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Preface

This book is intended to provide an introduction to the theory of Macdonald polyno-
mials from the viewpoint of commuting q-difference operators and their joint eigen-
functions. It is an extended version of lecture notes for a series of online lectures
“Introduction to Macdonald Polynomials,” which I gave at KTH Royal Institute of
Technology, Stockholm, during the period of February and March 2021.

Macdonald polynomials refer to a class of symmetric q-orthogonal polynomials
in many variables. They include important classes of special functions such as Schur
functions and Hall–Littlewood polynomials, and play important roles in various
situations of mathematics and physics. After an overview of Schur functions, I will
introduce Macdonald polynomials (of type A, in the GLn version) as eigenfunctions
of a q-difference operator, called the Macdonald–Ruijsenaars operator, in the ring of
symmetric polynomials. Starting from this definition, I explain various remarkable
properties ofMacdonald polynomials such as orthogonality, evaluation formulas and
self-duality, with emphasis on the roles of commuting q-difference operators.

The main reference for this theory is in Macdonald’s book

Symmetric Functions and Hall Polynomials. Second Edition. Oxford University Press, 1995,
x+475 pp.

Chapter VI: Symmetric functions with two parameters.

A characteristic feature of Macdonald’s approach in his monograph is the use of
symmetric functions in an infinite number of variables. In view of the introductory
nature of this book, I decided to avoid the approach using infinite variables here, and
to put more emphasis instead on the roles of the commuting family of q-difference
operators for which Macdonald polynomials are joint eigenfunctions. I tried to make
this book self-contained, and to give proofs to fundamental formulas in Macdonald
theory within the framework of finite variables, as much as possible. I hope that this
exposition will be helpful to a wider class of readers with various backgrounds.

In this book, I adopted the classical approach to Macdonald polynomials which
does not rely on the theory of (double) affine Hecke algebras. For the Macdonald–
Cherednik theory based on affine Hecke algebras, I refer the reader to Macdonald

v



vi Preface

[22], Cherednik [5] and other textbooks. In this direction, I only added a chapter
on affine Hecke algebras and q-Dunkl operators, to provide an idea (without getting
into the detail of proofs) about how the commuting family of q-difference operators
arises in the framework of affine Hecke algebras.

I also included some materials which I could not deal with in the online lectures
I gave at KTH. I really enjoyed meeting regularly online with many friends from
various parts of theworld,withwhom I shared scientific interests and discussions.My
thanks go to all the participants of the online lectures. I am grateful to the Knut and
Alice Wallenberg Foundation for funding my guest professorship of the year 2020/
2021 at KTH, which provided me with an invaluable opportunity of giving lectures
andwriting lecture notes on this subject of great concern tomyself. Also, I would like
to express my thanks to colleagues at KTH, especially Edwin Langmann and Jonatan
Lenells, for their kind hospitality and friendship during my stay in Stockholm.

Tokyo, Japan Masatoshi Noumi
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Chapter 1
Overview of Macdonald Polynomials

Abstract The Macdonald polynomials are a family of symmetric polynomials in
n variables indexed by partitions. They are characterized as joint eigenfunctions
of a commuting family of q-difference operators acting on the ring of symmetric
polynomials. This chapter is a summary of the material which is developed in the
rest of this book. Some of the notations used throughout this book is also introduced.

1.1 Macdonald Polynomials

We begin with an overview of the Macdonald polynomials1

Pλ(x) = Pλ(x; q, t) ∈ C[x]Sn (1.1)

whichwe are going to discuss throughout this book. They are symmetric polynomials
in n variables x = (x1, . . . , xn) with parameters q, t ∈ C, indexed by the partitions
λ = (λ1, λ2, . . . , λn) with �(λ) ≤ n. By a partition, we mean a weakly decreasing
sequence of nonnegative integers

λ = (λ1, λ2, . . .); λi ∈ N = Z≥0 (i = 1, 2, . . .), λ1 ≥ λ2 ≥ · · · ≥ 0, (1.2)

with a finite number of parts (nonzero components); the 0’s in the tail are frequently
omitted.We denote by �(λ) ∈ N the number of parts ofλ, and by |λ| = λ1 + λ2 + · · ·
the degree (sum of all parts) of λ. We denote by P the set of all partitions, and by Pn

the set of all λ ∈ Pwith �(λ) ≤ n.We identifyPn with the indexing set ofMacdonald
polynomials:

1 In this book, we use the term “Macdonald polynomials” in the narrow sense, meaningMacdonald
polynomials of type An−1 (in the GLn version). They are called the “symmetric functions with
two parameters” in Macdonald’s monograph [20, Chap. VI]. They are a special case of Macdonald
polynomials associated with root systems, which are Weyl group invariant Laurent polynomials
with parameters q and t = (tα)α . The Macdonald polynomials associated with non-reduced root
systems (of type C∨C in the terminology of [22]) are called the Koornwinder polynomials.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. Noumi, Macdonald Polynomials, SpringerBriefs in Mathematical Physics,
https://doi.org/10.1007/978-981-99-4587-0_1
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2 1 Overview of Macdonald Polynomials

Pn = {
λ = (λ1, . . . , λn) ∈ N

n | λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0
}
. (1.3)

We denote by Sn the symmetric group of degree n (the set of all bijections σ :
{1, . . . , n} → {1, . . . , n}). It acts on the ring C[x] = C[x1, . . . , xn] of polynomials
in x = (x1, . . . , xn)bypermuting the indices of the variables xi .Wedenote byC[x]Sn

the ring of symmetric (Sn-invariant) polynomials in x .
As a C-vector space, C[x]Sn has two fundamental bases,

C[x]Sn =
⊕

λ∈Pn

Cmλ(x) =
⊕

λ∈Pn

C sλ(x), (1.4)

both of which are indexed by Pn . These symmetric polynomials

mλ(x) =
∑

μ∈Sn .λ

xμ = xλ + · · · , sλ(x) =
det

(
x

λ j+n− j
i

)n
i, j=1

det
(
xn− j
i

)n
i, j=1

= xλ + · · · (1.5)

are called the monomial symmetric functions (orbit sums) and the Schur functions,2

respectively. Both mλ(x) and sλ(x) have the leading term xλ = xλ1
1 · · · xλn

n with
respect to a partial order ≤ of partitions, called the dominance order (see (2.54) for
the definition). The Macdonald polynomials provide a family of C-bases of C[x]Sn

with two parameters (q, t), including mλ(x) and sλ(x) as special cases.

The Macdonald polynomials Pλ(x; q, t) are defined (or characterized) as the
eigenfunctions of the Macdonald–Ruijsenaars q-difference operator

Dx =
n∑

i=1

∏

1≤ j≤n
j �=i

t xi − x j

xi − x j
Tq,xi =

n∏

j=2

t x1 − x j

x1 − x j
Tq,x1 + · · · (1.6)

acting on C[x]Sn . Here, Tq,xi stands for the q-shift operator with respect to the
variable xi : Tq,xi f (x1, . . . , xi , . . . , xn) = f (x1, . . . , qxi , . . . , xn).

Theorem 1.1 (Macdonald) For each partition λ ∈ Pn with �(λ) ≤ n, there exists a
unique symmetric polynomial Pλ(x) = Pλ(x; q, t) ∈ C[x]Sn in x, homogeneous of
degree |λ| and depending rationally on (q, t), such that

(1) Dx Pλ(x) = dλPλ(x), dλ = qλ1 tn−1 + qλ2 tn−2 + · · · + qλn , (1.7)

(2) Pλ(x) = mλ(x) + (lower-order terms with respect to ≤). (1.8)

This theorem will be proved in Sect. 4.1 (Theorem 4.1).

2 Some people would restrict the usage of the term “symmetric functions” to the case of symmetric
formal power series in an infinite number of variables x = (x1, x2, . . .). We will not strictly follow
this rule, since polynomials are functions, whereas formal power series are not functions in general.
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Fig. 1.1 Space of
parameters (q, t)

For generic (q, t), the Macdonald polynomials Pλ(x; q, t) (λ ∈ Pn) form a C-
basis of C[x]Sn :

C[x]Sn =
⊕

λ∈Pn

C Pλ(x; q, t). (1.9)

They specialize to mλ(x) when t = 1, and to sλ(x) when t = q. Also, in the
limit as q → 1 with scaling t = qβ , they recover the Jack polynomials P (β)

λ (x) =
lim
q→1

Pλ(x; q, qβ).3 Two other important special cases are the Hall–Littlewood poly-

nomials Pλ(x; t) = Pλ(x; 0, t)withq = 0, and theq-Whittaker functions Pλ(x; q, 0)
with t = 0 (Fig. 1.1).

We remark that the Jack polynomials P (β)

λ (x) are orthogonal polynomials asso-
ciated with the Heckman–Opdam system (or Calogero–Sutherland system) of type
An−1; we refer the reader to [15, Chap. 8] and Sect. 5.6 of this book for Heckman–
Opdam and Calogero–Sutherland systems. They are the polynomial joint eigenfunc-
tions of a commuting family of differential operators, called the Sekiguchi–Debiard
operators. The Macdonald polynomials are also the orthogonal polynomials (poly-
nomial joint eigenfunctions) associated with the commuting family of Macdonald–
Ruijsenaars q-difference operators, which define a difference version of the differ-
ential system of Heckman–Opdam (relativistic version of the non-relativistic system
of Calogero–Sutherland).

Remark 1.1 In the parameterization t = qβ , the three values β = 1
2 , 1, 2 are spe-

cial in this case of type An−1. The Jack polynomials P (β)

λ (x) for β = 1
2 , 1, 2

arise as the zonal spherical functions associated with finite-dimensional representa-
tions of the symmetric pairs (g, k) = (gln, son), (gln × gln, gln), (gl2n, sp2n), respec-
tively (see Gangolli–Varadarajan [7] or Heckman–Schlichtkrull [11]). In particu-

3 In Macdonald’s monograph [20, Sect. VI.10], the notation P(α)
λ is used for Jack polynomials with

the convention α = 1/β.
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lar, P (β)

λ (x) with β = 1
2 are called the zonal polynomials, and play crucial roles

in statistics. The Macdonald polynomials Pλ(x; q, t) with t = q
1
2 , q, q2 are simi-

larly interpreted as the zonal spherical functions of the corresponding quantum sym-
metric pairs (Uq(g),U tw

q (k)) (see Noumi [24], Noumi–Sugitani [28]). Here, Uq(g)
denotes the standard quantized universal enveloping algebra of Drinfeld and Jimbo,
whereas U tw

q (k) is a coideal subalgebra of Uq(g) corresponding to the subalgebra
U (k) ⊆ U (g).

1.2 Fundamental Properties of Macdonald Polynomials

TheMacdonald polynomials have various remarkable properties.We highlight below
some of the fundamental properties of Macdonald polynomials, which are in fact
intimately related with each other.

(a) Specializations: As we already mentioned above, from the Macdonald polyno-
mials Pλ(x; q, t), one can obtain the Schur, Jack, Hall–Littlewood and q-Whittaker
functions by specializations or limiting procedures with respect to the parameters
(q, t).

(b) Orthogonality: When q, t ∈ R and |q| < 1, |t | < 1, theMacdonald polynomials
Pλ(x) = Pλ(x; q, t) are orthogonal polynomials on the torus T

n =
{|x1| = · · · = |xn| = 1}with respect to the scalar product defined by a certain weight
function. Explicit formulas are also known for the square norms of Pλ(x).

(c) Commuting family of q-difference operators: There exists a commuting fam-
ily of higher-order q-difference operators D(1)

x , . . . , D(n)
x with D(1)

x = Dx , acting on
the ring C[x]Sn of symmetric polynomials. The operators D(r)

x (r = 1, . . . , n) are
algebraically independent, and the Macdonald polynomials Pλ(x) are joint eigen-
functions of them. See Sect. 5.3 for the explicit formulas of these operators.

(d) Principal specialization and self-duality: The value of Pλ(x) at the base point
x = t δ = (tn−1, tn−2, . . . , 1) can be evaluated explicitly as a product of simple fac-
tors. Also, the normalized Macdonald polynomials P̃λ(x) = Pλ(x)/Pλ(t δ) are self-
dual in the sense P̃λ(t δqμ) = P̃μ(t δqλ) with respect to discrete sets of the position
variables x = qμt δ and the spectral variables ξ = qλt δ .

(e) Pieri formula: The Macdonald polynomial Pμ(x) of degree d multiplied by
the elementary symmetric function er (x) of degree r (r = 0, 1, 2, . . . , n) can be
expanded into a linear combination of Macdonald polynomials of degree d + r with
explicitly determined coefficients. This Pieri formula is obtained from the eigenfunc-
tion equations for the higher-order q-difference operator D(r)

x via the self-duality of
Macdonald polynomials.

(f) Recurrence formula and tableau representation: The Macdonald polynomi-
als of n variables x = (x1, . . . , xn) admit a recurrence formula regarding the number
of variables with explicitly determined coefficients. A repeated application of this
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recurrence formula leads to an explicit formula for Pλ(x), called the tableau repre-
sentation, as a sum of certain weights over all semi-standard tableaux.

These materials will be discussed in subsequent chapters, after preliminaries on
symmetric functions and the Schur functions. There are several topics which we
will not cover, such as the integral forms and combinatorial formulas for Macdonald
polynomials, for which we refer the reader to some other textbooks and individual
papers (see Haglund [10] and Ram–Yip [29] for example).

1.3 Outlook

The Macdonald polynomials can be regarded as a class of classical orthogonal poly-
nomials and special functions of hypergeometric type in many variables. From that
viewpoint, the Encyclopedia of Special Functions [15], published recently, would be
a helpful guide for learning various backgrounds and recent developments around
the subjects of Macdonald polynomials and Koornwinder polynomials.

It is one of the main problems of special functions in many variables to find
good commuting families of linear differential/difference operators and to under-
stand their joint eigenfunctions in appropriate function spaces. Typically, we con-
sider linear operators which are invariant under the action of aWeyl group. In physics
terminology, such problems could be equivalently formulated as (one-dimensional)
integrable quantum many-body problems of Calogero type, where the existence of
a sufficiently large family of commuting linear operators is interpreted as quantum
integrability. Systems of commuting differential and difference operators are called
non-relativistic and relativistic respectively, according to Ruijsenaars. Also, depend-
ing on the nature of functions appearing as coefficients of the linear operators, we
distinguish three hierarchies: rational, trigonometric and elliptic. (See Remark 3.2
for the three variations of Cauchy’s lemma.) For these problems, it would be impor-
tant to pursue systematic approaches which cover quantum integrable systems, both
differential and difference, and of all three cases with rational, trigonometric and
elliptic coefficients.

In terms of the angular coordinates θi (i = 1, . . . , n) such that xi = e
√−1θi , the

Jack polynomials and the Macdonald polynomials are concerned with differential
and difference systems of trigonometric type, respectively. To be more precise, the
self-duality (Sect. 6.1) implies that the Macdonald polynomials are considered as
trigonometric both in position variables and in spectral variables (with respect to
the Pieri formulas); this property is one of the characteristic features of Macdonald
polynomials. On the other hand, the Jack polynomials are concerned with trigono-
metric differential systems in position variables and with rational difference systems
in spectral variables. We also remark that, as a variant of theMacdonald–Ruijsenaars
system of A type, a coupled system of two groups of particles, called the deformed
Macdonald–Ruijsenaars system, is introduced by Sergeev–Veselov [32], for which
the eigenfunctions are described by the super Macdonald polynomials.
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Finally, we give some comments on the difference systems with elliptic coeffi-
cients. The elliptic counterpart of the Macdonald–Ruijsenaars system (of A type)
is called the elliptic Ruijsenaars system, for which integrability was already estab-
lished in the pioneering work of Ruijsenaars [30]. The BC version of the elliptic
Ruijsenaars system is called the elliptic van Diejen system (see van Diejen [33] and
Komori–Hikami [13]). As for the eigenfunctions (eigenstates) of these systems with
elliptic coefficients, however, our knowledge is rather restricted in comparison with
the theory of Macdonald polynomials. For recent topics on eigenfunctions of the
elliptic Ruijsenaars system, we refer to [17, 18] and references therein. For recent
works on eigenfunctions of the elliptic van Diejen system, see [2, 34] for example.
To completely understand eigenfunctions of these systems with elliptic coefficients
would be one of the important, challenging problems in the theory of special functions
in many variables.



Chapter 2
Preliminaries on Symmetric Functions

Abstract In this section, we recall some basic material on symmetric functions as
preliminaries to the theory of Schur functions and Macdonald polynomials.

2.1 Symmetric Functions ek(x), hk(x) and pk(x)

We first introduce three sequences of symmetric polynomials in n variables x =
(x1, . . . , xn) which are constantly used in the theory of symmetric functions. They
are the elementary symmetric functions ek(x) (k ≥ 0), the complete homogeneous
symmetric functions hk(x) (k ≥ 0), and the power sum symmetric functions pk(x)
(k ≥ 1):

ek(x) =
∑

1≤i1<i2<···<ik≤n

xi1xi2 · · · xik (k ≥ 0), ek(x) = 0 (k > n), (2.1)

hk(x) =
∑

μ1+μ2+···+μn=k

xμ1
1 xμ2

2 · · · xμn
n =

∑

1≤ j1≤···≤ jk≤n

x j1x j2 · · · x jk (k ≥ 0), (2.2)

pk(x) = xk1 + xk2 + · · · + xkn (k ≥ 1). (2.3)

Conventionally, we define ek(x) = 0, hk(x) = 0 for k < 0. As for the power sums,
we leave p0(x) undefined since it depends on the dimension n.

We introduce the generating functions

E(x; u) =
n∑

k=0

ek(x)u
k =

n∏

i=1

(1 + xiu), (2.4)

H(x; u) =
∞∑

k=0

hk(x)u
k =

n∏

i=1

1

1 − xiu
(2.5)

for the elementary and the complete homogenous symmetric functions, regarding
them as formal power series in u: E(x; u), H(x; u) ∈ C[x][[u]]. The first equality
(2.4) essentially represents the relationship between the coefficients of a general

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. Noumi, Macdonald Polynomials, SpringerBriefs in Mathematical Physics,
https://doi.org/10.1007/978-981-99-4587-0_2
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polynomial of degree n and its roots. The second equality (2.5) is verified as

n∏

i=1

1

1 − xiu
= 1

1 − x1u
· · · 1

1 − xnu

= (1 + x1u + x21u
2 + · · · ) · · · (1 + xnu + x2nu

2 + · · · )
=

∑

μ1,...,μn≥ 0

xμ1
i · · · xμn

n uμ1+···+μn

=
∞∑

k=0

⎛

⎝
∑

μ1+···+μn=k

xμ1
i · · · xμn

n

⎞

⎠ uk =
∞∑

k=0

hk(x)u
k . (2.6)

Note also that the two generating functions E(x; u), H(x; u) are related through the
formula

E(x;−u)H(x; u) = 1. (2.7)

The following identities of formal power series in z are frequently used in the
theory of symmetric functions:

log(1 + z) =
∞∑

k=1

(−1)k−1 z
k

k
, − log(1 − z) =

∞∑

k=1

zk

k
, (2.8)

and

exp

( ∞∑

k=1

(−1)k−1 z
k

k

)
= 1 + z, exp

( ∞∑

k=1

zk

k

)
= 1

1 − z
. (2.9)

We apply (2.9) to the generating function

P(x; u) =
∞∑

k=1

pk(x)
uk

k
(2.10)

of the power sum symmetric functions. Then we obtain

exp(P(x; u)) = exp

( ∞∑

k=1

pk(x)
uk

k

)
= exp

( ∞∑

k=1

n∑

i=1

xki
uk

k

)

=
n∏

i=1

exp

( ∞∑

k=1

xki u
k

k

)
=

n∏

i=1

1

1 − xiu
. (2.11)

Hence we have

exp(P(x; u)) = H(x; u), exp(−P(x; u)) = E(x;−u). (2.12)
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As we will see later, the identities (2.7), (2.12) of generating functions provide
powerful tools for analyzing the relationship among the three sequences of symmetric
functions ek(x), hk(x) and pk(x).

2.2 Fundamental Theorem of Symmetric Polynomials

We denote the ring of symmetric polynomials in x by

C[x]Sn = { f ∈ C[x] | σ( f ) = f (σ ∈ Sn)} ⊆ C[x]. (2.13)

Then the fundamental theorem of symmetric polynomials is formulated as follows:

Theorem 2.1 The ring C[x]Sn of symmetric polynomials in n variables is gener-
ated as a C-algebra by the elementary symmetric functions e1(x), . . . , en(x). Fur-
thermore, e1(x), . . . , en(x) are algebraically independent over C.

This means that for any symmetric polynomial f (x) ∈ C[x]Sn in x = (x1, . . . , xn)
there exists a unique polynomial F(y) ∈ C[y] in n variables y = (y1, . . . , yn) such
that

f (x) = F(e1(x), . . . , en(x)). (2.14)

We denote the C-vector space of alternating polynomials in x by

C[x]Sn ,sgn = { f ∈ C[x] | σ( f ) = sgn(σ ) f (σ ∈ Sn)} ⊆ C[x], (2.15)

where sgn(σ ) denotes the sign of a permutation σ ∈ Sn . Among all nonzero alter-
nating polynomials, the difference product (Vandermonde determinant)

�(x) =
∏

1≤i< j≤n

(xi − x j ) = det(xn− j
i )ni, j=1, degx �(x) =

(
n

2

)
(2.16)

has the smallest degree. In fact we have:

Theorem 2.2 Any alternating polynomial f (x) in x = (x1, . . . , xn) is expressed
as the product f (x) = �(x)g(x) of the difference product �(x) and a symmetric
polynomial g(x) ∈ C[x]Sn . Namely, C[x]Sn ,sgn = �(x)C[x]Sn .

Note that
σ(�(x)) = sgn(σ )�(x) (σ ∈ Sn), (2.17)
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and that sgn(σ ) is expressed as sgn(σ ) = (−1)�(σ ) in terms of the number of inver-
sions �(σ ) of σ defined by

�(σ ) = #
{
(i, j) ∈ {1, . . . , n}2 | i < j and σ(i) > σ( j)

}
. (2.18)

We will give proofs of Theorems 2.1 and 2.2 later in Sect. 2.5.

2.3 Wronski Relations and Newton Relations

Knowing that any symmetric polynomial can be expressed by elementary symmetric
functions, it would be natural to ask how the complete homogenous functions hk(x)
and the power sums pk(x) are expressed explicitly in terms of ek(x). Here are some
examples: Suppressing the dependence on the x variables, we have

h1 = e1, h2 = e21 − e2, h3 = e31 − 2e1e2 + e3,

h4 = e41 − 3e21e2 + 2e1e3 + e22 − e4, . . . , (2.19)

p1 = e1, p2 = e21 − 2e2, p3 = e31 − 3e1e2 + 3e3,

p4 = e41 − 4e21e2 + 4e1e3 + 2e22 − 4e4, . . . . (2.20)

Formulas of this kind can be generated by means of the formulas (2.7) and (2.12)
for the generating functions.

Formula (2.7) relating E(x; u) and H(x; u) is equivalent to the infinite number
of relations ∑

i+ j=k

(−1)i ei h j = 0 (k = 1, 2, 3, . . .), (2.21)

called Wronski’s relations. To be explicit,

h1 − e1 = 0, h2 − e1h1 + e2 = 0, , h3 − e1h2 + e2h3 − e3 = 0, . . . . (2.22)

Using these formulas recursively, we see that all hk are expressed in terms of
e1, . . . , ek , and vice versa. Wronski’s relations can also be formulated as the sys-
tem of linear equations

⎡

⎢⎢⎢⎢⎢⎣

1
e1 1 0
e2 e1 1
...

. . .
. . .

. . .

ek−1 . . . e2 e1 1

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

h1
−h2
h3
...

(−1)k−1hk

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

e1
e2
e3
...

ek

⎤

⎥⎥⎥⎥⎥⎦
. (2.23)

Then, by Cramer’s formula we obtain
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hk = (−1)k−1 det

⎡

⎢⎢⎢⎢⎢⎣

1 e1
e1 1 e2
e2 e1 1 e3
...

. . .
. . .

. . .
...

ek−1 . . . e2 e1 ek

⎤

⎥⎥⎥⎥⎥⎦
= det

⎡

⎢⎢⎢⎢⎢⎣

e1 1
e2 e1 1
...

...
. . .

. . .

ek−1 ek−2 . . . e1 1
ek ek−1 . . . e2 e1

⎤

⎥⎥⎥⎥⎥⎦
. (2.24)

Formula (2.7) also implies

H(x;−u) = E(x; u)−1 = (1 + e1u + e2u
2 + · · · )−1

=
∞∑

d=0

(−1)d(e1u + e2u
2 + · · · )d

=
∞∑

d=0

(−1)d
∑

μ1+μ2+···=d

d!
μ1!μ2! · · ·e

μ1
1 eμ2

2 · · · uμ1+2μ2+···

=
∞∑

k=0

⎛

⎝
∑

μ1+2μ2+···=k

(−1)|μ||μ|!
μ1!μ2! · · · e

μ1
1 eμ2

2 · · ·
⎞

⎠ uk . (2.25)

Hence we obtain the explicit formula

hk =
∑

‖μ‖=k

(−1)k−|μ||μ|!
μ1!μ2! · · · eμ1

1 eμ2
2 · · · , ‖μ‖ =

∑

i≥1

iμi , (2.26)

expressing hk in terms of e1, e2, . . . , ek . Since the roles of ei and h j are interchange-
able in (2.22), we also obtain

ek =
∑

||μ||=k

(−1)k−|μ||μ|!
μ1!μ2! · · · hμ1

1 hμ2
2 · · · . (2.27)

This implies thatC[x]Sn = C[h1, . . . , hn] and that h1, . . . , hn are algebraically inde-
pendent as well. Since ek = 0 (k > n), each formula (2.27) for k > n represents an
explicit algebraic dependence among h1, h2, . . . , hk .

Similar computations can be performed for the relationship between ek and pk .
We apply the differential operator u∂u , ∂u = d/du, to the second formula of (2.12)
to obtain

− (u∂u P(x; u))E(x;−u) = u∂u E(x;−u). (2.28)

This means that

− (p1u + p2u
2 + · · · )(1 − e1u + e2u

2 − · · · ) = −e1u + 2e2u
2 − 3e3u

3 − · · · ,

(2.29)
and hence we obtain
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pk − e1 pk−1 + · · · + (−1)k−1ek−1 p1 + (−1)kkek = 0 (k = 1, 2, . . .). (2.30)

These recurrence relations between the elementary symmetric functions and the
power sums are called Newton’s relations. Rewriting these as a system of linear
equations for p1, p2, . . ., and then solving it by Cramer’s formula, we obtain the
determinant formula for pk :

pk = det

⎡

⎢⎢⎢⎢⎢⎣

e1 1
2e2 e1 1
...

...
. . .

. . .

(k − 1)ek−1 ek−2 . . . e1 1
kek ek−1 . . . e2 e1

⎤

⎥⎥⎥⎥⎥⎦
. (2.31)

The second formula of (2.12) also implies

− P(x;−u) = log E(x; u) = log(1 + e1u + e2u
2 + · · · )

=
∞∑

d=1

(−1)d−1 1

d
(e1u + e2u

2 + · · · )d

=
∞∑

d=1

(−1)d−1 1

d

∑

μ1+μ2+···=d

d!
μ1!μ2! · · ·e

μ1
1 eμ2

2 · · · uμ1+2μ2+···

=
∞∑

k=1

⎛

⎝
∑

‖μ‖=k

(−1)|μ|−1(|μ| − 1)!
μ1!μ2! · · · eμ1

1 eμ2
2 · · ·

⎞

⎠ uk . (2.32)

Hence we obtain

pk
k

=
∑

‖μ‖=k

(−1)k−|μ|(|μ| − 1)!
μ1!μ2! · · · eμ1

1 eμ2
2 · · · (k = 1, 2, . . .) (2.33)

This also implies thatC[x]Sn = C[p1, . . . , pn] and that p1, . . . , pn are algebraically
independent.

The method explained here can be applied to derive other formulas (recurrence
formulas, determinant formulas and explicit formulas) representing ek , hk and pk by
each other.

2.4 Monomial Symmetric Functions

We have seen so far that the first n members (up to degree n) of any of the three
sequences ek , hk , pk can be taken as a generator system of theC-algebraC[x]Sn . The
monomial symmetric functions mλ(x), as well as the Schur functions sλ(x) which
we will discuss later, appear as bases of C[x]Sn regarded as a C-vector space.
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Let f (x) ∈ C[x] be an arbitrary polynomial in x = (x1, . . . , xn), and express it
as a finite sum of the form

f = f (x1, . . . , xn) =
∑

μ1,...,μn≥0

aμ1,...,μn x
μ1
1 · · · xμn

n . (2.34)

Then the action of a permutation σ ∈ Sn on f is defined by

σ( f ) = f (xσ(1), . . . , xσ(n)) =
∑

μ1,...,μn≥0

aμ1,...,μn x
μ1
σ(1) · · · xμn

σ(n). (2.35)

We are using the same symbol σ of permutation for the C-algebra automorphism
of C[x] that maps xi to xσ(i) (i = 1, . . . , n). In what follows, we will freely use the
multi-index notation for monomials in x = (x1, . . . , xn): For each multi-index (or
composition in combinatorial terminology) μ = (μ1, . . . , μn) ∈ N

n , we set

xμ = xμ1
1 · · · xμn

n , degx x
μ = |μ| = μ1 + · · · + μn. (2.36)

Noting that the action of σ ∈ Sn on xμ is given by

σ(xμ) = xμ1
σ(1) · · · xμi

σ(i) · · · xμn

σ(n) = x
μσ−1(1)

1 · · · xμσ−1( j)

j · · · xμσ−1(n)

n , (2.37)

we specify the (left) action of Sn on μ ∈ N
n as

σ.μ = (μσ−1(1), . . . , μσ−1(n)) (2.38)

by permuting the positions (rather than the components). Then we have

σ(xμ) = xσ.μ (μ ∈ N
n, σ ∈ Sn). (2.39)

Let us illustrate this definition with an example:

Action of a permutation on multi-indices

n = 3, σ = (123) =
(
1 2 3
2 3 1

)
(cyclic permutation):

μ = (μ1, μ2, μ3)

σ.μ = (μ3, μ1, μ2)

�
��

�
��

�
���
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We now express an arbitrary polynomial f (x) ∈ C[x] as

f (x) =
∑

μ∈Nn

aμ xμ (finite sum) (2.40)

in the multi-index notation, and rewrite the action of σ ∈ Sn on f as

σ( f (x)) =
∑

μ∈Nn

aμσ(xμ) =
∑

μ∈Nn

aμx
σ.μ =

∑

μ∈Nn

aσ−1.μx
μ, (2.41)

where we have replacedμ by σ−1.μ in the last step. Hence we have σ( f (x)) = f (x)
if and only if

aμ = aσ−1.μ for all μ ∈ N
n. (2.42)

This implies that f (x) is a symmetric polynomial if and only if the coefficients aμ,
regarded as a function of μ ∈ N

n , are constant on each Sn-orbit in Nn .
Note that, for any μ = (μ1, . . . , μn) ∈ N

n , the Sn-orbit Sn.μ ⊆ N
n contains a

unique partition λ ∈ Pn obtained by rearranging the components of μ. This means
that the setPn of partitions is a transversal (fundamental domain) of theSn-setNn (a
complete set of representatives of theSn-orbits in Nn). For each λ ∈ Pn , we denote
by

mλ(x) =
∑

μ∈Sn .λ

xμ = xλ + · · · (2.43)

the sum of all monomials attached to the elements inSn.λ. This mλ(x) is called the
monomial symmetric function of monomial type λ; eachmonomial obtained from xλ

by permutation appears precisely once (with coefficient 1). An alternative definition
of mλ(x) can be given as

mλ(x) = 1

|Sn,λ|
∑

σ∈Sn

σ.xλ = 1

|Sn,λ|
∑

σ∈Sn

xσ.μ (2.44)

by symmetrizing the monomial xλ, where Sn,λ = {σ ∈ Sn | σ.λ = λ} denotes the
stabilizer subgroup of λ. (See the examples given below.)

If f (x) ∈ C[x] is a symmetric polynomial, we have

f (x) =
∑

μ∈Nn

aμx
μ =

∑

λ∈Pn

∑

μ∈Sn .λ

aμx
μ

=
∑

λ∈Pn

aλ

∑

μ∈Sn .λ

xμ =
∑

λ∈Pn

aλmλ(x). (2.45)

This means that a polynomial f (x) ∈ C[x] is symmetric if and only if it is expressed
as a finite linear combination of monomial symmetric functions
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f (x) =
∑

λ∈Pn

aλ mλ(x) (finite sum). (2.46)

Since mλ(x) (λ ∈ Pn) are linearly independent over C, we conclude that they form
a C-basis of C[x]Sn .

Theorem 2.3 The monomial symmetric functions mλ(x) (λ ∈ Pn) form a C-basis
of the ring C[x]Sn of symmetric polynomials:

C[x]Sn =
⊕

λ∈Pn

Cmλ(x). (2.47)

�

In order to visualize a partition λ = (λ1, λ2, . . .) ∈ P , we frequently identify λ

with the diagram of λ,

D(λ) = {s = (i, j) ∈ Z × Z | 1 ≤ i ≤ �(λ), 1 ≤ j ≤ λi } , (2.48)

or the Young diagram

D(λ) =
λ1

λ2si

j

λ′
1

λ′
2 (2.49)

of squares s = (i, j)with rows and columns labeled by i = 1, 2, . . . and j = 1, 2, . . .
respectively. By abuse of notation, we also write s ∈ λ instead of s ∈ D(λ). We
define the conjugate partition (transpose) λ′ = (λ′

1, λ
′
2, . . .) ∈ P of λ, denoting by

λ′
j = # {i ≥ 1 | λi ≥ j} the number of squares in the j th column of D(λ) for each
j = 1, 2, . . ..

Given a partition λ = (λ1, λ2, . . .), letm j ∈ N be the number (multiplicity) of j’s
appearing in λ for j = 1, 2, . . .. We often express a partition as λ = (1m12m2 . . .), or
λ = (. . . 2m21m1), specifying the multiplicities of parts of λ.

Young diagrams of special shapes

(13)

column

(4)

row

(412)

hook

(321)

staircase

(43)

rectangle
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Monomial symmetric functions

(1) Single column λ = (1r ) = (1, . . . , 1, 0, . . . , 0) with r 1’s (0 ≤ r ≤ n):

m(1r )(x) = x1 · · · xr + · · · =
∑

1≤i1<···<ir≤n

xi1 · · · xir = er (x) (2.50)

(2) Single row λ = (l) = (l, 0, . . . , 0) (l = 1, 2, . . .):

m(l)(x) = xl1 + · · · =
n∑

i=1

xli = pl(x). (2.51)

(3) When n ≥ 3, there are three partitions λ ∈ Pn with |λ| = 3:

(3) = (3, 0, . . .), (21) = (2, 1, 0, . . .), (13) = (1, 1, 1, 0, . . .). (2.52)

Any homogeneous symmetric polynomial of degree 3 is a linear combination of the
monomial symmetric functions m(3)(x), m(21)(x) and m(13)(x). When n = 3, they
are given explicitly by

m(3)(x) = x31 + x32 + x33 ,

m(21)(x) = x21 x2 + x21 x3 + x1x
2
2 + x1x

2
3 + x22 x3 + x2x

2
3 ,

m(13)(x) = x1x2x3. (2.53)

Note that, if we symmetrize x31 , x
2
1 x2, x1x2x3 by S3, we obtain 2m(3)(x), m(2,1)(x),

6m(13)(x), respectively, where 2, 1, 6 are the orders of the stabilizer subgroups of
(3), (2, 1), (13).

Among all monomials xμ appearing in mλ(x), xλ is the leading (maximal) term
with respect to the partial order ≤, called the dominance order. For μ, ν ∈ N

n , the
dominance order μ ≤ ν is defined by the condition

μ1 + · · · + μi ≤ ν1 + · · · + νi (i = 1, . . . , n − 1) and |μ| = |ν|. (2.54)

Exercise 2.1 Prove the following:
(1) If λ ∈ Pn is a partition, then any μ ∈ Sn.λ satisfies μ ≤ λ.
(2) If μ, ν ∈ N

n and μ ≤ ν, then μ 	lex ν under the lexicographic order of Nn .1

Remark 2.1 We denote by P = Z
n = Zε1 ⊕ · · · ⊕ Zεn the set of all multi-indices

of integers, where εi (i = 1, . . . , n) are the unit vectors. In the language of rep-

1 For μ, ν ∈ N
n , μ 	lex ν means that, either μ = ν, or if μ �= ν, then μk < νk for the smallest

index k ∈ {1, . . . , n} such that μk �= νk .
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resentation theory, P is the weight lattice of the general linear group GLn . We
extend the definition of the dominance order to P by the same condition (2.54).
We remark that the dominance order μ ≤ ν for μ, ν ∈ P is equivalent to ν − μ ∈
Q+ = Nα1 ⊕ · · · ⊕ Nαn−1, where αi = εi − εi+1 ∈ Z

n (i = 1, . . . , n − 1) are the
simple roots of the root system of type An−1. This fact can be seen by the fact that
the simple roots α1, . . . , αn−1 together with αn = εn form the dual basis of the fun-
damental weights 
i = ε1 + · · · + εi (i = 1, . . . , n), with respect to the standard
scalar product on P = Z

n such that
〈
εi , ε j

〉 = δi, j (i, j ∈ {1, . . . , n}).

2.5 Comments on Fundamental Theorems

In this section, we outline the proofs of Theorems 2.1 and 2.2.

For two sets of variables x = (x1, . . . , xn) and y = (y1, . . . , yn) we consider the
C-algebra homomorphism φ : C[y] → C[x]Sn defined by

φ(F(y)) = F(e1(x), . . . , en(x)) (F(y) ∈ C[y]). (2.55)

Note that this algebra homomorphism φ is uniquely determined by the condition
φ(yr ) = er (x) (r = 1, . . . , n). Then, Theorem 2.1 is equivalent to saying that φ :
C[y] → C[x]Sn is an isomorphism of C-algebras.

We define the grading of C[y] by

C[y] =
∞⊕

d=0

C[y]d , C[y]d =
⊕

ν∈Nn;‖ν‖=d

C yν (d ∈ N), (2.56)

where ‖ν‖ = ν1 + 2ν2 + · · · + nνn , assigning the degree degy yr = r to each yr (r =
1, . . . , n). Then φ : C[y] → C[x]Sn preserves the grading, withC[x]Sn regarded as
a graded algebra with degx xi = 1 (i = 1, . . . , n). Then we show that

φ : C[y]d =
⊕

ν∈Nn; ‖ν‖=d

C yν → C[x]Sn
d =

⊕

λ∈Pn; |λ|=d

Cmλ(x) (2.57)

defines aC-isomorphism for all d = 0, 1, 2, . . .. In fact, for each λ = (λ1, . . . , λn) ∈
Pn with |λ| = λ1 + · · · + λn = d, we express the conjugate partition λ′ ∈ P as

λ = (λ′
1, λ

′
2, . . . , λ

′
l) = (1ν12ν2 · · · nνn ) (l = λ1), (2.58)

in terms of themultiplicities νi of i in λ′. Then themulti-index ν = (ν1, . . . , νn) ∈ N
n

satisfies

‖ν‖ = ν1 + 2ν2 + · · · + nνn = λ′
1 + · · · + λ′

l = |λ′| = |λ| = d. (2.59)



18 2 Preliminaries on Symmetric Functions

This correspondence λ → ν defines a bijection

{λ ∈ Pn | |λ| = d} ∼→ {
ν ∈ N

n | ‖ν‖ = d
}

(2.60)

between the two indexing sets. Note also that λ is determined from ν by λi = νi +
· · · + νn (i = 1, . . . , n).Under this correspondence, the imageof yν byφ is computed
as

φ(yν) = e1(x)
ν1e2(x)

ν2 · · · en(x)νn
= (x1 + · · · )ν1(x1x2 + · · · )ν2 · · · (x1 · · · xn)νn
= xν1

1 (x1x2)
ν2 · · · (x1 · · · xn)νn + (lower-order terms),

= xλ + (lower-order terms)

= mλ(x) + (lower-order terms), (2.61)

with respect to the lexicographic order (as well as the dominance order) of Nn . This
triangularity of φ implies that φ : C[y]d → C[x]Sn

d is an isomorphism of C-vector
space.

Example: n = 5, λ = (7, 5, 4, 1, 0), λ′ = (4, 3, 3, 3, 2, 1, 1),
ν = (2, 1, 3, 1, 0)

To each column of length r , attach the elementary symmetric function er .

λ

λ′
e4e3e3e3e2e1e1
= e21e2e

3
3e4

= x21 (x1x2)(x1x2x3)
3(x1x2x3x4) + · · ·

= x71 x
5
2 x

4
3 x4 + · · ·

= m(7541)(x) + · · ·

1 1 1 1 1 1 1
2 2 2 2 2
3 3 3 3
4

7
5
4
1
0

4 3 3 3 2 1 1

(2.62)

Example: Symmetric polynomials of degree 3

Note that (3)′ = (111), (21)′ = (21), (13)′ = 3.

e31 = m(3) +3m(21) +6m(13),

e2e1 = m(21) +3m(13),

e3 = m(13),

m(3) = e31 −3e2e1 +3e3,
m(21) = e2e1 −3e3,
m(13) = e3.

(2.63)
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Theorem 2.2 can be proved by using the factor theorem for polynomials in one
variable.We prove that any alternating polynomial f (x) in x = (x1, . . . , xn) is divisi-
ble by�(x) by the induction on the number of variables. Regard f (x) as a polynomial
p(u) = f (u, x2, . . . , xn) ∈ C[x2, . . . , xn][u] of the first variable. Since f (x) is alter-
nating, one has p(x j ) = f (x j , x2, . . . , xn) = 0 for j = 2, . . . , n, and hence p(u) is
expressed as p(u) = q(u)(u − x2) · · · (u − xn) for some q(u) ∈ C[x2, . . . , xn][u],
namely

f (x1, . . . , xn) = g(x1, x2, . . . , xn)
n∏

j=2

(x1 − x j ) (2.64)

for some g(x1, . . . , xn) ∈ C[x]. Since g(x) is alternating in (x2, . . . , xn), it is
expressed as

g(x1, . . . , xn) = h(x1, . . . , xn)�(x2, . . . , xn) (2.65)

with some h(x) ∈ C[x] by the induction hypothesis. Hence we obtain

f (x1, . . . , xn) = h(x1, . . . , xn)
n∏

j=2

(x1 − x j )�(x2, . . . , xn)

= h(x1, . . . , xn)�(x1, . . . , xn). (2.66)

From f (x),�(x) ∈ C[x]Sn ,sgn, it also follows that h(x) ∈ C[x]Sn .

Remark 2.2 The statements of Theorems 2.1 and 2.2 hold in a slightlymore general
setting, including the case of symmetric and alternating polynomials over Z. In fact,
we have the isomorphism

φ : R[y] ∼→ R[x]Sn , φ(yi ) = ei (x) (i = 1, . . . , n), (2.67)

of commutative rings, for any integral domain2 R. We also have

R[x]Sn ,sgn = �(x)R[x]Sn (2.68)

provided that 1 �= −1 in the integral domain R. The proofs given above apply to this
general setting without any essential change.

2 Acommutative ringwith 1 satisfying the property that f, g ∈ R, f g = 0 =⇒ ( f = 0 or g = 0).



Chapter 3
Schur Functions

Abstract As a warmup for our discussion of Macdonald polynomials, we review
fundamental properties of Schur functions. We start here with two definitions of the
Schur functions, one by combinatorics of semi-standard tableaux, and the other in
terms of ratios ofVandermonde-type determinants. Thenwe establish the equivalence
of the two definitions by means of the Cauchy formula. It should be noted that the
theory of Macdonald polynomials is modeled in many respects on that of Schur
functions.

3.1 Definitions of the Schur Functions

3.1.1 Two Definitions

We now move on to the Schur functions sλ(x) (λ ∈ Pn); they are a family of sym-
metric polynomials indexed by the same set Pn of partitions λ with �(λ) ≤ n as in
the case of mλ(x). Each sλ(x) is homogeneous of degree |λ| and has the leading term
xλ with respect to the dominance order:

sλ(x) = xλ + · · · = mλ(x) + · · · . (3.1)

With this property, they also form a C-basis of the ring of symmetric polynomials:

C[x]Sn =
⊕

λ∈Pn

C sλ(x). (3.2)

As we will see below, sλ(x) are in fact symmetric polynomials with nonnegative
integer coefficients, i.e. sλ(x) ∈ N[x]Sn .

We give two definitions of the Schur functions here, denoting them by scomb
λ (x)

and sdetλ (x) respectively, and show later that they in fact coincide.
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M. Noumi, Macdonald Polynomials, SpringerBriefs in Mathematical Physics,
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Definition 3.1 (combinatorial) For each λ ∈ Pn , we define the Schur function
scomb
λ (x) as the sum

scomb
λ (x) =

∑

T ∈SSTabn(λ)

xwt(T ) (3.3)

of monomials xwt(T ) over the set SSTabn(λ) of all semi-standard tableaux T of shape
λ in letters {1, . . . , n}.
We explain below the precise meaning of a semi-standard tableauT and its weight
wt(T ). By definition we have scomb

λ (x) ∈ N[x], but it is not obvious why it should
be symmetric since this definition depends strongly on the ordering of the indexing
set {1, . . . , n}.
Definition 3.2 (determinantal) For each λ ∈ Pn , we define the Schur function
sdetλ (x) as the ratio of two determinants of Vandermonde type:

sdetλ (x) =
det

(
x

λ j +n− j
i

)n

i, j=1

det
(
xn− j

i

)n

i, j=1

=
det

(
x

λ j +n− j
i

)n

i, j=1

�(x)
, (3.4)

where �(x) = ∏
1≤i< j≤n(xi − x j ) stands for the difference product.

Since the numerator det
(
x

λ j +n− j
i

)n

i, j=1 ∈ Z[x] is an alternating polynomial in

Z[x]Sn ,sgn, it is divisible by �(x) in the polynomial ring Z[x] with integer coef-
ficients. Hence the resulting sdetλ (x) is a symmetric polynomial with coefficients in
Z, i.e. sdetλ (x) ∈ Z[x]Sn (seeRemark 2.2). It is not obvious, however, why they should
have coefficients in N = Z≥0.

Theorem 3.1 For any λ ∈ Pn, we have scomb
λ (x) = sdetλ (x).

Namely, the two definitions of the Schur functions give the same polynomials, which
wedenote by sλ(x). An immediate consequence of this theorem is that the Schur func-
tions are symmetric polynomials with coefficients in N = Z≥0, i.e. sλ(x) ∈ N[x]Sn .
The equivalence of the two definitions will be established later in Sect. 3.5 on the
basis of Cauchy’s formula.

3.1.2 Combinatorial Definition

By a semi-standard tableau T of shape λ in letters {1, . . . , n}, we mean a mapping
T : D(λ) → {1, . . . , n} such that the numbersT (s) (s ∈ D(λ)) areweakly increasing
along the rows and strictly increasing along the columns.1 For example,

1 T is called a column strict tableau in the terminology of Macdonald [20].
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T =
1 1 2 3 4
2 3 3
4

a ≤ b

>

c
(3.5)

Namely, T should satisfy

T (i, j) ≤ T (i, j + 1) (1 ≤ i ≤ �(λ), 1 ≤ j < λi ),

T (i, j) < T (i + 1, j) (1 ≤ j ≤ λ1, 1 ≤ i < λ′
j ). (3.6)

We denote by SSTabn(λ) the set of all semi-standard tableaux of shape λ in letters
{1, . . . , n}. For each semi-standard tableauT , we denote by wt(T ) the composition
(multi-index)

μ = (μ1, . . . , μn) ∈ N
n, μi = # {s ∈ D(λ) | T (s) = i} (i = 1, . . . , n) (3.7)

obtained by counting the number of i’s in the tableauT for each i ; wt(T ) is called
the weight of T . In the example of T in (3.5), we have

wt(T ) = (2, 2, 3, 2), xwt(T ) = x2
1 x2

2 x3
3 x2

4 . (3.8)

scomb
λ (x) attached to columns and rows

(1) Single column λ = (1r ): (r = 0, 1, 2, . . .)

scomb
(1r ) (x) =

∑

1≤i1<···<ir ≤n

xi1 · · · xir = er (x). (3.9)

(2) Single row λ = (l): (l = 0, 1, 2, . . .)

scomb
(l) (x) =

∑

1≤ j1≤···≤ jl≤n

x j1 · · · x jr = hl(x). (3.10)

Example of scomb
λ (x): n = 3, λ = (2, 1, 0)

When n = 3 and λ = (2, 1, 0), there are 8 semi-standard tableaux of shape λ.

1 1
2

x2
1 x2

1 1
3

x2
1 x3

1 2
2

x1x2
2

1 2
3

x1x2x3

1 3
2

x1x2x3

1 3
3

x1x2
3

2 2
3

x2
2 x3

2 3
3

x2x2
3

(3.11)
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Hence we have

scomb
(21) (x) = x2

1 x2 + x2
1 x3 + x1x2

2 + x1x2
3 + x2

2 x3 + x2x2
3 + 2x1x2x3

= m(21)(x) + 2m(13)(x). (3.12)

Note that the definition of scomb
λ (x) strongly depends on the ordering of 1, 2, . . . , n.

By definition we have scomb
λ (x) ∈ N[x], but why are they symmetric?

For each μ ∈ N
n with |μ| = |λ|, we set

SSTabn(λ)μ = {T ∈ SSTabn(λ) | wt(T ) = μ}. (3.13)

The number
Kλ,μ = #SSTabn(λ)μ ∈ N (3.14)

of semi-standard tableaux of shape λ with weight μ is called the Kostka number.
Then we have

scomb
λ (x) =

∑

μ∈Nn

(
#SSTabn(λ)μ

)
xμ =

∑

μ∈Nn

Kλ,μ xμ. (3.15)

In fact we have
scomb
λ (x) = xλ +

∑

μ<λ

Kλ,μ xμ, (3.16)

namely, scomb
λ (x) has the leading term xλ with respect to the dominance order.

Exercise 3.1 Let λ ∈ Pn . Prove the following:
(1) If T ∈ SSTabn(λ) and wt(T ) = μ, then μ ≤ λ.
(2) Kλ,λ = 1, and Kλ,μ > 0 if and only if μ ≤ λ.

Remark 3.1 As we mentioned already, each scomb
λ (x) is in fact a symmetric poly-

nomial. This statement is equivalent to Kλ,μ = Kλ,σ.μ (μ ∈ N
n) for any permu-

tation σ ∈ Sn . We remark that, for each adjacent transposition si = (i, i + 1)
(i = 1, . . . , n − 1), there is a bijection

SSTabn(λ)μ
∼→ SSTabn(λ)si .μ (3.17)

called the Bender–Knuth involution. It implies that Kλ,μ = Kλ,si .μ (μ ∈ N
n) for

i = 1, . . . , n − 1, and hence Kλ,μ = Kλ,σ.μ (μ ∈ N
n) for any σ ∈ Sn . For a com-

binatorial proof ofSn-invariance of this sort, see Sagan’s textbook [31, Proposition
4.4.2] for example.
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3.1.3 Determinantal Definition

For each λ ∈ Pn , we defined sdetλ (x) as the ratio of two determinants in Definition
3.2. We denote by δ = (n − 1, n − 2, . . . , 0) the staircase partition of n − 1 parts so
that δi = n − i (i = 1, . . . , n). Then the definition of sdetλ (x) can be rewritten as

sdetλ (x) =
det

(
x

(λ+δ) j

i

)n

i, j=1

det
(
x

δ j

i

)n

i, j=1

. (3.18)

We give here a remark on the strict partition l = λ + δ appearing in the numerator.2

The sequence l = (l1, . . . , ln), l j = λ j + n − j ( j = 1, . . . , n), can be read off from
the boundary of the Young diagram as shown below.

0

1

2

3

4 5 6 7 8 9 10

�
�

�
�

�
�

��

�
�

�
�

�
�

��

•
0

•
2

•
5

•
8

0
1
2
3
4
5
6
7
8
9

n = 4
λ = (5, 3, 1, 0)
δ = (3, 2, 1, 0)

λ + δ = (8, 5, 2, 0)

(3.19)

The subset M = {l1, . . . , ln} ⊆ N is often called the Maya diagram attached to λ.

Example of sdetλ (x): n = 3, λ = (2, 1, 0)

Since λ + δ = (4, 2, 0), we have

sdet
(21)(x) = det

⎡

⎢⎣
x41 x21 1

x42 x22 1

x43 x23 1

⎤

⎥⎦
/

det

⎡

⎢⎣
x21 x1 1

x22 x2 1

x23 x3 1

⎤

⎥⎦ = �(x21 , x22 , x23 )

�(x1, x2, x3)
. (3.20)

Hence

sdet(21)(x) = (x21 − x22 )(x21 − x23 )(x22 − x23 )

(x1 − x2)(x1 − x3)(x2 − x3)
= (x1 + x2)(x1 + x3)(x2 + x3)

= x21 x2 + x21 x3 + x1x22 + x1x23 + x22 x3 + x2x23 + 2x1x2x3
= m(21)(x) + 2m(13)(x). (3.21)

2 A partition λ = (λ1, λ2, . . .) with �(λ) = l is called strict if λ1 > λ2 > · · · > λl > 0.
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Exercise 3.2 Show that sdet
(1k )

(x) = ek(x), sdet(k) (x) = hk(x) (k = 0, 1, 2, . . .).

A possible approach would be to use the following identities:

n∏

j=1

(u − x j ) · �(x1, . . . , xn) = �(u, x1, . . . , xn),

�(x1, . . . , xn)∏n
i=1(1 − xi u)

= det

(
xn− j

i

1 − xi u

)n

i, j=1

. (3.22)

Exercise 3.3 Prove that both scomb
λ (x) and sdetλ (x) carry the following properties.

(1) For any λ ∈ Pn and k ∈ N, sλ+(kn)(x) = (x1 . . . xn)
ksλ(x), where (kn) = (k, . . . ,

k) denotes the n × k rectangle.
(2) Let λ ∈ Pn and m < n. Then we have

sλ(x1, . . . , xm, 0, . . . , 0) =
{

sλ(x1, . . . , xm) (�(λ) ≤ m),

0 (�(λ) > m).
(3.23)

3.2 Principal Specialization and Self-duality

Before giving a proof of Theorem 3.1, we explain some consequences of the equiv-
alence of the two definitions of Schur functions. From this section on, we set
sλ(x) = sdetλ (x).

3.2.1 Principal Specialization: Evaluation at x = tδ

According to the combinatorial definition, the Schur function scomb
λ (x) counts the

semi-standard tableaux T of shape λ with weights xwt(T ). In particular, we have

sλ(1, . . . , 1) = scomb
λ (1, . . . , 1) =

∑

T ∈SSTabn(λ)

1 = #SSTabn(λ). (3.24)

In terms of the determinantal definition, the evaluation of sλ(x) at x = (1, . . . , 1) is
a subtle question since the denominator�(x) vanishes at this point. In order to avoid
this singularity, we first evaluate sλ(x) at t δ = (tn−1, tn−2, . . . , 1) and then take the
limit as t → 1.

Proposition 3.1 (Principal specialization) For each λ ∈ Pn, we have

sλ(t
δ) = �(tλ+δ)

�(t δ)
= tn(λ)

∏

1≤i< j≤n

1 − tλi −λ j + j−i

1 − t j−i
, (3.25)

where n(λ) = ∑n
i=1(i − 1)λi .
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Proof In fact, we have

sλ(t
δ) =

det
(
t δi (λ+δ) j

)n

i, j=1

�(t δ)
= �(tλ+δ)

�(t δ)

=
∏

1≤i< j≤n

tλi +n−i − tλ j +n− j

t n−i − tn− j
=

∏

1≤i< j≤n

tλ j
1 − tλi −λ j + j−i

1 − t j−i
. (3.26)

�

We are now allowed to take the limit as t → 1 in (3.25), to obtain an explicit
formula

#SSTabn(λ) = sλ(1, . . . , 1) = �(λ + δ)

�(δ)
=

∏

1≤i< j≤n

λi − λ j + j − i

j − i
(3.27)

for the number of semi-standard tableaux of shape λ.

3.2.2 Hook Length Formula

Formulas (3.25) and (3.27) can be rewritten into a combinatorial expression of the
Young diagram. For each square s = (i, j) ∈ D(λ), we define the content cλ(s) and
the hook length hλ(s) by

cλ(s) = j − i, hλ(s) = λi + λ′
j − i − j + 1. (3.28)

Note that, in terms of thearm length aλ(s) = λi − j and the leg length lλ(s) = λ′
j − i ,

the hook length is expressed as hλ(s) = aλ(s) + lλ(s) + 1.

si λi

j

λ′
j

aλ(s)

lλ(s)

aλ(s) = λi − j

lλ(s) = λ′
j − i

hλ(s) = aλ(s) + lλ(s) + 1

��

�
�

(3.29)

In terms of the Maya diagram M = {l1, . . . , ln}, a square s ∈ λ is in one-to-one
correspondence with a pair (k, l) of nonnegative integers such that k < l, k /∈ M ,
l ∈ M ; the hook length is then interpreted as hλ(s) = l − k.

Proposition 3.2 (Hook length formula) For each λ ∈ Pn, we have

sλ(t
δ) = tn(λ)

∏

s∈λ

1 − tn+cλ(s)

1 − thλ(s)
, (3.30)
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and

sλ(1, . . . , 1) = #SSTabn(λ) =
∏

s∈λ

n + cλ(s)

hλ(s)
. (3.31)

Proof We show

∏

1≤i< j≤n

λi − λ j + j − i

j − i
=

∏

s∈λ

n + cλ(s)

hλ(s)
. (3.32)

Setting li = λi + n − i (i = 1, . . . , n), consider the Maya digram M = {l1, . . . , ln}
attached to λ. In terms of M , we see

∏

1≤i< j≤n

λi − λ j + j − i

j − i
=

∏

1≤i< j≤n

li − l j

j − i
=

∏
0≤k<l;k,l∈M(l − k)
∏

0≤k<l<n(l − k)
(3.33)

and ∏

s∈λ

hλ(s) =
∏

0≤k<l
k /∈M,l∈M

(l − k). (3.34)

Since ∏

0≤k<l
l∈M

(l − k) =
∏

0≤k<l
k,l∈M

(l − k)
∏

0≤k<l
k /∈M,l∈M

(l − k), (3.35)

we have

∏

1≤i< j≤n

λi − λ j + j − i

j − i
·
∏

s∈λ

hλ(s) (3.36)

=
∏

0≤k<l;k,l∈M(l − k)
∏

0≤k<l; k /∈M,l∈M(l − k)
∏

0≤k<l<n(l − k)

=
∏

0≤k<l;l∈M(l − k)
∏

0≤k<l<n(l − k)
=

∏n
i=1(λi + n − i)!∏n

i=1(n − i)!

=
n∏

i=1

(n − i + 1)λi =
∏

s∈λ

(n + cλ(s)), (3.37)

wherewe have used the notation of shifted factorials (a)k = a(a + 1) · · · (a + k − 1)
(k = 0, 1, . . .). The same proof applies to the formula for sλ(t δ) as well. �



3.2 Principal Specialization and Self-duality 29

Hook length formula

(1) n = 3, λ = (2, 1, 0).

∏

s∈λ

n + cλ(s)

hλ(s)
=

3 4
2

3 1
1

= 2 · 4 = 8.

(3.38)

(2) n = 4, λ = (5, 3, 1, 0).

∏

s∈λ

n + cλ(s)

hλ(s)
=

4 5 6 7 8
3 4 5
2

7 5 4 2 1
4 2 1
1

= 360.

(3.39)

Exercise 3.4 Confirm that the hook length formula implies the following:

(1) Single column λ = (1r ): s(1r )(1, . . . , 1) =
(

n

r

)
(r ≥ 0).

(2) Single row λ = (l): s(l)(1, . . . , 1) =
(

n + l − 1

l

)
(l ≥ 0).

3.2.3 Self-duality

The values of sλ(x) at the discrete set x = tμ+δ (μ ∈ Pn) have a remarkable duality
property (evaluation symmetry).

Proposition 3.3 (Self-duality) For any pair of partitions λ,μ ∈ Pn, we have

sλ(tμ+δ)

sλ(t δ)
= sμ(tλ+δ)

sμ(t δ)
. (3.40)

Proof Since sλ(t δ) = �(tλ+δ)/�(t δ), we have

sλ(tμ+δ)

sλ(t δ)
=

�(t δ) det
(
t (μ+δ)i (λ+δ) j

)n

i, j=1

�(tλ+δ)�(tμ+δ)
. (3.41)

This formula is symmetric with respect to exchanging λ and μ. �
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Regarding x = t δ as a base point, we set

s̃λ(x) = sλ(x)

sλ(t δ)
(3.42)

so that s̃λ(t δ) = 1. Then Proposition 3.3 implies that s̃λ(tμ+δ) = s̃μ(tλ+δ) for any
pair of partitions λ,μ ∈ Pn . Namely, regarded as a function of (λ, μ) ∈ Pn × Pn ,
s̃λ(tμ+δ) is invariant under the exchange of the arguments λ and μ.

3.3 Cauchy Formula

In this section, we give a proof of the Cauchy formula for Schur functions; it will be
used in Sect. 3.5 to establish the equivalence of two definitions of the Schur functions.

3.3.1 Cauchy Determinant

Lemma 3.1 (Cauchy) For two sets of variables x = (x1, . . . , xn) and y = (y1, . . . ,
yn), we have

det

(
1

xi + y j

)n

i, j=1

= �(x)�(y)∏n
i, j=1(xi + y j )

, (3.43)

det

(
1

1 − xi y j

)n

i, j=1

= �(x)�(y)∏n
i, j=1(1 − xi y j )

. (3.44)

�

The two formulas of Lemma 3.1 are equivalent to each other; the second formula is
obtained from the first by change of variables xi → −x−1

i (i = 1, . . . , n) and vice
versa.

Exercise 3.5 Prove Cauchy’s lemma (3.43) by means of the property of alternating
polynomials.

Exercise 3.6 (1) For any n × n matrix
(
ai j

)n

i, j=1 with ann 	= 0, its determinant is
expressed as follows by a determinant of 2 × 2 minors (a variant of the Dodgson
condensation):

det
(
ai j

)n

i, j=1 = a−n+2
nn det

(
ai j ann − ainanj

)n

i, j=1 . (3.45)

(2) Use (3.45) to give an inductive proof of Cauchy’s lemma.

Remark 3.2 Lemma 3.1 can be extended to the following family of determinant
formulas involving an extra parameter u:
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det

(
u + xi + y j

u(xi + y j )

)n

i, j=1

= u + ∑n
i=1 xi + ∑n

j=1 y j

u

�(x)�(y)∏n
i, j=1(xi + y j )

, (3.46)

det

(
1 − uxi y j

(1 − u)(1 − xi y j )

)n

i, j=1

= 1 − ux1 · · · xn y1 · · · yn

1 − u

�(x)�(y)∏n
i, j=1(1 − xi y j )

,(3.47)

det

(
σ(u + xi + y j )

σ (u)σ (xi + y j )

)n

i, j=1

= σ(u + ∑n
i=1 xi + ∑n

j=1 y j )

σ (u)

∏
1≤i< j≤n σ(xi − x j )σ (yi − y j )∏n

i, j=1 σ(xi + y j )
, (3.48)

where σ(z) = σ(z|�) stands for the Weierstrass sigma function attached to a period
lattice � = Zω1 ⊕ Zω2 ⊂ C of rank two (Im(ω2/ω1) > 0), defined by

σ(z|�) = z
∏

ω∈�, ω 	=0

(
1 − z

ω

)
ez/ω+z2/2ω2

(z ∈ C). (3.49)

These three variations (rational, trigonometric and elliptic) play crucial roles in var-
ious situations of integrable systems. Here, formula (3.47) is called trigonometric in
the sense of additive variables θi such that xi = e

√−1θi .

3.3.2 Cauchy Formula for Schur Functions

In what follows, we use the notation of Schur functions sλ(x) for sdetλ (x).

Theorem 3.2 (Cauchy formula) For two sets of variables x = (x1, . . . , xn) and y =
(y1, . . . , yn), the following identity holds in the ring C[[x, y]] of formal power series
in x and y:

n∏

i, j=1

1

1 − xi y j
=

∑

λ∈Pn

sλ(x)sλ(y). (3.50)

Proof We make use of the multiplicative version (3.44) of Cauchy’s lemma.

�(x)�(y)∏n
i, j=1(1 − xi y j )

= det

(
1

1 − xi y j

)∞

i, j=1

=
∑

σ∈Sn

sgn(σ )
1

(1 − xσ(1)y1) · · · (1 − xσ(n)yn)

=
∑

σ∈Sn

sgn(σ )
∑

k1,...,kn≥0

(xσ(1)y1)
k1 · · · (xσ(n)yn)

kn
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=
∑

k1,...,kn≥0

⎛

⎝
∑

σ∈Sn

sgn(σ )xk1
σ(1) · · · xkn

σ(n)

⎞

⎠ yk1
1 · · · ykn

n

=
∑

k1,...,kn≥0

�k1,...,kn (x) yk1
1 · · · ykn

n , (3.51)

where we have used the notation of determinants

�k1,...,kn (x) = det
(

x
k j

i

)n

i, j=1
(3.52)

of Vandermonde type (alternating polynomials of monomial type (k1, . . . , kn)). Note
that �n−1,n−2,...,0(x) = �(x). Since �k1,...,kn (x) is alternating in (k1, . . . , kn), we
have only to consider the cases where k1, . . . , kn are mutually distinct. In such a
case, there exists a unique sequence (l1, . . . , ln) ∈ N

n and a permutation σ ∈ Sn

such that
l1 > · · · > ln ≥ 0, (k1, . . . , kn) = (lσ(1), . . . , lσ(n)). (3.53)

Then we have

�k1,...,kn (x) = �lσ(1),...,lσ(n)
(x) = sgn(σ )�l1,...,ln (x). (3.54)

Hence,

�(x)�(y)∏n
i, j=1(1 − xi y j )

=
∑

l1>...>ln≥0

∑

σ∈Sn

sgn(σ )�l1,...,ln (x) y
lσ(1)

1 · · · y
lσ(n)

n

=
∑

l1>...>ln≥0

�l1,...,ln (x)
∑

σ∈Sn

sgn(σ )y
lσ(1)

1 · · · y
lσ(n)

n

=
∑

l1>...>ln≥0

�l1,...,ln (x)�l1,...,ln (y). (3.55)

Each l = (l1, . . . , ln) ∈ N
n with l1 > · · · > ln ≥ 0 is uniquely expressed in the form

l = λ + δ with λ ∈ Pn , and we have �l(x) = �λ+δ(x) = �(x)sλ(x) by the defini-
tion of sλ(x) = sdetλ (x). Hence we obtain

�(x)�(y)∏n
i, j=1(1 − xi y j )

=
∑

λ∈Pn

�λ+δ(x)�λ+δ(y)

= �(x)�(y)
∑

λ∈Pn

sλ(x)sλ(y), (3.56)

as desired. �
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It is convenient to introduce the signed version

fk1,...,kn (x) = �k1,...,kn (x)

�(x)
(k1, . . . , kn ∈ N) (3.57)

of sλ(x) with alternating indices (k1, . . . , kn). Note that, if l = (l1, . . . , ln) ∈ N
n is

strict in the sense l1 > . . . > ln ≥ 0, thenwe have fl1,...,ln (x) = sλ(x) for the partition
λ ∈ Pn such that l = λ + δ. In terms of these functions, Cauchy’s formula is written
as

�(y)∏n
i, j=1(1 − xi y j )

=
∑

λ∈Pn

sλ(x)�λ+δ(y)

=
∑

k1,...,kn≥0

fk1,...,kn (x) yk1
1 · · · ykn

n . (3.58)

This formula will be used in Sect. 3.5 to establish equivalence of the two definitions
of Schur functions.

We also remark that Cauchy’s formula can be generalized to the case of two sets
of variables with unequal dimensions: For two sets of variables x = (x1, . . . , xm)

and y = (y1, . . . , yn),

m∏

i=1

n∏

j=1

1

1 − xi y j
=

∑

�(λ)≤min{m,n}
sλ(x1, . . . , xm) sλ(y1, . . . , yn). (3.59)

This formula is obtained from the m = n case by setting unnecessary variables to
zero, thanks to the stability property of Exercise 3.3 (2).

3.4 Recurrence on the Number of Variables

We recall the combinatorial definition of Schur functions:

scomb
λ (x) =

∑

T ∈SSTabn(λ)

xwt(T ). (3.60)

Given a semi-standard tableau T ∈ SSTabn(λ) of shape λ in letters {1, . . . , n}, let T ′
be the sub-tableau of T consisting of letters in {1, . . . , n − 1}. Then by the condition
of a semi-standard tableau, the shape μ = (μ1, μ2, . . .) of T ′ is a partition satisfying
the interlacing property

λ1 ≥ μ1 ≥ λ2 ≥ μ2 ≥ λ3 ≥ · · · . (3.61)
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A pair (λ, μ) of partitions inPwithμ ⊆ λ (i.e.μi ≤ λi for all i ≥ 1) is referred to
as a skew diagram λ/μ; we also use the notation λ\μ for the set-theoretic difference
D(λ)\D(μ) of diagrams.

We say that a skew diagram λ/μ is a horizontal strip (“h-strip” for short) if the
pair (λ, μ) satisfies the interlacing property (3.61). In terms of the Young diagrams,
this condition is equivalent to saying that the difference λ\μ has at most one square
in each column. In this terminology, scomb

λ (x) can be expanded in the form

scomb
λ (x) =

∑

λ/μ: h-strip

∑

T ′∈SSTabn−1(μ)

(x ′)wt(T ′) x |λ|−|μ|
n (3.62)

=
∑

λ/μ: h-strip
scomb
μ (x ′) x |λ|−|μ|

n , (3.63)

where x ′ = (x1, . . . , xn−1). Namely,

scomb
λ (x1, . . . , xn) =

∑

λ/μ: h-strip

scomb
μ (x1, . . . , xn−1) x |λ/μ|

n , (3.64)

where |λ/μ| = |λ| − |μ|. The combinatorial Schur functions scomb
λ (x) are completely

determined by this recurrence formula with respect to the number of variables.
In order to establish the equivalence of the two definitions of Schur functions, we

prove that sλ(x) = sdetλ (x) satisfy the same recurrence formula. Since

sλ(x) = (x1 · · · xn)
λn sλ−(λn

n)
(x), scomb

λ (x) = (x1 · · · xn)
λn scomb

λ−(λn
n)
(x), (3.65)

we have only to consider the case where λn = 0.

Theorem 3.3 The Schur functions sλ(x) satisfy the following recurrence formula
with respect to the number of variables n : For any λ ∈ Pn,

sλ(x1, . . . , xn) =
∑

μ⊆λ
λ/μ: h-strip

sμ(x1, . . . , xn−1) x |λ/μ|
n , (3.66)

where the sum is over all partitions μ ⊆ λ such that λ/μ is a horizontal strip.

Recurrence formulas of this kind are called branching formulas as well. We give a
proof of this theorem in Sect. 3.5.

Applying this recurrence formula repeatedly, we obtain an alternative expression
of the tableau representation of sλ(x):

sλ(x) =
∑

∅=λ(0)⊆λ(1)⊆···⊆λ(n)=λ

|λ(i)/λ(i−1)|: h-strip

n∏

i=1

x |λ(i)/λ(i−1)|
i (3.67)
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where the sum is taken over all weakly increasing sequences of partitions ∅ = λ(0) ⊆
λ(1) ⊆ · · · ⊆ λ(n) = λ connecting ∅ (empty diagram) and λ by n steps such that the
successive skew diagrams λ(i)/λ(i−1) are all horizontal strips. It is also convenient to
display such a sequence of partitions λ(1), . . . , λ(n) as a table

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

λ
(n)
1 λ

(n)
2 λ

(n)
3 . . . λ(n)

n

λ
(n−1)
1 λ

(n−1)
2 . . . λ

(n−1)
n−1

· · ·
λ

(2)
1 λ

(2)
2

λ
(1)
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(3.68)

with interlacing property λ
(i)
j ≥ λ

(i−1)
j ≥ λ

(i)
j+1 for 1 ≤ j < i ≤ n, called a Gelfand–

Tsetlin pattern.

3.5 Equivalence of the Two Definitions

In this section, we give a proof of Theorem 3.3, thereby establishing the equivalence
of two definitions of Schur functions.

The recurrence formula (3.66) for sλ(x) (with λn = 0) can be proved by means
of Cauchy’s formula (3.58) for fl1,...,ln (x) = �l1,...,ln (x)/�(x):

∑

l1,...,ln≥0

fl1,...,ln (x1, . . . , xn) yl1
1 · · · yln

n = �(y1, . . . , yn)∏n
i, j=1(1 − xi y j )

. (3.69)

In this formula, we set yn = 0 to obtain

∑

l1,...,ln−1≥0

fl1,...,ln−1,0(x1, . . . , xn) yl1
1 · · · yln−1

n−1

= �(y1, . . . , yn−1)∏n−1
i, j=1(1 − xi y j )

y1 · · · yn−1∏n−1
j=1(1 − xn y j )

=
⎛

⎝
∑

k1,...,kn−1≥0

fk1,...,kn−1(x1, . . . , xn−1)yk1
1 · · · ykn−1

n−1

⎞

⎠

·
⎛

⎝
∑

r1,...,rn−1≥0

x
∑

j r j

n yr1+1
1 · · · yrn−1+1

n−1

⎞

⎠ . (3.70)

Wenow look at the coefficient of yl1
1 · · · yln−1

n−1 assuming that l1 > l2 > · · · > ln−1 ≥ 0:
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fl1,...,ln−1,0(x1, . . . , xn)

=
∑

k1,...,kn−1≥0
0≤ki <li

fk1,...,kn−1(x1, . . . , xn−1) x
∑

j l j −∑
j k j −(n−1)

n (3.71)

where the sum is taken over all (k1, . . . , kn−1) ∈ N
n−1 such that 0 ≤ ki < li (i =

1, . . . , n − 1), namely

(k1, . . . , kn−1) ∈ [0, l1) × [0, l2) × · · · × [0, ln−1), (3.72)

where we have used the symbol [a, b) = {k ∈ Z | a ≤ k < b} for an interval of
integers. Notice that, in the expression

fl1,...,ln−1,0(x1, . . . , xn)

=
∑

(k1,k2,...,kn−1)∈[0,l1)×[0,l2)×···×[0,ln−1),

fk1,...,kn−1(x1, . . . , xn−1) x
∑

j l j −∑
j k j −(n−1)

n , (3.73)

the summand fk1,...,kn−1(x1, . . . , xn−1) is alternating with respect to the permutation
of k1, . . . , kn−1. Thanks to this alternating property, the sum over the first two indices
k1, k2 reduces as

∑

(k1,k2)∈[0,l1)×[0,l2)
fk1,...,kn−1(x1, . . . , xn−1) x

∑
j l j −∑

j k j −(n−1)
n

=
∑

(k1,k2)∈[l2,l1)×[0,l2)
fk1,...,kn−1(x1, . . . , xn−1) x

∑
j l j −∑

j k j −(n−1)
n , (3.74)

since the sum of an alternating function over a symmetric region gives zero (Fig. 3.1).
Repeating this procedure with (k2, k3) ∈ [0, l2) × [0, l3) and so on, we finally

obtain

Fig. 3.1 Reducing the region of summation indices
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fl1,...,ln−1,0(x1, . . . , xn)

=
∑

(k1,k2,...,kn−1)∈[l2,l1)×[l3,l2)×···×[0,ln−1),

fk1,...,kn−1(x1, . . . , xn−1) x
∑

j l j −∑
j k j −(n−1)

n , (3.75)

where the sum is taken over all (k1, . . . , kn−1) such that

l1 > k1 ≥ l2 > k2 ≥ l3 > · · · ≥ ln−1 > kn−1 ≥ 0. (3.76)

Then passing to the expressions by partitions λ = (λ1, . . . , λn−1, 0) ∈ Pn and μ =
(μ1, . . . , μn−1) ∈ Pn−1 such that

li = λi + n − i, ki = μi + n − i − 1 (i = 1, . . . , n − 1), (3.77)

we obtain
λ1 ≥ μ1 ≥ λ2 ≥ μ2 ≥ · · · ≥ λn−1 ≥ μn−1 ≥ 0, (3.78)

and hence
sλ(x1, . . . , xn) =

∑

μ⊆λ
λ/μ: h-strip

sμ(x1, . . . , xn−1) x |λ|−|μ|
n , (3.79)

as desired.

3.6 Dual Cauchy Formula

We propose two versions of the dual Cauchy formula for Schur functions.

Theorem 3.4 (Dual Cauchy formulas) For two sets of variables x = (x1, . . . , xm)

and y = (y1, . . . , yn), we have

m∏

i=1

n∏

j=1

(1 + xi y j ) =
∑

λ⊆(nm )

sλ(x)sλ′(y), (3.80)

m∏

i=1

n∏

j=1

(xi + y j ) =
∑

λ⊆(nm )

sλ(x)sλc(y), (3.81)

where the sum is over all partitions λ contained in the m × n rectangle (nm) =
(n, . . . , n); λ′ denotes the conjugate partition of λ (see Sect.2.4), and λc = (m −
λ′

n, m − λ′
n−1, . . . , m − λ′

1).

We call λc the complementary partition of λ in the m × n rectangle.
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λ1
λ2

.

.

.

λm

λc1λc2. . .λcn

λc = (λc
1, . . . , λ

c
n)

= (m − λ′
n, . . . , m − λ′

1)

�λ

�

λc

(3.82)

For the proof of these formulas, we use a lemma on determinants. For an N × N
matrix Z = (zi, j )

N
i, j=1, we denote by

det Zi1,...,ir
j1,..., jr

= det
(
zia , jb

)r

a,b=1 (3.83)

the r × r minor determinant of Z with row indices i1, . . . , ir and column indices
j1, . . . , jr . When (i1, . . . , ir ) = (1, . . . , r), we simply write det Z j1,..., jr for
det Z1,...,r

j1,..., jr
. Also, for two subsets I, J ⊆ {1, . . . , N } of indices with |I | = |J | =

r , we use the notation det Z I
J = det Zi1,...,ir

j1,..., jr
and det Z J = det Z j1,..., jr taking the

increasing sequences i1 < . . . < ir and j1 < . . . < jr such that I = {i1, . . . , ir } and
J = { j1, . . . , jr }.
Lemma 3.2 Setting N = m + n, let X = (xi, j )1≤i≤m,1≤ j≤N be an m × N matrix,
and Y = (yi, j )1≤i≤n,1≤ j≤N an n × N matrix. Define the N × N matrix
Z = (zi, j )1≤i, j≤N by

zi j = xi, j (1 ≤ i ≤ n), zm+i, j = yi, j (1 ≤ i ≤ n) (3.84)

for all j = 1, . . . , N. Then the determinant of Z is expressed as

det Z =
∑

K�L={1,...,N }
|K |=m, |L|=n

ε(K ; L) det X K det YL (3.85)

in terms of minor determinants of X and Y , where the sum is over all pairs of
subsets K , L ⊆ {1, . . . , N } such that |K | = m, |L| = n and K � L = {1, . . . , N },
and ε(K ; L) denotes the sign defined by

ε(K ; L) = (−1)�(K ;L), �(K ; L) = # {(k, l) ∈ K × L | k > l}. (3.86)

For the proof of this lemma, we refer the reader to [25], for example. �

Proof (ofTheorem 3.4)Taking thevariables x = (x1, . . . , xm) and y = (y1, . . . , yn)

as in Theorem 3.4, we apply this lemma to the matrices

X = (
x j−1

i

)
1≤i≤m;1≤ j≤N , Y = (

y j−1
i

)
1≤i≤n;1≤ j≤N , N = m + n. (3.87)
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Then we have

(−1)(
N
2) det Z = �(x, y) = �(x)�(y)

m∏

i=1

n∏

j=1

(xi − y j ). (3.88)

On the other hand, by Lemma 3.2 we have

det Z =
∑

K�L={1,...,N }
|K |=m,|L|=n

ε(K ; L) det X K det YL . (3.89)

Hence we obtain

(−1)(
N
2)

m∏

i=1

n∏

j=1

(xi − y j ) =
∑

K�L={1,...,N }
|K |=m,|L|=n

det X K

�(x)

det YL

�(y)
. (3.90)

Taking two sequences k1 > k2 > . . . > km ≥ 0 and l1 > l2 > . . . > ln ≥ 0 such that
K = {km + 1, . . . , k1 + 1} and L = {ln + 1, . . . , l1 + 1}. Then we have

det X K = (−1)(
m
2) det

(
x

k j

i

)m

i, j=1 = (−1)(
m
2)�k1,...,km (x)

det YL = (−1)(
n
2) det

(
y

l j

i

)n

i, j=1 = (−1)(
n
2)�l1,...,ln (x). (3.91)

For each pair (K , L), we take two partitionsμ ∈ Pm and ν ∈ Pn such that ki = μi +
m − i (i = 1, . . . , m) and li = νi + n − i (i = 1, . . . , n). Then one can show that
ν = (m − μ′

n, . . . , m − μ′
1) = μc and ε(K ; L) = (−1)|μ|. Hence, we can rewrite

(3.90) as

(−1)mn
m∏

i=1

n∏

j=1

(xi − y j ) =
∑

μ∈(nm )

(−1)|μ|sμ(x)sμc(y). (3.92)

Replacing y j by −y j , we obtain the dual Cauchy formula (3.81). Formula (3.80) is
obtained from (3.81) by the relation

(y1 · · · yn)
msλ′(y−1) = sλc(y), (3.93)

which can be verified directly from the determinantal definition of the Schur
function. �
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3.7 Jacobi–Trudi Formula

From the Cauchy and the dual Cauchy formulas, one can read off various properties
of Schur functions. For example, one can derive a determinant formula, called the
Jacobi–Trudi formula, which represents a general Schur function sλ(x) in terms of
complete homogeneous symmetric functions hk(x) or elementary symmetric func-
tions ek(x)

Theorem 3.5 (Jacobi–Trudi formula) Let λ ∈ Pn and �(λ′) ≤ m. Then we have

(1) sλ(x) = det
(
hλi + j−i (x)

)n

i, j=1. (3.94)

(2) sλ(x) = det
(
eλ′

i + j−i (x)
)m

i, j=1. (3.95)

In these formulas, we understand hk(x) = 0, ek(x) for k < 0. Explicitly,

sλ = det

⎡

⎢⎢⎢⎣

hλ1 hλ1+1 . . . hλ1+n−1

hλ2−1 hλ2 . . . hλ2+n−2
...

. . .
...

hλn−n+1 hλn−n+2 . . . hλn

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

eλ′
1

eλ′
1+1 . . . eλ′

1+n−1

eλ′
2−1 eλ′

2
. . . eλ′

2+n−2
...

. . .
...

eλ′
n−n+1 eλ′

n−n+2 . . . eλ′
n

⎤

⎥⎥⎥⎦ .

(3.96)
Note that the size of the determinant can be reduced as

sλ(x) = det
(
hλi + j−i (x)

)�(λ)

i, j=1, sλ(x) = det
(
eλ′

i + j−i (x)
)�(λ′)

i, j=1, (3.97)

since the (i, j) entries of the matrix vanish for i > �(λ) (or i > �(λ′)) and j < i .

Proof (1) We rewrite the Cauchy formula (3.50) as

�(x)

n∏

i, j=1

1

1 − xi y j
=

∑

λ∈Pn

�λ+δ(x)sλ(y). (3.98)

Then sλ(y) is the coefficient of xλ+δ in the right-hand side. On the other hand,

�(x)

n∏

i, j=1

1

1 − xi y j
= �(x)

n∏

i=1

(1 + xi h1(y) + x2
i h2(y) + · · · ) (3.99)

=
∑

σ∈Sn

sgn(σ )xσ.δ
∑

μ∈Nn

xμhμ(y), (3.100)
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where hμ(y) = hμ1(y) · · · hμn (y). Taking the coefficient of xλ+δ , we obtain

sλ(y) =
∑

σ∈Sn

sgn(σ )hλ+δ−σ.δ(y)

= det
(
hλi +δi −δ j )

n
i, j=1 = det

(
hλi + j−i (y)

)n

i, j=1, (3.101)

which proves (3.94).
(2) We rewrite the dual Cauchy formula (3.80) as

�(x)

m∏

i=1

n∏

j=1

(1 + xi y j ) =
∑

λ⊆(nm )

�λ+δ(x) sλ′(y). (3.102)

Then sλ′(y) is the coefficient of xλ+δ in the right-hand side. On the other hand,

�(x)

m∏

i=1

n∏

j=1

(1 + xi y j ) = �(x)

m∏

i=1

(1 + xi e1(y) + · · · + xn
i en(y))

=
∑

σ∈Sm

sgn(σ )xσ.δ
∑

μ∈Nm

xμeμ(y), (3.103)

where eμ(y) = eμ1(y) · · · eμn (y). Taking the coefficient of xλ+δ in this formula, we
obtain

sλ′(y) =
∑

σ∈Sm

sgn(σ )eλ+δ−δ.σ (y)

= det
(
eλi +δi −δ j

)n

i, j=1 = det
(
eλi + j−i

)n

i, j=1, (3.104)

as desired. �

3.8 q-Difference and Differential Equations

For each i = 1, . . . , n, we define the q-shift operator Tq,xi in xi by

Tq,xi ϕ(x1, . . . , xi , . . . , xn) = ϕ(x1, . . . , qxi , . . . , xn) (i = 1, . . . , n) (3.105)

leaving x j for j 	= i unchanged. For r = 0, 1, . . . , n, we define the q-difference
operators D(r)

x by
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D(r)
x =

∑

I⊆{1,...,n}
|I |=r

T I
q,x (�(x))

�(x)
T I

q,x

=
∑

I⊆{1,...,n}
|I |=r

q(r
2)

∏

i∈I ; j /∈J

qxi − x j

xi − x j

∏

i∈I

Tq,xi , (3.106)

where T I
q,x = ∏

i∈I Tq,xi . As we will see below, the q-difference operators D(r)
x (r =

1, . . . , n) commutes with each other. We remark that these q-difference operators
D(r)

x are the special case of Macdonald–Ruijsenaars operators with q = t to be
discussed from the next chapter on.

Theorem 3.6 For each λ ∈ Pn, the Schur function sλ(x) satisfies the system of q-
difference equations

D(r)
x sλ(x) = er (q

λ+δ)sλ(x) (r = 0, 1, . . . , n), (3.107)

where the eigenvalues er (qλ+δ) are the elementary symmetric functions of qλi +n−i

(i = 1, . . . , n).

In fact, the q-shift operator Tq,xi acts on monomials in x = (x1, . . . , xn) by

Tq,xi (xμ) = qμi xμ, μ = (μ1, . . . , μn) ∈ N
n (3.108)

for i = 1, . . . , n. Hence, for each polynomials f (ξ) ∈ C[ξ ] in ξ = (ξ1, . . . , ξn), the
q-difference operator f (Tq,x ) = f (Tq,x1 , . . . , Tq,xn ) acts on monomials by

f (Tq,x )xμ = f (qμ)xμ (μ ∈ N
n). (3.109)

If f (ξ) isSn-invarinat, then f (Tq,x ) acts onmonomial symmetric functionsmλ(x) =∑
μ∈Sn .λ

xμ by
f (Tq,x )mλ(x) = f (qλ)mλ(x) (λ ∈ Pn), (3.110)

since f (qμ) = f (qσ.λ) = f (qλ) for μ = σ.λ, σ ∈ Sn . Taking elementary symmet-
ric functions er (ξ) for f (ξ), we obtain

er (Tq,x )mλ(x) = er (q
λ)mλ(x) (λ ∈ Pn, r = 0, 1, . . . , n). (3.111)

Similarly, the alternating polynomials �λ+δ(x) = ∑
μ∈Sn .λ

sgn(σ )xσ.(λ+δ) (λ ∈ Pn)

satisfy

f (Tq,x )�λ+δ(x) = f (qλ+δ)�λ+δ(x) (λ ∈ Pn) (3.112)
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for all f (ξ) ∈ C[ξ ]Sn . By conjugation, we introduce the q−difference operators

D f
x = �(x) f (Tq,x )�(x)−1. (3.113)

Then,we see that the Schur functions sλ(x) = �λ+δ(x)/�(x) satisfy theq-difference
equations

D f
x sλ(x) = f (qλ+δ)sλ(x) (λ ∈ Pn) (3.114)

for all symmetric polynomials f (ξ) = C[ξ ]Sn . The q-difference operators D(r)
x of

(3.106) are the special cases of D f
x , where f = er (r = 0, 1, . . . , n). We also remark

that the q-difference operators D f
x for all f (ξ) ∈ C[ξ ]Sn pairwise commute since

they are conjugations of f (Tq,x ) by �(x).

The differential operators xi∂xi = xi∂/∂xi acts onmonomials in x = (x1, . . . , xn)

by
xi∂xi x

μ = μi x
μ, μ = (μ1, . . . , μn) ∈ N

n (3.115)

for i = 1, . . . , n. Hence for any polynomial f (ξ) ∈ C[ξ ] in ξ = (ξ1, . . . , ξn), we
have

f (x∂x )xμ = f (μ)xμ (μ ∈ N
n). (3.116)

Hence for all f (ξ) ∈ C[ξ ]Sn , we have

f (x∂x )mλ(x) = f (λ)mλ(x), f (x∂x )�λ+δ(x) = f (λ + δ)�λ+δ(x). (3.117)

By conjugation, we introduce the differential operator

L f
x = �(x) f (x∂x )�(x)−1. (3.118)

Then, we see that the Schur functions satisfy the differential equations

L f
x sλ(x) = f (λ + δ)sλ(x) (λ ∈ Pn) (3.119)

for all f (ξ) = C[ξ ]Sn . In particular, for L(r)
x = Ler

x we have

L(r)
x sλ(x) = er (λ + δ)sλ(x) (λ ∈ Pn, r = 0, 1, . . . , n), (3.120)

where

L(r)
x =

∑

|K |=r

1

�(x)
(x∂x )

K �(x) =
∑

|K |=r

∑

I�J=K

(x∂x )
I (�(x))

�(x)
(x∂x )

J (3.121)

with the notation (x∂x )
I = ∏

i∈I xi∂xi .
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3.9 Link to the Representation Theory of GLn (Overview)

In this section, we outline how the Schur functions arise, and how their properties
are interpreted, in the context of representation theory of general linear groups. For
the detail, see Goodman–Wallach [9] for example.

By a representation of a group G, we mean a C-vector space M endowed with
a group homomorphism πM : G → GLC(M), where GLC(M) denotes the group of
invertibleC-linear transformations of M . In this situation, we also say that M is a G-
module, and use the notation of the left action g.v = πM(g)(v) of g ∈ G on v ∈ M .
Suppose that M is finite-dimensional, and fix a C-basis v1, . . . , vN of M . For each
g ∈ G, we take the matrix representation �(g) = (

ϕi j (g)
)N

i, j=1 of πM(g) : M → M
with respect to the basis (v1, . . . , vN ):

g.v j = πM(g)(v j ) =
N∑

i=1

viϕi j (g) (i = 1, . . . , N ). (3.122)

Then we obtain an N × N matrix �M(g) = �(g) whose entries are functions on G
satisfying the condition

�(1G) = IN , �(g1g2) = �(g1)�(g2), �(g−1) = �(g)−1. (3.123)

3.9.1 Polynomial Representations of GLn

Weconsider the case of the general linear groupGLn = GLn(C)of degreen. Express-
ing a general element of GLn as g = (gi j )

n
i, j=1, we regard gi j (1 ≤ i, j ≤ n) as

the canonical coordinates of GLn . A representation M of GLn is called a polyno-
mial representation if the matrix elements ϕi j (g) are all polynomials of the coor-
dinates gi j (1 ≤ i, j ≤ n). It is known that any polynomial representation is com-
pletely reducible, and the isomorphism classes of irreducible representations are
parametrized by the partitions λ ∈ P with �(λ) ≤ n. Namely, for each λ ∈ Pn , there
exists an irreducible polynomial representation V (λ) = Vn(λ) (with highest weight
λ), uniquely determined up to isomorphism, such that V (λ) 	� V (μ) if λ 	= μ, and
that any polynomial representation M is decomposed into a direct sum of the form

M �
⊕

λ∈Pn

V (λ)⊕mλ (3.124)

with somemultiplicities mλ ∈ N. We remark that V (1r ) = V (�r ),�r = ε1 + · · · +
εr (fundamental weights) (r = 0, 1, . . . , n) attached to single columns are the alter-
nating tensor representation �r (V ) of the vector space V = C on which GLn is
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defined, and V ((l)) = V (lε1) (l = 0, 1, 2, . . .) attached to single rows are the sym-
metric tensor representation Sl(V ).

We denote by Hn ⊆ GLn the diagonal subgroup of GLn . Expressing a general
element of Hn as gx = diag(x1, . . . , xn), we regard x = (x1, . . . , xn) as coordinates
of Hn , and identify Hn with (C∗)n ,C∗ = C\ {0}. For each polynomial representation
M of GLn , we define the function chM(x) of x = (x1, . . . , xn) ∈ Hn = (C∗)n by

chM(x) = tr(πM(gx) : M → M) = tr�M(gx), (3.125)

and call it the character of the representation M . For each μ ∈ N
n , we denote by

Mμ = {v ∈ M | gx .v = xμv (x ∈ Hn)} ⊆ M (3.126)

the subspace of weight μ. Since M decomposes into the direct sum M = ⊕
μ∈Nn Mμ

of weight subspaces, we have

chM(x) =
∑

μ∈Nn

(dimCMμ)xμ ∈ C[x]. (3.127)

In this sense, the character chM(x) provides the generating function for counting the
weight multiplicities in M . Note that chM(1) = dimC M . Also, for two polynomial
representations M, N , the character of the tensor product representation M ⊗ N
is given by the multiplication of the two characters as functions on Hn , namely
chM⊗N (x) = chM(x)chN (x).

A fundamental fact in the representation theory of GLn is that the Schur function
sλ(x) attached to each λ ∈ Pn appears as the character of the irreducible polynomial
representation V (λ), namely, chV (λ)(x) = sλ(x).

3.9.2 Weyl Character Formula and Branching Rules

In the context of representation theory, the determinant representation

sλ(x) = det(x
λ j +n− j
i )n

i, j=1

det(xn− j
i )n

i, j=1

= �λ+δ(x)

�(x)
(3.128)

is called the Weyl character formula. The combinatorial description of sλ(x) in terms
of semi-standard tableaux arises from the branching rule for the restriction of V (λ)

along the tower of subgroups

GLn ⊃ GLn−1 ⊃ · · · ⊃ GL1. (3.129)
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In fact, if we restrict the representation V (λ) = Vn(λ) (λ ∈ Pn) from GLn to GLn−1,
it decomposes into the direct sum

Vn(λ) �
⊕

μ∈Pn−1, λ/μ: h-strip
Vn−1(μ) (λ ∈ Pn) (3.130)

of irreducible GLn−1-modules. Passing to the level of characters, this multiplicity-
free decomposition of Vn(λ) gives rise to the recurrence formula for Schur functions
of Theorem3.3with respect to the number of variables. Repeating this restriction pro-
cedure,wefind thatV (λ) = Vn(λ) for eachλ ∈ Pn has aC-basis vT (T ∈ SSTabn(λ))
parameterized by the semi-standard tableaux of shape λ such that gx .vT = xwt(T )vT :

V (λ) =
⊕

μ∈Nn

V (λ)μ, V (λ)μ =
⊕

T ∈SSTabn(λ)μ

C vT . (3.131)

This gives rise to the tableau representation

sλ(x) =
∑

T ∈SSTabn(λ)

xwt(T ) =
∑

μ∈Nn

Kλ,μ xμ (3.132)

of the character sλ(x); in particular, the Kostka numbers count the multiplicities of
weights in V (λ), i.e. Kλ,μ = dimC V (λ)μ. In the language of representation theory,
we have shown in this chapter that, from the Weyl character formula, one can derive
the combinatorial description of the weight subspaces of irreducible representations
V (λ) (λ ∈ Pn)

3.9.3 (GLm,GLn) Duality

We also give a remark on the Cauchy formula for Schur functions. We consider
the space Matm,n = Matm,n(C) of all m × n matrices. Denoting a general element
of Matm,n as T = (

ti j
)
1≤i≤m; 1≤ j≤n , we regard ti j as the canonical coordinates of

Matm,n . Then the coordinate ring of Matm,n is identified with the ring of polynomials
in ti j , i.e. A(Matm,n) = C[ti j (1 ≤ i ≤ m, 1 ≤ j ≤ n)]. We regard A(Matm,n) as
a representation of the product group GLm × GLn through the action of (g, h) ∈
GLm × GLn defined by

((g, h).ϕ)(T ) = ϕ(gt T h) (ϕ ∈ A(Matm,n), T ∈ Matm,n). (3.133)

Then it turns out that A(Matm,n) has the irreducible decomposition

A(Matm,n) �
⊕

�(λ)≤min{m,n}
Vm(λ) ⊗ Vn(λ), (3.134)
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where the sum is over all partitions λwith �(λ) ≤ min {m, n}. From this (GLm,GLn)

duality, we obtain the identity

chA(Matm,n)(x, y) =
∑

�(λ)≤min{m,n}
chVm (λ)(x) chVn(λ)(y) (3.135)

for the (formal) character of the GLm × GLn-moduleA(Matm,n), which is precisely
the Cauchy formula (3.59) for Schur functions. In fact, for each (x, y) ∈ Hm × Hn ,
the action of (gx , gy) ∈ GLm × GLn on the coordinates ti j is given by

(gx , gy).ti j = xi ti j y j (1 ≤ i ≤ m, 1 ≤ j ≤ n). (3.136)

Hence, (gx , gy) acts on themonomials t A = ∏m
i=1

∏n
j=1 t

ai j

i j attached to A = (ai j )i j ∈
Matm,n(N) by

(gx , gy).t
A =

m∏

i=1

n∏

j=1

(xi ti j y j )
ai j = xμ(A)t A yν(A), (3.137)

where the weights μ(A) ∈ N
m and ν(A) ∈ N

n are the row sum and the column sum
of A respectively, i.e. μ(A)i = ∑n

j=1 ai j , ν(A) j = ∑m
i=1 ai j . Noting that

A(Matm,n) =
⊕

A∈Matm,n(N)

C t A, (3.138)

we obtain

chA(Matm,n)(x, y) =
∑

A∈Matm,n(N)

xμ(A)yν(A)

=
∑

A=(ai j )

m∏

i=1

n∏

j=1

(xi y j )
ai j =

m∏

i=1

n∏

j=1

1

1 − xi y j
. (3.139)

Since chVm (λ)(x) = sλ(x) and chVn(λ)(y) = sλ(y), formula (3.134) implies theCauchy
formula

m∏

i=1

n∏

j=1

1

1 − xi y j
=

∑

�(λ)≤min{m,n}
sλ(x) sλ(y). (3.140)



Chapter 4
Macdonald Polynomials: Definition
and Examples

Abstract The Macdonald polynomials are defined as eigenfunctions of the
Macdonald–Ruijsenaars q-difference operator acting on the ring of symmetric poly-
nomials. We also investigate some special cases where Macdonald polynomials can
be explicitly described, including the case of single rows.

4.1 Macdonald–Ruijsenaars q-Difference Operator

4.1.1 Macdonald–Ruijsenaars Operator Dx

We regard the variables x = (x1, . . . , xn) as the canonical coordinates of the n-
dimensional algebraic torus (C∗)n . We fix parameters q, t ∈ C

∗ = C\ {0}with |q| <

1.

The Macdonald–Ruijsenaars q-difference operator of first order with parameter
t is defined by

Dx =
n∑

i=1

Ai (x)Tq,xi =
n∑

i=1

∏

1≤ j≤n; j �=i

t xi − x j

xi − x j
Tq,xi , (4.1)

where Tq,xi stands for the q-shift operator in the variable xi :

Tq,xi f (x1, . . . , xi , . . . , xn) = f (x1, . . . , qxi , . . . , xn) (i = 1, . . . , n). (4.2)

We remark that the coefficients of Dx are expressed as

Ai (x) =
∏

j �=i

t xi − x j

xi − x j
= Tt,xi �(x)

�(x)
, �(x) =

∏

1≤i< j≤n

(xi − x j ) (4.3)

in terms of the difference product �(x) of x .
In the following, we denote by Dq,x = C(x)[T ±1

q,x ] the ring of q-difference oper-
ators with rational function coefficients
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Lx =
∑

μ∈Zn

aμ(x) T μ
q,x (finite sum), aμ(x) ∈ C(x) (μ ∈ Z

n), (4.4)

where T μ
q,x = T μ1

q,x1 · · · T μn
q,xn . Note that the symmetric groupSn acts onDq,x through

the C-algebra automorphisms σ : Dq,x → Dq,x (σ ∈ Sn) such that σ(xi ) = xσ(i),
σ(Tq,xi ) = Tq,xσ(i) (i = 1, . . . , n). Note also thatDq,x acts naturally on the fieldC(x)

of rational functions in x .

4.1.2 Fundamental Properties of Dx

Wefirst give remarks on fundamental properties of theMacdonald–Ruijsenaars oper-
ator Dx .

(1) The q-difference operator Dx isSn-invariant, and hence the linear operator
Dx : C(x) → C(x) stabilizes the fieldC(x)Sn of symmetric rational functions,
i.e. Dx(C(x)Sn ) ⊆ C(x)Sn .

In fact, the definition of Dx does not depend on the ordering of {1, 2, . . . , n}.
(2) The linear operator Dx : C(x) → C(x) stabilizes the ring C[x]Sn of sym-
metric polynomials, i.e. Dx (C[x]Sn ) ⊆ C[x]Sn .

If f (x) ∈ C[x]Sn , then g(x) = Dx ( f (x)) is a symmetric rational function by the
Sn-invariance of Dx . Since �(x)Dx has polynomial coefficients, �(x)g(x) ∈ C[x]
is an alternating polynomial, and hence divisible by �(x). This means that g(x) =
Dx ( f (x)) ∈ C[x]Sn .Warning: Dx : C(x) → C(x) does not stabilize the polynomial
ring C[x].
Lemma 4.1 The linear operator Dx : C[x]Sn → C[x]Sn is triangular with respect
to the dominance order of mλ(x). Namely, for each λ ∈ Pn,

Dx mλ(x) =
∑

μ≤λ

dλ
μ mμ(x) = dλ mλ(x) +

∑

μ<λ

dλ
μ mμ(x) (4.5)

for some constants dλ
μ ∈ C, where dλ = dλ

λ = ∑n
i=1 tn−i qλi .

Proof As for the dominance order, by Remark 2.1 we know that ν ≤ μ if and only
if

xν = xμ(x2/x1)
k1 · · · (xn/xn−1)

kn−1 (4.6)

for some k1, . . . , kn−1 ∈ N. In view of this fact, for each μ ∈ N
n we consider the

asymptotic expansion of Dx xμ in the region |x1| � |x2| � · · · � |xn|, assuming
that |x2/x1|, . . . , |xn/xn−1| are very small. For each i = 1, . . . , n, the coefficient of
Tq,xi can be expanded into formal power series of x2/x1, . . . , xn/xn−1 as
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∏

j �=i

t xi − x j

xi − x j
=

∏

1≤ j<i

t xi − x j

xi − x j

∏

i< j≤n

t xi − x j

xi − x j

=
∏

1≤ j<i

1 − t xi/x j

1 − xi/x j

∏

i< j≤n

t
1 − x j/t xi

1 − x j/xi

= (
1 + (lower-order terms)

)(
tn−i + (lower-order terms)

)

= tn−i + (lower-order terms). (4.7)

Hence we have

Dx xμ =
n∑

i=1

∏

j �=i

t xi − x j

xi − x j
qμi xμ

= xμ

(
n∑

i=1

tn−i qμi + (lower-order terms)

)

∈ xμ
C[[x2/x1, . . . , xn/xn−1]] (4.8)

Hereafter, we set dμ = ∑n
i=1 tn−i qμi for each μ ∈ N

n . Then, for each λ ∈ Pn we
have

Dx mλ(x) =
∑

μ∈Sn .λ

Dx xμ

=
∑

μ∈Sn .λ

(
dμxμ + (lower-order terms)

)

= dλxλ + (lower-order terms)

= dλmλ(x) +
∑

μ<λ

dλ
μ mμ(x), (4.9)

since we know that Dx mλ(x) is a symmetric polynomial. This implies the triangu-
larity of Dx with respect to ≤ as mentioned above. �

4.1.3 Diagonalization of Dx

With these preparatory remarks, we prove that Dx is diagonalizable on the ring
C[x]Sn of symmetric polynomials if the parameters q, t are generic. In what follows,
we suppose that the parameters q, t are generic in the sense that

λ,μ ∈ Pn, λ �= μ =⇒ dλ �= dμ. (4.10)

Since dλ − dμ = ∑n
i=1 tn−i (qλi − qμi ), this condition is fulfilled if 1, t, . . . , tn−1 are

linearly independent over Q(q).
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Theorem 4.1 (Macdonald) Suppose that the parameters q, t ∈ C
∗ satisfy the gener-

icity condition (4.10). Then, for each partition λ ∈ Pn there exists a unique symmetric
polynomial Pλ(x) = Pλ(x; q, t) ∈ C[x]Sn , homogenous of degree |λ|, such that

(1) Dx Pλ(x) = dλ Pλ(x), dλ =
n∑

i=1

tn−i qλi , (4.11)

(2) Pλ(x) = mλ(x) +
∑

μ<λ

uλ
μ mμ(x) (uλ

μ ∈ C). (4.12)

This eigenfunction Pλ(x) ∈ C[x]Sn is called the Macdonald polynomial attached
to the partition λ ∈ Pn . We remark that, when we regard q, t as indeterminates,
Pλ(x; q, t) is determined as a unique symmetric polynomial inQ(q, t)[x]Sn , where
Q(q, t) denotes the field of rational functions in (q, t).

Proof (of Theorem 4.1) We assume that Pλ(x) is expressed as

Pλ(x) =
∑

ν≤λ

uλ
ν mν(x), uλ

λ = 1. (4.13)

With the coefficients dλ
μ as in (4.5), we have

Dx Pλ(x) =
∑

ν≤λ

uλ
ν Dx mν(x) =

∑

μ≤λ

⎛

⎝
∑

μ≤ν≤λ

uλ
νdν

μ

⎞

⎠ mμ(x). (4.14)

Hence the eigenfunction equation Dx Pλ(x) = εPλ(x), (ε ∈ C) is equivalent to the
system of equations

ε uλ
μ =

∑

μ≤ν≤λ

uλ
νdν

μ, i.e. (ε − dμ)uλ
μ =

∑

μ<ν≤λ

uλ
νdν

μ (4.15)

for μ ∈ Pn with μ ≤ λ. From the case where μ = λ, (ε − dλ)uλ
λ = 0, uλ

λ = 1, we
obtain ε = dλ. With this eigenvalue, the equations

(dλ − dμ)uλ
μ =

∑

μ<ν≤λ

uλ
νdν

μ (μ ∈ Pn, μ < λ) (4.16)

for the coefficients uλ
μ (μ < λ) can be solved in a unique way by the descending

induction with respect to ≤, provided that dμ �= dλ for all μ < λ. �
Note that, from the triangularity (2) of Pλ(x), it also follows that the Macdon-

ald polynomials Pλ(x) (λ ∈ Pn) form a C-basis of the ring C[x]Sn of symmetric
polynomials, namely

C[x]Sn =
⊕

λ∈Pn

C Pλ(x). (4.17)
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Remark 4.1 The construction of Pλ(x) mentioned above can be explained in a
different way in terms of linear algebra. For a partition λ ∈ Pn given, consider the
finite dimensional C-vector space V≤λ = ⊕

μ∈Pn;μ≤λ Cmμ(x). The linear operator
Dx stabilizes V≤λ, and is represented by an upper triangular matrix with respect to
≤ under the basis mμ = mμ(x) (μ ≤ λ):

Dx (. . . , mμ, . . . , mλ) = (. . . , mμ, . . . , mλ)

⎛

⎜⎜⎜⎜⎝

. . .

dμ

. . .

dλ

⎞

⎟⎟⎟⎟⎠
.

∗
0

(4.18)

Then, by the Cayley–Hamilton theorem we obtain
∏

μ≤λ(Dx − dμ)
∣∣
V≤λ

= 0. From
this, we obtain

(Dx − dλ)
∏

μ<λ

(Dx − dμ) mλ(x) = 0. (4.19)

Since

∏

μ<λ

(Dx − dμ)mλ(x) =
∏

μ<λ

(dλ − dμ)mλ(x) + (lower-order terms), (4.20)

we see that

Pλ(x) =
∏

μ<λ

Dx − dμ

dλ − dμ

(
mλ(x)

) = mλ(x) + (lower-order terms) (4.21)

gives the eigenfunction of Dx with leading term mλ(x), under the condition that
dμ �= dλ for all μ < λ.

Remark 4.2 The Macdonald–Ruijsenaars operator Dx also stabilizes the ring
C[x±1]Sn of symmetric Laurent polynomials. In this setting, for generic q, t , the
linear operator Dx : C[x±1]Sn → C[x±1]Sn is diagonalized by theMacdonald poly-
nomials Pλ(x) parameterized by n-tuples of integers λ = (λ1, . . . , λn) ∈ P = Z

n

such that λ1 ≥ . . . ≥ λn . In the language of representation theory, the set of such λ

is denoted by P+, and called the cone of dominant integral weights of GLn:

P+ = {
λ ∈ P | 〈

αi , λ
〉 ≥ 0 (i = 1, . . . , n)

}
. (4.22)

For each λ ∈ P+, we have μ = λ + (ln) ∈ Pn for a sufficiently large l ∈ Z≥0. Then,
the symmetric Laurent polynomial

Pλ(x) = Pμ−(ln)(x) = (x1 · · · xn)
−l Pμ(x), (4.23)
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defined by the Macdonald polynomial Pμ(x) attached to the partition μ ∈ Pn , satis-
fies the eigenfunction equation

Dx Pλ(x) = dλ Pλ(x), dλ =
n∑

i=1

tn−i qλi . (4.24)

Furthermore, these Pλ(x) (λ ∈ P+) formaC-basis of the ringC[x±1]Sn of symmetric
Laurent polynomials, namely, C[x±1]Sn = ⊕

λ∈P+ CPλ(x).

4.2 Some Examples

Single columns

P(1r )(x) = er (x) (r = 0, 1, . . . , n). In particular, P(1n)(x) = x1 · · · xn .

If λ is a single column (1r ) (r = 0, 1, . . . , n), P(1r )(x) is the elementary symmetric
function er (x) of degree r , since (1r ) is minimal with respect to the dominance order.
The equation Dx er (x) = d(1r )er (x) already implies a nontrivial identity

n∑

i=1

∏

j �=i

t xi − x j

xi − x j
er (x1, . . . , qxi , . . . , xn) = d(1r )er (x),

d(1r ) = tn−1q + · · · + tn−r q + tn−r−1 + · · · + 1 = qtn−r 1 − tr

1 − t
+ 1 − tn−r

1 − t
.

(4.25)
In particular, from Dx (1) = d01 we obtain

n∑

i=1

∏

j �=i

t xi − x j

xi − x j
= 1 − tn

1 − t
. (4.26)

Exercise 4.1 Derive (4.26) from the partial fraction expansion in u,

n∏

j=1

tu − x j

u − x j
=

n∑

i=1

(t − 1)xi

u − xi

∏

j �=i

t xi − x j

xi − x j
+ tn. (4.27)
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Adding columns of length n

Pλ+(kn)(x) = (x1 · · · xn)
k Pλ(x) (λ ∈ Pn; k = 0, 1, 2, . . .).

Similarly to the case of Schur functions, by adding a column of length n theMacdon-
ald polynomial Pλ(x) is multiplied by x1 · · · xn . This follows from the commutation
relation Dx x1 · · · xn = qx1 . . . xn Dx between Dx and the multiplication by x1 · · · xn .

Cases where t = 1 and t = q

t = 1 : Pλ(x) = mλ(x), t = q : Pλ(x) = sλ(x).

When t = 1, we have Dx = ∑n
i=1 Tq,xi and dλ = ∑n

i=1 qλi = ∑
j≥0 m j q j for each

λ ∈ Pn with λ = (1m12m2 . . .). Note that dμ �= dλ for μ �= λ if q is transcendental
over Q. In this case Pλ(x) coincides with the monomial symmetric function mλ(x).

When t = q, we have

Dx =
n∑

i=1

Tq,xi (�(x))

�(x)
Tq,xi = 1

�(x)

( n∑

i=1

Tq,xi

)
�(x), dλ =

n∑

i=1

qλi +n−i . (4.28)

In this case, for each λ ∈ Pn , we have
∑n

i=1 Tq,xi (xσ.(λ+δ)) = (
∑n

i=1 q(λ+δ)i
i )xσ.(λ+δ)

= dλxσ.(λ+δ) for all σ ∈ Sn . From this we obtain
∑n

i=1 Tq,xi �λ+δ(x) = dλ�λ+δ(x)

and hence Dx sλ(x) = dλsλ(x).

Case where n = 1

P(l)(x1) = xl
1 (l = 0, 1, 2, . . .).

Case where n = 2

For any λ = (λ1, λ2) ∈ P2, λ1 ≥ λ2 ≥ 0, we have

P(λ1,λ2)(x1, x2) = (x1x2)
λ2 P(l,0)(x1, x2), l = λ1 − λ2, (4.29)

P(l.0)(x1, x2) = (q; q)l

(t; q)l

∑

μ1+μ2=l

(t; q)μ1(t; q)μ2

(q; q)μ1(q; q)μ2

xμ1
1 xμ2

2 , (4.30)

where (t; q)k = (1 − t)(1 − qt) · · · (1 − qk−1t) (k = 0, 1, 2, . . .) denotes the q-
shifted factorial.
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In the context of q-orthogonal polynomials [12], P(l,0)(x1, x2) correspond to the q-
ultraspherical polynomials. As to the eigenfunctions in the case of two variables, we
discuss some detail in the next section.

Exercise 4.2 (Stability) Let λ ∈ Pn and m < n. Then we have

Pλ(x1, . . . , xm, 0, . . . , 0) =
{

Pλ(x1, . . . , xm) (	(λ) ≤ m),

0 (	(λ) > m).
(4.31)

4.3 Eigenfunctions in Two Variables

Restricting ourselves to the case of two variables, we investigate below a class of
eigenfunctions of the q-difference operator Dx which are expressed as formal power
series.

4.3.1 Eigenfunctions in Power Series

In the case of two variables, the eigenfunction equation for Dx

tx1 − x2
x1 − x2

ϕ(qx1, x2) + x1 − t x2
x1 − x2

ϕ(x1, qx2) = ε ϕ(x1, x2) (4.32)

can be solved in a larger class of power series.
Note that, for μ = (μ1, μ2), λ = (λ1, λ2) ∈ Z

n ,

μ ≤ λ ⇐⇒ (μ1 ≤ λ1, μ1 + μ2 = λ1 + λ2)

⇐⇒ (μ1, μ2) = (λ1 − k, λ2 + k) for some k ∈ N. (4.33)

Extending this relation to multi-indices of complex numbers, we consider a formal
power series of the form

ϕ(x1, x2) =
∑

k≥0

ck xλ1−k
1 xλ2+k

2 = xλ1
1 xλ2

2

∑

k≥0

ck(x2/x1)
k, c0 = 1, (4.34)

for arbitrary λ1, λ2 ∈ C, and solve the eigenfunction equation (4.32).

Proposition 4.1 Let λ = (λ1, λ2) ∈ C
2 be generic. Then, the eigenfunction equation

(4.32) has a unique solution of the form (4.34) with eigenvalue ε = tqλ1 + qλ2 . It is
determined explicitly as

ϕ(x1, x2) = xλ1
1 xλ2

2

∞∑

k=0

(t; q)k(qλ2−λ1; q)k

(q; q)k(qλ2−λ1+1/t; q)k
(qx2/t x1)

k, (4.35)

where (a; q)k = (1 − a)(1 − qa) · · · (1 − qk−1a) (k = 0, 1, 2, . . .).
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Proof Setting z = x2/x1, we rewrite this equation by means of f (z) = ∑
k≥0 ck zk .

Since ϕ(x1, x2) = xλ1
1 xλ2

2 f (x2/x1), we obtain the equation

t − z

1 − z
qλ1 f (q−1z) + 1 − t z

1 − z
qλ2 f (qz) = ε f (z) (4.36)

to be satisfied by f (z), namely,

(t − z)qλ1 f (q−1z) + (1 − t z)qλ2 f (qz) = ε(1 − z) f (z). (4.37)

This equation gives rise to the recurrence formulas for the coefficients

(tqλ1−k + qλ2+k − ε)ck = (qλ1−k+1 + tqλ2+k−1 − ε)ck−1 (k ∈ Z), (4.38)

with ck = 0 for k < 0. This formula for k = 0 determines the eigenvalue as ε =
tqλ1 + qλ2 . Then the resulting recurrence formulas

(1 − qk)(1 − qλ2−λ1+k/t)ck = (q/t)(1 − tqk−1)(1 − qλ2−λ1+k−1)ck−1 (4.39)

for k = 1, 2, . . . are solved as

ck = (t; q)k(qλ2−λ1; q)k

(q; q)k(qλ2−λ1+1/t; q)k
(q/t)k (k = 0, 1, 2, . . .), (4.40)

by the notation of q-shifted factorials (a; q)k = (1 − a)(1 − qa) · · · (1 − qk−1a)

(k = 0, 1, 2, . . .). �

We remark that, under our assumption |q| < 1, this formal solution ϕ(x1, x2) is
absolutely convergent in the domain |qx2/t x1| < 1.

4.3.2 Macdonald Polynomials in Two Variables

When λ = (λ1, λ2) is a partition and l = λ1 − λ2 ∈ N, the power series solution
ϕ(x1, x2) constructed above reduces to a polynomial in (x1, x2). In fact, we have

ϕ(x1, x2) = xλ1
1 xλ2

2

l∑

k=0

(t; q)k(q−l; q)k

(q; q)k(q−l+1/t; q)k
(qx2/t x1)

k

= (x1x2)
λ2

l∑

k=0

(t; q)k(q−l; q)k

(q; q)k(q−l+1/t; q)k
(q/t)k xl−k

1 xk
2 (4.41)
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since (q−l; q)k = 0 for k > l. Also, by

(q−l; q)k

(q−l+1/t; q)k
= (ql−k+1; q)k

(ql−k t; q)l
(t/q)k = (q; q)l

(t; q)l

(t; q)l−k

(q; q)l−k
(t/q)k (4.42)

we obtain

ϕ(x1, x2) = (x1x2)
λ2

(q; q)l

(t; q)l

l∑

k=0

(t; q)l−k

(q; q)l−k

(t; q)k

(q; q)k
xl−k
1 xk

2

= (x1x2)
λ2

(q; q)l

(t; q)l

∑

μ1+μ2=l

(t; q)μ1(t; q)μ2

(q; q)μ1(q; q)μ2

xμ1
1 xμ2

2 , (4.43)

which is manifestly a symmetric polynomial in (x1, x2). In this way we obtain the
expression of general Macdonald polynomials in two variables.

Proposition 4.2 The Macdonald polynomials in two variables are explicitly given
as follows : For each partition λ = (λ1, λ2) ∈ P2,

P(λ1,λ2)(x1, x2) = (x1x2)
λ2 P(l,0)(x1, x2), l = λ1 − λ2, (4.44)

P(l,0)(x1, x2) = (q; q)l

(t; q)l

∑

μ1+μ2=l

(t; q)μ1(t; q)μ2

(q; q)μ1(q; q)μ2

xμ1
1 xμ2

2

= xl
1

l∑

k=0

(t; q)k(q−l; q)k

(q; q)k(q−l+1/t; q)k
(qx2/t x1)

k . (4.45)

�

4.4 q-Binomial Theorem and q-Hypergeometric Series

In this section, we quickly review some basic facts about q-hypergeometric series.
They will be used to see how Macdonald polynomials attached to single rows are
related to q-hypergeometric series.

4.4.1 q-Binomial Theorem

Under our assumption |q| < 1, the infinite product

(z; q)∞ =
∞∏

i=0

(1 − qi z) (z ∈ C) (4.46)
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is absolutely convergent, and defines a holomorphic function in z ∈ C. Note that the
q-shifted factorial (z; q)k for k = 0, 1, 2, . . . is expressed as the ratio
(z; q)∞/(qk z; q)∞.

Proposition 4.3 (q-Binomial theorem) For any a ∈ C, one has

(az; q)∞
(z; q)∞

=
∞∑

k=0

(a; q)k

(q; q)k
zk (|z| < 1). (4.47)

Proof Note that the left-hand side f (z) = (az; q)∞/(z; q)∞ is a meromorphic func-
tion on C at most with simple poles at z = 1, q−1, q−2, . . .. Since

f (qz) = (qaz; q)∞
(qz; q)∞

= 1 − z

1 − az

(az; q)∞
(z; q)∞

= 1 − z

1 − az
f (z), (4.48)

f (z) satisfies the q-difference equation

(1 − az) f (qz) = (1 − z) f (z) (4.49)

with initial condition f (0) = 1. In terms of the Taylor expansion f (z) = ∑∞
k=0 ck zk

of f (z) around z = 0, this equation gives rise to the recurrence formulas

(1 − qk)ck = (1 − qk−1a)ck−1 (k = 0, 1, 2, . . .) (4.50)

with c−1 = 0, c0 = 1. Hence we obtain

ck = 1 − qk−1a

1 − qk
ck−1 = (1 − qk−1a)(1 − qk−2a)

(1 − qk)(1 − qk−1)
ck−2

= · · · = (a; q)k

(q; q)k
(k = 0, 1, 2, . . .). (4.51)

�

We remark that this q-binomial theorem contains two formulas

1

(z; q)∞
=

∞∑

k=0

1

(q; q)k
zk, (z; q)∞ =

∞∑

k=0

(−1)kq(k
2)

(q; q)k
zk . (4.52)

Thefirst one is the special casewherea = 0,while the second is obtained by replacing
z with z/a, and then by taking the limit as a → ∞. These two formulas can be found,
with proofs similar to the one mentioned above, in Euler’s monograph Introductio
in Analysin Infinitorum (1748) [6, Caput XVI]. According to [8], the q-binomial
theorem in the form of (4.47) appeared in the middle of 19th century in works of
Cauchy, Heine and others.
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4.4.2 q-Hypergeometric Series

We introduce the notation of q-hypergeometric series r+1φr :

r+1φr

[
a0, a1, . . . , ar

b1, . . . , br
; q, z

]
=

∞∑

k=0

(a0; q)k(a1; q)k · · · (ar ; q)k

(q; q)k(b1; q)k · · · (br ; q)k
zk . (4.53)

We remark that this series is absolutely convergent for |z| < 1. Note that r+1φr series
(4.53) is a q-version of the generalized hypergeometric series

r+1Fr

[
α0, α1, . . . , αr

β1, . . . , βr
; z

]
=

∞∑

k=0

(α0)k(α1)k · · · (αr ; q)k

(1)k(β1)k · · · (βr )k
zk (4.54)

defined with shifted factorials (α)k = α(α + 1) · · · (α + k − 1) (k = 0, 1, 2, . . .).
The r+1Fr series of (4.54) is obtained, at least in the sense of formal power series in
z, from the r+1φr series of (4.53) with ai = qαi , bi = qβi , ci = qγi by the limiting
procedure as q → 1.

The q-binomial theorem can be interpreted as the summation formula for general
1φ0 series:

1φ0

[
a
· ; q, z

]
=

∞∑

k=0

(a; q)k

(q; q)k
zk = (az; q)∞

(z; q)∞
. (4.55)

This is a q-version of Newton’s binomial theorem:

1F0

[
α

· ; z

]
=

∞∑

k=0

(α)k

k! zk =
∞∑

k=0

(−α

k

)
(−z)k = (1 − z)−α. (4.56)

The 2φ1 series

2φ1

[
a, b,

c
; q, z

]
=

∞∑

k=0

(a; q)k(b; q)k

(q; q)k(c; q)k
zk (4.57)

is a q-version of the Gauss hypergeometric series

2F1

[
α, β,

γ
; q, z

]
=

∞∑

k=0

(α)k(β)k

(1)k(γ )k
zk . (4.58)

The eigenfunction (4.35) of Dx in the case of two variables is expressed by 2φ1

series as

ϕ(x1, x2) = xλ1
1 xλ2

2 2φ1

[
t, qλ2−λ1

qλ2−λ1+1/t
; q, qx2/t x1

]
. (4.59)

This class of eigenfunctions includesMacdonald polynomials as special cases where
λ = (λ1, λ2) ∈ P2 are partitions.
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4.4.3 Generating Function of Two Variable Macdonald
Polynomials

We also know that the Macdonald polynomials P(l)(x1, x2) attached to single rows
in two variables are expressed as

P(l)(x1, x2) = (q; q)l

(t; q)l

∑

μ1+μ2=l

(t; q)μ1(t; q)μ2

(q; q)μ1(q; q)μ2

xμ1
1 xμ2

2 (4.60)

for l = 0, 1, 2, . . .. This expression implies that P(l)(x1, x2) arise as the expansion
coefficients of a generating function as specified below.

Proposition 4.4 With an extra variable u, we have

(t x1u; q)∞(t x2u; q)∞
(x1u; q)∞(x2u; q)∞

=
∞∑

l=0

(t; q)l

(q; q)l
P(l)(x1, x2) ul . (4.61)

Proof We expand the left-hand side by the q-binomial theorem:

(t x1u; q)∞(t x2u; q)∞
(x1u; q)∞(x2u; q)∞

=
⎛

⎝
∞∑

μ1=0

(t; q)μ1

(q; q)μ1

(x1u)μ1

⎞

⎠

⎛

⎝
∞∑

μ2=0

(t; q)μ2

(q; q)μ1

(x2u)μ2

⎞

⎠

=
∞∑

l=0

⎛

⎝
∑

μ1+μ2=l

(t; q)μ1(t; q)μ2

(q; q)μ1(q; q)μ2

xμ1
1 xμ2

2

⎞

⎠ ul

=
∞∑

l=0

(t; q)l

(q; q)l
P(l)(x1, x2) ul . (4.62)

�

4.5 Macdonald Polynomials Attached to Single Rows

4.5.1 Macdonald Polynomials P(l)(x) and gl(x)

Returning to the general setting of n variables x = (x1, . . . , xn), we define a sequence
of polynomials gl(x) = gl(x; q, t) (l = 0, 1, 2, . . .) bymeans of the generating func-
tion

G(x; u) =
n∏

i=1

(t xi u; q)∞
(xi u; q)∞

=
∞∑

l=0

gl(x) ul . (4.63)
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By the q-binomial theorem, this function is expanded as

G(x; u) =
∑

μ1,...,μn≥0

(t; q)μ1 · · · (t; q)μn

(q; q)μ1 · · · (q; q)μn

xμ1
1 · · · xμn

n yμ1+···+μn

=
∞∑

l=0

⎛

⎝
∑

μ1+...+μn=l

(t; q)μ1 · · · (t; q)μn

(q; q)μ1 · · · (q; q)μn

xμ1
1 · · · xμn

n

⎞

⎠ yl . (4.64)

Hence we have

gl(x) =
∑

μ1+···+μn=l

(t; q)μ1 · · · (t; q)μn

(q; q)μ1 · · · (q; q)μn

xμ1
1 · · · xμn

n

= (t; q)l

(q; q)l
xl
1 + (lower-order terms) (l = 0, 1, 2, . . .). (4.65)

Theorem 4.2 For each l = 0, 1, 2, . . ., gl(x) satisfies the eigenfunction equation

Dx gl(x) = d(l)gl(x),

d(l) = tn−1ql + tn−2 + · · · + 1 = tn−1ql + 1 − tn−1

1 − t
, (4.66)

and hence

gl(x) = (t; q)l

(q; q)l
P(l)(x). (4.67)

Proof Since G(x; u) = ∑∞
l=0 gl(x) ul , we have

Dx G(x; u) =
∞∑

l=0

Dx gl(x) ul , Tq,u G(x; u) =
∞∑

l=0

ql gl(x) ul . (4.68)

Hence, the eigenfunction equations

Dx gl(x) =
(

tn−1ql + 1 − tn−1

1 − t

)
gl(x) (4.69)

for gl(x) (l = 0, 1, 2, . . .) are equivalent to the identity

Dx G(x; u) =
(

tn−1Tq,u + 1 − tn−1

1 − t

)
G(x; u) (4.70)
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for the generating function. Noting that

Tq,xi G(x; u) = 1 − xi u

1 − t xi u
G(x; u), Tq,u G(x; u) =

n∏

j=1

1 − x j u

1 − t x j u
G(x; u), (4.71)

we see that identity (4.70) is equivalent to the identity

n∑

i=1

∏

j �=i

t xi − x j

xi − x j

1 − xi u

1 − t xi u
= tn−1

n∏

j=1

1 − x j u

1 − t x j u
+ 1 − tn−1

1 − t
(4.72)

of rational functions. As rational functions of u, both sides are of the form

p(u)

q(u)
, p(u), q(u) ∈ C[u], degu p(u) ≤ n, degu q(u) = n. (4.73)

Then, one can verify identity (4.72) directly by comparing the residues at n points
u = 1/ti xi (i = 1, . . . , n) and the value at u = 0 which reduces to (4.26). �

4.5.2 Expression in Terms of φD

Similarly to the case of two variables, the Macdonald polynomials

gl(x) =
∑

μ1+···+μn=l

(t; q)μ1 · · · (t; q)μn

(q; q)μ1 · · · (q; q)μn

xμ1
1 · · · xμn

n (4.74)

attached to single rows are expressed in terms of certain q-hypergeometric seires in
n − 1 variables. Using μ1 = l − μ2 − · · · − μn , we rewrite the factor containing μ1

as follows:

(t; q)μ1

(q; q)μ1

= (t; q)l−μ2−···−μn

(q; q)l−μ2−···−μn

= (t; q)l

(q; q)l

(ql−μ2−···−μn+1; q)μ2+···+μn

(ql−μ2−···−μn t; q)μ2+···+μn

= (t; q)l

(q; q)l

(q−l; q)μ2+···+μn

(q−l+1/t; q)μ2+···+μn

(q/t)μ2+···+μn . (4.75)

Hence we have

gl(x) = (t; q)l

(q; q)l
xl
1

∑

μ2,...,μn≥0

(q−l; q)μ2+···+μn

(q−l+1/t; q)μ2+···+μn

(t; q)μ2 · · · (t; q)μn

(q; q)μ2 · · · (q; q)μn

·(qx2/t x1)
μ2 · · · (qxn/t x1)

μn . (4.76)
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We now introduce the q-hypergeometric series

φD

[
a; b1, . . . , bm

c
; q; z1, . . . , zm

]

=
∑

k1,...,km≥0

(a; q)k1+···+km

(c; q)k1+···+km

(b1; q)k1 · · · (bm; q)km

(q; q)k1 · · · (q; q)km

zk1
1 · · · zkm

m (4.77)

in m variables, which is a q-analogue of Lauricella’s FD (Appell’s F1 when m = 2).1

Then the Macdonald polynomials attached to single rows are expressed in terms of
φD in n − 1 variables as

P(l)(x1, . . . , xn) = xl
1 φD

[
q−l; t, . . . , t

q−l+1/t
; q; qx2/t x1, . . . , qxn/t x1

]
(4.78)

for l = 0, 1, 2, . . ..

4.5.3 Wronski Relations

We compare this generating function

G(x; u) =
n∏

i=1

(t xi y; q)∞
(xi u; q)∞

=
∞∑

l=0

gl(x)ul . (4.79)

with that of elementary symmetric functions

E(x; u) =
n∏

i=1

(1 + xi u) =
n∑

r=0

er (x)ur . (4.80)

Note that G(x; u) satisfies the q-difference equation

G(x; qu) =
n∏

i=1

(qtxi u; q)∞
(qxi u; q)∞

=
n∏

i=1

1 − xi u

1 − t xi u
G(x; u) (4.81)

with respect to u. This means that

n∏

i=1

(1 − t xi u) · G(x; qu) =
n∏

i=1

(1 − xi u) · G(x; u), (4.82)

1 See [15, Chap. 6] for Appell’s and Lauricella’s hypergeometric series in many variables.
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namely,
E(x;−tu)G(x; qu) = E(x;−u)G(x; u). (4.83)

Comparing the coefficients of uk in this equality, we obtain

∑

i+ j=k

(−1)i t i q j ei (x)g j (x) =
∑

i+ j=k

(−1)i ei (x)g j (x) (k = 0, 1, 2, . . .), (4.84)

and hence ∑

i+ j=k

(−1)i (t i q j − 1)ei (x)g j (x) = 0 (k = 1, 2, . . .). (4.85)

This formula is the counterpart of Wronski’s relations in the case of Macdonald
polynomials between those attached to single columns and single rows.



Chapter 5
Orthogonality and Higher-Order
q-Difference Operators

Abstract We show that the Macdonald polynomials satisfy the orthogonality rela-
tion with respect to a certain scalar product on the ring of symmetric polynomials.
We also explain how this orthogonality is related with the existence of commuting
family of higher-order q-difference operators for which Macdonald polynomials are
joint eigenfunctions.

5.1 Scalar Product and Orthogonality

As always, we fix the parameters q, t ∈ C
∗ with |q| < 1. Also, keeping the conven-

tion of the previous chapter, we suppose that the parameters q, t satisfy the genericity
condition (4.10).

5.1.1 Weight Function and Scalar Product

We define a meromorphic function w(x) = w(x; q, t) on (C∗)n by

w(x) =
∏

1≤i< j≤n

(xi/x j ; q)∞
(t xi/x j ; q)∞

(x j/xi ; q)∞
(t x j/xi ; q)∞

. (5.1)

Note that w(x) isSn-invariant and also w(x−1) = w(x). We assume |t | < 1 so that
w(x) is holomorphic in a neighborhood of the n-dimensional torus

T
n = {

x = (x1, . . . , xn) ∈ (C∗)n | |xi | = 1 (i = 1, . . . , n)
} ⊂ (C∗)n. (5.2)

For a pair of holomorphic functions f (x), g(x) in a neighborhood ofTn , we define
the scalar product (symmetric bilinear form)

〈
f, g

〉
as
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〈
f, g

〉 = 1

n!
1

(2π
√−1)n

∫

Tn

f (x−1)g(x)w(x)
dx1 · · · dxn
x1 · · · xn (5.3)

by the integral over Tn with orientation such that

1

(2π
√−1)n

∫

Tn

dx1 · · · dxn
x1 · · · xn = 1. (5.4)

The scalar product is alternatively expressed as

〈
f, g

〉 = 1

n!CT
[
f (x−1)g(x)w(x)

]
, (5.5)

in terms of the constant term CT (coefficient of 1) of the Laurent expansion of a
holomorphic function around T

n .

Theorem 5.1 Suppose that |t | < 1. Then, the Macdonald polynomials are orthog-
onal with respect to the scalar product defined by (5.3):

〈
Pλ, Pμ

〉 = δλ,μ Nλ (λ, μ ∈ Pn) (5.6)

for some constants Nλ ∈ C (λ ∈ Pn).

We remark that, if q, t ∈ R and |q| < 1, |t | < 1, theMacdonald polynomials have
real coefficients, and

〈
,

〉
defines a positive definite scalar product on R[x]Sn .

Remark 5.1 In Macdonald’s monograph [20, Sect. VI.9], the scalar product 〈 f, g〉
of (5.3) is called another scalar product and denoted by 〈 f, g〉′n . It should be noted
that our scalar product is different from Macdonald’s 〈 f, g〉n defined by [20, Chap.
VI, (2.20)].

5.1.2 Constant Term and Scalar Products

It is known [20, Sect. VI.9] that the constant term and the scalar products are deter-
mined explicitly as follows.

Theorem 5.2 For each λ ∈ Pn, the scalar product Nλ = 〈Pλ, Pλ〉 is explicitly eval-
uated as

Nλ =
∏

1≤i< j≤n

(qλi−λ j t j−i ; q)∞(qλi−λ j+1t j−i ; q)∞
(qλi−λ j t j−i+1; q)∞(qλi−λ j+1t j−i−1; q)∞

. (5.7)

In particular, the constant term of the weight functionCT
[
w(x)

]
= n!Nφ = n!〈1, 1〉

is given by
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CT
[
w(x)

]
= n!

(
(t; q)∞
(q; q)∞

)n n∏

i=1

(t i−1q; q)∞
(t i ; q)∞

. (5.8)

In this book, we will not go into the proof of these explicit formulas. For proofs of
this theorem, we refer the reader to Macdonald [20, Sect. VI.9], and Mimachi [21]
(see also Macdonald [22]).

5.2 Proof of Orthogonality

The orthogonality of Macdonald polynomials is a consequence of the facts that:

(1) The q-difference operator Dx is (formally) self-adjoint with respect to the
weight function w(x).
(2) The partitions λ ∈ Pn are separated by the eigenvalues of Dx , namely

dλ �= dμ for any distinct pair λ,μ ∈ Pn .

Along this idea, we explain step by step how the orthogonality of Theorem 5.1 can
be established.

5.2.1 Cauchy’s Theorem as a Basis of q-Difference de Rham
Theory

Let ϕ(z) be a holomorphic function in an neighborhood of a closed curve C in C
∗.

We suppose that the contour C can be deformed continuously to qC in a domain
where ϕ(z) is holomorphic. Note that this condition is satisfied either if the domain
of holomorphy of ϕ(z) is sufficiently large, or if q is sufficiently close to 1. Then, by
Cauchy’s theorem, we have

∫

C
ϕ(qz)

dz

z
=

∫

qC
ϕ(z)

dz

z
=

∫

C
ϕ(z)

dz

z
, (5.9)

namely

∫

C
Tq,z

(
ϕ(z)

)dz
z

=
∫

C
ϕ(z)

dz

z
, i.e.

∫

C
(Tq,z − 1)(ϕ(z))

dz

z
= 0. (5.10)

In particular, we have

∫

C
Tq,z

(
ϕ(z)

)
ψ(z)

dz

z
=

∫

C
ϕ(z)T−1

q,z

(
ψ(z)

)dz
z

. (5.11)

This formula plays the role of integration by parts.
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5.2.2 Formal Adjoint of a q-Difference Operator

Let Lx ∈ Dq,x = C(x)[T±1
q,x ] be a q-difference operator in x = (x1, . . . , xn) with

rational coefficients:

Lx =
∑

μ∈Zn

aμ(x)T μ
q,x (finite sum), aμ(x) ∈ C(x) (μ ∈ Z

n), (5.12)

where T μ
q,x = T μ1

q,x1 · · · T μn
q,xn . We define the formal adjoint L∗

x of Lx by

L∗
x =

∑

μ∈Zn

T−μ
q,x aμ(x), (5.13)

so that (LxMx )
∗ = M∗

x L
∗
x . Then, we have

∫

Tn

(Lx f )(x
−1)g(x)w(x)

dx

x

=
∫

Tn

(Lx−1 f (x−1))g(x)w(x)
dx

x

=
∫

Tn

f (x−1)
(
L∗
x−1g(x)w(x)

)dx
x

=
∫

Tn

f (x−1)
(
w(x)−1L∗

x−1w(x)g(x))w(x)
dx

x
, (5.14)

and hence 〈
L f, g

〉 = 〈
f, L†g

〉
, L† = w(x)−1L ∗

x−1w(x), (5.15)

provided that q is sufficiently close to 1 and that Cauchy’s theorem can be applied to
Lx . We say that Lx is formally self-adjoint with respect to w(x) if L†

x = Lx , namely
w(x)Lxw(x)−1 = L∗

x−1 .

5.2.3 Dx Is Self-Adjoint with Respect to w(x)

Note that

Tq,xi w(x)

w(x)
=

∏

j �=i

1 − t xi/x j

1 − xi/x j

∏

j �=i

1 − x j/qxi
1 − t x j/qxi

= Ai (x)

Tq,xi Ai (x−1)
(i = 1, . . . , n).

(5.16)
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This implies that

w(x)Dxw(x)−1 =
n∑

i=1

Ai (x)
w(x)

Tq,xi w(x)
Tq,xi =

n∑

i=1

(Tq,xi Ai (x
−1))Tq,xi

=
n∑

i=1

Tq,xi Ai (x
−1) = D ∗

x−1 .

(5.17)

It can be verified directly that
〈
Dx f, g

〉 = 〈
f, Dxg

〉
if |t | < |q| < 1. Note that the

poles of Ai (x) along �(x) = 0 are canceled by the zeros of w(x).

5.2.4 Orthogonality

Since Dx is self-adjoint with respect to the scalar product, for any λ,μ ∈ Pn we have
the equality 〈

Dx Pλ(x), Pμ(x)
〉 = 〈

Pλ(x), Dx Pμ(x)
〉
, (5.18)

and hence
dλ

〈
Pλ, Pμ

〉 = dμ

〈
Pλ, Pμ

〉
. (5.19)

Under our assumption that dλ �= dμ (λ �= μ), we obtain
〈
Pλ, Pμ

〉 = 0 (λ �= μ).

5.3 Commuting Family of q-Difference Operators

5.3.1 Macdonald–Ruijsenaars Operator of rth Order

For each r = 0, 1, . . . , n, we define the Macdonald–Ruijsenaars q-difference oper-
ator D(r)

x of r th order by

D(r)
x =

∑

I⊆{1,...,n}; |I |=r

AI (x)T
I
q,x , AI (x) = t(

|I |
2 )

∏

i∈I, j /∈I

t xi − x j

xi − x j
, (5.20)

where T I
q,x = ∏

i∈I Tq,xi , so that D
(0)
x = 1, D(1)

x = Dx and D(n)
n = t(

n
2)Tq,x1 · · · Tq,xn .
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Example: D(r)
x (n = 3, r = 1, 2, 3)

D(1)
x = (t x1 − x2)(t x1 − x3)

(x1 − x2)(x1 − x3)
Tq,x1 + (t x2 − x1)(t x2 − x3)

(x2 − x1)(x2 − x3)
Tq,x2

+ (t x3 − x1)(t x3 − x2)

(x3 − x1)(x3 − x2)
Tq,x3

D(2)
x = t

(t x1 − x3)(t x2 − x3)

(x1 − x3)(x2 − x3)
Tq,x1Tq,x2 + t

(t x1 − x2)(t x3 − x2)

(x1 − x2)(x3 − x2)
Tq,x1Tq,x3

+t
(t x2 − x1)(t x3 − x1)

(x2 − x1)(x3 − x1)
Tq,x2Tq,x3

D(3)
x = t3Tq,x1Tq,x2Tq,x3 (5.21)

Exercise 5.1 Show that the coefficients AI (x) can be expressed as

AI (x) = T I
t,x�(x)

�(x)
(I ⊆ {1, . . . , n}) (5.22)

in terms of the difference product �(x) = ∏
1≤i< j≤n(xi − x j ).

As we will see below, the q-difference operators D(r)
x (r = 1, . . . , n) commute

with each other, and are simultaneously diagonalized on C[x]Sn by the Macdonald
polynomials.

5.3.2 Fundamental Properties of D(r)
x

By the same method as we applied to Dx , one can directly verify:

(1) The q-difference operators D(r)
x (r = 1, . . . , n) are invariant under the

action of Sn .
(2)The linear operators D(r)

x : C(x) → C(x) stabilizeC[x]Sn , i.e.D(r)
x (C[x]Sn )

⊆ C[x]Sn .

As to the triangularity of D(r)
x , we have:

Lemma 5.1 The linear operators D(r)
x : C[x]Sn → C[x]Sn (r = 0, 1, . . . , n) are

triangular with respect to the dominance order of mλ(x) : For each λ ∈ Pn,

D(r)
x mλ(x) =

∑

μ≤λ

d(r)
λ,μ mμ(x) = d(r)

λ mλ(x) +
∑

μ<λ

d(r)
λ,μ mμ(x), (5.23)

where d(r)
λ = d(r)

λ,λ = er (t δqλ) are the elementary symmetric functions of degree r in
t δqλ = (tn−1qλ1 , tn−2qλ2 , . . . , qλn ).
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Proof We follow the same approach as in the case of Dx = D(1)
x (Lemma 4.1). For

each I ⊆ {1, . . . , n} with |I | = r , we have

AI (x) = t(
r
2)

∏

i< j
i∈I, j /∈I

t
1 − x j/t xi
1 − x j/xi

∏

i< j
i /∈I, j∈I

1 − t x j/xi
1 − x j/xi

= t
∑

i∈I (n−i) + (lower-order terms), (5.24)

where, for I = {i1 < · · · < ir }, the exponent of t is computed as

(
r

2

)
+ # {(i, j) | i < j, i ∈ I, j /∈ I }

=
(
r

2

)
+

r∑

k=1

((n − ik) + (r − k)) =
∑

i∈I
(n − i). (5.25)

Hence, we have

D(r)
x xμ =

∑

|I |=r

AI (x)q
∑

i∈I μi xμ

=
( ∑

|I |=r

t
∑

i∈I (n−i)q
∑

i∈I μi

)
xμ + lower-order terms (5.26)

= er (t
δqμ)xμ + (lower-order terms). (5.27)

This implies

D(r)
x mλ(x) = er (t

δqλ)mλ(x) + (lower-order terms) (λ ∈ Pn), (5.28)

as desired. �

It is convenient to introduce the generating function for D(r)
x (r = 0, 1, . . . , n)

with an extra parameter u:

Dx(u) =
n∑

r=0

(−u)r D(r)
x =

∑

I⊆{1,...,n}
(−u)|I |AI (x)T

I
q,x . (5.29)

Then, by Lemma 5.1, we have

Dx (u)mλ(x) = dλ(u)mλ(x) +
∑

μ<λ

dλ
μ(u)mμ(x),

dλ(u) =
n∑

r=0

(−u)r er (t
δqλ) =

n∏

i=1

(1 − utn−i qλi ). (5.30)
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5.3.3 Macdonald Polynomials as Joint Eigenfunctions

We prove the following two theorems in the subsequent sections.

Theorem 5.3 The q-difference operators D(r)
x (r = 1, . . . , n) commute with each

other:
D(r)

x D(s)
x = D(s)

x D(r)
x (r, s = 1, . . . , n), (5.31)

Theorem 5.4 For each λ ∈ Pn, the Macdonald polynomial Pλ(x) satisfies the joint
eigenfunction equations

D(r)
x Pλ(x) = d(r)

λ Pλ(x), d(r)
λ = er (t

δqλ) (r = 1, . . . , n). (5.32)

We have assumed the genericity condition (4.10) of parameters for the existence
of Macdonald polynomials, as well as |q| < 1. In this setting, Theorems 5.3 and 5.4
are equivalent. In fact:
Theorem 5.3 implies Theorem 5.4: By the commutativity of D(r)

x with Dx = D(1)
x ,

we have
Dx D

(r)
x Pλ(x) = D(r)

x Dx Pλ(x) = dλD
(r)
x Pλ(x), (5.33)

namely D(r)
x Pλ(x) is an eigenfunction of Dx with eigenvalue dλ. Since the eigenspace

of Dx inC[x]Sn with dλ is one-dimensional, we have D(r)
x Pλ(x) = εPλ(x) for some

constant ε ∈ C. Since Pλ(x) = mλ(x) + (lower-order terms) and also D(r)
x mλ(x) =

d(r)
λ mλ(x) + (lower-order terms), we conclude ε = d(r)

λ as desired. Conversely:
Theorem 5.4 implies Theorem 5.3. Since D(r)

x (r = 1, . . . , n) are simultane-

ously diagonalized by Pλ(x) (λ ∈ Pn), for any pair r, s ∈ {1, . . . , n} the commutator
[D(r)

x , D(s)
x ] = D(r)

x D(s)
x − D(s)

x D(r)
x is 0 as a linear operator on C[x]Sn . From this,

it follows that [D(r)
x , D(s)

x ] = 0 as a q-difference operator thanks to the following
lemma.

Lemma 5.2 Let Lx ∈ Dq,x = C(x)[T±1
q,x ] be a q-difference operator with rational

function coefficients, and suppose that Lx f (x) = 0 for all f (x) ∈ C[x]Sn . Then
Lx = 0 as a q-difference operator.

Proof Without losing generality, we may assume that Lx has the form

Lx =
∑

μ∈Nn :|μ|≤d

aμ(x)T μ
q,x , d ∈ N, (5.34)

namely, Lx ∈ C(x)[Tq,x ] and ord Lx ≤ d. Supposing that Lx |C[x]Sn = 0, we prove
Lx = 0 by the induction on d. Since this statement is obvious for d = 0, we assume
d > 0. Introducing variables y = (y1, . . . , yd), we consider the polynomial

F(x; y) =
n∏

i=1

d∏

k=1

(1 − xi yk) ∈ C[x]Sn [y] (5.35)
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in (x, y). Then we have Lx F(x; y) = 0, namely

∑

|μ|≤d

aμ(x)F(qμx; y) =
∑

|μ|≤d

aμ(x)
n∏

i=1

d∏

k=1

(1 − qμi xi yk) = 0. (5.36)

For each α ∈ N
n with |α| = d, we define the reference point ηα(x) ∈ (C∗)d by

ηα(x) = (1/x1, 1/qx1, . . . , 1/q
α1−1x1; . . . ; 1/xn, 1/qxn, . . . , 1/qαn−1xn). (5.37)

Then we have

F(qμx, ηα(x)) =
n∏

i=1

n∏

j=1

α j−1∏

ν=0

(1 − qμi xi/q
νx j )

=
n∏

i=1

n∏

j=1

(qμi−α j+1xi/x j ; q)α j (5.38)

Note that F(qμx; ηα(x)) contains
∏n

i=1(q
μi−αi+1; q)αi as diagonal factors. If |μ| ≤

d and μ �= α, there exists an index i ∈ {1, . . . , n} such that μi < αi , and hence
(qμi−αi+1; q)αi = 0. This means that, if |μ| ≤ d, F(qμx; ηα(x)) = 0 unless μ = α.
Also, we have F(qαx; ηα(x)) = ∏n

i, j=1(q
αi−α j+1xi/x j ; q)α j �= 0.Hence, evaluating

(5.36) at y = ηα(x), we obtain

Lx F(x, y)
∣∣
y=ηα(x)

= aα(x)F(qαx; ηα(x)) = 0. (5.39)

This implies that aα(x) = 0 for all α ∈ N
n with |α| = 0, namely ord Lx < d. Hence,

by the induction on d we conclude that Lx = 0. �

5.4 Commutativity of the Operators D(r)
x

In this section, we give two proofs of Theorem 5.3 of commutativity of the q-
difference operators D(r)

x (r = 1, . . . , n). One proof, due toMacdonald [20], is based
on the orthogonality of Macdonald polynomials, and the other is a direct proof due
to Ruijsenaars [30]. Theorem 5.4 follows from Theorem 5.3 as we already explained
in the previous section.
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5.4.1 Orthogonality Implies Commutativity

One can show that, for each r = 1, . . . , n, D(r)
x is formally self-adjoint with respect

to the scalar product defined by w(x), by a method similar to the one we used in the
case of Dx = D(1)

x . Since D(r)
x : C[x]Sn → C[x]Sn is lower triangular with respect

to the dominance order, we have

D(r)
x Pλ(x) =

∑

μ≤λ

a(r)
λ,μPμ(x), (5.40)

for some a(r)
λ,μ ∈ C, with leading coefficient a(r)

λ,λ = d(r)
λ . Since

〈
D(r)

x Pλ, Pμ

〉 = a(r)
λ,μ

〈
Pμ, Pμ

〉
,

〈
Pλ, D

(r)
x Pμ

〉 = 0 (μ < λ), (5.41)

and
〈
Pμ, Pμ

〉 �= 0, we have a(r)
λ,μ = 0 for μ < λ. This means that D(r)

x Pλ(x) =
d(r)

λ Pλ(x). In this way, the linear operators D(r)
x : C[x]Sn → C[x]Sn (r = 1, . . . , n)

are simultaneously diagonalized by theMacdonald basis. This gives a proof of Theo-
rem 5.4, as well as Theorem 5.3 by the argument we already explained in the previous
section.

5.4.2 A Direct Proof of Commutativity

Here we explain a direct proof of Theorem 5.3 of commutativity, following the idea
of Ruijsenaars [30].

The composition D(r)
x D(s)

x is computed as

D(r)
x D(s)

x =
∑

|I |=r,|J |=s

AI (x)AJ (q
εI x)T εI+εJ

q,x , (5.42)

where εI = ∑
i∈I εi , εi = (δi, j )1≤ j≤n ∈ Z

n . Setting K = I ∩ J , L = (I ∪ J )\K ,
P = I\K , Q = J\K , we rewrite (5.42) as

D(r)
x D(s)

x

=
∑

K∩L=φ
|K |≤min{r,s}

( ∑

P�Q=L
|K |+|P|=r,|K |+|Q|=s

AK�P(x)AK�Q(qεK+εP x)
)
T 2εK+εL
q,x . (5.43)

Then the commutativity D(r)
x D(s)

x = D(s)
x D(r)

x is equivalent to the following state-
ment: For each K , L ⊆ {1, . . . , n} with K ∩ L = φ, and for any p, q ∈ Z≥0 such
that p + q = |L|,
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∑

P�Q=L
|P|=p,|Q|=q

AK�P(x)AK�Q(qεK+εP x)

=
∑

P�Q=L
|P|=p,|Q|=q

AK�Q(x)AK�P(qεK+εQ x). (5.44)

Analyzing this equality carefully, we show that the statement (5.44) is reduced to an
identity of rational functions, which we call the Ruijsenaars identity.

For each pair (I, J ) of subsets of {1, . . . , n} such that I ∩ J = φ, we set

AI,J (x) =
∏

i∈I ; j∈J

1 − t xi/x j

1 − xi/x j
(5.45)

so that
AI (x) = t(

|I |
2 )AI,I c(x), I c = {1, . . . , n} \I. (5.46)

We use below the properties that AI,J (x) is distributive in I and J in the sense

AI1�I2,J (x) = AI1,J (x)AI2,J (x), AI,J1�J2(x) = AI,J1(x)AI,J2(x), (5.47)

and that AI,J (x) depends on the ratios xi/x j (i ∈ I, j ∈ J ) only.
WesetM = {1, . . . , n} \(K � L), so that K � P � Q � M = {1, . . . , n}, to obtain

t−(|K�P|
2 )−(|K�Q|

2 )AK�P(x)AK�Q(qεK+εP x)

= AK�P,M�Q(x)AK�Q,M�P(qεK+εP x)

= AK ,M(x)AK ,Q(x)AP,M(x)AP,Q(x)

·AK ,M(qεK x)AK ,P(qεK+εP x)AQ,M(x)AQ,P(qεP x)

= AK ,M(x)AK ,P(x)AK ,Q(x)AP,M(x)AQ,M(x)AK ,M(qεK x)

·AP,Q(x)AQ,P(qεP x)

= AK ,M(x)AK ,L(x)AL ,M(x)AK ,M(qεK x) · AP,Q(x)AQ,P(qεP x). (5.48)

Exchanging the roles of P and Q, we have

t−(|K�Q|
2 )−(|K�P|

2 )AK�Q(x)AK�P(qεK+εQ x)

= AK ,M(x)AK ,L(x)AL ,M(x)AK ,M(qεK x) · AQ,P(x)AP,Q(qεQ x). (5.49)

Hence, equality (5.44) is equivalent to:

∑

P�Q=L
|P|=p,|Q|=q

AP,Q(x)AQ,P(qεP x) =
∑

P�Q=L
|P|=p,|Q|=q

AQ,P(x)AP,Q(qεQ x) (5.50)
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for any L ⊆ {1, . . . , n} and p, q with p + q = |L|.
Changing the notation, we see that the commutativity of the Macdonald–

Ruijsenaars operators is reduced to proving the identity

∑

I�J={1,...,n}
|I |=r,|J |=s

AI,J (x)AJ,I (q
εI x) =

∑

I�J={1,...,n}
|I |=r,|J |=s

AJ,I (x)AI,J (q
εJ ) (5.51)

for any r ,s such that r + s = n. To be explicit,

Lemma 5.3 (Ruijsenaars identity) For any r, s ∈ Z≥0 with r + s = n,

∑

I�J={1,...,n}
|I |=r, |J |=s

∏

i∈I
j∈J

(1 − t xi/x j )(1 − t x j/qxi )

(1 − xi/x j )(1 − x j/qxi )

=
∑

I�J={1,...,n}
|I |=r, |J |=s

∏

i∈I
j∈J

(1 − t x j/xi )(1 − t xi/qx j )

(1 − x j/xi )(1 − xi/qx j )
. (5.52)

Proof We denote by Fr,s(x) the left-hand side of (5.52):

Fr,s(x) =
∑

I�J=[n]
|I |=r, |J |=s

∏

i∈I
j∈J

FI,J (x), FI,J (x) =
∏

i∈I
j∈J

(t xi − x j )(qxi − t x j )

(xi − x j )(qxi − x j )
, (5.53)

where [n] = {1, . . . , n}. Then the right-hand side is given by Fr,s(x−1) = Fs,r (x).
We remark that Fr,s(x) is a symmetric function and �(x)Fr,s(x) is regular along the
divisors xi − x j = 0 (1 ≤ i < j ≤ n). From this fact it follows that Fr,s(x) itself is
regular along these divisors.

We prove by induction on n that Gr,s(x) = Fr,s(x) − Fr,s(x−1) = 0 for any pair
(r, s) such that r + s = n. We first remark that Gr,s(x) = 0 if r = 0 or s = 0, and
that Gr,s(x) = 0 for n = r + s = 0, 1. Assuming that r, s ≥ 1, we regard Fr,s(x) as
rational functions of xn:

Fr,s(x) =
∑

I�J=[n]
|I |=r,|J |=s, n∈I

∏

j∈J

(t xn − x j )(qxn − t x j )

(xn − x j )(qxn − x j )
FI\{n},J (xn̂)

+
∑

I�J=[n]
|I |=r,|J |=s, n∈J

∏

i∈I

(xn − t xi )(t xn − qxi )

(xn − xi )(xn − qxi )
FI\{n},J (xn̂), (5.54)
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where xn̂ = (x1, . . . , xn−1). Note that Fr,s(x) has at most simple poles at xn =
qxk, q−1xk for k = 1, . . . , n − 1; it is regular at xn = xk as mentioned above.1 We
look at the residues at xn = qxk :

Res(Fr,s(x)dxn|xn = qxk)

= (1 − t)(t − q)

q − 1

∑

I�J=[n]
|I |=r,|J |=s; k∈I,n∈J

∏

i∈I\{k}

(qxk − t xi )(t xk − xi )

(qxk − xi )(xk − xi )
FI,J\{n}(xn̂)

= (1 − t)(t − q)

q − 1

∑

I�J=[n]
|I |=r,|J |=s; k∈I,n∈J

∏

i∈I\{k}

(qxk − t xi )(t xk − xi )

(qxk − xi )(xk − xi )

·
∏

j∈J\{n}

(t xk − x j )(qxk − t x j )

(xk − x j )(qxk − x j )
. FI\{k},J\{n}(xn̂)

= (1 − t)(t − q)

q − 1

∏

l �=k,n

(t xk − xl)(qxk − t xl)

(xk − xl)(qxk − xl)

∑

I ′�J ′=[n]\{k,n}
|I ′|=r−1,|J ′ |=s−1

FI ′,J ′(xk̂ ,̂n), (5.55)

where xn̂ = (x1, . . . , xn−1) and xk̂ ,̂n = (x1, . . . , k̂, . . . , xn−1). Similarly, we compute

Res(Fr,s(x
−1)dxn|xn = qxk)

= (1 − t)(t − q)

q − 1

∏

l �=k,n

(t xk − xl)(qxk − t xl)

(xk − xl)(qxk − xl)

∑

I ′�J ′=[n]\{k,n}
|I ′|=r−1,|J ′ |=s−1

FJ ′,I ′(xx̂k ,̂n). (5.56)

Hence, for Gr,s(x) = Fr,s(x) − Fr,s(x−1) we have

Res(Gr,s(x)dxn|xn = qxk)

= (1 − t)(t − q)

q − 1

∏

l �=k,n

(t xk − xl)(qxk − t xl)

(xk − xl)(qxk − xl)

·
∑

I ′�J ′=[n]\{k,n}
|I ′|=r−1,|J ′ |=s−1

(
FI ′,J ′(xx̂k ,̂n) − FJ ′,I ′(xx̂k ,̂n)

) = 0 (5.57)

for k = 1, . . . , n − 1, by the induction hypothesis of the case of n − 2 variables. By
the same argument we obtain Res(Gr,s(x)dxn|xn = q−1xk) = 0 for k = 1, . . . , n −
1. This implies thatGr,s(x) is constant with respect to xn . SinceGr,s(x) is symmetric
with respect to x = (x1, . . . , xn), we conclude that Gr,s(x) is a constant, i.e. does
not depend on xi (i = 1, . . . , n). However, Gr,s(x) = Fr,s(x) − Fr,s(x−1) satisfies
Gr,s(x−1) = −Gr,s(x), and hence we obtain Gr,s(x) = 0. �

1 One can also show directly that Res(Fr,s(x±1)dxn |xn = xk) = 0 (k = 1, . . . , n − 1), by a com-
putation similar to the one presented below.
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We remark that Ruijsenaars [30] proved the commutativity of the elliptic version
of D(r)

x (r = 1, . . . , n) along the same line as above, on the basis of the corresponding
identity for the Weierstrass sigma functions.

Remark 5.2 In Chap.8, we will explain a construction of the q-difference operators
D(r)

x as well as their commutativity, following the idea of Cherednik based on a
representation of the affine Hecke algebra.

5.5 Refinement of the Existence Theorem

Once commutativity of the Macdonald–Ruijsenaars operators D(r)
x (r = 1, . . . , n)

has been established, the existence theoremofMacdonald polynomials can be refined
as we formulate below. Here we fix the parameters q, t ∈ C

∗ with |q| < 1, and sup-
pose that the parameter t ∈ C

∗ satisfies the condition t k /∈ qZ<0 for k = 1, . . . , n − 1.
In this setting we give a proof of existence of the Macdonald polynomials, indepen-
dently of the previous existence theorem (Theorem 4.1).

Theorem 5.5 Suppose that the parameter t satisfies the condition that tk /∈ qZ<0

(k = 1, . . . , n − 1). Then, for each partition λ ∈ Pn there exists a unique symmetric
polynomial Pλ(x) ∈ C[x]Sn such that

(1) D(r)
x Pλ(x) = d(r)

λ Pλ(x) (r = 1, . . . , n), (5.58)

(2) Pλ(x) = mλ(x) +
∑

μ<λ

uλ
μ mμ(x) (uλ

μ ∈ C). (5.59)

We remark that, in terms of the generating function Dx (u) = ∑n
r=0(−u)r D(r)

x ,
the joint eigenfunction equations for Pλ(x) are unified in the form

Dx (u)Pλ(x) = dλ(u)Pλ(x), dλ(u) =
n∏

i=1

(1 − utn−i qλi ). (5.60)

Note that, for a pair λ,μ ∈ Pn , dλ(u) = dμ(u) as polynomials in u if and only if
there exists a permutation σ ∈ Sn such that

tn−i qμi = tn−σ(i)qλσ(i) (i = 1, . . . , n). (5.61)

Under our assumption |q| < 1, we have:

Lemma 5.4 Suppose that tk /∈ qZ<0 (k = 1, . . . , n − 1). Then, dλ(u) �= dμ(u) for
any distinct pair λ,μ ∈ Pn as polynomials in u, and also for generic u ∈ C.

Proof We first show that, if |t | ≤ 1, then dλ(u) �= dμ(u) as polynomials in u for
any distinct pair λ,μ ∈ Pn . Under the assumption |t | ≤ 1, the sequence |tn−i qλi |
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(i = 1, . . . , n) is weakly increasing for any λ ∈ Pn . From this it follows that, if
dλ(u) = dμ(u) for λ,μ ∈ Pn , then we have |tn−i qλi | = |tn−i qμi | (i = 1, . . . , n).
Hence, for i = 1, . . . , n, we have |q|λi = |q|μi and λi = μi since |q| < 1. Namely,
if |t | ≤ 1, then dλ(u) = dμ(u) implies λ = μ.

We now consider the case |t | > 1. Suppose that dλ(u) = dμ(u) as polynomials
in u for some distinct pair λ,μ ∈ Pn . Then, there exists a permutation σ ∈ Sn such
that

tn−i qμi = tn−σ(i)qλσ(i) (i = 1, . . . , n). (5.62)

Since λ �= μ, we have σ �= 1, and hence there exists an index σ(i) > i . Thenwe have
tσ(i)−i = qλσ(i)−μi ∈ qZ, which means t k ∈ qZ for k = σ(i) − i ∈ {1, . . . , n − 1}.
Since |t | > 1, t k ∈ qZ<0 for some k ∈ {1, . . . , n − 1}.

Suppose that dλ(u) �= dμ(u) for any distinct pair λ,μ ∈ Pn . Since the set

S = {
a ∈ C

∗ | dλ(a) = dμ(a) for some distinct pair λ,μ ∈ Pn
}

(5.63)

is countable, the complement C∗\S is non-empty. Then, for any c ∈ C
∗\S, we have

dλ(c) �= dμ(c) for any distinct pair λ,μ ∈ Pn . �

Proof (of Theorem 5.5) Under the assumption that t k /∈ qZ<0 for k = 1, . . . , n − 1,
by Lemma 5.4 we can find a constant c ∈ C such that dλ(c) �= dμ(c) for any
distinct pair λ,μ ∈ Pn . From the facts that Dx (c) : C[x]Sn → C[x]Sn is trian-
gular with respect to the dominance order and that the eigenvalues dλ(c) sepa-
rate Pn , it follows that for each λ ∈ Pn there exists a unique symmetric poly-
nomial Pλ(x) ∈ C[x]Sn such that Pλ(x) = mλ(x) + (lower-order terms) ∈ C[x]Sn

and Dx (c)Pλ(x) = dλ(c)Pλ(x). Note that Pλ(x) (λ ∈ Pn) form aC-basis ofC[x]Sn ,
and have mutually distinct eigenvalues dλ(c) with respect to the linear operators
Dx (c). We remark that these Pλ(x) do not depend on the choice of c, as we will see
below.

Since D(r)
x commutes with Dx (c) for r = 1, . . . , n, we have Dx (c)D(r)

x Pλ(x) =
D(r)

x Dx (c)Pλ(c) = dλ(c)D(r)
x Pλ(x). This means that D(r)

x Pλ(x) is an eigenfunc-
tion of Dx (c) with eigenvalue dλ(c), and hence D(r)

x Pλ(x) is a contant multi-
ple of Pλ(x) by the fact that the eigenspace of Dx (c) with eigenvalue dλ(c)
is one-dimensional. Since D(r)

x Pλ(x) = d(r)
λ mλ(x) + (lower-order terms), we have

D(r)
x Pλ(x) = d(r)

λ Pλ(x). Namely, we obtain

C[x]Sn =
⊕

λ∈Pn

C Pλ(x), Dx (u)Pλ(x) = dλ(u)Pλ(x). (5.64)

This also implies that the polynomials Pλ(x) do not depend on the choice of c ∈ C
∗

with which we started. �
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5.6 Some Remarks Related to Dx(u)

5.6.1 Macdonald Polynomials in x−1

Consider the q-difference operators D(r)
x−1 (r = 0, 1, . . . , n) in the variables x−1 =

(x−1
1 , . . . , x−1

n ) such that

D(r)
x−1 f (x

−1) = D(r)
x f (x)

∣∣∣
x→x−1

. (5.65)

These operators are then explicitly given by

D(r)
x−1 =

∑

|I |=r

t(
r
2)

∏

i∈I, j /∈I

t x j − xi
x j − xi

∏

i∈I
T−1
q,xi . (5.66)

Lemma 5.5 For each r = 0, 1, . . . , n,

D(r)
x = t (n−1)r−(n2)D(n−r)

x−1 Tq,x1 · · · Tq,xn . (5.67)

In terms of the generating function, we have

Dx (u) = (−u)nt(
n
2)Dx−1(u−1t−n+1)Tq,x1 · · · Tq,xn . (5.68)

We leave the proof of this lemma as an exercise.
Let λ ∈ Pn be a partition and suppose that λ is contained in the n × l rectangle

(λ1 ≤ l). Then we have

(x1 · · · xn)l Pλ(x
−1) = m(ln)−λ∨(x) + (lower-order terms) ∈ C[x]Sn , (5.69)

where λ∨ = (λn, . . . , λ1) denotes the reversal of λ = (λ1, . . . , λn).

Proposition 5.1 For each partition λ ∈ Pn with λ1 ≤ l, l ∈ N, we have

(x1 · · · xn)l Pλ(x
−1) = P(ln)−λ∨(x), λ∨ = (λn, . . . , λ1). (5.70)

One can verify the eigenfunction equation

Dx (u)(x1 · · · xn)l Pλ(x
−1) =

n∏

i=1

(1 − utn−i ql−λn+1−i ) · (x1 · · · xn)l Pλ(x
−1) (5.71)

by using Lemma 5.5.
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5.6.2 Determinant Representation of Dx(u)

The generating function Dx (u) of theMacdonald–Ruijsenaars q-difference operators
can alsobe expressed in termsof thedeterminant of amatrix ofq-differenceoperators.

For an n × n matrix L = (Li j )
n
i, j=1 with entires in a ring, possibly non-

commutative, we use the notation det(L) for the column determinant

det(L) =
∑

σ∈Sn

sgn(σ )Lσ(1)1 · · · Lσ(n)n. (5.72)

Theorem 5.6 Thegenerating function Dx (u) = ∑n
r=0(−u)r D(r)

x of theMacdonald–
Ruijsenaars operators is represented by the column determinant

Dx (u) = 1

�(x)
det

(
xn− j
i

(
1 − utn− j Tq,xi

))n

i, j=1

= 1

�(x)

∑

σ∈Sn

sgn(σ )

n∏

j=1

xn− j
σ( j)

(
1 − utn− j Tq,xσ( j)

)
.

(5.73)

We remark that the q-difference operators Li j = xn− j
i (1 − utn− j Tq,xi ) satisfy the

commutativity Li j Lkl = Lkl Li j (i �= k). This implies that the product
∏n

j=1 above
does not depend on the ordering.

For a q-difference operator Lx = ∑
μ∈Zn aμ(x)T μ

q,x ∈ C(x)[T±1
q,x ], we define its

symbol by

symb(Lx ) =
∑

μ∈Zn

aμ(x)ξμ ∈ C(x)[ξ±1], ξ = (ξ1, . . . , ξn). (5.74)

Note that two q-difference operators Lx , Mx coincide if symb(Lx) = symb(Mx ).
We compute the symbol of Dx(u) as follows:

symb(Dx(u))

=
∑

I⊆{1,...,n}
(−u)|I |

T εI
t,x�(x)

�(x)
ξ εI = 1

�(x)

( ∑

I⊆{1,...,n}
(−u)|I |ξεI T εI

t,x

)
�(x)

= 1

�(x)

n∏

i=1

(1 − u ξi Tt,xi )�(x) = 1

�(x)
det

(
xn− j
i (1 − u tn− jξi ))

n
i, j=1

= 1

�(x)

∑

σ∈Sn

sgn(σ )

n∏

j=1

xn− j
σ( j)(1 − u tn− jξσ( j)), (5.75)

which coincides with the symbol of the right-hand side of (5.73).
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5.6.3 Limit to the Differential (Jack) Case

If we set q = eε with a small parameter ε, we have

Tq,xi x
μ = qμi xμ =

∞∑

k=0

(μiε)
k

k! xμ

=
∞∑

k=0

(εxi∂xi )
k

k! xμ = eεxi ∂xi xμ = qxi ∂xi xμ. (5.76)

In view of this fact, we rewrite the q-shift operators as Tq,xi = qxi ∂xi by the
Euler operators xi∂xi = xi∂/∂xi (i = 1, . . . , n). Then we take the scaling limit of
Dx (u)/(1 − q)n as q → 1 with t = qβ , u = qv:

Sx (v) = lim
q→1

1

(1 − q)n

(
Dx (q

v)
∣∣
t=qβ

)

= 1

�(x)
lim
q→1

det
(
xn− j
i

1 − qv+(n− j)β+xi ∂xi

1 − q

)n

i, j=1
.

= 1

�(x)
det

(
xn− j
i (v + xi∂xi + (n − j)β)

)n

i, j=1
. (5.77)

The resulting operator Sx (v) satisfies

Sx (v)P (β)

λ (x) = P (β)

λ (x)
n∏

i=1

(v + λi + (n − i)β) (λ ∈ Pn), (5.78)

where P (β)

λ (x) = lim
q→1

Pλ(x; q, qβ) are the Jack polynomials. Denoting by S(r)
x the

coefficients of vn−r of Sx (v), we obtain a commuting family of differential operators
S(r)
x , called the Sekiguchi–Debiard operators, such that

S(r)
x P (β)

λ (x) = er (λ + βδ)P (β)

λ (x) (r = 0, 1, . . . , n), (5.79)

where δ = (n − 1, n − 2, . . . , 0). The eigenvalues er (λ + βδ) are the r th elementary
symmetric functions of λi + (n − i)β (i = 1, . . . , n).
From the determinant representation (5.77), by a computation similar to that of

(5.75) we obtain the following expression for the Sekiguchi–Debiard operators:

S(r)
x =

∑

|K |=r

∑

J⊆K

β |K\J | (x∂x )
K\J (�(x))

�(x)
(x∂x )

J (r = 0, 1, . . . , n), (5.80)
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where the sum is over all pairs (J, K ) of subsets of {1, . . . , n} such that |K | = r and
J ⊆ K .2 In particular, we have

S(1)
x =

n∑

i=1

xi∂xi + βe1(δ),

S(2)
x =

∑

1≤i< j≤n

xi∂xi x j∂x j + β

n∑

i=1

⎛

⎝e1(δ) −
∑

j �=i

xi
xi − x j

⎞

⎠ xi∂xi + β2e2(δ),(5.81)

where e1(δ) = 1
2n(n − 1) and e2(δ) = 1

24n(n − 1)(n − 2)(3n − 1). Recall that
power sums are represented as

p1 = e1, p2 = e21 − 2e2, p3 = e31 − 3e1e2 + 3e3, . . . , (5.82)

by elementary symmetric functions. In view of these formulas, we introduce the
differential operators L(k)

x (k = 1, 2, . . .) by

L(1)
x = S(1)

x , L(2)
x = (

S(1)
x

)2 − 2S(2)
x , L(3)

x = (
S(1)
x )3 − 3S(1)

x S(2)
x + 3S(3)

x , . . . .

(5.83)
Then we have

L(k)
x P (β)

λ (x) = pk(λ + βδ)P (β)

λ (x) (k = 1, 2, . . .), (5.84)

with eigenvalues pk(λ + βδ) = ∑n
i=1(λi + (n − i)β)k expressed by power sums.

Explicitly, L(1)
x and L(2)

x are given by

L(1)
x =

n∑

i=1

xi∂xi + βp1(δ),

L(2)
x =

n∑

i=1

(
xi∂xi

)2 + 2β
n∑

i=1

⎛

⎝
∑

j �=i

xi
xi − x j

⎞

⎠ xi∂xi + β2 p2(δ), (5.85)

where p1(δ) = 1
2n(n − 1) and p2(δ) = 1

6n(n − 1)(2n − 1).3 We now conjugate
these operators by the power �(x)β of the difference product:

2 For a differential operator Lx = ∑
μ∈Nn aμ(x)(x∂x )μ (finite sum), consider the symbol

symb(Lx ) = ∑
μ∈Nn aμ(x)λμ with λ = (λ1, . . . , λ) regarded as variables. Note also that Lx (xλ) =

symb(Lx )xλ.
3 Set Ui (x) = xi ∂xi (�(x))

�(x) = ∑
j �=i

xi
xi−x j

for each i , and Ui j (x) = xi∂xi (Uj (x)) = xi x j
(xi−x j )2

for

distinct pair i, j , so that
xi ∂xi x j ∂x j (�(x))

�(x) = Ui (x)Uj (x) +Ui j (x). Then we have
∑n

i=1Ui (x) =
p1(δ) and

∑n
i=1U

2
i − 2

∑
1≤i< j≤n Ui j (x) = p2(δ). Use these formulas to derive (5.81) and (5.85).
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P = �(x)βL(1)
x �(x)−β =

n∑

i=1

xi∂xi , (5.86)

H = �(x)βL(2)
x �(x)−β =

n∑

i=1

(
xi∂xi

)2 − 2β(β − 1)
∑

1≤i< j≤n

xi x j

(xi − x j )2
. (5.87)

Then the functions ψλ(x) = P (β)

λ (x)�(x)β (λ ∈ Pn) satisfy

Pψλ(x) = p1(λ + βδ)ψλ(x), Hψλ(x) = p2(λ + βδ)ψλ(x). (5.88)

The operators P and H are the momentum operator and the Hamiltonian for the
Calogero–Sutherland model with coupling constant β. Note that, in terms of the
angular coordinates θi (i = 1, . . . , n) such that xi = e

√−1θi , the operators P and H
are expressed as

P = 1√−1

n∑

i=1

∂θi H = −
n∑

i=1

∂2
θi

+ β(β − 1)

2

∑

1≤i< j≤n

1

sin2 θi−θ j

2

. (5.89)



Chapter 6
Self-duality, Pieri Formula and Cauchy
Formulas

Abstract Self-duality (evaluation symmetry), which we are going to discuss below,
is one of themost characteristic properties ofMacdonald polynomials. In this chapter,
we explain how the Pieri formulas (multiplication formula by er ) are obtained from
the action of Macdonald–Ruijsenaars operators D(r)

x through the self-duality. We
also investigate the Cauchy formula and the dual Cauchy formula for Macdonald
polynomials and the relevant kernel identities.

6.1 Self-duality and Pieri Formula

We have seen in the previous chapter that, for generic q, t ∈ C
∗ the Macdonald

polynomials Pλ(x) = Pλ(x; q, t) (λ ∈ Pn) are joint eigenfunctions of the commuting
family of Macdonald–Ruijsenaars q-difference operators D(r)

x (r = 1, . . . , n), and
that they form a C basis of the ring of symmetric polynomials C[x]Sn :

C[x]Sn =
⊕

λ∈Pn

C Pλ(x), Dx (u)Pλ(x) = dλ(u)Pλ(x). (6.1)

Note that, under our assumption |q| < 1, the genericity condition for t is fulfilled
if t k /∈ qZ<0 for k = 1, . . . , n − 1, and in particular, if |t | < 1. Also, if we regard
q, t as variables (indeterminates), the (monic) Macdonald polynomials Pλ(x) are
determined uniquely as symmetric polynomials with coefficients in the fieldQ(q, t)
of rational functions in (q, t); their coefficients are regular in the domain |q| < 1,
|t | < 1.

6.1.1 Principal Specialization

As to the values of Schur functions sλ(x) at the base point x = t δ , we gave two explicit
formulas in Propositions 3.1 and 3.2. Those evaluation formulas are generalized to
the case of Macdonald polynomials as follows.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. Noumi, Macdonald Polynomials, SpringerBriefs in Mathematical Physics,
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Theorem 6.1 (Principal specialization)For anyλ ∈ Pn, the value of Pλ(x) at x = t δ

is given explicitly by

Pλ(t
δ) = tn(λ)

∏

s∈λ

1 − tn−l ′λ(s)qa′
λ(s)

1 − t lλ(s)+1qaλ(s)
= tn(λ)

∏n
i=1(t

n−i+1; q)λi∏
1≤i≤ j≤n(t

j−i+1qλi−λ j ; q)λ j−λ j+1

, (6.2)

wheren(λ) = ∑n
i=1(i − 1)λi and, for each s = (i, j) ∈ λ, l ′λ(s) = i − 1anda′

λ(s) =
j − 1 denote the co-leg length and the co-arm length, respectively.

The proof of this evaluation formula at x = t δ will be given in Sect. 6.3, under the
assumption that Theorem 6.2 (below) of self-duality holds.

6.1.2 Self-duality

At this moment, we know at least that Pλ(t δ) �= 0 as a rational function of (q, t),
since the Schur functions are the special case of Macdonald polynomials where
t = q, i.e. Pλ(x; q, q) = sλ(x). Keeping this in mind, we normalize the Macdonald
polynomials as

P̃λ(x) = Pλ(x)

Pλ(t δ)
(λ ∈ Pn) (6.3)

so that P̃λ(t δ) = 1. Then we have the following self-duality (evaluation symmetry).

Theorem 6.2 (Self-duality) The normalized Macdonald polynomials P̃λ(x) =
Pλ(x)/Pλ(t δ) satisfy

P̃λ(t
δqμ) = P̃μ(t δqλ) (6.4)

for all pairs (λ, μ) ∈ Pn × Pn.

We regard x = t δqλ as the position variables and ξ = t δqμ as the spectral variables.
Then (6.4) means that the normalized Macdonald polynomial P̃λ(t δqμ), regarded
as a function of (λ, μ) ∈ Pn × Pn , is invariant under the exchange of position and
spectral variables on the discrete set.

We include a proof of Theorem 6.2 due to Koornwinder [14, 20] in Sect. 6.4.

6.1.3 Pieri Formula

For each λ ∈ Pn , the Macdonald polynomial Pλ(x) multiplied by an elementary
symmetric function er (x) (r = 1, . . . , n) can be expanded into a linear combination
of Macdonald polynomials:
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er (x)Pμ(x) =
∑

λ∈Pn
λ≤μ+(1r )

ψ ′
λ/μ Pλ(x), (6.5)

with some coefficients ψ ′
λ/μ ∈ Q(q, t). This type of expansion formula is called the

Pieri formula. In order to describe the expansion coefficients in the Pieri formula,
we introduce certain rational functions in (q, t).

For each pair λ,μ ∈ P of partitions with μ ⊆ λ (i.e. μi ≤ λi for all i ≥ 1), we
define a rational function ψλ/μ(q, t) ∈ Q(q, t) by

ψλ/μ(q, t) =
∏

1≤i≤ j≤�(μ)

(t j−i+1qμi−μ j ; q)λi−μi

(t j−i qμi−μ j+1; q)λi−μi

(t j−i qμi−λ j+1+1; q)λi−μi

(t j−i+1qμi−λ j+1; q)λi−μi

, (6.6)

and set
ψ ′

λ/μ(q, t) = ψλ′/μ′(t, q). (6.7)

Recall that a skew diagram λ/μ is called a horizontal strip (“h-strip” for short) if
the complement λ\μ contains at most one square in each column. Similarly, we say
that a skew diagram λ/μ is a vertical strip (“v-strip” for short) if the complement
λ\μ contains at most one square in each row. Note that ψλ/μ(q, t) = 0 unless λ/μ

is a horizontal strip, and that ψ ′
λ/μ(q, t) = 0 unless λ/μ is a vertical strip.

Theorem 6.3 (Pieri formula) For each μ ∈ Pn and r = 1, . . . , n, Pμ(x) multiplied
by er (x) is expanded in terms of Macdonald polynomials as

er (x)Pμ(x) =
∑

λ/μ: v-strip
|λ/μ|=r

ψ ′
λ/μ Pλ(x) (6.8)

with coefficientsψ ′
λ/μ = ψ ′

λ/μ(q, t) in (6.6)–(6.7), where the sum is over all partitions
λ ∈ Pn withμ ⊆ λ, |λ| = |μ| + r , such that the skew diagram λ/μ is a vertical strip.

Theorem 6.3 will be proved in Sects. 6.2 and 6.3 before Sect. 6.4, assuming that
Theorem 6.2 holds.

6.2 Self-duality Implies the Pieri Formula

Note that the fact that Pλ(t δ) �= 0 (as a rational function of (q, t)) follows from
the principal specialization of the special case t = q, where Pλ(x |q, q) = sλ(x).
Assuming that the self-duality (6.4) has been established, we explain here how one
can obtain the Pieri formula (6.8) and the evaluation formula (6.2) from the q-
difference equations for Pλ(x), by way of the self-duality.



90 6 Self-duality, Pieri Formula and Cauchy Formulas

For each r = 1, . . . , n, the eigenfunction equation

D(r)
x P̃λ(x) = er (t

δqλ)P̃λ(x) (6.9)

implies ∑

|I |=r

AI (x)P̃λ(q
εI x) = er (t

δqλ)P̃λ(x), (6.10)

where εI = ∑
i∈I εi . Evaluating this formula at x = t δqμ (μ ∈ Pn), we obtain

∑

|I |=r

AI (t
δqμ)P̃λ(t

δqμ+εI ) = er (t
δqλ)P̃λ(t

δqμ). (6.11)

Suppose that ν = μ + εI is not a partition, i.e. μi−1 = μi for some i ∈ {2, . . . , n}
with i ∈ I and i − 1 /∈ I . In such a case, we have

AI (t
δqμ) = t(

|I |
2 )

∏

i∈I, j /∈J

tn−i+1qμi − tn− j qμ j

t n−i qμi − tn− j qμ j
= 0 (6.12)

since t xi − x j = tn−i+1qμi − tn−i+1qμi−1 = 0 (i ∈ I, j = i − 1 /∈ I ). This means
that the sum in the left-hand side of (6.10) is over all I ⊆ {1, . . . , n} with |I | = r
such that ν = μ + εI is a partition. A skew partition ν/μ is a vertical strip if and
only if ν = μ + εI for some I ⊆ {1, . . . , n}. In the following, for each pairμ, ν ∈ Pn

with μ ⊆ ν, we set Aν/μ = AI (t δqμ) if ν/μ is a vertical strip with ν = μ + εI and
Aν/μ = 0 otherwise. Then we have

∑

ν/μ: v-strip, |ν/μ|=r

Aν/μ P̃λ(t
δqν) = er (t

δqλ)P̃λ(t
δqμ). (6.13)

We now apply the self-duality (6.4) to obtain

∑

ν/μ: v-strip, |ν/μ|=r

Aν/μ P̃ν(t
δqλ) = er (t

δqλ)P̃μ(t δqλ). (6.14)

This means that equality

er (x)P̃μ(x) =
∑

ν/μ: v-strip, |ν/μ|=r

Aν/μ P̃ν(x) (6.15)

holds for x = t δqλ (λ ∈ Pn). It also implies that (6.15) is an identity in the ring
C[x]Sn of symmetric polynomials, since a polynomial f (x) ∈ C[x] such that
f (t δqλ) = 0 for all λ ∈ Pn must be zero as a polynomial in x . Namely, if the self-
duality (6.4) has been established, the q-difference equations (6.9) forλ ∈ Pn implies
the Pieri formulas (6.15) for the normalized Macdonald polynomials P̃μ(x) with
coefficients Aν/μ.
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Exercise 6.1 Prove: if a polynomial f (x) ∈ C[x] vanishes at all points x = t δqλ

(λ ∈ Pn), then f (x) = 0 as a polynomial in x .

Supposing that λ/μ is a vertical strip, we express λ as λ = μ + εI with a subset
I ⊆ {1, . . . , n} with |I | = |λ/μ| = r . In this setting, we derive an explicit formula
for the Pieri coefficient

Aλ/μ = AI (t
δqμ) (6.16)

for P̃μ(x). Since 	(x) = ∏n
b=1 x

b−1 ∏
1≤a<b≤n(1 − xa/xb), we have

Aλ/μ = AI (t
δqμ) = 	(t δ+εI qμ)

	(t δqμ)

= tn(εI )
∏

1≤a<b≤n
a∈I,b/∈I

1 − tb−a+1qμa−μb

1 − tb−aqμa−μb

∏

1≤a<b≤n
a /∈I,b∈I

1 − tb−a−1qμa−μb

1 − tb−aqμa−μb
. (6.17)

We use the conjugate partitions λ′, μ′ ∈ P, noting that they satisfy the interlacing
property

n ≥ λ′
1 ≥ μ′

1 ≥ λ′
2 ≥ μ′

2 ≥ λ′
3 ≥ . . . . (6.18)

Then, the subset I ⊆ {1, . . . , n} and its complement J = {1, . . . , n} \I are
parametrized as

λ′
k+2

μ′
k+1

λ′
k+1

μ′
k

λ′
k

μ′
k−1

λ′
k−1

.........................

..................................................

.........................I =
⊔

k≥1

Ik, Ik = (μ′
k, λ

′
k],

J =
⊔

k≥1

Jk, Jk = (λ′
k, μ

′
k−1]

(λ′
0 = μ′

0 = n)

k − 1 k k + 1

Ik

Jk

(6.19)

in the notation of an interval (a, b] = {k ∈ Z | a < k ≤ b} of integers. Note that,
μi = k − 1, λi = k if i ∈ Ik and μ j = λ j = k − 1 if j ∈ Jk). Then we have

Aλ/μ = tn(εI )
∏

j≤i
a∈Ii
b∈J j

1 − tb−a+1qi− j

1 − tb−aqi− j

∏

i< j
a∈J j
b∈Ii

1 − tb−a−1q j−i

1 − tb−aq j−i

= tn(εI )
∏

j≤i

(tμ
′
j−1−λ′

i+1qi− j ; t)λ′
i−μ′

i

(tλ
′
j−λ′

i+1qi− j ; t)λ′
i−μ′

i

∏

i< j

(tμ
′
i−μ′

j−1q j−i ; t)μ′
j−1−λ′

j

(tλ
′
i−μ′

j−1q j−i ; t)μ′
j−1−λ′

j

(6.20)
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and finally

Aλ/μ = = tn(εI )
∏

j≥1

(tn−λ′
j+1q j−1; t)λ′

j−μ′
j

·
∏

i< j (t
μ′
i−λ′

j+1q j−i−1; t)λ′
j−μ′

j∏
i≤ j (t

λ′
i−λ′

j+1q j−i ; t)λ′
j−μ′

j

∏
i≤ j (t

μ′
i−μ′

j q j−i+1; t)μ′
j−λ′

j+1∏
i≤ j (t

λ′
i−μ′

j q j−i+1; t)μ′
j−λ′

j+1

. (6.21)

In combinatorial terms of Young diagrams, this can be written alternatively as

Aλ/μ = tn(λ)
∏n

i=1(t
n−i+1; q)λi

t n(μ)
∏n

i=1(t
n−i+1; q)μi

·
∏

s∈μ∩Rλ/μ
(1 − t lμ(s)+1qaμ(s))

∏
s∈λ∩Rλ/μ

(1 − t lλ(s)+1qaλ(s))

∏
s∈μ\Rλ/μ

(1 − t lμ(s)qaμ(s)+1)
∏

s∈λ\Rλ/μ
(1 − t lλ(s)qaλ(s)+1)

, (6.22)

where Rλ/μ = I × Z>0 denotes the union of rows intersecting with the vertical strip
λ/μ.

6.3 Principal Specialization: Evaluation at x = tδ

The normalized Macdonald polynomials P̃λ(x) can be written as

P̃λ(x) = 1

aλ

Pλ(x) = 1

aλ

mλ(x) + (lower-order terms), aλ = Pλ(t
δ). (6.23)

We compare the coefficients of mλ(x) of the both sides of (6.15) for λ = μ + 
r ,

r = ε1 + · · · + εr = (1r ). Then we obtain

1

aμ

= Aλ/μ

1

aλ

, i.e. aλ = aμAλ/μ (6.24)

for λ = μ + 
r .
We make use of this recurrence formula for the case where �(μ) ≤ r and λ =

μ + 
r . Since

Aλ/μ = t(
r
2)

r∏

i=1

1 − tn−i+1qμi

1 − tr−i+1qμi
= tn(
r )

∏

s∈λ\μ

1 − tn−l ′λ(s)qaλ(s)

1 − t lλ(s)+1qaλ(s)
, (6.25)

by aλ = aμAλ/μ, we obtain

aλ = aμ · tn(
r )
∏

s∈λ\μ

1 − tn−l ′λ(s)qaλ(s)

1 − t lλ(s)+1qaλ(s)
, (6.26)
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if �(μ) ≤ r and λ = μ + 
r . Noting that any λ ∈ Pn is expressed as λ = 
λ′
1
+

· · · + 
λ′
l
, l = λ1, we can apply the recurrence formula (6.26) to obtain

aλ = tn(λ)
∏

s∈λ

1 − tn−l ′λ(s)qaλ(s)

1 − t lλ(s)+1qaλ(s)
=

∏

s∈λ

t l
′
λ(s) − tnqa′

λ(s)

1 − t lλ(s)+1qaλ(s)
(6.27)

for any λ ∈ Pn . In terms of the components of λ, aλ is expressed alternatively as

aλ = tn(λ)
∏n

i=1(t
n−i+1; q)λi∏

1≤i≤ j≤n(t
j−i+1qλi−λ j ; q)λ j−λ j+1

. (6.28)

Note that the pair (i, j) of indices with 1 ≤ i ≤ j ≤ n in the denominator covers
the sequence of squares s = (i, k) with k ∈ (λ j+1, λ j ], for which lλ(s) = j − i and
aλ(s) = λi − k.

i

j

λi

λ j
λ j+1

.........................
.........................

.........................

(6.29)

Formulas (6.26)–(6.27) are the explicit formulas for Pλ(t δ) = aλ in Theorem 6.1.
Also, the Pieri coefficients ψ ′

λ/μ in (6.8) for λ = μ + εI , I ⊆ {1, . . . , n} are
obtained from (6.15) by

ψ ′
λ/μ = aμ

aλ

Aλ/μ, Aλ/μ = AI (t
δqμ). (6.30)

Writing down this formula in terms of λ,μ ∈ Pn , we obtain the explicit formula for
ψ ′

λ/μ = ψ ′
λ/μ(q, t) as in (6.6). By (6.22) and (6.27) we obtain

ψ ′
λ/μ = aμ

aλ

Aλ/μ

=
∏

s∈λ(1 − t lλ(s)+1qaλ(s))∏
s∈μ(1 − t lμ(s)+1qaμ(s))

·
∏

s∈μ∩Rλ/μ
(1 − t lμ(s)+1qaμ(s))

∏
s∈λ∩Rλ/μ

(1 − t lλ(s)+1qaλ(s))

∏
s∈μ\Rλ/μ

(1 − t lμ(s)qaμ(s)+1)
∏

s∈λ\Rλ/μ
(1 − t lλ(s)qaλ(s)+1)

=
∏

s∈λ\Rλ/μ

1 − t lλ(s)+1qaλ(s)

1 − t lλ(s)qaλ(s)+1

∏

s∈μ\Rλ/μ

1 − t lμ(s)qaμ(s)+1

1 − t lμ(s)+1qaμ(s)
. (6.31)
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In terms of the components of λ, μ, this formula can be rewritten as

ψ ′
λ/μ =

∏

i≤ j

(tλ
′
i−μ′

j+1q j−i ; t)μ′
j−λ′

j+1

(tλ
′
i−μ′

j q j−i+1; t)μ′
j−λ′

j+1

(tμ
′
i−μ′

j q j−i+1; t)μ′
j−λ′

j+1

(tμ
′
i−μ′

j+1q j−i ; t)μ′
j−λ′

j+1

=
∏

i≤ j

(tμ
′
i−λ′

j+1+1q j−i ; t)λ′
i−μ′

i

(tμ
′
i−λ′

j+1q j−i+1; t)λ′
i−μ′

i

(tμ
′
i−μ′

j q j−i+1; t)λ′
i−μ′

i

(tμ
′
i−μ′

j+1q j−i ; t)λ′
i−μ′

i

. (6.32)

This gives a proof of Theorem 6.3 (under the assumption that Theorem 6.2 holds).
Note that the two expressions in (6.32) are transformed into each other through the
formula

(qla; q)k

(a; q)k
= (a; q)k+l

(a; q)k(a; q)l
= (qka; q)l

(a; q)l
(k, l ∈ N) (6.33)

for q-shifted factorials.

6.4 Koornwinder’s Proof of Self-duality

In this section, we present Koornwinder’s inductive argument which proves the self-
duality and the Pieri formula for P̃λ(x) simultaneously (see Macdonald [20] and
Koornwinder [14]).
For μ ∈ Pn and r = 0, 1, . . . , n, we consider the expansion of er (x)P̃μ(x) in terms

of P̃λ(x) (λ ∈ Pn):

er (x)P̃μ(x) =
∑

λ∈Pn , λ≤μ+
r

Bλ/μ P̃λ(x). (6.34)

The coefficients Bλ/μ are defined for all λ ∈ Pn such that λ ≤ μ + 
r ; we set Bλ/μ =
0 otherwise. For each pair λ,μ ∈ Pn with μ ⊆ λ, we set Aλ/μ = AI (t δqμ) if λ/μ is
a vertical strip with λ = μ + εI , I ⊆ {1, . . . , n}, and Aλ/μ = 0 otherwise.

Weprove the following two statements forλ ∈ Pn simultaneously by the induction
on |λ| combined with the dominance order of partitions:

(a)λ P̃λ(t δqμ) = P̃μ(t δqλ) for all μ ∈ Pn .
(b)λ Suppose that r ∈ {1, . . . , n} and λ − 
r ∈ Pn , and set κ = λ − 
r .

Then, Bν/κ = Aν/κ for any ν ∈ Pn with ν ≤ λ = κ + 
r .

For the induction, we use the partial order ν 
d-dom μ for ν, μ ∈ Pn defined by

ν 
d-dom μ ⇐⇒ |ν| < |μ| or (|ν| = |μ| and ν ≤ μ). (6.35)

Statement (a)μ holds for μ = 0 since P̃λ(t δ) = 1 for all λ ∈ Pn , while (b)μ is empty
for μ = 0.
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Assuming that λ ∈ Pn and |λ| > 0, we first prove (b)λ. Suppose that κ ∈ Pn ,
r ∈ {1, . . . , n} and λ = κ + 
r . By the argument of Sect. 6.2, (6.13), we know

er (t
δqμ)P̃μ(t δqκ) =

∑

ν/κ: v-strip
|ν/κ|=r

Aν/κ P̃μ(t δqν) (μ ∈ Pn). (6.36)

Note that we have ν ≤ κ + 
r = λ if ν/μ is a vertical strip with |ν/κ| = r . On the
other hand, we have

er (t
δqμ)P̃κ(t

δqμ) =
∑

ν≤λ

Bν/κ P̃ν(t
δqμ) (μ ∈ Pn) (6.37)

by (6.34). Since |κ| < |λ|, we have P̃κ(t δqμ) = P̃μ(t δqκ) by the induction hypoth-
esis. Also, we have P̃ν(t δqμ) = P̃μ(t δqμ) for all pair μ, ν ≤ λ by the induction
hypothesis; in fact we have μ < λ or ν < λ if μ �= ν. Hence we have

er (t
δqμ)P̃μ(t δqκ) =

∑

ν≤λ

Bν/κ P̃μ(t δqν) (μ ∈ Pn, μ ≤ λ). (6.38)

From (6.36) and (6.38), we obtain

∑

ν/κ:v-strip
|ν/κ|=r

Aν/κ P̃μ(t δqν) =
∑

ν≤λ

Bν/κ P̃μ(t δqν) (μ ∈ Pn, μ ≤ λ). (6.39)

Then, statement (b)λ follows if we confirm that det
(
P̃μ(t δqν)

)
μ,ν≤λ

�= 0, which will
be proved below in Lemma 6.1.

Knowing that (b)λ holds, we can rewrite (6.37) as

er (t
δqμ)P̃κ(t

δqμ) =
∑

ν/μ: v-strip
|ν/μ|=r

Aν/κ P̃ν(t
δqμ) (μ ∈ Pn). (6.40)

We now compare (6.36) and (6.40) for arbitraryμ ∈ Pn . Since P̃μ(t δqκ) = P̃κ(t δqμ)

and P̃μ(t δqν) = P̃ν(t δqμ) for any ν < λ = κ + 
r , we obtain

Aλ/κ P̃μ(t δqλ) = Aλ/κ P̃λ(t
δqμ). (6.41)

Since Aλ/κ �= 0, we obtain P̃μ(t δqλ) = P̃λ(t δqμ) for all μ ∈ Pn , as desired.

Lemma 6.1 For any λ ∈ Pn, det
(
P̃μ(t δqν)

)
μ,ν≤λ

�= 0.

Proof This statement is equivalent to det
(
Pμ(t δqν)

)
μ,ν≤λ

�= 0 since P̃μ(x) =
Pμ(x)/aμ, and further to det

(
mμ(t δqν)

)
μ,ν≤λ

�= 0 since Pμ(x) = mμ(x) +
(lower order terms with respect to ≤). Note that
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mμ(t δqν) = t 〈μ,δ〉q〈μ,ν〉 + (lower degree terms in t), (6.42)

and hence

det
(
mμ(t δqν)

)
μ,ν≤λ

= det
(
t 〈μ,δ〉q〈μ,ν〉)

μ,ν≤λ
+ (lower degree terms in t)

= t
∑

μ≤λ〈μ,δ〉 det
(
q〈μ,ν〉)

μ,ν≤λ
+ (lower degree terms in t). (6.43)

Setting N = # {μ ∈ Pn | μ ≤ λ}, parametrize all μ ∈ Pn with μ ≤ λ as μ(1), . . . ,

μ(N ). Then we have

det
(
q〈μ,ν〉)

μ,ν≤λ
= det

(
q〈μ(i),μ( j)〉)N

i, j=1 =
∑

σ∈SN

sgn(σ )q
∑N

i=1〈μ(i),μ(σ(i))〉

= q
∑N

i=1〈μ(i),μ(i)〉 + (lower degree terms in q). (6.44)

In fact, for σ �= 1, inequality
∑N

i=1〈μ(i) − μ(σ(i)), μ(i) − μ(σ(i))〉 > 0 implies∑N
i=1〈μ(i), μ(i)〉 >

∑N
i=1〈μ(i), μ(σ(i))〉. Hence we have det (q〈μ,ν〉)

μ,ν≤λ
�= 0. �

We remark that the self-duality of Theorem 6.2 can also be proved by means of
the Cherednik involution of the double affine Hecke algebra (see Sect. 8.5).

6.5 Cauchy Formula and Dual Cauchy Formula

The Cauchy formula of Theorem 3.2 and the dual Cauchy formula of Theorem 3.4
for Schur functions can be generalized to the case of Macdonald polynomials.

Theorem 6.4 (Cauchy formula) For two sets of variables x = (x1, . . . , xm) and
y = (y1, . . . , yn), we have

m∏

i=1

n∏

j=1

(t xi y j ; q)∞
(xi y j ; q)∞

=
∑

�(λ)≤min{m,n}
bλPλ(x)Pλ(y), (6.45)

where λ runs over all partitions with �(λ) ≤ min {m, n}, and the coefficients bλ are
given by

bλ =
∏

s∈λ

1 − t lλ(s)+1qaλ(s)

1 − t lλ(s)qaλ(s)+1
=

∏

1≤i≤ j≤�(λ)

(t j−i+1qλi−λ j ; q)λ j−λ j+1

(t j−i qλi−λ j+1; q)λ j−λ j+1

. (6.46)



6.5 Cauchy Formula and Dual Cauchy Formula 97

We remark that, when q = t , formula (6.45) reduces to the Cauchy formula

m∏

i=1

n∏

j=1

1

1 − xi y j
=

∑

�(λ)≤min{m,n}
sλ(x)sλ(y), (6.47)

with coefficients bλ = 1. In Sect. 6.6, we give a proof of the fact that the left-hand
side of (6.45) has an expansion formula of the form (6.45) for some constants bλ

(λ ∈ Pn); a derivation of the explicit formula (6.46) for bλ will be given in Sect. 7.3.
In Macdonald’s monograph [20], the notation Qλ(y) = bλPλ(y) for the “dual” Mac-
donald polynomials is consistently used in view of their roles in duality arguments.

Theorem 6.5 (Dual Cauchy formula) For two sets of variables x = (x1, . . . , xm)

and y = (y1, . . . , yn), we have

m∏

i=1

n∏

j=1

(1 + xi y j ) =
∑

λ⊆(nm )

Pλ(x; q, t)Pλ′(y; t, q), (6.48)

m∏

i=1

n∏

j=1

(xi + y j ) =
∑

λ⊆(nm )

Pλ(x; q, t)Pλc(y; t, q), (6.49)

where the sum is over all partitions λ contained in the m × n rectangle (nm); λ′ =
(λ′

1, . . . , λ
′
n) and λc = (m − λ′

n, . . . ,m − λ′
1) denote the conjugate partition of λ

and the complementary partion of λ in (nm) respectively.

In what follows, we set


m,n(x; y) =
m∏

i=1

n∏

j=1

(t xi y j ; q)∞
(xi y j ; q)∞

(6.50)

and regard 
m,n(x; y) as a formal power series in C[[x, y]]Sm×Sn .1 We also set


∨
m,n(x; y) =

m∏

i=1

n∏

j=1

(1 + xi y j ) ∈ C[x, y]Sm×Sn . (6.51)

It is sometimes more convenient to use the generating function

�m,n(x; y) =
m∏

i=1

n∏

j=1

(xi + y j ) ∈ C[x, y]Sm×Sn . (6.52)

1 In fact, 
m,n(x; y) is a meromorphic function on C
m × C

n under our assumption |q| < 1. It is
also holomorphic in the domain |xi y j | < 1 for i ∈ {1, . . . ,m} , j ∈ {1, . . . , n}.
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Since

�m,n(x; y) = (y1 · · · yn)m
m∏

i=1

n∏

j=1

(1 + xi y
−1
j ) = (y1 . . . yn)

m
∨
m,n(x; y−1), (6.53)

formula (6.48) is equivalent to

m∏

i=1

n∏

j=1

(xi + y j ) =
∑

λ∈(nm )

Pλ(x; q, t)(y1 · · · yn)m Pλ′(y−1; t, q). (6.54)

By Proposition 5.1, for each partition λ ⊆ (nm) we have

(y1 · · · yn)m Pλ′(y−1; t, q) = Pλc(y; t, q), (6.55)

where
λc = ((mn) − λ′)∨ = (m − λ′

n, . . . ,m − λ′
1) (6.56)

denotes the complementary partition of λ in the m × n rectangle. Hence formula
(6.48) is equivalent to (6.49). We give a proof of the dual Cauchy formula (6.49) in
the second half of Sect. 6.6.

6.6 Kernel Identities

6.6.1 Kernel Identity for the Cauchy Formula

We consider the case where m = n. We first remark that there exists an expansion
formula as (6.45)with some constantsbλ, if andonly if
(x; y) = 
n,n(x; y) satisfies
the kernel identity

Dx (u)
(x; y) = Dy(u)
(x; y). (6.57)

Expand 
(x; y) in terms of Macdonald polynomials Pλ(x) (λ ∈ Pn) as


(x; y) =
∑

λ∈Pn

Pλ(x)Qλ(y), Qλ(y) ∈ C[y]Sn (λ ∈ Pn). (6.58)

Since

Dx (u)
(x; y) =
∑

λ∈Pn

Pλ(x)Qλ(y)
n∏

i=1

(1 − utn− j qλ j ),

Dy(u)
(x; y) =
∑

λ∈Pn

Pλ(x)Dy(u)Qλ(y), (6.59)
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identity (6.57) implies Dy(u)Qλ(y) = Qλ(y)
∏n

i=1(1 − utn− j qλ j ) and hence,
Qλ(x) = bλPλ(x) for some bλ ∈ C.

Proposition 6.1 For two sets of variables x = (x1, . . . , xn), y = (y1, . . . , yn), the
formal power series


(x; y) =
n∏

i=1

n∏

j=1

(t xi y j ; q)∞
(xi y j ; q)∞

∈ C[[x, y]]Sn×Sn (6.60)

satisfies the kernel identity

Dx (u)
(x; y) = Dy(u)
(x; y). (6.61)

Proof Recall that

Dx (u) =
∑

I⊆{1,...,n}
(−u)|I |t(

|I |
2 )

∏

i∈I, j /∈I

t xi − x j

xi − x j

∏

i∈I
Tq,xi ,

Dy(u) =
∑

K⊆{1,...,n}
(−u)|K |t(

|K |
2 )

∏

k∈K , l /∈K

tyk − yl
yk − yl

∏

k∈K
Tq,yk . (6.62)

Since

∏

i∈I
Tq,xi 
(x; y) =

∏

i∈I

n∏

l=1

1 − xi yl
1 − t xi yl

· 
(x; y),

∏

k∈K
Tq,yk
(x; y) =

∏

k∈K

n∏

j=1

1 − x j yk
1 − t x j yk

· 
(x; y), (6.63)

Equation (6.61) is equivalent to the source identity

∑

I⊆{1,...,n}
(−u)|I |t(

|I |
2 )

∏

i∈I ; j /∈I

t xi − x j

xi − x j

∏

i∈I

n∏

l=1

1 − xi yl
1 − t xi yl

=
∑

K⊆{1,...,n}
(−u)|K |t(

|K |
2 )

∏

k∈K ; l /∈K

tyk − yl
yk − yl

∏

k∈K

n∏

j=1

1 − x j yk
1 − t x j yk

.

(6.64)

An important observation is that this identity does not involve q. This means that, in
order to prove (6.64), it is sufficient to prove (6.61) for q = t . However, we already
know that (6.61) holds when q = t by the Cauchy formula for Schur functions. �

The existence of an expansion formula of the form (6.45) for difference num-
ber of variables m, n follows from the stability of Macdonald polynomials as in
Exercise 4.2. Also, for a given partition λ ∈ P, the coefficient bλ of Pλ(x)Pλ(y) in
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(6.45) is determined independently of the choice of m, n such that
m ≥ �(λ), n ≥ �(λ).

It should be noted thatwe need someother arguments to obtain the explicit formula
(6.46) for bλ; a proof of (6.46) will be given in Sect. 7.3, on the basis of compatibility
of the Cauchy and the dual Cauchy formula for Macdonald polynomials.

In the setting of Theorem 6.4, suppose that m ≥ n. Then for each λ ∈ Pn , we
have

Dx (u)Pλ(x) = Pλ(x)
n∏

i=1

(1 − utm−i qλi )

m∏

i=n+1

(1 − utm−i )

Dy(v)Pλ(y) = Pλ(y)
n∏

i=1

(1 − vtn−i qλi ). (6.65)

We also remark that (6.45) for the case where m ≥ n corresponds to the kernel
identity

Dx (u)
m,n(x; y) = (u; t)m−nDy(ut
m−n)
m,n(x; y). (6.66)

Remark 6.1 We have used here the kernel identity for 
m,n(x; y) to prove the
Cauchy formula for Macdonald polynomials. Another important application of the
kernel identity is the integral transform of the form

ϕ(x) = 1

(2π
√−1)n

∫

Tn


m,n(x; y)ψ(y)w(y)
dy1 · · · dyn
y1 · · · yn . (6.67)

It transforms joint eigenfunctions ψ(y) of the Macdonald–Ruijsenaars operators
Dy(v) in y variables to joint eigenfunctions ϕ(x) of Dx (u) in x variables. This
property is a consequence of the kernel identity for 
m,n(x; y) combined with the
self-adjointness of Dy(v) with respect to the weight function w(y).

6.6.2 Kernel Identity for the Dual Cauchy Formula

Here we give a proof of formula (6.49) which is equivalent to (6.48), on the basis of
a relevant kernel identity.

For two sets of variables x = (x1, . . . , xm) and y = (y1, . . . , yn), we set

Pμ(x) = Pμ(x; q, t) (μ ∈ Pm), P◦
ν (y) = Pν(y; t, q) (ν ∈ Pn). (6.68)

We also denote by

D◦
y =

n∑

k=1

∏

1≤l≤n; l �=k

qyk − yl
yk − yl

Tt,yk (6.69)

the t-difference operator obtained from Dy by exchanging q and t .
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Note that the polynomial

�m,n(x; y) =
m∏

i=1

n∏

j=1

(xi + y j ) ∈ C[x, y]Sm×Sn (6.70)

is of degree mn in (x, y), and symmetric both in x and in y. Since �m,n(x; y) is of
degree ≤ n in each xi and of degree ≤ m in each y j , it can be expressed as

�m,n(x; y) =
∑

μ⊆(nm ); ν⊆(mn)

cμ,νPμ(x)P◦
ν (y) (6.71)

with someconstants cμ,ν . For eachpartitionμ ⊆ (nm),wedefined the complementary
partition μc in the m × n rectangle by μc = (m − μ′

n, n − μ′
n−1, . . . ,m − μ′

1) (see
the figure in (3.82)). In this setting, we show that cμ,ν = 0 unless ν = μc, namely

�m,n(x; y) =
m∏

i=1

n∏

j=1

(xi + y j ) =
∑

λ⊆(nm )

cλPλ(x)P
◦
λc(y) (6.72)

for some constants cλ ∈ C.
In the eigenfunction equation

Dx Pλ(x) = dλPλ(x), dλ =
m∑

i=1

tm−i qλi , (6.73)

the eigenvalue dλ has the following combinatorial meaning:

1

q − 1

(
dλ − tm − 1

t − 1

)
= 1

q − 1

m∑

i=1

tm−i (qλi − 1)

=
m∑

i=1

λi∑

j=1

tm−i q j−1 =
∑

s=(i, j)∈D(λ)

tm−i q j−1. (6.74)

Similarly, as for the eigenvalue d◦
λc in the equation

D◦
y P

◦
λc(y) = d◦

λc P◦
λc(y), d◦

λc =
n∑

j=1

qn− j tλ
c
j , (6.75)

we have

1

t − 1

(
d◦

λc − qn − 1

q − 1

)
=

n∑

j=1

λc
i∑

i=1

t i−1qn− j =
∑

s=(i, j)∈D(λ)c

tm−i q j−1, (6.76)
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where D(λ)c stands for the complement of D(λ) in the rectangle {1, . . . ,m} ×
{1, . . . , n}. Since

∑

s=(i, j)∈(nm )

tm−i q j−1 = tm − 1

t − 1

qn − 1

q − 1
, (6.77)

the existence of a formula in the form (6.72) is equivalent to

(
1

q − 1

(
Dx − tm − 1

t − 1

)
+ 1

t − 1

(
D◦

y − qn − 1

q − 1

))
�m,n(x; y)

= tm − 1

t − 1

qn − 1

q − 1
�m,n(x; y), (6.78)

namely,

( 1

q − 1
Dx + 1

t − 1
D◦

y

)
�m,n(x; y) = tmqn − 1

(t − 1)(q − 1)
�m,n(x; y). (6.79)

Proposition 6.2 For two sets of variables x = (x1, . . . , xm) and y = (y1, . . . , yn),
the polynomial

�m,n(x; y) =
m∏

i=1

n∏

j=1

(xi + y j ) ∈ C[x, y]Sm×Sn (6.80)

satisfies the kernel identity

( 1

q − 1
Dx + 1

t − 1
D◦

y

)
�m,n(x; y) = tmqn − 1

(t − 1)(q − 1)
�m,n(x; y). (6.81)

Proof This kernel identity is equivalent to the following identity of rational func-
tions:

1

q − 1

m∑

i=1

∏

j �=i

t xi − x j

xi − x j

n∏

l=1

qxi + yl
xi + yl

+ 1

t − 1

n∑

k=1

∏

l �=k

qyk − yl
yk − yl

m∏

j=1

x j + t yk
x j + yk

= tmqn − 1

(t − 1)(q − 1)
, (6.82)

which can be verified directly by the residue calculus combined with induction on
the number of variables. In fact, equality (6.82) for n = 0 is the same as (4.2). When
n > 0, we regard the left-hand side as a rational function of yn . Then, we see that
the residues at yn = yk (k = 1, . . . , n − 1) and at yn = −xi ( i = 1, . . . ,m) are all
zero. We can also verify that the limit as yn → 0 gives the value of the right-hand
side, by using the induction hypothesis of the case (m, n − 1). �
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Finally, we show that cλ = 1 for all λ ⊆ (nm). We denote by Am,n the set of
all m × n integer matrices A = (ai j )1≤i≤m; 1≤ j≤n such that ai j ∈ {0, 1} for all i, j .
Also, for a pair of multi-indices (μ, ν) ∈ N

m × N
n , we denote byAμ,ν the set of all

A = (ai j ) ∈ Am,n such that

n∑

j=1

ai j = μi (i = 1, . . . ,m),

m∑

i=1

ai j = ν j ( j = 1, . . . , n). (6.83)

Then �m,n(x; y) can be expanded as follows:

�m,n(x; y) =
∑

A=(ai j )∈Am,n

m∏

i=1

n∏

j=1

(x
ai j
i y

1−ai j
j )

=
∑

μ∈Nm ,ν∈Nn

(#Aμ,ν) x
μy(mn)−ν =

∑

μ∈Nm ,ν∈Nn

(#Aμ,(mn)−ν) x
μyν

=
∑

μ,ν⊆(nm )

(#Aμ,(mn)−νc) mμ(x)mνc(y). (6.84)

Since (mn) − νc = (ν ′
n, . . . , ν

′
1) is the reversal of ν ′ = (ν ′

1, . . . , ν
′
n), we obtain

�m,n(x; y) =
∑

μ,ν⊆(nm )

(#Aμ,ν ′) mμ(x)mνc(y). (6.85)

We now look at the coefficients of mμ(x)mμc(y) for partitions μ ⊆ (nm).

Lemma 6.2 For each partition μ ⊆ (nm), #Aμ,μ′ = 1.

Proof Define A = (ai j )1≤i≤m,1≤ j≤n by

ai j = 1 (1 ≤ j ≤ μi ), ai j = 0 (μi < j ≤ n) (6.86)

for all i ∈ {1, . . . ,m}, so that
{
s = (i, j) ∈ {1, . . . ,m} × {1, . . . , n} | ai j = 1

} = D(μ). (6.87)

Then, one can verify that this matrix A it is the only element ofAμ,μ′ . �



μ1
μ2

.

.

.

μm

μ′
n. . .μ′

2μ′
1

(6.88)
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This lemma implies that, for each partition μ ⊆ (nm), the coefficient of xμyμc
in the

expansion of�m,n(x; y) is precisely 1. In the right-hand side of (6.72), themonomial
xμyμc

arises only if there exists a partition λ ∈ (nm) such that μ ≤ λ and μc ≤ λc.
One can directly verify that the conditionμc ≤ λc impliesμ′ ≤ λ′, and henceμ ≥ λ.
Together withμ ≤ λ, we obtain λ = μ. This implies that the monomial xμyμc

arises
only from the term Pμ(x)P◦

μc(y). This also means that the coefficient of xμyμc
on

the right-hand side is given by cμ. Hence we have cμ = 1 for all partitionsμ ⊆ (nm).
This completes the proof of the dual Cauchy formula (6.49) of Theorem 6.5, and
also the proof of (6.48).



Chapter 7
Littlewood–Richardson Coefficients
and Branching Coefficients

Abstract The Littlewood–Richardson coefficients are the structure constants for the
multiplication of Macdonald polynomials. On the other hand, the branching coeffi-
cients describe the expansion of Macdonald polynomials by products of Macdonald
polynomials in smaller dimensions. We explain here that these two types of coeffi-
cients are intimately related to each other through the Cauchy formula forMacdonald
polynomials. We also present a commuting family of q-difference operators of row
type for which Macdonald polynomials are joint eigenfunctions, and explain how
they are related to the Pieri formula of row type.

7.1 Littlewood–Richardson Coefficients and Branching
Coefficients

For a pair of partitions μ, ν ∈ Pn , one can expand the product Pμ(x)Pν(x) of
Macdonald polynomials as a linear combination of Macdonald polynomials Pλ(x)

(λ ∈ Pn):
Pμ(x)Pν(x) =

∑

λ∈Pn; |λ|=|μ|+|ν|
cλ
μ,ν Pλ(x) (7.1)

with coefficients cλ
μ,ν = cλ

μ,ν(q, t) ∈ Q(q, t). These expansion coefficients cλ
μ,ν are

called the Littlewood–Richardson coefficients (or Clebsch–Gordan coefficients). We
remark that the coefficient cλ

μ,ν ∈ Q(q, t) for λ,μ, ν ∈ P does not depend on the
choice of n such that λ,μ, ν ∈ Pn , thanks to the stability of Macdonald polynomials
of Exercise 4.2 with respect to the number of variables.

If ν = (1r ) is a single column (r = 0, 1, 2, . . .), the coefficients cλ
μ,(1r ) are nothing

but the Pieri coefficients ψ ′
λ/μ = ψλ′/μ′(t, q) of Theorem 6.3 since P(1r )(x) = er (x):

Pμ(x)er (x) =
∑

λ⊇μ; |λ/μ|=r
λ/μ: v-strip

ψ ′
λ/μ Pλ(x) (r = 0, 1, . . . , n), (7.2)
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where the sum is over the vertical strips λ/μ with |λ/μ| = r . Namely, cλ
μ,(1r ) =

ψλ′/μ′(t, q) if λ/μ is a vertical strip with |λ/μ| = r , and cλ
μ,(1r ) = 0 otherwise.

TheseLittlewood–Richardson coefficients cλ
μ,ν are closely related to thebranching

coefficients bλ
μ,ν to be definedbelow.Weexpand theMacdonald polynomials Pλ(x, y)

(λ ∈ Pm+n) in m + n variables (x, y) = (x1, . . . , xm, y1, . . . , yn) in terms of the
Macdonald polynomials Pμ(x) of m variables x and Pν(y) of n variables y:

Pλ(x, y) =
∑

μ∈Pm , ν∈Pn

bλ
μ,ν Pμ(x)Pν(y) (7.3)

with some coefficients bλ
μ,ν = bλ

μ,ν(q, t) ∈ Q(q, t). The expansion coefficients bλ
μ,ν

are called the branching coefficients. Note that bλ
μ,ν = 0 unless |λ| = |μ| + |ν|. We

also remark that the branching coefficient bλ
μ,ν ∈ Q(q, t) for λ,μ, ν ∈ P does not

depend on the choice of m, n as far as μ ∈ Pm , ν ∈ Pn and λ ∈ Pm+n .
When n = 1, the branching coefficients are expressed by the Pieri coefficients

ψλ/μ(q, t) defined in (6.6).

Theorem 7.1 For each λ ∈ Pn, the Macdonald polynomial Pλ(x) in n variables
x = (x1, . . . , xn) is expanded in the form

Pλ(x) =
∑

μ⊆λ
|λ/μ|: h-strip

ψλ/μ Pμ(x ′) x |λ/μ|
n , x ′ = (x1, . . . , xn−1), (7.4)

in terms of the Macdonald polynomials Pμ(x ′) in n − 1 variables and xn, where the
sum is over all horizontal strips λ/μ with �(μ) ≤ n − 1 and the coefficients ψλ/μ

are given by ψλ/μ = ψλ/μ(q, t).

In terms of the branching coefficients, this means that bλ
μ,(l) = ψλ/μ(q, t) if λ/μ is a

horizontal strip with |λ/μ| = l, and bλ
μ,(l) = 0 otherwise. Theorem 7.1will be proved

in the next section. Note also that Theorem 7.1 is a generalization of Theorem 3.3 of
recurrence for Schur functions.

Remark 7.1 As we explained in Sect. 3.9, for each partition λ ∈ Pn , there exists
an irreducible polynomial representation of GLn = GLn(C) with highest weight λ,
which we denote by Vn(λ); the character of Vn(λ) is the Schur function sλ(x) in
x = (x1, . . . , xn). In this context where t = q, the Littlewood–Richard coefficients
cλ
μ,ν (λ, μ, ν ∈ Pn) are non-negative integers, and they represent the multiplicities of

Vn(λ) in the irreducible decomposition of the tensor product representation Vn(μ) ⊗
Vn(ν). In fact, for any pair μ, ν ∈ Pn , we have an isomorphism

Vn(μ) ⊗ Vn(ν) �
⊕

λ∈Pn

Vn(λ)⊕ cλ
μ,ν (7.5)
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of GLn-modules. On the other hand, for λ ∈ Pm+n , μ ∈ Pm , ν ∈ Pn , the branching
coefficients bλ

μ,ν are non-negative integers, and they represent the multiplicity of
Vm(μ) ⊗ Vn(ν) in the restriction of Vm+n(λ) from GLm+n to the subgroup GLm ×
GLn . In fact, for each λ ∈ Pm+n , we have an isomorphism

Res
⏐�GLm+n

GLm×GLn
(Vm+n(λ)) �

⊕

μ∈Pm , ν∈Pn

(
Vm(μ) ⊗ Vn(ν)

)⊕ bλ
μ,ν (7.6)

of GLm × GLn-modules.

7.2 Relation Between cλμ,ν and bλ
μ,ν

Recall that the Macdonald polynomials have the kernel functions of Cauchy type,
and of dual Cauchy type (the Cauchy formula and the dual Cauchy formula): For
two sets of variables z = (z1, . . . , zM) and w = (w1, . . . , wN ),

�M,N (z;w) =
M∏

k=1

N∏

l=1

(t zkwl; q)∞
(zkwl; q)∞

=
∑

�(λ)≤min{M,N }
bλ Pλ(z)Pλ(w),

�∨
M,N (z;w) =

M∏

k=1

N∏

l=1

(1 + zkwl) =
∑

λ⊆(N M )

Pλ(z)P◦
λ′(w),

(7.7)

where P◦
λ′(w) = Pλ′(w; t, q). In what follows, we denote by ·◦ : Q(q, t) → Q(q, t)

the involutive automorphism such that q◦ = t and t◦ = q.

Theorem 7.2 Let μ ∈ Pm, ν ∈ Pn and λ ∈ Pm+n. Then we have

(1) bλbλ
μ,ν = bμbνcλ

μ,ν, (2) bλ
μ,ν = (cλ′

μ′,ν ′)
◦. (7.8)

Proof (1) Setting M = m + n in (7.7), we suppose that N ≥ M . Then we have

�m+n,N (x, y;w) =
∑

λ∈PN

bλ Pλ(x, y)Pλ(w)

=
∑

λ∈PN

∑

μ∈Pm , ν∈Pn

bλbλ
μ,ν Pμ(x)Pν(y)Pλ(w).

(7.9)

On the other hand,
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�m,N (x;w)�n,N (y;w) =
∑

μ∈Pm

bμ Pμ(x)Pμ(w)
∑

ν∈Pn

bν Pν(y)Pν(w)

=
∑

μ∈Pm , ν∈Pn

bμbν Pμ(x)Pν(y)Pμ(w)Pν(w)

=
∑

μ∈Pm , ν∈Pn

bμbν Pμ(x)Pν(y)
∑

λ∈PN

cλ
μ,ν Pλ(w)

=
∑

μ∈Pm , ν∈Pn

∑

λ∈PN

bμbνcλ
μ,ν Pμ(x)Pν(y)Pλ(w).

(7.10)

Since �m+n,N (x, y;w) = �m,N (x;w)�n,N (y;w), we obtain bλbλ
μ,ν = bμbνcλ

μ,ν .
(2) Setting M = m + n in (7.7), we have

�∨
m+n,N (x, y;w) =

∑

λ⊆(N m+n)

Pλ(x, y)P◦
λ′(w)

=
∑

λ′∈PN

∑

μ∈Pm , ν∈Pn

bλ
μ,ν Pμ(x)Pν(y)P◦

λ′(w)
(7.11)

where ◦ denotes the operation of exchanging the parameters q and t . On the other
hand,

�∨
m,N (x;w)�∨

n,N (y;w) =
∑

μ⊆(N m )

Pμ(x)P◦
μ′(w)

∑

ν⊆(N n)

Pν(y)P◦
ν ′(w)

=
∑

μ⊆(N m ), ν⊆(N n)

Pμ(x)Pν(y)P◦
μ′(w)P◦

ν ′(w)

=
∑

μ⊆(N m ), ν⊆(N n)

∑

λ′⊆(N m+n)

(
cλ′
μ′,ν ′

)◦
Pμ(x)Pν(y)P◦

λ′(w).

(7.12)
Since �∨

m+n,N (x, y;w) = �∨
m,N (x;w)�∨

n,N (y;w), we obtain bλ
μ,ν = (

cλ′
μ′,ν ′

)◦
. �

Proof (of Theorem 7.1) By the Pieri rule (7.2), for λ,μ ∈ P and k ≥ 0 we have

cλ
μ,(1k ) = ψ ′

λ/μ = ψλ′/μ′(t, q) = ψ◦
λ′/μ′ (7.13)

if λ/μ is a vertical strip with |λ/μ| = k, and cλ
μ,(1r ) = 0 otherwise, Then, by Theorem

7.2, we obtain
bλ

μ,(k) = (cλ′
μ′,(1k ))

◦ = ψλ/μ = ψλ/μ(q, t) (7.14)

if λ/μ is a horizontal strip with |λ/μ| = k, and bλ
μ,(k) = 0 otherwise. This implies

the branching rule of (7.4). �
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7.3 Explicit Formula for bλ

In this section, we derive the explicit formula (6.46) for the coefficients bλ from the
compatibility of the Cauchy formula and the dual Cauchy formula for Macdonald
polynomials,

We consider the Cauchy formula for two sets of variables x = (x1, . . . , xm) and
y = (y1, . . . , yn), assuming that n ≥ m:

�m,n(x; y) =
m∏

i=1

n∏

j=1

(t xi y j ; q)∞
(xi y j ; q)∞

=
∑

λ∈Pm

bλ Pλ(x)Pλ(y). (7.15)

Setting y = t δ(n)

u = (tn−1u, tn−2u, . . . , u), δ(n) = (n − 1, n − 2, . . . , 0), we obtain

∑

λ∈Pm

u|λ|bλ Pλ(x)Pλ(t
δ(n)

) =
m∏

i=1

(tn xi u; q)∞
(xi u; q)∞

, (7.16)

or, equivalently

∑

λ∈Pm

(ut−n)|λ|bλ Pλ(x)Pλ(t
δ(n)

) =
m∏

i=1

(xi u; q)∞
(t−n xi u; q)∞

. (7.17)

On the other hand, specializing the dual Cauchy formula for variables x = (x1, . . . ,
xm) and z = (z1, . . . , zN ),

�∨
m,N (x; z) =

m∏

i=1

N∏

j=1

(1 + xi z j ) =
∑

λ⊆(N m )

Pλ(x)P◦
λ′(z), (7.18)

by z = −qδ(N )

u = (−q N−1u, . . . ,−u), we obtain

∑

λ⊆(N m )

(−u)|λ| Pλ(x)P◦
λ′(qδ(N )

) =
m∏

i=1

(xi u; q)N . (7.19)

Comparing (7.17) and (7.19), we set t = q− N
n so that

∑

λ∈Pm

(ut−n)|λ|bλ Pλ(x)Pλ(t
δ(n)

) =
∑

λ⊆(N m )

(−u)|λ| Pλ(x)P◦
λ′(qδ(N )

). (7.20)

Note that the genericity conditionon t = q− N
n for the existence of relevantMacdonald

polynomials is fulfilled by infinitely many N/n ∈ Q (taking distinct pairs of primes
n, N > m for example). From (7.20), we have
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t−n|λ|bλ Pλ(δ
(n)) = (−1)|λ| P◦

λ′(qδ(N )

), i.e.

bλ = (−1)|λ|tn|λ| P◦
λ′(qδ(N )

)

Pλ(t δ(n)
)

(7.21)

for λ ∈ Pm with λ1 ≤ N , and bλ Pλ(δ
(n)) = 0 for λ ∈ Pm with λ1 > N , in this spe-

cialization. By Theorem 6.1 we already know the explicit formulas

Pλ(t
δ(n)

) =
∏

s∈λ

t l ′λ(s) − tnqa′
λ(s)

1 − t lλ(s)+1qaλ(s)
,

P◦
λ′(qδ(N )

) =
∏

s∈λ

qa′
λ(s) − q N tl ′λ(s)

1 − qaλ(s)+1t lλ(s)
, (7.22)

where we used lλ′(s) = aλ(s), aλ′(s) = lλ(s), l ′λ′(s) = a′
λ(s), a′

λ′(s) = l ′λ(s). Note
that, for λ ∈ Pm with λ1 > N , Pλ(t δ(n)

) = 0 since t l ′λ(s) − tnqa′
λ(s) = 1 − tnq N = 0

at s = (1, N + 1) ∈ λ. Hence, we obtain

bλ = (−1)|λ|tn|λ| ∏

s∈λ

qa′
λ(s) − q N tl ′λ(s)

1 − qaλ(s)+1t lλ(s)

1 − t lλ(s)+1qaλ(s)

t l ′λ(s) − tnqa′
λ(s)

=
∏

s∈λ

1 − t lλ(s)+1qaλ(s)

1 − t lλ(s)qaλ(s)+1
(7.23)

under the specialization t = q− N
n . Since (7.23) is valid for infinitely many values of

t , this formula gives the expression of bλ as a rational function of (q, t).

Remark 7.2 In view of the stability (4.31) of Pλ(x) with respect to the number
of variables, Macdonald [20] introduces Macdonald functions Pλ(x) = Pλ(x |q, t)
in infinite variables x = (xi )i≥1 = (x1, x2, . . .). Letting M → ∞ and N → ∞ in
(7.7), we have

�∞(z;w) =
∏

i≥1

∏

j≥1

(t xi y j ; q)∞
(xi y j ; q)∞

=
∑

λ∈P
bλ Pλ(x)Pλ(x),

�∨
∞(x; y) =

∏

i≥1

∏

j≥1

(1 + xi y j ) =
∑

λ∈P
Pλ(x)P◦

λ′(y), (7.24)

with sums over all partitions λ ∈ P, where P◦
μ(x) = Pμ(x |t, q). In terms of the

power sums pk(x) = xk
1 + xk

2 + · · · , the kernel functions �(x; y) and �∨(x; y) are
expressed as
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�∞(x; y) = exp
( ∞∑

k=1

1

k

1 − t k

1 − qk
pk(x)pk(y)

)
,

�∨
∞(x; y) = exp

( ∞∑

k=1

(−1)k−1

k
pk(x)pk(y)

)
. (7.25)

A big advantage of passing to infinite variables is that the power sums pk = pk(x)

(k = 1, 2, . . .) become algebraically independent. Denoting � = C[p1, p2, . . .] the
ring of symmetric functions in infinite variables, Macdonald introduces the algebra
automorphism ωq,t : � → � by

ωq,t (pk) = (−1)k−1 1 − qk

1 − t k
pk (k = 1, 2, . . .) (7.26)

in terms of the power sums, so that ω
y
q,t (�(x; y)) = �∨(x; y), where ω

y
q,t denotes

the automorphism ωq,t acting on y variables. This implies

∑

λ∈P
bλ Pλ(x)ω

y
q,t (Pλ(y)) =

∑

λ∈P
Pλ(x)P◦

λ′(y), (7.27)

and hence
bλ ωq,t (Pλ) = P◦

λ′ . (λ ∈ P). (7.28)

In Macdonald [20], the explicit formula (6.46) for bλ is proved by a somewhat tricky
argument based on the compatibility of bλ ωq,t (Pλ) = P◦

λ′ with the evaluation formula
of Pλ(tn−1, tn−1, . . . , 1) in n-variables.

7.4 Tableau Representation of Pλ(x)

We already know that the Macdonald polynomials Pλ(x) (λ ∈ Pn) of n variables
x = (x1, . . . , xn) satisfy the recurrence formulas

Pλ(x1, . . . , xn−1, xn) =
∑

μ∈Pn−1
μ⊆λ, λ/μ: h−strip

ψλ/μ Pμ(x1, . . . , xn−1) x |λ/μ|
n (7.29)

with respect to the number of variables, where the sum is taken over all partitions
μ ∈ Pn−1 such that μ ⊆ λ and λ/μ is a horizontal strip. Note that ψλ/μ = 0 unless
λ/μ is a horizontal strip. Repeating this procedure, one can express Pλ(x) as a sum

Pλ(x) =
∑

∅=λ(0)⊆λ(1)⊆···⊆λ(n)=λ

n∏

k=1

ψλ(k)/λ(k−1) x |λ(k)/λ(k−1)|
k (7.30)
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over all weakly increasing sequencesλ(k) (k = 0, 1, . . . , n) of partitions connecting∅
andλbyn steps such that the skewpartitionsλ(k)/λ(k−1) (k = 1, . . . , n) are horizontal
strips. This representation can be interpreted as the sum

Pλ(x) =
∑

T ∈SSTabn(λ)

ψT xwt(T ), ψT =
n∏

k=1

ψλ(k)/λ(k−1) , (7.31)

over all semi-standard tableaux of shape λ. Here the coefficients ψT are expressed
as

ψT =
∏

1≤i≤ j<k≤n

(t j−i+1qλ
(k−1)
i −λ

(k−1)
j ; q)

λ
(k)
i −λ

(k−1)
i

(t j−i qλ
(k−1)
i −λ

(k−1)
j +1; q)

λ
(k)
i −λ

(k−1)
i

·
(t j−i qλ

(k−1)
i −λ

(k)
j+1+1; q)

λ
(k)
i −λ

(k−1)
i

(t j−i+1qλ
(k−1)
i −λ

(k)
j+1; q)

λ
(k)
i −λ

(k−1)
i

. (7.32)

7.5 Macdonald–Ruijsenaars Operators of Row Type
(Overview)

In this section, we give an overview of the commuting family of q-difference oper-
ators of row type for which Macdonald polynomials are joint eigenfunctions (for
the details, see Noumi–Sano [26]). We also explain how they are related to the Pieri
formula of row type.

7.5.1 q-Difference Operators H (l)
x of Row Type

Let R = C[D(1)
x , . . . , D(n)

x ] be the commutative ring generated by the Macdonald–
Ruijsenaars q-difference operators. Then, for each symmetric polynomial f (ξ) ∈
C[ξ ]Sn , ξ = (ξ1, . . . , ξn), there exists a unique q-difference operator Lx ∈ R such
that

Lx Pλ(x) = f (t δqλ)Pλ(x) (λ ∈ Pn). (7.33)

(Express f as f = F(e1, . . . , en) by a polynomial of e1, . . . , en . Then the operator
Lx is given by Lx = F(D(1)

x , . . . , D(n
x ).) This correspondence Lx → f defines an

isomorphism C[D(1)
x , . . . , D(n)

x ] ∼→ C[ξ ]Sn of commutative C-algebras (a variation
of the Harish–Chandra isomorphism).

For each l = 0, 1, 2, . . ., we define a q-difference operator H (l)
x by
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H (l)
x =

∑

μ∈Nn; |μ|=l

�(qμx)

�(x)

n∏

i, j=1

(t xi/x j ; q)μi

(qxi/x j ; q)μi

T μ
q,x , (7.34)

where T μ
q,x = T μ1

q,x1 · · · T μn
q,xn . Then it is known that H (l)

x ∈ C[D(1)
x , . . . , D(n)

x ], and that

H (l)
x Pλ(x) = gl(t

δqλ)Pλ(x) (l = 0, 1, 2 . . .), (7.35)

where gl(ξ) denotes the Macdonald polynomials attached to (l) of a single row:

gl(ξ) =
∑

μ∈Nn; |μ|=l

(t; q)μ1 · · · (t; q)μn

(q; q)μ1 · · · (q; q)μn

ξ
μ1
1 · · · ξμn

n = (t; q)l

(q; q)l
P(l)(ξ) (7.36)

for l = 0, 1, 2, . . .. In view of the generating function

G(ξ ; u) =
n∏

i=1

(tξi u; q)∞
(ξi u; q)∞

=
∞∑

l=0

gl(ξ)ul (7.37)

of Macdonald polynomials of single rows, we introduce the generating function
Hx (u) = ∑∞

l=0 ul H (l)
x . Then we have

Hx (u)Pλ(x) = Pλ(x)

n∏

i=1

(tn−i+1qλu; q)∞
(tn−i qλu; q)∞

. (7.38)

Also, it is known that Hx (u) satisfies the kernel identities

Hx (u)�m,n(x; y) = (tm−nu; q)∞
(u; q)∞

Hy(t
m−nu)�m,n(x; y),

(u; q)∞ Hx (u)�∨
m,n(x; y) = (tmqnu; q)∞ D◦

y(u)�∨
m,n(x; y). (7.39)

7.5.2 Wronski Relations

As we proved in Sect. 4.5, the two generating functions E(x; u) and G(x; u) sat-
isfy E(x;−u)G(x; u) = E(x;−tu)G(x; qu). This means that er (x) and gl(x) are
related through the recurrence relations

∑

r+l=k

(−1)r (1 − tr ql)er (ξ)gl(ξ) = 0 (k = 1, 2, . . .) (7.40)

ofWronski type. One can verify that the operators H (l)
x (l = 0, 1, 2, . . .) defined above

satisfy the Wronski relations
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∑

r+l=k

(−1)r (1 − tr ql)D(r)
x H (l)

x = 0 (k = 1, 2, . . .). (7.41)

From this, it follows that H (l)
x ∈ C[D(1)

x , . . . , D(n)
x ] and that H (l)

x are diagonalized by
the Macdonald polynomials as in (7.35).

7.5.3 Pieri Formula of Row Type

In the same way as we obtained the Pieri formula of column type from D(r)
x , we can

derive the Pieri formula of row type from

H (l)
x =

∑

|ν|=l

Hν(x)T ν
q,x , Hν(x) = �(qνx)

�(x)

n∏

i, j=1

(t xi/x j ; q)νi

(qxi/x j ; q)νi

. (7.42)

In fact we have

∑

|ν|=l

Hν(t
δqμ)P̃λ(t

δqμ+ν) = gl(t
δqλ)P̃λ(t

δqμ) (λ, μ ∈ Pn). (7.43)

Since Hν(t δqμ) = 0 unless (μ + ν)/μ is a horizontal strip, we obtain

∑

|ν|=l

Hν(t
δqμ)P̃μ+ν(t

δqλ) = gl(t
δqλ)P̃μ(t δqλ) (λ, μ ∈ Pn), (7.44)

and hence ∑

|ν|=l

Hν(t
δqμ)P̃μ+ν(x) = gl(x)P̃μ(x) (μ ∈ Pn). (7.45)

This means that

gl(x)P̃μ(x)
∑

|λ/μ|=l

Hλ/μ P̃λ(x), Hλ/μ = Hλ−μ(t δqμ) (μ ∈ Pn), (7.46)

where the sum is over all λ ∈ Pn , μ ⊆ λ, such that the skew diagram λ/μ is a
horizontal strip with |λ/μ| = l. Hence we obtain

gl(x)Pμ(x) =
∑

|λ/μ|=l

ϕλ/μ Pλ(x), ϕλ/μ = aμ

aλ

Hλ/μ. (7.47)

Since gl(x) = b(l) P(l)(x), this means that
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Pμ(x)P(l)(x) =
∑

|λ/μ|=l

cλ
μ,(l) Pλ(x), cλ

μ,(l) = 1

b(l)

aμ

aλ

Hλ/μ. (7.48)

The corresponding branching coefficients are also determined as

ψλ/μ = bλ
μ,(l) = bμb(l)

bλ

cλ
μ,(l) = aμbμ

aλbλ

Hλ/μ. (7.49)

The coefficients Hλ/μ = Hλ−μ(t δqμ) are explicitly computed as follows:

Hλ/μ = tn(λ)−n(μ)
∏

i≥1

(tn−i+1qμi ; q)λi −μi

·
∏

i< j (t
j−i−1qμi −λ j +1; q)λ j −μ j∏

i≤ j (t
j−i qλi −λ j +1; q)λ j −μ j

∏
i≤ j (t

j−i+1qμi −μ j ; q)μ j −λ j+1∏
i≤ j (t

j−i+1qλi −μ j ; q)μ j −λ j+1

. (7.50)

In combinatorial terms, we have

Hλ/μ = tn(λ)
∏

i≥1(t
n−i+1; q)λi

t n(μ)
∏

i≥1(t
n−i+1; q)μi

·
∏

s∈μ∩Cλ/μ
(1 − t lμ(s)qaμ(s)+1)

∏
s∈λ∩Cλ/μ

(1 − t lλ(s)qaλ(s)+1)

∏
s∈μ\Cλ/μ

(1 − t lμ(s)+1qaμ(s))
∏

s∈λ\Cλ/μ
(1 − t lλ(s)+1qaλ(s))

, (7.51)

where Cλ/μ denotes the union of columns intersecting with the horizontal strip λ/μ.
Combining this with

aλ = tn(λ)(tn−i+1; q)λi∏
s∈λ(1 − t lλ(s)+1qaλ(s))

, bλ =
∏

s∈λ

1 − t lλ(s)+1qaλ(s)

1 − t lλ(s)qaλ(s)+1
, (7.52)

by (7.49) we obtain

ψλ/μ =
∏

s∈λ\Cλ/μ

1 − t lλ(s)qaλ(s)+1

1 − t lλ(s)+1qaλ(s)

∏

s∈μ\Cλ/μ

1 − t lμ(s)+1qaμ(s)

1 − t lμ(s)qaμ(s)+1
. (7.53)

In terms of the components of λ, μ, we recover the formula of (6.6), namely

ψλ/μ =
∏

1≤i≤ j≤�(μ)

(t j−i qλi −μ j +1; q)μ j −λ j+1

(t j−i+1qλi −μ j ; q)μ j −λ j+1

(t j−i+1qμi −μ j ; q)μ j −λ j+1

(t j−i qμi −μ j +1; q)μ j −λ j+1

=
∏

1≤i≤ j≤�(μ)

(t j−i qλi −λ j+1+1; q)λi −μi

(t j−i+1qλi −λ j+1; q)λi −μi

(t j−i+1qμi −μ j ; q)λi −μi

(t j−i qμi −μ j +1; q)λi −μi

. (7.54)
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The relationship between the explicit formulas (7.53) and (7.54) for the coefficient
ψλ/μ can be read off from the picture below:

λiμi

λ jμ j
λ j+1

..................................................

..................................................

..................................................

..................................................

..................................................

i

j

•
•
•
•
•

•
•
•

•
•
•

•
•

•∗

(7.55)



Chapter 8
Affine Hecke Algebra and q-Dunkl
Operators (Overview)

Abstract In this chapter, we give an overview of the Macdonald–Cherednik theory
of Macdonald polynomials based on the affine and double affine Hecke algebras,
taking the example of type An−1. (For a more comprehensive exposition, see Mac-
donald [22].) We explain how the commuting family of Macdonald–Ruijsenaars
operators arise naturally in the framework of affine Hecke algebras. We also show
how the self-duality of Macdonald polynomials can be established by means of the
Cherednik involution of the double affine Hecke algebra.

8.1 Affine Weyl Groups and Affine Hecke Algebras

We denote by W = Sn the symmetric group of degree n (Weyl group of type An−1),
following the convention ofMacdonald–Cherednik theory for general root systems.1

In this chapter, we denote by τi = Tq,xi (i = 1, . . . , n) the q-shift operators in vari-
ables xi , in order to avoid the conflictwith the generators Ti ofHecke algebras. Setting
τ = (τ1, . . . , τn), we denote byDq,x = C(x)[τ±1] the algebra of q-difference oper-
ators in x variables with rational coefficients, and by Dq,x [W ] the algebra of all
operators of the form

Ax =
∑

μ∈P, w∈W

aμ,w(x) τμ w (finite sum),

aμ,w(x) ∈ C(x) (μ ∈ P, w ∈ W ), (8.1)

called the q-difference-reflection operators, where P = Z
n (weight lattice of GLn),

and for μ = (μ1, . . . , μn) ∈ P , τμ = τ
μ1
1 · · · τμn

n . Through their natural action on
rational functions, we regard Dq,x [W ] as a subalgebra of EndC(C(x)).

We denote by τ P = {τμ | μ ∈ P} the group of q-shift operators (translations)
with respect to P , and define the extended affine Weyl group W̃ by

1 We define a version of q-Dunkl operators from which Macdonald–Ruijsenaars operators directly
arise. Notice that our convention of q-Dunkl operators and nonsymmetric Macdonald polynomials
is different from that of Macdonald’s monograph [22].
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W̃ = τ P
� W = {τμ w | μ ∈ P, w ∈ W },

wτμ = τw.μw (μ ∈ P, w ∈ W ), (8.2)

which is an extension of the standard affine Weyl group W aff = τ Q
� W with

the group of translations by Q = {μ ∈ P | |μ| = μ1 + · · · + μn = 0} (root lat-
tice). Denoting the canonical basis of P by εi (i = 1, . . . , n), we use the notation
α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αn−1 = εn−1 − εn for the simple roots, so that
Q = Zα1 ⊕ · · · ⊕ Zαn−1 ⊆ P . The idea of (affine) Hecke algebras is to construct
t-deformations of all groups

W = Sn ⊆ W aff = τ Q
� W ⊆ W̃ = τ P

� W ⊂ Dq,x [W ] (8.3)

within the algebraDq,x [W ] of q-difference-reflection operators. Note that the group-
ring of W̃

C[W̃ ] = C[τ P
� W ] = C[τ±1][W ] ⊆ Dq,x [W ] (8.4)

is the ring of q-difference-reflection operators with constant coefficients.
We denote by

s1 = (12), s2 = (23), . . . , sn−1 = (n − 1, n) (8.5)

the adjacent transpositions inW = Sn (simple reflections) so thatW = 〈
s1, . . . , sn−1

〉
.

Note that si acts on the x variables by exchanging xi and xi+1. Besides these gener-
ators, we use the affine reflection s0 and the diagram automorphism ω by setting

s0 = τ−1
1 τn(1, n) ∈ W aff , ω = τn(n, n − 1, . . . , 1) = τnsn−1 · · · s1 ∈ W̃ , (8.6)

where (1, n) stands for the transposition of 1 and n, and (n, n − 1, . . . , 1) for the
cyclic permutation n → n − 1 → · · · → 1 → n. These s0 and ω are characterized
as field automorphisms of C(x) acting on the x-variables by

s0(x1) = qxn, s0(xi ) = xi (i = 2, . . . , n − 1), s0(xn) = q−1x1
ω(x1) = qxn, ω(x2) = x1, . . . , ω(xn) = xn−1. (8.7)

If fact, it is known that the three groups in (8.3) are generated by these operators as

W = 〈
s1, . . . , sn−1

〉 ⊆ W aff = 〈
s0, s1, . . . , sn−1

〉 ⊆ W̃ = 〈
s0, s1, . . . , sn−1, ω

〉
,

(8.8)
with the fundamental relations:
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(0) s2i = 1 (i = 0, 1, . . . , n − 1),

(1) si s j = s j si ( j �≡ i, i ± 1 mod n),

(2) si s j si = s j si s j ( j ≡ i ± 1 mod n),

(3) ωsi = si−1ω (i = 1, . . . , n − 1), ωs0 = sn−1ω. (8.9)

In terms of these generators, the q-shift operators τi (= Tq,xi ) are expressed as fol-
lows:

τ1 = s1 · · · sn−1ω, τ2 = s2 · · · sn−1ωs1, · · · , τn = ωs1 · · · sn−1. (8.10)

We now define the q-difference-reflection operators Ti (i = 0, 1 . . . , n − 1), called
the Demazure–Lusztig operators, by

Ti = t− 1
2
1 − t xi/xi+1

1 − xi/xi+1
(si − 1) + t

1
2 = t− 1

2
1 − t xi/xi+1

1 − xi/xi+1
si + t

1
2 − t− 1

2

1 − xi/xi+1
(8.11)

for i = 1, . . . , n − 1 and

T0 = t− 1
2
1 − tqxn/x1
1 − qxn/x1

(s0 − 1) + t
1
2 = t− 1

2
1 − tqxn/x1
1 − qxn/x1

s0 + t
1
2 − t− 1

2

1 − qxn/x1
. (8.12)

Note that xi/xi+1 = xαi (i = 1, . . . , n − 1) correspond to the simple roots, and
qxn/x1 = xα0 to the simple affine root α0 = γ − ε1 + εn with the convention xγ = q,
wherewe denoted the null root by γ to avoid the conflict with the notation of staircase
partition δ.

Theorem 8.1 The operators Ti (i = 0, 1, . . . , n − 1) in Dq,x [W ] together with ω

satisfy the following relations :

(0) (Ti − t
1
2 )(Ti + t− 1

2 ) = 1 (i = 0, 1, . . . , n − 1),

(1) Ti Tj = Tj Ti ( j �≡ i, i ± 1 mod n),

(2) Ti Tj Ti = Tj Ti Tj ( j ≡ i ± 1 mod n),

(3) ωTi = Ti−1ω (i = 1, . . . , n − 1), ωT0 = Tn−1ω. (8.13)

In thisway,weobtain t-deformations of the group-rings ofW ,W aff , W̃ inDq,x [W ]
as follows:

C[W ] = C
〈
s1, . . . , sn−1

〉

⊆

C[W aff ] = C
〈
s0, s1, . . . , sn−1

〉

⊆

C[W̃ ] = C
〈
s0, s1, . . . , sn−1, ω

±1
〉

H [W ] = C
〈
T1, . . . , Tn−1

〉
,⊆

H [W aff ] = C
〈
T0, T1, . . . , Tn−1

〉
,⊆

H [W̃ ] = C
〈
T0, T1, . . . , Tn−1, ω

±1
〉
.

(8.14)
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Here H(W ) denotes the Hecke algebra associated with the Weyl group W ; H(W aff)

and H(W̃ ) are called (extended) affine Hecke algebras. Note that the fundamental
relations s2i = 1 are replaced by the quadratic relations (Ti − t

1
2 )(Ti + t− 1

2 ) = 0, and
hence T −1

i = Ti − (t
1
2 − t− 1

2 ).

8.2 q-Dunkl Operators

In view of the two expressions

C[W̃ ] = C
〈
s0, s1, . . . , sn−1, ω

±1
〉 = C[τ±1][W ] (8.15)

of the group-ring of W̃ , it would be natural to ask what are the “translations” in
H(W̃ ). Imitating the formulas (8.10) for τi (i = 1, . . . , n), we define the q-Dunkl
operators (or Cherednik operators) Y1, . . . , Yn ∈ H(W̃ ) by

Y1 = T1 · · · Tn−1ω, Y2 = T2 · · · Tn−1ωT −1
1 , . . . , Yn = ωT −1

1 · · · T −1
n−1. (8.16)

Notice here that Ti are replaced by their inverses T −1
i when they are located to the

right side of ω.

Theorem 8.2 The q-Dunkl operators Y1, . . . , Yn ∈ H(W̃ ) commute with each other.
Furthermore, they generate a commutative subalgebra C[Y ±1] = C[Y ±1

1 , . . . , Y ±1
n ]

⊆ H(W̃ ) isomorphic to the algebra of Laurent polynomials in n variables.

One can directly verify the commutativityYi Y j = Y j Yi (i, j ∈ {1, . . . , n}) by the def-
inition (8.16) and the fundamental relations of Ti , ω in (8.13). With this “translation
subalgebra” of q-Dunkl operators, the extended affine Hecke algebra is expressed in
the form

H(W̃ ) = C[Y ±1] ⊗ H(W ) =
⊕

w∈W

C[Y ±1] Tw, (8.17)

where, for each w ∈ W , Tw is the element defined as Tw = Tsi1
· · · Tsil

in terms of a
reduced (shortest) expression w = si1 · · · sil of w; this definition does not depend on
the choice of the reduced expression (Iwahori–Matsumoto Lemma). From this, we
see that one can take T1, . . . , Tn−1 and the q-Dunkl operators Y ±1

1 , . . . , Y ±1
n for the

generators of the extended affine Hecke algebra:

H(W̃ ) = C
〈
T0, T1, . . . , Tn−1;ω±1〉 = C

〈
T1, . . . , Tn; Y ±1

1 , . . . Y ±1
n

〉
. (8.18)

The following theorem is the key for relating q-Dunkl operators withMacdonald–
Ruijsenaars operators.
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Theorem 8.3 (Bernstein) The center ZH(W̃ ) of the extended affine Hecke algebra
is precisely the W -invariant part of the commutative algebra of q-Dunkl operators :

ZH(W̃ ) = C[Y ±1]W = {
f (Y ) | f (ξ) ∈ C[ξ±1]W

}
, ξ = (ξ1, . . . , ξn). (8.19)

8.3 From q-Dunkl Operators to Macdonald–Ruijsenaars
Operators

Let Ax ∈ Dq,x [W ] be a q-difference-reflection operator in the form

Ax =
∑

μ∈P, w∈W

aμ,w(x) τμ w (finite sum),

aμ,w(x) ∈ C(x) (μ ∈ P, w ∈ W ). (8.20)

If ϕ(x) is a symmetric (W -invariant) function, Ax acts on ϕ(x) as a q-difference
operator. Since wϕ(x) = ϕ(x) (w ∈ W ), we have in fact

Axϕ(x) =
∑

μ∈P, w∈W

aμ,w(x) τμϕ(x) = Lxϕ(x),

Lx =
∑

μ∈P, w∈W

aμ,w(x) τμ. (8.21)

In order to describe the action of q-Dunkl operators, we set

c(z) = t− 1
2
1 − t z

1 − z
, d±(z) = t± 1

2 − c(z) (8.22)

so that

T ±1
i = c(xi/xi+1)si + d±(xi/xi+1) (i = 1, . . . , n − 1),

T ±1
0 = c(qxn/x1)si + d±(qxn/x1). (8.23)

Note also that c(z) satisfies c(z) + c(z−1) = t
1
2 + t− 1

2 .

Example: Case n = 2

In this case, we have two q-Dunkl operators

Y1 = T1ω = c(x1/x2)s1ω + d+(x1/x2)ω = c(x1/x2)τ1 + d+(x1/x2)τ2s1,

Y2 = ωT −1
1 = ωc(x1/x2)s1 + ωd−(x1/x2) = c(qx2/x1)τ2 + d−(qx2/x1)τ2s1.(8.24)
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Then, we compute

Y1 + Y2 = c(x1/x2)τ1 + c(qx2/x1)τ2 + (d−(qx2/x1) + d+(x1/x2))τ2s1
Y2Y1 = ω2 = τ1τ2. (8.25)

Since

c(qx2/x1) + d−(qx2/x2) + d+(x1/x2) = t− 1
2 + t

1
2 − c(x1/x2) = c(x2/x1),

(8.26)
for any symmetric function ϕ(x) = ϕ(x1, x2), we have

(Y1 + Y2)ϕ(x) = (c(x1/x2)τ1 + c(x2/x1)τ2)ϕ(x)

= t− 1
2

(1 − t x1/x2
1 − x1/x2

τ1 + 1 − t x2/x1
1 − x2/x1

τ2

)
ϕ(x)

= t− 1
2 D(1)

x ϕ(x)

(Y2Y1)ϕ(x) = τ1τ2ϕ(x) = t−1D(2)
x ϕ(x), (8.27)

where D(1)
x , D(2)

x are the Macdonald–Ruijsenaars operators in two variables.

For each f (ξ) ∈ C[ξ±1], there exists a unique q-difference operator L f
x ∈ Dq,x such

that
f (Y )ϕ(x) = L f

x ϕ(x) (8.28)

for any symmetric function ϕ(x); express Ax = f (Y ) in the form (8.20), and take
Lx = L f

x as in (8.21).

Theorem 8.4 For any f ∈ C[ξ±1]W , L f
x ∈ Dq,x is a W -invariant q-difference oper-

ator. Furthermore, L f
x ( f ∈ C[ξ±1]W ) commute with each other : L f

x Lg
x = Lg

x L f
x for

any f, g ∈ C[ξ±1]W .

Let’s take the elementary symmetric functions er (ξ) ∈ C[ξ±1]W (r = 1, . . . , n)

for f (ξ). Then, one can show that the q-Dunkl operators

er (Y ) =
∑

1≤i1<···<ir ≤n

Yi1 · · · Yir (8.29)

induce a commuting family of W -invariant q-difference operators Ler
x of the form

Ler
x =

( ∏

1≤i≤r
r+1≤ j≤n

t− 1
2
1 − t xi/x j

1 − xi/x j

)
τ1 · · · τr + · · · . (8.30)
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This implies that Ler
x are constant multiples of D(r)

x respectively,

Ler
x = t− 1

2 (n−1)r D(r)
x (r = 0, 1, . . . , n), (8.31)

and also that they are diagonalized by the Macdonald polynomials:

Ler
x Pλ(x) = er (t

ρqλ)Pλ(x) (λ ∈ Pn), (8.32)

where ρ = 1
2

∑
i=1(n − 2i + 1)εi = δ − 1

2 (n − 1)(1n).
To summarize: There is an isomorphism of commutative algebras

ZH(W̃ ) = C[Y ±1]W ∼→ C[D(1)
1 , . . . , D(n)

x , (D(n)
x )−1] : f (Y ) → L f

x (8.33)

from the algebra of symmetric q-Dunkl operators to the algebra of Macdonald–
Ruijsenaars operators. Furthermore, for all f (ξ) ∈ C[ξ±1]W , we have

f (Y )Pλ(x) = L f
x Pλ(x) = f (tρqλ)Pλ(x) (λ ∈ Pn). (8.34)

8.4 Nonsymmetric Macdonald Polynomials

One can directly check that the operators Ti (i = 0.1, . . . , n − 1) stabilize the algebra
C[x±1] of Laurent polynomials in x = (x1, . . . , xn). Hence C[x±1] can be regarded
as a left H(W̃ )-module. It would be natural to expect that the commutative subalgebra
C[Y ±1] of H(W̃ ) can be simultaneously diagonalized onC[x±1]. In fact, the q-Dunkl
operators have common eigenfunctions Eμ(x) (μ ∈ P), called the nonsymmetric
Macdonald polynomials, parameterized by the weight lattice P .

In the following, we denote by

P+ = {λ = (λ1, . . . , λn) ∈ P | λ1 ≥ λ2 ≥ · · · ≥ λn}
= N�1 ⊕ · · · ⊕ N�n−1 ⊕ Z�n (8.35)

the cone of dominant integral weights, where, for r = 1, . . . , n, �r = (1r ) = ε1 +
· · · + εr (fundamental weights). Then, for eachμ ∈ P , there exists a uniqueμ+ ∈ P+
in the W -orbit of μ: W.μ ∩ P+ = {μ+}. For the diagonalization of the q-Dunkl
operators, we make use of the partial order

μ � ν ⇐⇒ μ+ < ν+ or (μ+ = ν+ and μ ≤ ν) (8.36)

defined by applying the dominance order in two steps. For each μ ∈ P , we denote
by wμ the shortest element among all w ∈ W such that w.μ+ = μ, and set ρμ =
wμ.ρ ∈ P .
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Theorem 8.5 Assume that t ∈ C
∗ is generic. Then, for each μ ∈ P there exists a

unique Laurent polynomial Eμ(x) ∈ C[x±1] such that

(1) f (Y )Eμ(x) = f (tρμqμ)Eμ(x) for all f (ξ) ∈ C[ξ±1], (8.37)

(2) Eμ(x) = xμ + (lower-order terms with respect to �). (8.38)

Then, regarded as a H(W̃ )-module, the algebra of Laurent polynomials C[x±1]
is decomposed into irreducible components as follows:

C[x±1] =
⊕

λ∈P+

V (λ), V (λ) =
⊕

μ∈W.λ

CEμ(x). (8.39)

Furthermore, for each λ ∈ P+, we have

V (λ)H(W ) =
{
v ∈ V (λ) | Tiv = t

1
2 v (i = 1, . . . , n − 1)

}
= CPλ(x), (8.40)

where Pλ(x) is the Macdonald (Laurent) polynomial attached to λ ∈ P+; if we
take l ∈ Z and μ ∈ Pn such that λ = μ + (ln), then Pλ(x) is expressed as Pλ(x) =
(x1 . . . xn)

l Pμ(x) in terms of theMacdonald polynomial Pμ(x) attached to a partition
μ ∈ Pn .

In this picture, for each λ ∈ P+ the Macdonald polynomial Pλ(x) is expressed
as a linear combination of nonsymmetric Macdonald polynomials Eμ(x) (μ ∈ W.λ)
with explicitly determined coefficients. Also, Pλ(x) is obtained by applying the
symmetrizer

∑
w∈W t

1
2 �(w)Tw of the Hecke algebra H(W ) to Eλ(x).

8.5 Double Affine Hecke Algebra and Cherednik Involution

The algebra Dq,x [W ] contains the subalgebra

C[x±1; τ±][W ] = C
〈
x±1
1 , . . . , x±1

n ; s1, . . . , sn−1; τ±1
1 , . . . , τ±1

n

〉 ⊆ Dq,x [W ]
(8.41)

of q-difference-reflection operators with Laurent polynomial coefficients. This alge-
bra can be thought of as a q-version of C[x; ∂x ][W ] (crossed product of the Heisen-
berg algebra and theWeyl group). One can consider the t-deformation of this algebra

DH(W̃ ) = C[x±1] ⊗ H(W ) ⊗ C[Y ±1]
= C

〈
x±1
1 , . . . , x±1

n ; T1, . . . , Tn−1; Y ±1
1 , . . . , Y n−1

n

〉 ⊆ Dq,x [W ], (8.42)

called the double affine Hecke algebra. This algebra consists of all operators of the
form
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A =
∑

μ,ν∈P; w∈W

aμ,w,ν xμ Tw Y ν (finite sum) (aμ,w,ν ∈ C). (8.43)

Also, the commutation relations between Ti and x j , Y j are given by

Ti xi Ti = xi+1 (i = 1, . . . , n − 1), Ti x j = x j Ti ( j �= i, i + 1), (8.44)

and

Ti Yi+1Ti = Yi (i = 1, . . . , n − 1), Ti Y j = Y j Ti ( j �= i, i + 1). (8.45)

Theorem 8.6 (Cherednik) There exists a unique involutive anti-homomorphism φ :
DH(W̃ ) → DH(W̃ ) such that

φ(xi ) = Y −1
i , φ(Yi ) = x−1

i (i = 1, . . . , n),

φ(Ti ) = Ti (i = 1, . . . , n − 1). (8.46)

This anti-involution φ is called the Cherednik involution (φ(1) = 1, φ(ab) =
φ(b)φ(a), φ2 = 1).

We define the expectation value
〈 · 〉 : DH(W̃ ) → C by

〈
A
〉 = A(1)

∣∣
x=t−ρ =

∑

μ,ν∈P;w∈W

aμ,w,ν t−〈ρ,μ〉t
1
2 �(w)t 〈ρ,ν〉, (8.47)

where �(w) the length of w (i.e. the number of inversions). We also define a scalar
product (bilinear form)

〈
,

〉 : DH(W̃ ) × DH(W̃ ) → C (8.48)

by 〈
A, B

〉 = 〈
φ(A)B

〉 ∈ C (A, B ∈ DH(W̃ )). (8.49)

By the definition of the Cherednik involution, we have

〈
φ(A)

〉 = 〈
A
〉
,

〈
A, B

〉 = 〈
B, A

〉
. (8.50)

(This bilinear form is a variation of Fisher’s scalar product.)

We apply formula (8.50) to Macdonald polynomials A = Pλ(x) and B = Pμ(x)

(λ, ν ∈ P+).
〈
Pλ(x), Pμ(x)

〉 = 〈
φ(Pλ(x))Pμ(x)

〉 = 〈
Pλ(Y

−1)Pμ(x)
〉

= 〈
Pλ(t

−ρq−μ)Pμ(x)
〉 = Pλ(t

−ρq−μ)Pμ(t−ρ).
(8.51)
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Since
〈
Pλ(x), Pμ(x)

〉 = 〈
Pμ(x), Pλ(x)

〉
, we have

Pλ(t
−ρq−μ)Pμ(t−ρ) = Pμ(t−ρq−λ)Pλ(t

−ρ) (λ, μ ∈ P+), (8.52)

and hence
Pλ(t−ρq−μ)

Pλ(t−ρ)
= Pμ(t−ρq−λ)

Pμ(t−ρ)
. (8.53)

By the property Pλ(x; q, t) = Pλ(x; q−1, t−1) of Macdonald polynomials, from
(8.53) we obtain

Pλ(tρqμ)

Pλ(tρ)
= Pμ(tρqλ)

Pμ(tρ)
(λ, μ ∈ P+). (8.54)

Sinceρ = δ − 1
2 (n − 1)(1n), this formula is identical to the self-dualitywe discussed

in Chap.6.



Notation

N = Z≥0 = {0, 1, 2, . . .} set of natural numbers (nonnegative integers)
Z = {0,±1,±2, . . .} set of integers
Q, R, C sets of rational, real, complex numbers
C

∗ = C\ {0} multiplicative group of nonzero complex numbers
R[x] = R[x1, . . . , xn] ring of polynomials in variables x = (x1, . . . , xn)

with coefficients in a ring R
R[x±1] = R[x±1

1 , . . . , x±1
n ] ring of Laurent polynomials in x = (x1, . . . , xn)

with coefficients in a ring R
R[[x]] = R[[x1, . . . , xn]] ring of formal power series in x = (x1, . . . , xn)
RG subring of G-invariant elements in a ring R on

which a group G acts by ring automorphisms
K (x) = K (x1, . . . , xn) field of rational functions in x = (x1, . . . , xn)with

coefficients in a field K
K [G] = ⊕

g∈G Kg group-ring of a group G with coefficients in a field
K

Sn symmetric group of degree n, group of permuta-
tions of {1, . . . , n} [1.1]

sgn(σ ) sign of a permutation σ ∈ Sn [2.2]
�(σ ) number of inversions of a permutation σ ∈ Sn

[2.2]
GLn = GLn(C) general linear group of degree n, group of C-

automorphisms of Cn [2.4, 3.9]
P = ⊕n

i=1 Zεi weight lattice of GLn [2.4, 8.4]
P+ = ⊕n

i=1 N�i cone of dominant integral weights [4.1, 8.4]
Tq,xi (i = 1, . . . , n) q-shift operator in xi [1.1, 3.8, 4.1]
T I
q,x = ∏

i∈I Tq,xi q-shift operator in xi (i ∈ I ) [5.3]
Dq,x = C(x)[T±1

q,x ] ring of q-difference operators with coefficients in
C(x) [4.1]
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(α)k = ∏k−1
i=0 (α + i) shifted factorial (k ∈ N) [4.4]

r+1Fr (r = 0, 1, 2, . . .) generalized hypergeometric series [4.4]
(a; q)k = ∏k−1

i=0 (1 − qia) q-shifted factorial (k ∈ N) [4.2]
(a; q)∞ = ∏∞

i=0(1 − qia) q-infinite product (|q| < 1) [4.4]
r+1φr (r = 0, 1, 2, . . .) q-hypergeometric series,q-analogueof r+1Fr [4.4]
φD q-analogue of Lauricella’s hypergeometric series

FD in n variables [4.5]
P set of all partitions λ = (λ1, λ2, . . .) [1.1]
Pn set of partitions λ = (λ1, . . . , λn) with �(λ) ≤ n

[1.1]
λ = (λ1, λ2, . . .) partition of |λ| = λ1 + λ2 + · · · [1.1]
λ′ = (λ′

1, λ
′
2, . . .) conjugate (transpose) of a partition λ [2.4]

�(λ) number of nonzero parts of a partition λ [1.1]
aλ(s), lλ(s) arm and leg lengths of s ∈ λ [3.2]
cλ(s), hλ(s) content and hook length of s ∈ λ [3.2]
n(λ)

∑
i≥1(i − 1)λi = ∑

j≥1

(λ′
j

2

)
[3.2, 6.1]

δ = (n − 1, n − 2, . . . , 0) staircase partion of n − 1 parts
M = {λi +n−i | i=1, . . . , n} Maya diagram attached to λ ∈ Pn [3.1]
μ ≤ ν dominance order of multi-indices μ, ν ∈ N

n [2.4]
ek(x), hk(x), pk(x) elementary, complete homogenous and power sum

symmetric functions [2.1]
mλ = mλ(x) (λ ∈ Pn) monomial symmetric function of type λ [1.1, 2.4]
�(x) = ∏

1≤i< j≤n(xi − x j ) differenceproduct,Vandermondedeterminant [2.2]

�μ(x) = det(x
μ j

i )ni, j=1 alternating polynomial of monomial type μ [3.2]
sλ = sλ(x) = �λ+δ(x)/�(x) Schur function attached to a partition λ [1.1, 3.1]
SSTabn(λ) set of semi-standard tableaux of shape λ [3.1]
Pλ(x) = Pλ(x; q, t) Macdonald polynomial [1.1, 4.1]
P̃λ(x) = Pλ(x)/Pλ(t δ) normalized Macdonald polynomial [6.1]
P (β)

λ (x) Jack polynomial limq→1 Pλ(x; q, qβ) [1.1, 5.6]
Dx Macdonald–Ruijsenaars q-difference operator (of

first order) [1.1, 4.1]
dλ = ∑n

i=1 t
n−i qλi eigenvalues of Dx (λ ∈ Pn) [1.1, 4.1]

w(x) = w(x; q, t) weight function for the orthogonality [5.1]
〈 f, g〉 scalar product with weight function w(x) [5.1]
D(r)

x (r = 0, 1, . . . , n) higher-orderMacdonald–Ruijsenaars q-difference
operators [5.3]

Dx (u) = ∑n
r=0(−u)r D(r)

x generating function forD(r)
x (r = 0, 1, . . . , n) [5.3]

AI (x) coefficient t(
|I |
2 )

∏
i∈I, j /∈I

t xi−x j

xi−x j
of D(r)

x [5.3]
ψλ/μ = ψλ/μ(q, t) Pieri coefficient for a horizontal strip λ/μ [6.1]
ψ ′

λ/μ = ψλ′/μ′(t, q) Pieri coefficient for a vertical strip λ/μ [6.1]

�m,n(x; y) ∏m
i=1

∏n
j=1

(t xi y j ;q)∞
(xi y j ;q)∞ (Cauchy kernel) [6.5]

�∨
m,n(x; y)

∏m
i=1

∏n
j=1(1 + xi y j ) (dual Cauchy kernel) [6.5]

�m,n(x; y) ∏m
i=1

∏n
j=1(xi + y j ) [6.5]
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bλ = bλ(q, t) coefficients of the Cauchy formula (λ ∈ P) [6.5]
cλ
μ,ν = cλ

μ,ν(q, t) Littlewood–Richardson coefficient (λ, μ, ν ∈ P) [7.1]
bλ

μ,ν = bλ
μ,ν(q, t) branching coefficient (λ, μ, ν ∈ P)[7.1]

W , H(W ) Weyl group and its Hecke algebra (W = Sn) [8.1]
W aff , W̃ affine and extended affine Weyl groups [8.1]
H(W aff), H(W̃ ) affine and extended affine Heck algebras [8.1]
Ti (i = 0, 1, . . . , n) Demazure–Lustzig operators [8.1]
si (i = 0, 1, . . . , n) simple reflections [8.1]
ω diagram rotation [8.1]
Yi (i = 1, . . . , n) q-Dunkl operators [8.2]
Eμ(x) (μ ∈ P) nonsymmetric Macdonald polynomials [8.2].
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