1
e1 1 e2
e2 e1 1 e3
...

. . .
. . .

. . .
...

ek−1 . . . e2 e1 ek

⎤

⎥⎥⎥⎥⎥⎦
= det

⎡

⎢⎢⎢⎢⎢⎣

e1 1
e2 e1 1
...

...
. . .

. . .

ek−1 ek−2 . . . e1 1
ek ek−1 . . . e2 e1

⎤

⎥⎥⎥⎥⎥⎦
. (2.24)

Formula (2.7) also implies

H(x;−u) = E(x; u)−1 = (1 + e1u + e2u
2 + · · · )−1

=
∞∑

d=0

(−1)d(e1u + e2u
2 + · · · )d

=
∞∑

d=0

(−1)d
∑

μ1+μ2+···=d

d!
μ1!μ2! · · ·e

μ1
1 eμ2

2 · · · uμ1+2μ2+···

=
∞∑

k=0

⎛

⎝
∑

μ1+2μ2+···=k

(−1)|μ||μ|!
μ1!μ2! · · · e

μ1
1 eμ2

2 · · ·
⎞

⎠ uk . (2.25)

Hence we obtain the explicit formula

hk =
∑

‖μ‖=k

(−1)k−|μ||μ|!
μ1!μ2! · · · eμ1

1 eμ2
2 · · · , ‖μ‖ =

∑

i≥1

iμi , (2.26)

expressing hk in terms of e1, e2, . . . , ek . Since the roles of ei and h j are interchange-
able in (2.22), we also obtain

ek =
∑

||μ||=k

(−1)k−|μ||μ|!
μ1!μ2! · · · hμ1

1 hμ2
2 · · · . (2.27)

This implies thatC[x]Sn = C[h1, . . . , hn] and that h1, . . . , hn are algebraically inde-
pendent as well. Since ek = 0 (k > n), each formula (2.27) for k > n represents an
explicit algebraic dependence among h1, h2, . . . , hk .

Similar computations can be performed for the relationship between ek and pk .
We apply the differential operator u∂u , ∂u = d/du, to the second formula of (2.12)
to obtain

− (u∂u P(x; u))E(x;−u) = u∂u E(x;−u). (2.28)

This means that

− (p1u + p2u
2 + · · · )(1 − e1u + e2u

2 − · · · ) = −e1u + 2e2u
2 − 3e3u

3 − · · · ,

(2.29)
and hence we obtain
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pk − e1 pk−1 + · · · + (−1)k−1ek−1 p1 + (−1)kkek = 0 (k = 1, 2, . . .). (2.30)

These recurrence relations between the elementary symmetric functions and the
power sums are called Newton’s relations. Rewriting these as a system of linear
equations for p1, p2, . . ., and then solving it by Cramer’s formula, we obtain the
determinant formula for pk :

pk = det

⎡

⎢⎢⎢⎢⎢⎣

e1 1
2e2 e1 1
...

...
. . .

. . .

(k − 1)ek−1 ek−2 . . . e1 1
kek ek−1 . . . e2 e1

⎤

⎥⎥⎥⎥⎥⎦
. (2.31)

The second formula of (2.12) also implies

− P(x;−u) = log E(x; u) = log(1 + e1u + e2u
2 + · · · )

=
∞∑

d=1

(−1)d−1 1

d
(e1u + e2u

2 + · · · )d

=
∞∑

d=1

(−1)d−1 1

d

∑

μ1+μ2+···=d

d!
μ1!μ2! · · ·e

μ1
1 eμ2

2 · · · uμ1+2μ2+···

=
∞∑

k=1

⎛

⎝
∑

‖μ‖=k

(−1)|μ|−1(|μ| − 1)!
μ1!μ2! · · · eμ1

1 eμ2
2 · · ·

⎞

⎠ uk . (2.32)

Hence we obtain

pk
k

=
∑

‖μ‖=k

(−1)k−|μ|(|μ| − 1)!
μ1!μ2! · · · eμ1

1 eμ2
2 · · · (k = 1, 2, . . .) (2.33)

This also implies thatC[x]Sn = C[p1, . . . , pn] and that p1, . . . , pn are algebraically
independent.

The method explained here can be applied to derive other formulas (recurrence
formulas, determinant formulas and explicit formulas) representing ek , hk and pk by
each other.

2.4 Monomial Symmetric Functions

We have seen so far that the first n members (up to degree n) of any of the three
sequences ek , hk , pk can be taken as a generator system of theC-algebraC[x]Sn . The
monomial symmetric functions mλ(x), as well as the Schur functions sλ(x) which
we will discuss later, appear as bases of C[x]Sn regarded as a C-vector space.
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Let f (x) ∈ C[x] be an arbitrary polynomial in x = (x1, . . . , xn), and express it
as a finite sum of the form

f = f (x1, . . . , xn) =
∑

μ1,...,μn≥0

aμ1,...,μn x
μ1
1 · · · xμn

n . (2.34)

Then the action of a permutation σ ∈ Sn on f is defined by

σ( f ) = f (xσ(1), . . . , xσ(n)) =
∑

μ1,...,μn≥0

aμ1,...,μn x
μ1
σ(1) · · · xμn

σ(n). (2.35)

We are using the same symbol σ of permutation for the C-algebra automorphism
of C[x] that maps xi to xσ(i) (i = 1, . . . , n). In what follows, we will freely use the
multi-index notation for monomials in x = (x1, . . . , xn): For each multi-index (or
composition in combinatorial terminology) μ = (μ1, . . . , μn) ∈ N

n , we set

xμ = xμ1
1 · · · xμn

n , degx x
μ = |μ| = μ1 + · · · + μn. (2.36)

Noting that the action of σ ∈ Sn on xμ is given by

σ(xμ) = xμ1
σ(1) · · · xμi

σ(i) · · · xμn

σ(n) = x
μσ−1(1)

1 · · · xμσ−1( j)

j · · · xμσ−1(n)

n , (2.37)

we specify the (left) action of Sn on μ ∈ N
n as

σ.μ = (μσ−1(1), . . . , μσ−1(n)) (2.38)

by permuting the positions (rather than the components). Then we have

σ(xμ) = xσ.μ (μ ∈ N
n, σ ∈ Sn). (2.39)

Let us illustrate this definition with an example:

Action of a permutation on multi-indices

n = 3, σ = (123) =
(
1 2 3
2 3 1

)
(cyclic permutation):

μ = (μ1, μ2, μ3)

σ.μ = (μ3, μ1, μ2)

�
��

�
��

�
���
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We now express an arbitrary polynomial f (x) ∈ C[x] as

f (x) =
∑

μ∈Nn

aμ xμ (finite sum) (2.40)

in the multi-index notation, and rewrite the action of σ ∈ Sn on f as

σ( f (x)) =
∑

μ∈Nn

aμσ(xμ) =
∑

μ∈Nn

aμx
σ.μ =

∑

μ∈Nn

aσ−1.μx
μ, (2.41)

where we have replacedμ by σ−1.μ in the last step. Hence we have σ( f (x)) = f (x)
if and only if

aμ = aσ−1.μ for all μ ∈ N
n. (2.42)

This implies that f (x) is a symmetric polynomial if and only if the coefficients aμ,
regarded as a function of μ ∈ N

n , are constant on each Sn-orbit in Nn .
Note that, for any μ = (μ1, . . . , μn) ∈ N

n , the Sn-orbit Sn.μ ⊆ N
n contains a

unique partition λ ∈ Pn obtained by rearranging the components of μ. This means
that the setPn of partitions is a transversal (fundamental domain) of theSn-setNn (a
complete set of representatives of theSn-orbits in Nn). For each λ ∈ Pn , we denote
by

mλ(x) =
∑

μ∈Sn .λ

xμ = xλ + · · · (2.43)

the sum of all monomials attached to the elements inSn.λ. This mλ(x) is called the
monomial symmetric function of monomial type λ; eachmonomial obtained from xλ

by permutation appears precisely once (with coefficient 1). An alternative definition
of mλ(x) can be given as

mλ(x) = 1

|Sn,λ|
∑

σ∈Sn

σ.xλ = 1

|Sn,λ|
∑

σ∈Sn

xσ.μ (2.44)

by symmetrizing the monomial xλ, where Sn,λ = {σ ∈ Sn | σ.λ = λ} denotes the
stabilizer subgroup of λ. (See the examples given below.)

If f (x) ∈ C[x] is a symmetric polynomial, we have

f (x) =
∑

μ∈Nn

aμx
μ =

∑

λ∈Pn

∑

μ∈Sn .λ

aμx
μ

=
∑

λ∈Pn

aλ

∑

μ∈Sn .λ

xμ =
∑

λ∈Pn

aλmλ(x). (2.45)

This means that a polynomial f (x) ∈ C[x] is symmetric if and only if it is expressed
as a finite linear combination of monomial symmetric functions
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f (x) =
∑

λ∈Pn

aλ mλ(x) (finite sum). (2.46)

Since mλ(x) (λ ∈ Pn) are linearly independent over C, we conclude that they form
a C-basis of C[x]Sn .

Theorem 2.3 The monomial symmetric functions mλ(x) (λ ∈ Pn) form a C-basis
of the ring C[x]Sn of symmetric polynomials:

C[x]Sn =
⊕

λ∈Pn

Cmλ(x). (2.47)

�

In order to visualize a partition λ = (λ1, λ2, . . .) ∈ P , we frequently identify λ

with the diagram of λ,

D(λ) = {s = (i, j) ∈ Z × Z | 1 ≤ i ≤ �(λ), 1 ≤ j ≤ λi } , (2.48)

or the Young diagram

D(λ) =
λ1

λ2si

j

λ′
1

λ′
2 (2.49)

of squares s = (i, j)with rows and columns labeled by i = 1, 2, . . . and j = 1, 2, . . .
respectively. By abuse of notation, we also write s ∈ λ instead of s ∈ D(λ). We
define the conjugate partition (transpose) λ′ = (λ′

1, λ
′
2, . . .) ∈ P of λ, denoting by

λ′
j = # {i ≥ 1 | λi ≥ j} the number of squares in the j th column of D(λ) for each
j = 1, 2, . . ..

Given a partition λ = (λ1, λ2, . . .), letm j ∈ N be the number (multiplicity) of j’s
appearing in λ for j = 1, 2, . . .. We often express a partition as λ = (1m12m2 . . .), or
λ = (. . . 2m21m1), specifying the multiplicities of parts of λ.

Young diagrams of special shapes

(13)

column

(4)

row

(412)

hook

(321)

staircase

(43)

rectangle
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Monomial symmetric functions

(1) Single column λ = (1r ) = (1, . . . , 1, 0, . . . , 0) with r 1’s (0 ≤ r ≤ n):

m(1r )(x) = x1 · · · xr + · · · =
∑

1≤i1<···<ir≤n

xi1 · · · xir = er (x) (2.50)

(2) Single row λ = (l) = (l, 0, . . . , 0) (l = 1, 2, . . .):

m(l)(x) = xl1 + · · · =
n∑

i=1

xli = pl(x). (2.51)

(3) When n ≥ 3, there are three partitions λ ∈ Pn with |λ| = 3:

(3) = (3, 0, . . .), (21) = (2, 1, 0, . . .), (13) = (1, 1, 1, 0, . . .). (2.52)

Any homogeneous symmetric polynomial of degree 3 is a linear combination of the
monomial symmetric functions m(3)(x), m(21)(x) and m(13)(x). When n = 3, they
are given explicitly by

m(3)(x) = x31 + x32 + x33 ,

m(21)(x) = x21 x2 + x21 x3 + x1x
2
2 + x1x

2
3 + x22 x3 + x2x

2
3 ,

m(13)(x) = x1x2x3. (2.53)

Note that, if we symmetrize x31 , x
2
1 x2, x1x2x3 by S3, we obtain 2m(3)(x), m(2,1)(x),

6m(13)(x), respectively, where 2, 1, 6 are the orders of the stabilizer subgroups of
(3), (2, 1), (13).

Among all monomials xμ appearing in mλ(x), xλ is the leading (maximal) term
with respect to the partial order ≤, called the dominance order. For μ, ν ∈ N

n , the
dominance order μ ≤ ν is defined by the condition

μ1 + · · · + μi ≤ ν1 + · · · + νi (i = 1, . . . , n − 1) and |μ| = |ν|. (2.54)

Exercise 2.1 Prove the following:
(1) If λ ∈ Pn is a partition, then any μ ∈ Sn.λ satisfies μ ≤ λ.
(2) If μ, ν ∈ N

n and μ ≤ ν, then μ 	lex ν under the lexicographic order of Nn .1

Remark 2.1 We denote by P = Z
n = Zε1 ⊕ · · · ⊕ Zεn the set of all multi-indices

of integers, where εi (i = 1, . . . , n) are the unit vectors. In the language of rep-

1 For μ, ν ∈ N
n , μ 	lex ν means that, either μ = ν, or if μ �= ν, then μk < νk for the smallest

index k ∈ {1, . . . , n} such that μk �= νk .
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resentation theory, P is the weight lattice of the general linear group GLn . We
extend the definition of the dominance order to P by the same condition (2.54).
We remark that the dominance order μ ≤ ν for μ, ν ∈ P is equivalent to ν − μ ∈
Q+ = Nα1 ⊕ · · · ⊕ Nαn−1, where αi = εi − εi+1 ∈ Z

n (i = 1, . . . , n − 1) are the
simple roots of the root system of type An−1. This fact can be seen by the fact that
the simple roots α1, . . . , αn−1 together with αn = εn form the dual basis of the fun-
damental weights 
i = ε1 + · · · + εi (i = 1, . . . , n), with respect to the standard
scalar product on P = Z

n such that
〈
εi , ε j

〉 = δi, j (i, j ∈ {1, . . . , n}).

2.5 Comments on Fundamental Theorems

In this section, we outline the proofs of Theorems 2.1 and 2.2.

For two sets of variables x = (x1, . . . , xn) and y = (y1, . . . , yn) we consider the
C-algebra homomorphism φ : C[y] → C[x]Sn defined by

φ(F(y)) = F(e1(x), . . . , en(x)) (F(y) ∈ C[y]). (2.55)

Note that this algebra homomorphism φ is uniquely determined by the condition
φ(yr ) = er (x) (r = 1, . . . , n). Then, Theorem 2.1 is equivalent to saying that φ :
C[y] → C[x]Sn is an isomorphism of C-algebras.

We define the grading of C[y] by

C[y] =
∞⊕

d=0

C[y]d , C[y]d =
⊕

ν∈Nn;‖ν‖=d

C yν (d ∈ N), (2.56)

where ‖ν‖ = ν1 + 2ν2 + · · · + nνn , assigning the degree degy yr = r to each yr (r =
1, . . . , n). Then φ : C[y] → C[x]Sn preserves the grading, withC[x]Sn regarded as
a graded algebra with degx xi = 1 (i = 1, . . . , n). Then we show that

φ : C[y]d =
⊕

ν∈Nn; ‖ν‖=d

C yν → C[x]Sn
d =

⊕

λ∈Pn; |λ|=d

Cmλ(x) (2.57)

defines aC-isomorphism for all d = 0, 1, 2, . . .. In fact, for each λ = (λ1, . . . , λn) ∈
Pn with |λ| = λ1 + · · · + λn = d, we express the conjugate partition λ′ ∈ P as

λ = (λ′
1, λ

′
2, . . . , λ

′
l) = (1ν12ν2 · · · nνn ) (l = λ1), (2.58)

in terms of themultiplicities νi of i in λ′. Then themulti-index ν = (ν1, . . . , νn) ∈ N
n

satisfies

‖ν‖ = ν1 + 2ν2 + · · · + nνn = λ′
1 + · · · + λ′

l = |λ′| = |λ| = d. (2.59)
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This correspondence λ → ν defines a bijection

{λ ∈ Pn | |λ| = d} ∼→ {
ν ∈ N

n | ‖ν‖ = d
}

(2.60)

between the two indexing sets. Note also that λ is determined from ν by λi = νi +
· · · + νn (i = 1, . . . , n).Under this correspondence, the imageof yν byφ is computed
as

φ(yν) = e1(x)
ν1e2(x)

ν2 · · · en(x)νn
= (x1 + · · · )ν1(x1x2 + · · · )ν2 · · · (x1 · · · xn)νn
= xν1

1 (x1x2)
ν2 · · · (x1 · · · xn)νn + (lower-order terms),

= xλ + (lower-order terms)

= mλ(x) + (lower-order terms), (2.61)

with respect to the lexicographic order (as well as the dominance order) of Nn . This
triangularity of φ implies that φ : C[y]d → C[x]Sn

d is an isomorphism of C-vector
space.

Example: n = 5, λ = (7, 5, 4, 1, 0), λ′ = (4, 3, 3, 3, 2, 1, 1),
ν = (2, 1, 3, 1, 0)

To each column of length r , attach the elementary symmetric function er .

λ

λ′
e4e3e3e3e2e1e1
= e21e2e

3
3e4

= x21 (x1x2)(x1x2x3)
3(x1x2x3x4) + · · ·

= x71 x
5
2 x

4
3 x4 + · · ·

= m(7541)(x) + · · ·

1 1 1 1 1 1 1
2 2 2 2 2
3 3 3 3
4

7
5
4
1
0

4 3 3 3 2 1 1

(2.62)

Example: Symmetric polynomials of degree 3

Note that (3)′ = (111), (21)′ = (21), (13)′ = 3.

e31 = m(3) +3m(21) +6m(13),

e2e1 = m(21) +3m(13),

e3 = m(13),

m(3) = e31 −3e2e1 +3e3,
m(21) = e2e1 −3e3,
m(13) = e3.

(2.63)
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Theorem 2.2 can be proved by using the factor theorem for polynomials in one
variable.We prove that any alternating polynomial f (x) in x = (x1, . . . , xn) is divisi-
ble by�(x) by the induction on the number of variables. Regard f (x) as a polynomial
p(u) = f (u, x2, . . . , xn) ∈ C[x2, . . . , xn][u] of the first variable. Since f (x) is alter-
nating, one has p(x j ) = f (x j , x2, . . . , xn) = 0 for j = 2, . . . , n, and hence p(u) is
expressed as p(u) = q(u)(u − x2) · · · (u − xn) for some q(u) ∈ C[x2, . . . , xn][u],
namely

f (x1, . . . , xn) = g(x1, x2, . . . , xn)
n∏

j=2

(x1 − x j ) (2.64)

for some g(x1, . . . , xn) ∈ C[x]. Since g(x) is alternating in (x2, . . . , xn), it is
expressed as

g(x1, . . . , xn) = h(x1, . . . , xn)�(x2, . . . , xn) (2.65)

with some h(x) ∈ C[x] by the induction hypothesis. Hence we obtain

f (x1, . . . , xn) = h(x1, . . . , xn)
n∏

j=2

(x1 − x j )�(x2, . . . , xn)

= h(x1, . . . , xn)�(x1, . . . , xn). (2.66)

From f (x),�(x) ∈ C[x]Sn ,sgn, it also follows that h(x) ∈ C[x]Sn .

Remark 2.2 The statements of Theorems 2.1 and 2.2 hold in a slightlymore general
setting, including the case of symmetric and alternating polynomials over Z. In fact,
we have the isomorphism

φ : R[y] ∼→ R[x]Sn , φ(yi ) = ei (x) (i = 1, . . . , n), (2.67)

of commutative rings, for any integral domain2 R. We also have

R[x]Sn ,sgn = �(x)R[x]Sn (2.68)

provided that 1 �= −1 in the integral domain R. The proofs given above apply to this
general setting without any essential change.

2 Acommutative ringwith 1 satisfying the property that f, g ∈ R, f g = 0 =⇒ ( f = 0 or g = 0).
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