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Preface

This book is intended to provide an introduction to the theory of Macdonald polyno-
mials from the viewpoint of commuting g-difference operators and their joint eigen-
functions. It is an extended version of lecture notes for a series of online lectures
“Introduction to Macdonald Polynomials,” which I gave at KTH Royal Institute of
Technology, Stockholm, during the period of February and March 2021.

Macdonald polynomials refer to a class of symmetric g-orthogonal polynomials
in many variables. They include important classes of special functions such as Schur
functions and Hall-Littlewood polynomials, and play important roles in various
situations of mathematics and physics. After an overview of Schur functions, I will
introduce Macdonald polynomials (of type A, in the GL, version) as eigenfunctions
of a g-difference operator, called the Macdonald—Ruijsenaars operator, in the ring of
symmetric polynomials. Starting from this definition, I explain various remarkable
properties of Macdonald polynomials such as orthogonality, evaluation formulas and
self-duality, with emphasis on the roles of commuting g-difference operators.

The main reference for this theory is in Macdonald’s book

Symmetric Functions and Hall Polynomials. Second Edition. Oxford University Press, 1995,
x+475 pp.

Chapter VI: Symmetric functions with two parameters.

A characteristic feature of Macdonald’s approach in his monograph is the use of
symmetric functions in an infinite number of variables. In view of the introductory
nature of this book, I decided to avoid the approach using infinite variables here, and
to put more emphasis instead on the roles of the commuting family of g-difference
operators for which Macdonald polynomials are joint eigenfunctions. I tried to make
this book self-contained, and to give proofs to fundamental formulas in Macdonald
theory within the framework of finite variables, as much as possible. I hope that this
exposition will be helpful to a wider class of readers with various backgrounds.

In this book, I adopted the classical approach to Macdonald polynomials which
does not rely on the theory of (double) affine Hecke algebras. For the Macdonald—
Cherednik theory based on affine Hecke algebras, I refer the reader to Macdonald



vi Preface

[22], Cherednik [5] and other textbooks. In this direction, I only added a chapter
on affine Hecke algebras and g-Dunkl operators, to provide an idea (without getting
into the detail of proofs) about how the commuting family of g-difference operators
arises in the framework of affine Hecke algebras.

I also included some materials which I could not deal with in the online lectures
I gave at KTH. I really enjoyed meeting regularly online with many friends from
various parts of the world, with whom I shared scientific interests and discussions. My
thanks go to all the participants of the online lectures. I am grateful to the Knut and
Alice Wallenberg Foundation for funding my guest professorship of the year 2020/
2021 at KTH, which provided me with an invaluable opportunity of giving lectures
and writing lecture notes on this subject of great concern to myself. Also, I would like
to express my thanks to colleagues at KTH, especially Edwin Langmann and Jonatan
Lenells, for their kind hospitality and friendship during my stay in Stockholm.

Tokyo, Japan Masatoshi Noumi
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Chapter 1 ®)
Overview of Macdonald Polynomials oo

Abstract The Macdonald polynomials are a family of symmetric polynomials in
n variables indexed by partitions. They are characterized as joint eigenfunctions
of a commuting family of g-difference operators acting on the ring of symmetric
polynomials. This chapter is a summary of the material which is developed in the
rest of this book. Some of the notations used throughout this book is also introduced.

1.1 Macdonald Polynomials

We begin with an overview of the Macdonald polynomials'
Py(x) = Py(x; ¢, 1) € C[x]®" (1.1

which we are going to discuss throughout this book. They are symmetric polynomials
in n variables x = (x1, ..., x,) with parameters ¢, t € C, indexed by the partitions
A= (A1, A2, ..., Ay) With £(A) < n. By a partition, we mean a weakly decreasing
sequence of nonnegative integers

A=@AA2..0; A eN=Zs (i=1,2,..), Mi=i=>---20, (12)

with a finite number of parts (nonzero components); the 0’s in the tail are frequently
omitted. We denote by £(1) € Nthe number of parts of A, andby |A| = A; + A, + - - -
the degree (sum of all parts) of A. We denote by P the set of all partitions, and by #,
thesetof all A € P with £(1) < n. We identify P, with the indexing set of Macdonald
polynomials:

! In this book, we use the term “Macdonald polynomials” in the narrow sense, meaning Macdonald
polynomials of type A,_1 (in the GL, version). They are called the “symmetric functions with
two parameters” in Macdonald’s monograph [20, Chap. VI]. They are a special case of Macdonald
polynomials associated with root systems, which are Weyl group invariant Laurent polynomials
with parameters g and ¢t = (¢, ). The Macdonald polynomials associated with non-reduced root
systems (of type C¥ C in the terminology of [22]) are called the Koornwinder polynomials.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 1
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2 1 Overview of Macdonald Polynomials

Po={r=CG.... ) eN' [ 2dy >+ =2y 20}, (1.3)
We denote by &, the symmetric group of degree n (the set of all bijections o :
{1,...,n} = {1,...,n}). It acts on the ring C[x] = C[xy, ..., x,] of polynomials
inx = (xy, ..., x,) by permuting the indices of the variables x;. We denote by C[x]S»

the ring of symmetric (&,-invariant) polynomials in x.

As a C-vector space, C[x]®" has two fundamental bases,
Clx]® = P Cmix) = P Csn (), (1.4)
rEP, rEP,

both of which are indexed by $,. These symmetric polynomials

Ajtn—j\n
det (x; | )i =1 — 4. (L15)
det (x/7)"

l i,j=1

my(x)= Y x=x"+. sx)=
neS, A

are called the monomial symmetric functions (orbit sums) and the Schur functions,’

respectively. Both m; (x) and s; (x) have the leading term x* = x}' .. x* with
respect to a partial order < of partitions, called the dominance order (see (2.54) for
the definition). The Macdonald polynomials provide a family of C-bases of C[x]®"

with two parameters (q, t), including m; (x) and s, (x) as special cases.

The Macdonald polynomials P, (x; g, t) are defined (or characterized) as the
eigenfunctions of the Macdonald—Ruijsenaars q-difference operator

n n
IxXi —Xx;j L i
pe=3 [T Tt =TI = et 00
i=11<j<n ' 7 j=2 M J
J#

acting on C[x]®". Here, T, x, stands for the g-shift operator with respect to the
variable x;: Ty v, f(X1, ..., Xiy oo X)) = f(X1, .00, qXiy o0, Xp).

Theorem 1.1 (Macdonald) For each partition » € P,, with £(L) < n, there exists a
unique symmetric polynomial P, (x) = Py (x; q,t) € C[x]®" in x, homogeneous of
degree |\| and depending rationally on (q, t), such that

(1) DyPi(x) =dy Pi(x), dp=g"t" ' +gh2" 24 g™, (1)
2) Py (x) = m; (x) 4+ (lower-order terms with respect to <). (1.8)

This theorem will be proved in Sect.4.1 (Theorem 4.1).

2 Some people would restrict the usage of the term “symmetric functions” to the case of symmetric
formal power series in an infinite number of variables x = (xy, x3, . ..). We will not strictly follow
this rule, since polynomials are functions, whereas formal power series are not functions in general.
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Fig. 1.1 Space of f=q? B =2
parameters (g, t) "
t=q,6=1
q=0
Hall-Littlewood 54 Schur
1 1
t=q?2 ,ﬁ =5
Jack m, monomial
(1,1) r=1,8=0
t =0 g-Whittaker

(0,0) q

For generic (g, t), the Macdonald polynomials P, (x; g, t) (A € #,) form a C-
basis of C[x]%":
Clx]® = P CPi(xiq. 0. (1.9)

rEP,

They specialize to m;(x) when ¢t = 1, and to s;,(x) when ¢t = g. Also, in the
limit as ¢ — 1 with scaling ¢ = g#, they recover the Jack polynomials Px(ﬂ ) x) =
lim1 P,(x; ¢, ¢").> Two other important special cases are the Hall-Littlewood poly-
q—

nomials Py (x; t) = P, (x; 0, t) withg = 0, and the g-Whittaker functions P; (x; g, 0)
with r = 0 (Fig.1.1).

We remark that the Jack polynomials P}fﬁ )(x) are orthogonal polynomials asso-
ciated with the Heckman—Opdam system (or Calogero—Sutherland system) of type
A, _1; we refer the reader to [15, Chap. 8] and Sect. 5.6 of this book for Heckman—
Opdam and Calogero—Sutherland systems. They are the polynomial joint eigenfunc-
tions of a commuting family of differential operators, called the Sekiguchi—Debiard
operators. The Macdonald polynomials are also the orthogonal polynomials (poly-
nomial joint eigenfunctions) associated with the commuting family of Macdonald—
Ruijsenaars g-difference operators, which define a difference version of the differ-
ential system of Heckman—Opdam (relativistic version of the non-relativistic system
of Calogero—Sutherland).

Remark 1.1 In the parameterization t = ¢#, the three values 8 = %, 1, 2 are spe-
cial in this case of type A,_;. The Jack polynomials P/\(ﬁ ) (x) for B = %, 1,2
arise as the zonal spherical functions associated with finite-dimensional representa-
tions of the symmetric pairs (g, £) = (gl,, s0,,), (g, x gl,, gl,), (gly,, 5p,,), respec-
tively (see Gangolli—Varadarajan [7] or Heckman—Schlichtkrull [11]). In particu-

3 In Macdonald’s monograph [20, Sect. VI.10], the notation PA(O‘) is used for Jack polynomials with
the convention o = 1/8.
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lar, Px(ﬂ )(x) with 8 = % are called the zonal polynomials, and play crucial roles

in statistics. The Macdonald polynomials P (x; g, t) with t = q%, q, q2 are simi-
larly interpreted as the zonal spherical functions of the corresponding quantum sym-
metric pairs (U, (g), U;W(E)) (see Noumi [24], Noumi—Sugitani [28]). Here, U, (g)
denotes the standard quantized universal enveloping algebra of Drinfeld and Jimbo,
whereas U, (;W (&) is a coideal subalgebra of U,(g) corresponding to the subalgebra
U cU.

1.2 Fundamental Properties of Macdonald Polynomials

The Macdonald polynomials have various remarkable properties. We highlight below
some of the fundamental properties of Macdonald polynomials, which are in fact
intimately related with each other.

(a) Specializations: As we already mentioned above, from the Macdonald polyno-
mials P, (x; ¢, t), one can obtain the Schur, Jack, Hall-Littlewood and g-Whittaker
functions by specializations or limiting procedures with respect to the parameters
(q. ).

(b) Orthogonality: When g, t € Rand |g| < 1, |t| < 1, the Macdonald polynomials
P, (x) = P.(x;q,t) are orthogonal polynomials on the torus T" =
{lx1| = --- = |x,| = 1} with respect to the scalar product defined by a certain weight
function. Explicit formulas are also known for the square norms of P (x).

(c¢) Commuting family of g-difference operators: There exists a commuting fam-

ily of higher-order g-difference operators DV, ..., D™ with DV’ = D,, acting on
the ring C[x]®" of symmetric polynomials. The operators DO (r=1,...,n) are

algebraically independent, and the Macdonald polynomials P, (x) are joint eigen-
functions of them. See Sect. 5.3 for the explicit formulas of these operators.

(d) Principal specialization and self-duality: The value of P, (x) at the base point
x =1 = (""", "2,..., 1) can be evaluated explicitly as a product of simple fac-
tors. Also, the nor@alized MacNdonald polynomials ﬁk (x) = P.(x)/ Py (t?) are self-
dual in the sense P; (1°g") = P, (t°q*) with respect to discrete sets of the position
variables x = g*¢% and the spectral variables £ = ¢*#°.

(e) Pieri formula: The Macdonald polynomial P,(x) of degree d multiplied by
the elementary symmetric function e,(x) of degree r (r =0, 1,2,...,n) can be
expanded into a linear combination of Macdonald polynomials of degree d + r with
explicitly determined coefficients. This Pieri formula is obtained from the eigenfunc-
tion equations for the higher-order g-difference operator D" via the self-duality of
Macdonald polynomials.

(f) Recurrence formula and tableau representation: The Macdonald polynomi-
als of n variables x = (x, ..., x,,) admit a recurrence formula regarding the number
of variables with explicitly determined coefficients. A repeated application of this
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recurrence formula leads to an explicit formula for Py (x), called the tableau repre-
sentation, as a sum of certain weights over all semi-standard tableaux.

These materials will be discussed in subsequent chapters, after preliminaries on
symmetric functions and the Schur functions. There are several topics which we
will not cover, such as the integral forms and combinatorial formulas for Macdonald
polynomials, for which we refer the reader to some other textbooks and individual
papers (see Haglund [10] and Ram-Yip [29] for example).

1.3 Outlook

The Macdonald polynomials can be regarded as a class of classical orthogonal poly-
nomials and special functions of hypergeometric type in many variables. From that
viewpoint, the Encyclopedia of Special Functions [15], published recently, would be
a helpful guide for learning various backgrounds and recent developments around
the subjects of Macdonald polynomials and Koornwinder polynomials.

It is one of the main problems of special functions in many variables to find
good commuting families of linear differential/difference operators and to under-
stand their joint eigenfunctions in appropriate function spaces. Typically, we con-
sider linear operators which are invariant under the action of a Weyl group. In physics
terminology, such problems could be equivalently formulated as (one-dimensional)
integrable quantum many-body problems of Calogero type, where the existence of
a sufficiently large family of commuting linear operators is interpreted as quantum
integrability. Systems of commuting differential and difference operators are called
non-relativistic and relativistic respectively, according to Ruijsenaars. Also, depend-
ing on the nature of functions appearing as coefficients of the linear operators, we
distinguish three hierarchies: rational, trigonometric and elliptic. (See Remark 3.2
for the three variations of Cauchy’s lemma.) For these problems, it would be impor-
tant to pursue systematic approaches which cover quantum integrable systems, both
differential and difference, and of all three cases with rational, trigonometric and
elliptic coefficients.

In terms of the angular coordinates 6; (i =1, ..., n) such that x; = V=16 , the
Jack polynomials and the Macdonald polynomials are concerned with differential
and difference systems of trigonometric type, respectively. To be more precise, the
self-duality (Sect.6.1) implies that the Macdonald polynomials are considered as
trigonometric both in position variables and in spectral variables (with respect to
the Pieri formulas); this property is one of the characteristic features of Macdonald
polynomials. On the other hand, the Jack polynomials are concerned with trigono-
metric differential systems in position variables and with rational difference systems
in spectral variables. We also remark that, as a variant of the Macdonald—Ruijsenaars
system of A type, a coupled system of two groups of particles, called the deformed
Macdonald—Ruijsenaars system, is introduced by Sergeev—Veselov [32], for which
the eigenfunctions are described by the super Macdonald polynomials.
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Finally, we give some comments on the difference systems with elliptic coeffi-
cients. The elliptic counterpart of the Macdonald—Ruijsenaars system (of A type)
is called the elliptic Ruijsenaars system, for which integrability was already estab-
lished in the pioneering work of Ruijsenaars [30]. The BC version of the elliptic
Ruijsenaars system is called the elliptic van Diejen system (see van Diejen [33] and
Komori—Hikami [13]). As for the eigenfunctions (eigenstates) of these systems with
elliptic coefficients, however, our knowledge is rather restricted in comparison with
the theory of Macdonald polynomials. For recent topics on eigenfunctions of the
elliptic Ruijsenaars system, we refer to [17, 18] and references therein. For recent
works on eigenfunctions of the elliptic van Diejen system, see [2, 34] for example.
To completely understand eigenfunctions of these systems with elliptic coefficients
would be one of the important, challenging problems in the theory of special functions
in many variables.



Chapter 2 ®)
Preliminaries on Symmetric Functions oo

Abstract In this section, we recall some basic material on symmetric functions as
preliminaries to the theory of Schur functions and Macdonald polynomials.

2.1 Symmetric Functions e (x), h;(x) and py(x)

We first introduce three sequences of symmetric polynomials in n variables x =
(x1, ..., x,) which are constantly used in the theory of symmetric functions. They
are the elementary symmetric functions er(x) (k > 0), the complete homogeneous
symmetric functions hi(x) (k > 0), and the power sum symmetric functions py(x)
(k> 1):

ex(x) = D xwxneex, k=0),  ex) =0 (k>n), 2.1
1<ij<ip<--<ip<n

()= > x'xreexlr= Y xjxgeeex; (020), (22)
prtpat At pn=k 1<ji<=<jk=n

pe(x) = xf+x5+-+xb k=1 (2.3)

Conventionally, we define e;(x) = 0, hx(x) = 0 for k < 0. As for the power sums,
we leave po(x) undefined since it depends on the dimension #.
We introduce the generating functions

E(x;u) = Zek(x)uk = l_[(l + x;u), 2.4)
k=0 i=1
o0 n 1

H(x;u) = ;hk(x)uk = ]:[ p— (2.5)

for the elementary and the complete homogenous symmetric functions, regarding
them as formal power series in u: E(x; u), H(x; u) € C[x][[u]. The first equality
(2.4) essentially represents the relationship between the coefficients of a general

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 7
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8 2 Preliminaries on Symmetric Functions

polynomial of degree n and its roots. The second equality (2.5) is verified as

ﬁ 1 1
1—xu 1—xu 1—x,u

i=1

= (1+x1u+x12u2+-~-)-~-(1+xnu+x5u2+---)
..x#nuﬂl“l’"“i‘ﬂn

Il
N

o0 o0
=> doooxrex Jut =) bt (2.6)
k=0

k=0 \ p1+-tpun=k
Note also that the two generating functions E (x; u), H (x; u) are related through the
formula

E(x; —u)H(x;u) = 1. 2.7

The following identities of formal power series in z are frequently used in the
theory of symmetric functions:

o0 Zk OOZ
log(1+z) = —DFTZ . —log(l —2) = hiy 2.8
g(1+2) ];( ' g( ];k (2.8)

and

00 & 00
exp (Z(_l)k_l%> =1+z, exp (Z ) 1#_2 (2.9)
k=1 k=1 '

We apply (2.9) to the generating function

| 5.

0 k
POy =" pen) - (2.10)
k=1

of the power sum symmetric functions. Then we obtain

[o¢] n k
exp(P (x; u)) = exp (Z pk(x)—> = exp (Z xf%)

k=1 k=1 i=1

[y

_nexp (;xku ) l_[l_xlu (2.11)

i=1

Hence we have

exp(P(x;u)) = H(x;u), exp(—P(x;u)) = E(x; —u). (2.12)
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As we will see later, the identities (2.7), (2.12) of generating functions provide

powerful tools for analyzing the relationship among the three sequences of symmetric
functions e (x), hi(x) and py(x).

2.2 Fundamental Theorem of Symmetric Polynomials

We denote the ring of symmetric polynomials in x by
Clx]® = {f €Clxl | o(f) = f (0 € &)} € Clx]. (2.13)

Then the fundamental theorem of symmetric polynomials is formulated as follows:

Theorem 2.1 The ring C[x]®" of symmetric polynomials in n variables is gener-

ated as a C-algebra by the elementary symmetric functions e;(x), ..., e,(x). Fur-
thermore, e1(x), ..., e (x) are algebraically independent over C.
This means that for any symmetric polynomial f(x) € Clx1® inx = (x1,...,x,)
there exists a unique polynomial F(y) € C[y] in n variables y = (y, ..., y,) such
that

f(x)=F(ei(x),...,e,(x)). (2.14)

We denote the C-vector space of alternating polynomials in x by
Clx]®"*¥" = {f e Clx] | o (f) = sgn(0) f (o € &,)} < Clx], (2.15)

where sgn(o') denotes the sign of a permutation o € &,. Among all nonzero alter-
nating polynomials, the difference product (Vandermonde determinant)

Ay = ] i—x)=detx!™)};_,. deg, A(x) = (Z) (2.16)

I<i<j<n

has the smallest degree. In fact we have:

Theorem 2.2 Any alternating polynomial f(x) in x = (x1,...,x,) is expressed
as the product f(x) = A(x)g(x) of the difference product A(x) and a symmetric
polynomial g(x) € C[x]%". Namely, C[x]®"%¢" = A(x)C[x]®".

Note that
o(A(x)) = sgn(o)A(x) (0 €6,), 2.17)
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and that sgn(o) is expressed as sgn(o) = (—1)%® in terms of the number of inver-
sions £(o) of o defined by

o)y =#{G. ) ell,....,n}* |i < jand o(i) > o (j)}. (2.18)

We will give proofs of Theorems 2.1 and 2.2 later in Sect. 2.5.

2.3 Wronski Relations and Newton Relations

Knowing that any symmetric polynomial can be expressed by elementary symmetric
functions, it would be natural to ask how the complete homogenous functions £ (x)
and the power sums py (x) are expressed explicitly in terms of e, (x). Here are some
examples: Suppressing the dependence on the x variables, we have

2 3
hi=e, hp =ef —ex, h3 =e] —2ejex +e3,

hy =e‘11 —36%62-{-26163 —l—e% —e4, ..., (2.19)
pi1=ei, py=ei —2e, p3=e; —3ejes + 3es,
Py =ef —deley +deres +2e3 —dey, ... (2.20)

Formulas of this kind can be generated by means of the formulas (2.7) and (2.12)
for the generating functions.

Formula (2.7) relating E(x; u) and H (x; u) is equivalent to the infinite number
of relations

Y (—Dieh;=0 (k=1.2.3,..)), 2.21)
itj=k

called Wronski’s relations. To be explicit,
hy—e =0, hp —ethi+e,=0,, hy—ehy+ehs —e3=0, .... (2.22)

Using these formulas recursively, we see that all s are expressed in terms of
el, ..., e, and vice versa. Wronski’s relations can also be formulated as the sys-
tem of linear equations

1 h e
el 1 0 —h; ()
e e 1 hs =] . (2.23)
C—1 ... e 1 (—l)kilhk ek

Then, by Cramer’s formula we obtain
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1 el el 1
el 1 () e (4] 1
hy=(=DF"det| @ e b el —qer| = ool L (224)
s ' Cr—1 €k—2 ... €] 1
€k—1 ... €2 €1 € €y €k—1 ... €2 €]

Formula (2.7) also implies
H—u)=E@u) " = +eu+eu” +---)7!

=Y (=D eru + eu® + - )"

d=0
=2 DT ) et e
d=0 it e=d PUH2Z
[e.¢]
—D)lul
=Y 3 Me’f'e’;zn- na (2.25)
pilpa! -

k=0 \p1+2puz+--=k

Hence we obtain the explicit formula

(= |
hy = Z e'i‘lelz"2... , ”M”zzl:“i’ (2.26)

T
=k HTH2 i=1
expressing hi; in terms of ey, ey, . . ., ;. Since the roles of ¢; and & ; are interchange-
able in (2.22), we also obtain
— 1)Y=l g
e = Z thﬂhgz e (2.27)

| ...
=k MR

This implies that C[x]®" = C[hy, ..., h,]and thath, ..., h, are algebraically inde-

pendent as well. Since ¢, = 0 (k > n), each formula (2.27) for k > n represents an
explicit algebraic dependence among hy, ho, ..., hy.

Similar computations can be performed for the relationship between e; and py.
We apply the differential operator ud,, 9, = d/du, to the second formula of (2.12)
to obtain

— (Wo, P(x; u)E(x; —u) = uo, E(x; —u). (2.28)

This means that
—(pru+ po® + -1 —equ+eu® —- ) = —equ + 2eou* — 3ezu — -+,

(2.29)
and hence we obtain
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Pi—epioi 4+ (=D e pr+ (= Dk =0 (k=1,2,..).  (2.30)

These recurrence relations between the elementary symmetric functions and the
power sums are called Newton’s relations. Rewriting these as a system of linear
equations for pj, ps, ..., and then solving it by Cramer’s formula, we obtain the
determinant formula for py:

€1 1
262 el 1
pi = det : S (2.31)
(k — 1)€k_1 €r—2 ... € 1
kek €k—1 ... €2 €]

The second formula of (2.12) also implies
— P(x; —u) =log E(x; u) = log(1 4+ eju + eou’ + - -4)

= 1
= Z(— )d_lg(elu +equ® +--)?
d=1

= d— 1 Y w2t
_Z( D Z AR
d=1

D insoma P12
oo
1)lul=1 -1
-y (> &2 ‘ Ut = DY e ) (2.32)
o e Htet
Hence we obtain
—1)k=lul — 1)
r_y» D7 )e/;'e*;z.-- k=1,2,..) (2.33)
ek Palale
This also implies that C[x]®" = Clpi, ..., ps]and that py, ..., p, are algebraically

independent.

The method explained here can be applied to derive other formulas (recurrence
formulas, determinant formulas and explicit formulas) representing e, i, and p; by
each other.

2.4 Monomial Symmetric Functions

We have seen so far that the first » members (up to degree n) of any of the three
sequences ¢, Ay, py can be taken as a generator system of the C-algebra C[x]®". The
monomial symmetric functions m; (x), as well as the Schur functions s, (x) which
we will discuss later, appear as bases of C[x]®" regarded as a C-vector space.
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Let f(x) € C[x] be an arbitrary polynomial in x = (xy, ..., x,), and express it
as a finite sum of the form

f=f@nx) = Y au Xl xl (2.34)

Then the action of a permutation o € G, on f is defined by

U(f) = f(xa(l)v ey xo(n)) = Z ay,,..., ,u,,x(l;(ll) o 'xf;fn)- (2.35)

We are using the same symbol o of permutation for the C-algebra automorphism
of C[x] that maps x; to x,;) (i =1, ..., n). In what follows, we will freely use the
multi-index notation for monomials in x = (x, ..., x,): For each multi-index (or
composition in combinatorial terminology) u© = (1, ..., t,) € N* , we set

xt =t xl, deg XM = |ul =1+ e (2.36)

Noting that the action of 0 € &,, on x* is given by

My—1 Ho—1¢; J
Mn o “)"'.X o m"'-xnd (n)’ (237)

ny — M1 Mi _
o (X)) =X,y Koy Ky = Xy ;i

we specify the (left) action of &, on u € N" as
O = (Uo-1(1)s - -+ s Ho=1(n)) (2.38)
by permuting the positions (rather than the components). Then we have
o(x*)=x""  (ueN' oeG,). (2.39)
Let us illustrate this definition with an example:

Action of a permutation on multi-indices

wo= (1, ha, U3)
123

n=3, o=(123)=<231

) (cyclic permutation):
o)k = (U3, [41, U2)
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We now express an arbitrary polynomial f(x) € C[x] as

fx) =Y a,x" (finite sum) (2.40)

neN”

in the multi-index notation, and rewrite the action of 0 € &,, on f as

o(f) =Y aw) =Y aux =Y a,x", (2.41)

pneN" pneNt neNt

where we have replaced 1 by o ~!. 1 in the last step. Hence we have o (f(x)) = f(x)
if and only if
a, = a1, forall peN". (2.42)

This implies that f (x) is a symmetric polynomial if and only if the coefficients a,,,
regarded as a function of u € N”, are constant on each &,,-orbit in N”.

Note that, for any © = (4, ..., ) € N, the G,-orbit G,.u C N” contains a
unique partition A € P, obtained by rearranging the components of . This means
that the set P, of partitions is a transversal (fundamental domain) of the S,,-set N” (a
complete set of representatives of the G,-orbits in N"). For each A € P,, we denote
by

m(x)= Y xt=x'+- (2.43)

neS, .

the sum of all monomials attached to the elements in &,,.A. This m; (x) is called the
monomial symmetric function of monomial type A; each monomial obtained from x*
by permutation appears precisely once (with coefficient 1). An alternative definition
of m, (x) can be given as

1 L1
) =1E 2 o' = G|

oe6,

Z XM (2.44)

oe’,

by symmetrizing the monomial x*, where G, ={o € G, | 0.1 = A} denotes the
stabilizer subgroup of A. (See the examples given below.)

If f(x) € C[x] is a symmetric polynomial, we have

fx) = Z a,xt = Z Z auxt

neN” AEP, neS, .1
=Y a4 Yy XM= amx). (2.45)
rEP, neS, A reP,

This means that a polynomial f(x) € C[x]is symmetric if and only if it is expressed
as a finite linear combination of monomial symmetric functions
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f) =) aym(x) (finite sum). (2.46)

AEP,

Since m; (x) (A € P,) are linearly independent over C, we conclude that they form
a C-basis of C[x]®".

Theorem 2.3 The monomial symmetric functions m)(x) (A € P,) form a C-basis
of the ring C[x]®" of symmetric polynomials:

Clx1® = € Cmy(x). (2.47)

rEP,
(Il

In order to visualize a partition A = (A1, A2, ...) € P, we frequently identify A
with the diagram of A,

DXMN={s=0GJ)eZxZ|1<i<{LQH), 1<j<N}, (2.48)

or the Young diagram

[ In
DGy = i s

LA
X, 2 (2.49)
of squares s = (i, j) withrows and columns labeledbyi = 1,2,...and j = 1,2, ...
respectively. By abuse of notation, we also write s € A instead of s € D(X). We
define the conjugate partition (transpose) A’ = (A}, A}, ...) € P of A, denoting by
)\’j =#{i > 1| X; > j} the number of squares in the jth column of D(A) for each
j=12,...

Given a partition A = (A1, A, ...), letm; € N be the number (multiplicity) of j’s
appearing in A for j = 1,2, .... We often express a partition as A = (1”2”2 .. ), or
A = (...2™M1™), specifying the multiplicities of parts of A.

Young diagrams of special shapes

@lllll [ 1]

(13 @) 41% (321) )

column row hook staircase rectangle
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Monomial symmetric functions

(1) Single column A =(1") =(1,...,1,0,...,0) withr I's (0 <r <n):

Mman() =X+ = Y X eex, =e(x)  (250)

1<ij<--<i,<n

() Singlerow A= () = (1,0,...,0) (I =1,2,...):
may(x) =x{ +---= > xf = px). (2.51)
i=1

(3) When n > 3, there are three partitions A € P, with |A| = 3:
3)=(@3,0,..), 2D)=(2,1,0,..), (1> =(@1,1,1,0,...). (2.52)

Any homogeneous symmetric polynomial of degree 3 is a linear combination of the
monomial symmetric functions m3)(x), mq)(x) and m3y(x). When n = 3, they
are given explicitly by

3 3 3

may(x) = x7 + x5 + x3,
.2 2 2 2 2 2
mon(x) = x{x2 + x7x3 + x1x5 + X1x35 + X3X3 + X2x3,

m3)(X) = X1X2X3. (2.53)

Note that, if we symmetrize xf, xlzxz, X1x2x3 by &3, we obtain 2m 3 (x), m,1)(x),
6m ;3 (x), respectively, where 2, 1, 6 are the orders of the stabilizer subgroups of

(3), 2, D), ().

Among all monomials x* appearing in m, (x), x* is the leading (maximal) term
with respect to the partial order <, called the dominance order. For u, v € N", the
dominance order i < v is defined by the condition

i+t v+ @=1,...,n—=1) and |u|=[v]. (2.54)

Exercise 2.1 Prove the following:
(1) If A € P, is a partition, then any u € G,,.) satisfies u© < A.
(2) If u,v eN"and pu < v, then ;t <jx v under the lexicographic order of N~ !

Remark 2.1 We denoteby P = 7" = Ze| & - - - ® Ze, the set of all multi-indices
of integers, where ¢; (i = 1,...,n) are the unit vectors. In the language of rep-

I For w,v € N u <jex v means that, either u = v, or if u # v, then uy < vy for the smallest
index k € {1, ..., n} such that uy # vg.
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resentation theory, P is the weight lattice of the general linear group GL,. We
extend the definition of the dominance order to P by the same condition (2.54).
We remark that the dominance order u < v for u, v € P is equivalentto v — u €
O, =No;®---®Na,_, where o; = ¢; —g;y 1 €Z" (i=1,...,n—1) are the
simple roots of the root system of type A,_;. This fact can be seen by the fact that

the simple roots «y, ..., o, together with o, = ¢, form the dual basis of the fun-
damental weights w; = e +---+¢; (i =1,...,n), with respect to the standard
scalar product on P = Z" such that (si, 8j> =6, jel{l,...,n}.

2.5 Comments on Fundamental Theorems

In this section, we outline the proofs of Theorems 2.1 and 2.2.
For two sets of variables x = (x,...,x,) and y = (yq, ..., y,) we consider the
C-algebra homomorphism ¢ : C[y] — C[x]®" defined by

¢(F(y) = Fei(x),...,en(x))  (F(y) € ClyD. (2.55)

Note that this algebra homomorphism ¢ is uniquely determined by the condition
¢(y;) =e(x) (r =1,...,n). Then, Theorem 2.1 is equivalent to saying that ¢ :
C[y] — C[x]®" is an isomorphism of C-algebras.

We define the grading of C[y] by

Chl=EPChle. Chla= @ Cy @eN), (2.56)
d=0 veN";||v||=d

where [|v]| = v; +2v; + - - - + nv,, assigning the degree deg,, y, = r toeach y, (r =
1,...,n).Then ¢ : C[y] — C[x]®" preserves the grading, with C[x]®" regarded as
a graded algebra with deg, x; = 1 (i =1, ..., n). Then we show that

$:Chli= P Cy—=Chly= P Cme (2.57)

veN"; ||v||=d rEPy; |A|=d

defines a C-isomorphism foralld =0, 1, 2, ....Infact,foreach» = (A, ..., A,) €
P, with |A\| = Ay + -+ - + A, = d, we express the conjugate partition A’ € P as

A=A, A =12y (= Ay, (2.58)

in terms of the multiplicities v; of i in A’. Then the multi-index v = (vy, ..., v,) € N”
satisfies

il =vi+2v+- - +nv, =4+ -+ x4 =M =|rl =d. (2.59)
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This correspondence A — v defines a bijection
heP, lIM=d) S [veN ||| =d] (2.60)

between the two indexing sets. Note also that A is determined from v by A; = v; +
-«++v, (i =1,...,n).Underthis correspondence, the image of y" by ¢ is computed
as

d(") = e1(x)"ea(x)" -+ - ey (x)™
=4 ) X ) (g X))
= x]"(x1x2)" - -+ (x1 - - - x,)"" + (lower-order terms),
= x* 4+ (lower-order terms)

= m, (x) + (lower-order terms), (2.61)
with respect to the lexicographic order (as well as the dominance order) of N”. This

triangularity of ¢ implies that ¢ : C[y]; — (C[x]f" is an isomorphism of C-vector
space.

Example: n =5, A = (7,5,4,1,0), \' = 4,3,3,3,2,1, 1),
v=(,1,3,1,0)

To each column of length r, attach the elementary symmetric function e,.

4335210 e
ANNRRNRNN = ejeresey
A S5(2]12121212 = xF (X1 x2) (x102x3) (X1 X2X03%4) + -+ -
4[3[3]3][3 7 5.4
1[4] = X[ XyX3X4 A+ 2.62)
0 = msany(x) + -+ ’
Example: Symmetric polynomials of degree 3
Note that (3)’ = (111), (21)’ = (21), (13)’ = 3.
ef = mg +3I’)’l(21) +6m(13), may = 6% —3eze; +3es,
ére| = mr) +3m(13), meaol = ereq —36‘3, (263)
€3 = msy, mgq3 = e3.
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Theorem 2.2 can be proved by using the factor theorem for polynomials in one
variable. We prove that any alternating polynomial f(x)inx = (xy, ..., x,) isdivisi-
ble by A(x) by the induction on the number of variables. Regard f (x) as a polynomial
pw) = f(u, x3,...,x,) € Clxa, ..., x,][u] of the first variable. Since f (x) is alter-

nating, one has p(x;) = f(x;, x2,...,x,) =0for j =2,...,n, and hence p(u) is
expressed as p(u) = q(u)(u — xp) - - - (u — x,) for some q(u) € Clxa, ..., x,][ul,
namely
FOn ) =g, x, o x) [ [ = xp) (2.64)
j=2
for some g(xy,...,x,) € Clx]. Since g(x) is alternating in (xp,...,x;), it is

expressed as
glxy, ..., x) =h(x, ..., x) AKX, ..., Xp) (2.65)

with some A (x) € C[x] by the induction hypothesis. Hence we obtain

flxg, .o, xp) = h(xl,...,xn)l_[(xl —x;) Ax2, ..., X,)
j=2

=h(x1, ..., x)AXL, ..., X,). (2.66)

From f(x), A(x) € C[x]®"%" it also follows that h(x) € C[x]®".

Remark 2.2 The statements of Theorems 2.1 and 2.2 hold in a slightly more general
setting, including the case of symmetric and alternating polynomials over Z. In fact,
we have the isomorphism

¢ RIyl—> RIx]I®, () =ekx) (=1,...,n), (2.67)
of commutative rings, for any integral domain®> R. We also have
R[x]®"%" = A(x)R[x]®" (2.68)

provided that 1 # —1 in the integral domain R. The proofs given above apply to this
general setting without any essential change.

2 A commutative ring with 1 satisfying the property that f, g € R, fg =0 = (f =0 or g = 0).



Chapter 3 ®)
Schur Functions Check for

Abstract As a warmup for our discussion of Macdonald polynomials, we review
fundamental properties of Schur functions. We start here with two definitions of the
Schur functions, one by combinatorics of semi-standard tableaux, and the other in
terms of ratios of Vandermonde-type determinants. Then we establish the equivalence
of the two definitions by means of the Cauchy formula. It should be noted that the
theory of Macdonald polynomials is modeled in many respects on that of Schur
functions.

3.1 Definitions of the Schur Functions

3.1.1 Two Definitions

We now move on to the Schur functions s;(x) (A € P,); they are a family of sym-
metric polynomials indexed by the same set $,, of partitions A with £(A) < n as in
the case of m, (x). Each s, (x) is homogeneous of degree || and has the leading term
x* with respect to the dominance order:

s =xr =m0+ (3.1)

With this property, they also form a C-basis of the ring of symmetric polynomials:

Clx]® = P Csi(x). (3.2)

AEP,

As we will see below, s, (x) are in fact symmetric polynomials with nonnegative
integer coefficients, i.e. s, (x) € N[x]®.

We give two definitions of the Schur functions here, denoting them by sﬁomb (x)
and s‘fet (x) respectively, and show later that they in fact coincide.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 21
M. Noumi, Macdonald Polynomials, SpringerBriefs in Mathematical Physics,
https://doi.org/10.1007/978-981-99-4587-0_3
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Definition 3.1 (combinatorial) For each A € P,, we define the Schur function
s§°mb (x) as the sum

sy = Y D (3.3)

T eSSTab, (1)

of monomials x¥'7) over the set SSTab, (1) of all semi-standard tableaux T of shape
A in letters {1, ..., n}.

We explain below the precise meaning of a semi-standard tableau 7" and its weight
wt(T). By definition we have s§°mb (x) € N[x], but it is not obvious why it should
be symmetric since this definition depends strongly on the ordering of the indexing
set {1,...,n}.

Definition 3.2 (determinantal) For each A € P,, we define the Schur function
sdet(x) as the ratio of two determinants of Vandermonde type:

det(x.kﬂr"*j):’Yj:l ~ det(x?ﬁ"fj)?_j:l

), AW

st (x) =

, 3.4

where A(x) = [],_,;_;,(x; — x;) stands for the difference product.

,+n—j)” € Z[x] is an alternating polynomial in

Since the numerator det ()clA i j=l
Z[x]Sm% it is divisible by A(x) in the polynomial ring Z[x] with integer coef-
ficients. Hence the resulting s3¢(x) is a symmetric polynomial with coefficients in
Z,i.e. sfe‘ x) e Z[x]S" (see Remark 2.2). It is not obvious, however, why they should

have coefficients in N = Z.
Theorem 3.1 For any ) € P, we have sﬁomb x) = sfet (x).

Namely, the two definitions of the Schur functions give the same polynomials, which
we denote by s, (x). Animmediate consequence of this theorem is that the Schur func-
tions are symmetric polynomials with coefficients in N = Z, i.e. 5, (x) € N[x]S-.
The equivalence of the two definitions will be established later in Sect.3.5 on the
basis of Cauchy’s formula.

3.1.2 Combinatorial Definition

By a semi-standard tableau T of shape X in letters {1, ..., n}, we mean a mapping
T:D) — {1,...,n}suchthatthe numbers 7' (s) (s € D(A))are weakly increasing
along the rows and strictly increasing along the columns.! For example,

T is called a column strict tableau in the terminology of Macdonald [20].
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1[1]2]3]4] a<b
T=[2]3]3 A
4] ¢ (3.5)
Namely, T should satisfy
TG, ) <TG j+1) (1<i<lQ),1=<j<n),
T, j)<TGE+1,j) (I1<j<r, 1<i<d). (3.6)

We denote by SSTab,, (1) the set of all semi-standard tableaux of shape A in letters
{1, ..., n}. For each semi-standard tableau 7', we denote by wt(7") the composition
(multi-index)

w=(r, i) €N, pi=#{se DM |T@) =i} G=1,....n) (3.7

obtained by counting the number of i’s in the tableau 7" for each i; wt(T') is called
the weight of T. In the example of T in (3.5), we have

wt(T) = (2,2,3,2), ™1 =xixjxix]. (3.8)

s§°‘“b (x) attached to columns and rows

(1) Single column A = (1"): (r =0,1,2,...)

SEP@ = Y wx = e ). (39

1<ij<--<i,<n

(2) Singlerow A = (I): 1 =0,1,2,...)

s;:l())mb(x) — Z le .. 'xj, = hl(x)' (310)

I<ji<<jzn

Example of s (x): n = 3,1 = (2,1, 0)

Whenn =3 and A = (2, 1, 0), there are 8 semi-standard tableaux of shape A.

] 1 [1[2] [1[2] [1[3] [1[3] 2] 3]

I 2
3 2 3 2 3 3]

1 2
2] El

2 2 2 2 2 2 .
X1{X2 X1X3 X1X5 X1X2X3 X1X2X3 X1X3 X5X3 X2 X3 (3 11)
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Hence we have
S(Cffl;b(x) = x12x2 + X12X3 + x1x§ + x1x32 + X§X3 + x2x32 + 2x1X0X3
= m@1)(x) + 2m3)(x). (3.12)

Note that the definition of sj{"mb (x) strongly depends on the orderingof 1, 2, ..., n.
By definition we have s$°™(x) € N[x], but why are they symmetric?
For each v € N" with || = |A|, we set

SSTab, (1), = {T € SSTab, (%) | wt(T) = p}. (3.13)

The number
K., =#SSTab, (1), e N (3.14)

of semi-standard tableaux of shape A with weight u is called the Kostka number.
Then we have

Siomb(x) — Z (#SSTab,,(A)M) xH* = Z K)L,//- xM. (3.15)
pneNn pneN"

In fact we have
s (x) = x* + Z K, x", (3.16)
<A
namely, s7°™(x) has the leading term x* with respect to the dominance order.
Exercise 3.1 Let A € #,. Prove the following:
(1) If T € SSTab, (1) and wt(T) = u, then u < A.
(2) Ky, =1,and K, , > Oif and only if u < A.

Remark 3.1 As we mentioned already, each s{°™(x) is in fact a symmetric poly-
nomial. This statement is equivalent to K, , = K; 5, (u € N*) for any permu-
tation o0 € G,,. We remark that, for each adjacent transposition s; = (i,7 + 1)
(i=1,...,n— 1), there is a bijection

SSTab, (1), — SSTab, (1), . (3.17)

called the Bender—Knuth involution. It implies that K, , = K, 5, , (u € N") for
i=1,...,n—1,and hence K, , = K 5, (u € N") for any 0 € &,,. For a com-
binatorial proof of G, -invariance of this sort, see Sagan’s textbook [31, Proposition
4.4.2] for example.
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3.1.3 Determinantal Definition

For each A € P,, we defined sfet(x) as the ratio of two determinants in Definition
3.2. Wedenoteby § = (n — 1,n — 2, ..., 0) the staircase partition of n — 1 parts so
that§; =n —i (i = 1,...,n). Then the definition of sfe‘ (x) can be rewritten as

det(xfk-kﬁ)j);l .7
= (3.18)
det(x;”)

ij=1

det
550 (x) =

We give here a remark on the strict partition / = A + § appearing in the numerator.”
The sequence ! = (Iy,...,1,),lj =A;+n—j(j=1,...,n),canberead off from
the boundary of the Young diagram as shown below.

4 5 6 7 8 9 10

‘o (3.19)

The subset M = {l1, ...,1,} € Nis often called the Maya diagram attached to A.

Example of s (x): n = 3,1 = (2,1, 0)

Since A + § = (4, 2, 0), we have

x?x%l x%xll AG2, 22,22
det (1) _ 42 2 _ A, x5, x3)
S(a1)(¥) = det| x5 x7 1 det| x5y xp 1| = . (3.20)
A(xy, x2, x3)
4 2 2
x3 x3 1 x3 x3 1
Hence
2 2 2 2 2 2
det Of — x5 —x3) (5 — x3)
sany () = = (x1 +x2)(x1 +x3)(x2 + x3)
@b (1 —x2)(x1 —x3)(x2 — x3) ’ :
_ .2 2 2 2 2 2
= X{X2 +X7X3 + Xx1x5 +x1X3 + x5x3 + x2x3 + 2X1X2X3
=m1)(x) + 2m 3y (x). (3.21)

2A partition A = (A1, A2, ...) with £(X) = [ is called strictif A.; > Ay > --- > X; > 0.
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Exercise 3.2 Show that s?f,}) (x) = ex(x), sgf)t(x) =hi(x) (k=0,1,2,...).
A possible approach would be to use the following identities:

1_[(14 —Xj) A, X)) = AU, X, ., X)),

j=1 .
Axr, ... %) X
N _det<1 _W) . (3.22)

i,j=1

Exercise 3.3 Prove that both 5{°™ (x) and s (x) carry the following properties.
(I)Forany A € P, and k € N, s34y (x) = (x1 .. . xp)¥s; (x), where (k") = (k, ...,
k) denotes the n x k rectangle.

(2) Let A € P, and m < n. Then we have

) s, xm) (BA) S m),
S(X15 .0 X, 0,...,0) = {0 €0 > m). (3.23)

3.2 Principal Specialization and Self-duality

Before giving a proof of Theorem 3.1, we explain some consequences of the equiv-
alence of the two definitions of Schur functions. From this section on, we set
s(x) = sfe‘(x).

3.2.1 Principal Specialization: Evaluation at x = t}

According to the combinatorial definition, the Schur function sjomb (x) counts the
semi-standard tableaux T of shape A with weights x*"7)_ In particular, we have

sl D =s0m, L )= ) 1 =#SSTab, (). (3.24)
T €SSTab, (1)

In terms of the determinantal definition, the evaluation of s; (x) at x = (1, ..., 1) is
a subtle question since the denominator A (x) vanishes at this point. In order to avoid
this singularity, we first evaluate s; (x) at 8 = @" ', "2, ..., 1) and then take the
limitas r — 1.

Proposition 3.1 (Principal specialization) For each ) € P,, we have

NS 1 — phi—hi=i
8y __ Q)
SA(I ) = W =1 l_[ W’ (325)

I<i<j<n

wheren(A) =Y+ (i — 1)A;.
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Proof 1In fact, we have

det(t5i()h+5)f):lj_l A(t)qué)

8 =
5.(1°) = =
A@) A@)
tk,Jrnfi _ t)\.j“rn*j 1— t)u,’*)u,'+j7i
S | (A S, o PR A EET
gt — gy -~
I<i<j<n I<i<j<n

O

We are now allowed to take the limit as + — 1 in (3.25), to obtain an explicit
formula

AG+8) I A=A +]

#SSTab, (1) = 5i(1,.... ) = = /=

(3.27)

I<i<j<n

for the number of semi-standard tableaux of shape A.

3.2.2 Hook Length Formula

Formulas (3.25) and (3.27) can be rewritten into a combinatorial expression of the
Young diagram. For each square s = (i, j) € D(A), we define the content c, (s) and
the hook length h, (s) by

@) =j—i, h(s)=r+A,—i—j+1. (3.28)

Note that, in terms of the arm length a; (s) = A; — j andthe leg lengthl; (s) = )Jj —1,
the hook length is expressed as /i, (s) = a; (s) + L, (s) + 1.

J
‘ T ITT]  ae=n-j
i S A
a;.(s) 1.(9) =)~,j —i
S 0.(s) hi(s) = a,(s) + L(s) + 1
— (3.29)
In terms of the Maya diagram M = {l;,...,[,}, a square s € A is in one-to-one

correspondence with a pair (k, /) of nonnegative integers such that k <[, k ¢ M,
| € M; the hook length is then interpreted as h; (s) =1 — k.

Proposition 3.2 (Hook length formula) For each A € P, we have
1— tn+cA(v)

5" ="V [ ——5 (3.30)

SEA
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and
s, (1,...,1) =#SSTab, (1) = 1_[ LCA(S) (3.31)
sEL h)‘(s)
Proof We show
A=A —i
I St T BE +als) (3.32)
l<i<j<n J =t seA hi(s)
Setting; = A; +n—i (i =1,...,n), consider the Maya digram M = {I,, ..., [,}

attached to A. In terms of M, we see

[[ 2=tz rll“4f=H%“MﬁM“_“ (3.33)
j—i |

j —i n05k<l<n(l - k)

I<i<j<n I<i<j<n
and
Hhk(s) = ]_[ (I — k). (3.34)
SEA 0<k<l
k¢M,leM
Since
H(l—k): l_[(l—k) ]_[ (I — k), (3.35)
0<k<l 0<k<l 0<k<l
leM k,leM k¢M,leM
we have
A=A j—i
[T 2252 T (3.36)
s J —1
I<i<j<n sEX

_ [o<k<tksenn@ =5 [o<rs; kg iemd —K)
H0§k<l<n (l - k)
— H0§k<l;leM(l - k) _ 1_[;121()\.,‘ +n— l)'
[To<k<in —5) [T (=i

=[[e =i+ Dy =[] +crto0, (3.37)

i=1 SeL

where we have used the notation of shifted factorials (a)y = a(a+1)---(a +k — 1)
(k =0, 1,...). The same proof applies to the formula for s, (t°) as well. O
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Hook length formula

Hn=31=(2,1,0).

3]4]
2
1—[714‘0)\(5): =] —0.4—8
ECAS) 371
- (3.38)
2)n=41=(5,3,1,0).
4]5]6]7]8]
34[5
2
]_["Jrck(s): — = 360.
jer () 7]5]4]2]1]
121 (3.39)

Exercise 3.4 Confirm that the hook length formula implies the following:
(1) Single column A = (1"): sqn(1,..., 1) = (n) (r =0).
r

n+l-—1

(2) Single row A = (I): sp(1, ..., 1) = ( /

) (1 =0).

3.2.3  Self-duality

The values of s, (x) at the discrete set x = t**° (1 € P,) have a remarkable duality
property (evaluation symmetry).

Proposition 3.3 (Self-duality) For any pair of partitions A, u € P,, we have

S (tu+5) su(t)\-‘ré)

= . 3.40
S0 s G40
Proof Since s, (t%) = A %)/ A(#%), we have
sy A() det(1 0!
8;.( ) - ( ),,_1- (3.41)

5.0 INGERINGGD)

This formula is symmetric with respect to exchanging A and u. ]
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Regarding x = #? as a base point, we set
S(x) = —— (3.42)
Sx

so that 5, (t%) = 1. Then Proposition 3.3 implies that 5; (t*°) =5, (**%) for any
pair of partitions A, u € £,. Namely, regarded as a function of (A, u) € P, x P,,
5. (t"1?) is invariant under the exchange of the arguments A and .

3.3 Cauchy Formula

In this section, we give a proof of the Cauchy formula for Schur functions; it will be
used in Sect. 3.5 to establish the equivalence of two definitions of the Schur functions.

3.3.1 Cauchy Determinant

Lemma 3.1 (Cauchy) For two sets of variables x = (xy, ..., x,) andy = (y1, ...,
V), we have

1 " A(x)A(y)
det = =" 3.43
y <xi+yj>i,j1 H:l,jzl(xi—i_yj) ( :
1 " Ax)A(y)
det{ — = =\ 3.44
© (] _xiyj),',j=1 H?,j:l(] = Xiy;j) ( D)

The two formulas of Lemma 3.1 are equivalent to each other; the second formula is
obtained from the first by change of variables x; — —xi_l (i =1,...,n) and vice
versa.

Exercise 3.5 Prove Cauchy’s lemma (3.43) by means of the property of alternating
polynomials.

Exercise 3.6 (1) For any n x n matrix (a,- /')?j=1 with a,, # 0, its determinant is
expressed as follows by a determinant of 2 x 2 minors (a variant of the Dodgson
condensation):

n —n42 n
det(a,-j)l.!jzl = a,m”+ det(a,-ja,,,l — a,-,,anj)i,jzl . (345)

(2) Use (3.45) to give an inductive proof of Cauchy’s lemma.

Remark 3.2 Lemma 3.1 can be extended to the following family of determinant
formulas involving an extra parameter u:



3.3 Cauchy Formula 31

t(u—l—x,- +yj>n _ U YN+ AWAQ) (3.46)
u(xi +;) /o u [T7 o i+ 37 '
1 —ux;y; n 1 — XYL Va A A
det( Ux;y ) B Sl LI N TR () A(y) (347)
(1_u)(1_xiyj) i,j=1 I—u l_[i,jzl(l_xiyj)
et(a(u+xi +yj))"
o(u)o(x; +yj) i,j=1
ou+y i+ cicj<n OXi —xj)o(yi — y;
_ ( > i Z,J yj) HL j<n 0 oy y,)’ (3.48)

o (u) [T mi oG +y))

where 0 (z) = o0 (z|2) stands for the Weierstrass sigma function attached to a period
lattice Q = Zw; ® Zw, C C of rank two (Im(w,/w;) > 0), defined by
o=z [] (1 - 5) Gl (7 e ), (3.49)
we2, w#0 @

These three variations (rational, trigonometric and elliptic) play crucial roles in var-
ious situations of integrable systems. Here, formula (3.47) is called trigonometric in
the sense of additive variables 6; such that x; = eV=l6,

3.3.2 Cauchy Formula for Schur Functions

In what follows, we use the notation of Schur functions s, (x) for sfe‘ (x).

Theorem 3.2 (Cauchy formula) For two sets of variables x = (x1,...,x,)andy =
(V15 - -+ Yn), the following identity holds in the ring C[[x, y]| of formal power series
inxandy:
. 1
[[] —— =) smso. (3.50)
L 1 - XiYj
i,j=1 rEP,

Proof We make use of the multiplicative version (3.44) of Cauchy’s lemma.

Ax)A(y) d ( 1 >OO
= = det| ———
Hi,jzl(l _xiyj) 1_xiyj i,j=1

= Z sgn(o) !

e, (I = xomyy1) - (I = X5y Yn)

=Y san@) > Gy o yn)®

0eS, kiy....,k,>0
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k k, k ky
= > | D sen(@)xghy x|

ki,....k,>0 \0e€&,

= Ak] ..... kn(-x) )’11(1 "'yi(", (3.51)
k,>0

Mgyt (x) = det(xf’>' , (3.52)
i,j=
of Vandermonde type (alternating polynomials of monomial type (ky, ..., k,)). Note
that A,_1 -2, 0(x) = A(x). Since Ay, ., (x) is alternating in (ky, ..., k,), we
have only to consider the cases where ki, ..., k, are mutually distinct. In such a
case, there exists a unique sequence (/y,...,/,) € N” and a permutation o € G,
such that
> >0,20, ki,....k) =Usys - lom)- (3.53)
Then we have
Agyode X)) = Al (0) = 8g0(0) A, (X). (3.54)
Hence,

Ax)A(y) Z Z Loy Lo
= = sgn(o) Ay, () y" -y
Hi,j:l(l - xi)’j) L>..>,>00€eG,

lsq1 lo(n
= D A Y sgn@)y ey
L >...>1,>0 ceq,
= D A, AL, (3.55)
li>..>1,>0
Each!/ = (y,...,Il,) e N"withl; > --- > [, > 0is uniquely expressed in the form

I =X+ 6 with A € P, and we have A;(x) = A, 15(x) = A(x)s; (x) by the defini-
tion of 5, (x) = s3(x). Hence we obtain

Ax)A(y)
_AWAG) N, A
[T} ,= (1= xiy)) MZﬂ aops (0) Asps ()
= A@AQY) Y 505 (y), (3.56)
rEP,

as desired. O
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It is convenient to introduce the signed version
Stk (X) = '—x ki, ...k, €N) (3.57)

of s, (x) with alternating indices (ky, ..., k,). Note that, if = (/;,...,[,) e N" is
strictinthesense/; > ... > [, > 0,thenwe have f, _;, (x) = s, (x) for the partition
A € P, such that! = A + §. In terms of these functions, Cauchy’s formula is written
as

A(y)

= > 50 A ()

H[J:](l = Xiyj) )ggn
= Y fad @y (3.58)
Kty 20

This formula will be used in Sect. 3.5 to establish equivalence of the two definitions
of Schur functions.

We also remark that Cauchy’s formula can be generalized to the case of two sets
of variables with unequal dimensions: For two sets of variables x = (xy, ..., x;)

andy = (y1,---, Yu),

]‘[]‘[1—= Y s ) S ) (3.59)

— XV
i=1 j=1 iYj £(\)<min{m,n}

This formula is obtained from the m = n case by setting unnecessary variables to
zero, thanks to the stability property of Exercise 3.3 (2).

3.4 Recurrence on the Number of Variables

‘We recall the combinatorial definition of Schur functions:

sy = Y MO, (3.60)

T €SSTab, (1)
Given a semi-standard tableau T € SSTab,, (1) of shape A in letters {1, ..., n},let T’
be the sub-tableau of T consisting of letters in {1, ..., n — 1}. Then by the condition

of a semi-standard tableau, the shape i = (i1, iz, ...) of T’ is a partition satisfying
the interlacing property

Al Z UL Z A= U2 = A3 =00 (3.61)
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A pair (A, u) of partitions in P with © € X (i.e. u; < A; foralli > 1)isreferred to
as a skew diagram )/ ; we also use the notation A\ i for the set-theoretic difference
D)\ D(p) of diagrams.

We say that a skew diagram A/u is a horizontal strip (“h-strip” for short) if the
pair (A, ) satisfies the interlacing property (3.61). In terms of the Young diagrams,
this condition is equivalent to saying that the difference A\u has at most one square
in each column. In this terminology, s{°™ (x) can be expanded in the form

s;omb(x) — Z Z (x/)wt(T’) xrll)\l—lm (3.62)
A/p: h-strip T'€SSTab,_; (1)
= > s, (3.63)
A/ p: h-strip
where x’ = (xq, ..., x,_1). Namely,
SO LX) = Y s ) X (3.64)
A/u: h-strip

where [A /| = |A] — |]. The combinatorial Schur functions s§°mb (x) are completely
determined by this recurrence formula with respect to the number of variables.

In order to establish the equivalence of the two definitions of Schur functions, we
prove that s; (x) = sse‘ (x) satisfy the same recurrence formula. Since

5.0 = (- x) s o (), s = (- )R, (), (3.65)

we have only to consider the case where A,, = 0.

Theorem 3.3 The Schur functions s, (x) satisfy the following recurrence formula
with respect to the number of variables n : For any A € P,

i@ X = Y s X ) X (3.66)

HEA
A/ h-strip

where the sum is over all partitions . < A such that )./ is a horizontal strip.

Recurrence formulas of this kind are called branching formulas as well. We give a
proof of this theorem in Sect. 3.5.

Applying this recurrence formula repeatedly, we obtain an alternative expression
of the tableau representation of s; (x):

n i i
s (x) = 3 [T (3.67)

P=2OcrOc..cpm=y i=1
[A® /3G=D]: h-strip
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where the sum is taken over all weakly increasing sequences of partitions ¥ = 19 C
A C ... €A™ = ) connecting ¥ (empty diagram) and A by n steps such that the
successive skew diagrams A /A¢~D are all horizontal strips. It is also convenient to
display such a sequence of partitions A", ..., A as a table

[ A A A AT
AR
(3.68)
)\52) )\52)
A

with interlacing property )L;i) > )\g.i*l) > )Lj.lil for1 < j <i < n,called a Gelfand—
Tsetlin pattern.

3.5 Equivalence of the Two Definitions

In this section, we give a proof of Theorem 3.3, thereby establishing the equivalence
of two definitions of Schur functions.
The recurrence formula (3.66) for s; (x) (with A, = 0) can be proved by means

of Cauchy’s formula (3.58) for fi, ., (x) = Ay, (x)/A(x):
A1y -y Yn)
Do frn G X)Wy = e (369)
Iyl =0 ]_[[,jzl(l _xly])
In this formula, we set y, = 0 to obtain
I It
Z ﬁ[....,lnfl,o(xla"-7-xl‘l)y1 “'yn71
I,..., 1,-1>0
AL Y1) Y Ve
[T/55 0 = xiy) T2 — xay))
K
I S AT N
kiyeensky—1>0
S xEyp ] (3.70)

FlyeensFn—120

ln—l

‘We now look at the coefficient ofy{‘ .-y, ~jassumingthatl; > I, > --- > [,_; > O:
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Jieda 01, <o X0)
;=Y ki—(n—1)
= Z fk1 ..... k,l_|(-x17 ...,anl)an] ! ZI !

k[ ..... ](,,,120
0<k; <l;

3.71)

where the sum is taken over all (k, ..., k,_;) € N*"! such that 0 <k; <; (i =
I,...,n— 1), namely

(kiy ... ky—1) €[0,1}) x[0,0) x --- x[0,1,-1), (3.72)

where we have used the symbol [a,b) = {k € Z | a < k < b} for an interval of
integers. Notice that, in the expression

St 01, - X)
2ili=2kj—(n=1)
= > Ftrdo (X1 - Xnm) X BNENE)

(k1,k2yeskn—1)
€[0,1})x[0,1y) x---x[0,1,_1),

the summand f, .k, ,(x1,...,x,—1) is alternating with respect to the permutation
of ki, ..., k,—;. Thanks to this alternating property, the sum over the first two indices
ki, ko reduces as

=Y kj——1)
> Pt (i1 ) ! T

(k1,k2)€[0,01)x[0.)

= Fodos (i1 ooy gy TERTOTD 5
1seesKn—1

(k1,k2)€ll2,11)x[0,12)

since the sum of an alternating function over a symmetric region gives zero (Fig.3.1).
Repeating this procedure with (k;, k3) € [0, [5) x [0, 3) and so on, we finally
obtain

ks

b L Kk

Fig. 3.1 Reducing the region of summation indices
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St 0, - X))

Zj Zj_Zj kj—(n—l)
= Z fkl ..... kn,](-xlv ---vxn—l)xn ’ (375)
(k1,k2, . kn—1)
€ll, L) x[l3,l2) x - x[0,l,-1),
where the sum is taken over all (kq, ..., k,_;) such that
h>ki>bh>k>l3>--->1,_1 >k, >0. (3.76)
Then passing to the expressions by partitions A = (A, ..., A,—1,0) € P, and u =

M1y .oy Un—1) € Pn_1 such that

Li=Ax+n—i, kk=p+n—i—1 i=1,...,n—1), (3.77)

we obtain
MU =A== > Ay > Uy =0, (3.78)

and hence
S (X1, o X)) = Z S (X1 ey Xy ) XL (3.79)

HEA
A/ h-strip
as desired.

3.6 Dual Cauchy Formula

We propose two versions of the dual Cauchy formula for Schur functions.

Theorem 3.4 (Dual Cauchy formulas) For two sets of variables x = (xy, ..., X;,)
andy = (y1, ..., Yn), we have
[TI]a+xy) = D sisu(), (3.80)
i=1 j=1 AC(nm)
[T +y) =Y si@seo, (3.81)
i=1 j=1 AC(nm)

where the sum is over all partitions ) contained in the m x n rectangle (n™) =
(n,...,n); ) denotes the conjugate partition of A (see Sect.2.4), and 1\.* = (m —
Aom— A .om— ).

n’ n—1°--

We call A° the complementary partition of A in the m x n rectangle.
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>,
Al
A2
AC = (A, ..., A)
=m—=»A,...,m—21})
A | A€
I X528 (3.82)

For the proof of these formulas, we use a lemma on determinants. Foran N x N
matrix Z = (z; ;);";,, we denote by

il """ i’ —_ PR r

det Zjl ..... = det (leb)a,b=1 (3.83)
the r x r minor determinant of Z with row indices i, ..., i, and column indices
Jise-os jro When (y,...,7)=(1,...,r), we simply write detZ; ; for
det Zjl']’;:j.’jr. Also, for two subsets I, J C {1,..., N} of indices with |I| = |J| =
r, we use the notation det Z} = det Z;‘I”j::iijfr and detZ; =det Z;,,. ; taking the
increasing sequences i| < ... < i, and j; < ... < j,suchthat/ = {i},..., i} and
J={, . )

Lemma 3.2 Setting N =m +n, let X = (x; j)1<i<m,1<j<n be an m x N matrix,
and Y = (yi j)i<i<n,i<j<N an n X N matrix. Define the N x N matrix
Z = (zi,j)1=i,j=N by

zij=x,; 1<i<n), zZutj=y,; 1=<i=<n) (3.84)
forall j =1,..., N. Then the determinant of Z is expressed as
detZ = Z €(K; L)det Xg det Y, (3.85)
KuL={l,...,N}
|K|=m, |L|=n

in terms of minor determinants of X and Y, where the sum is over all pairs of
subsets K, L C{1,..., N} such that |K|=m, |[L|=nand KUL ={1,..., N},
and €(K; L) denotes the sign defined by

e(K:L)=(—=D"®D  pK:L)=#{(k,)) e K x L | k > I}. (3.86)

For the proof of this lemma, we refer the reader to [25], for example. [l
Proof (of Theorem 3.4) Taking the variablesx = (x1, ..., x,)andy = (¥, ..., Yu)
as in Theorem 3.4, we apply this lemma to the matrices

Y = (v N=m+n. (387

Sizmil=j= Si=nlzj=
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Then we have

m n

D@ det Z = AGx,y) = A@AW [T - v». (3.88)
i=1j=1
On the other hand, by Lemma 3.2 we have
detZ= Y  e(K:L)detXgdetY. (3.89)
KuL=(1,..,N
|K|=m,|L|=n
Hence we obtain
Ny T T det Xg det Y,
(_1)(2) x; —y;) = . (3.90)
UUI o _Z A(x) A®y)
-1 Fe

Taking two sequences k; > ky > ... > k,, > 0and/; > I, > ... > [, > Osuch that
K={k,+1,....,ky+1}and L ={l, + 1,...,1; + 1}. Then we have

det X = (=1)® det (xf'):’szl = (=D A, ()

det ¥, = (—=1)® det (yff)jj=1 ==DOA, (). (3.91)

For each pair (K, L), we take two partitions £ € P, and v € P, suchthatk; = u; +

m—i(i=1,....m)and; =v;+n—1i (i =1,...,n). Then one can show that
v=(m-—pu,...,m—u;)=p and e(K; L) = (—1)/*|. Hence, we can rewrite
(3.90) as

EO™ T =y = D0 D¥su s (3.92)

i=1j=1 nenm)

Replacing y; by —y;, we obtain the dual Cauchy formula (3.81). Formula (3.80) is
obtained from (3.81) by the relation

D1y s (7 = 550 (), (3.93)

which can be verified directly from the determinantal definition of the Schur
function. (]
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3.7 Jacobi-Trudi Formula

From the Cauchy and the dual Cauchy formulas, one can read off various properties
of Schur functions. For example, one can derive a determinant formula, called the
Jacobi-Trudi formula, which represents a general Schur function s, (x) in terms of
complete homogeneous symmetric functions /A (x) or elementary symmetric func-
tions e (x)

Theorem 3.5 (Jacobi—Trudi formula) Let A € P, and £(A") < m. Then we have

(1) s.(x) =det (hy,4j— z(x)),] - (3.94)
2)  su(x) =det (e,\;_,_j_,' (x))i,jzl' (3.95)

In these formulas, we understand /. (x) = 0, ex(x) for k < 0. Explicitly,

hy s oo haggaa VR S G U
hyu—1 hay, o haygn— en—1 €y ... €lin-2
s; = det . . . =
Ropmntl By ooy, €y —ntl €x—n42 - €
(3.96)
Note that the size of the determinant can be reduced as
(1) L)

500 = det (s, 155(0), 71, 50 =det (e (0), ), (397

since the (i, j) entries of the matrix vanish fori > ¢(A) (ori > ¢()/)) and j < i.

Proof (1) We rewrite the Cauchy formula (3.50) as

A(x) H =Y A () (). (3.98)
i,j=1 XiYj rEP,
Then s;,(y) is the coefficient of x** in the right-hand side. On the other hand,

A(x) 1_[

i,j=1

. A []A +xihi () + x7ha(y) +--+)  (3.99)
Y i=1

> sgn(@)x™ D xthy(y), (3.100)

eSS, neN?
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where h,,(y) = hy, () - - - by, (). Taking the coefficient of x**°, we obtain

500 =Y s2n(0)higs05(y)

oe§,

= det (hA,+5i_5j);ij=1 = det (h)w--&-j—i (y))Zj=l’ (3.101)
which proves (3.94).
(2) We rewrite the dual Cauchy formula (3.80) as
AOTTTTA+xiy) = D Aus) s (). (3.102)

i=1 j=1 AS (™)

Then s, (v) is the coefficient of x** in the right-hand side. On the other hand,

A TTTTO+xiy) =A@ [[A +xier () + - + x]en(y))

i=1 j=1 i=1

= Z sgn(cr)x""S Z xte,(y), (3.103)

0eGn peNm

where e, (y) = e, (y) - - - e, (y). Taking the coefficient of x*t9 in this formula, we
obtain

s =Y sgn(0)ersss0(y)

oe6,

= det (e)w._;,_g[ -8 )

L =det (e4j-i); (3.104)

i,j=1 i,j=1"

as desired. O

3.8 g-Difference and Differential Equations

Foreachi =1, ..., n, we define the g-shift operator T, ,, in x; by
Tyt oo Xiy ooy X)) = @(X1, .., gXi, ..., X)) (@ =1,...,n) (3.105)

leaving x; for j # i unchanged. For r =0, 1, ..., n, we define the g-difference
operators D" by



42 3 Schur Functions

DY = Z TqI,x(A(x))Tl

q.,x
I1<{1,...,n} A(X)
|I|=r
— 3 X1 3.106
> a9 T T % (3.106)
I1<{l,...,n} iel;j¢J iel
[|=r

where ) = [T;¢; T,.,- As we will see below, the g-difference operators D" (r =
1,...,n) commutes with each other. We remark that these g-difference operators
D) are the special case of Macdonald-Ruijsenaars operators with ¢ =t to be
discussed from the next chapter on.

Theorem 3.6 For each A € P, the Schur function s, (x) satisfies the system of q-
difference equations

D5, (x) = e, (q" )5 (x) (r=0.1,....n), (3.107)
where the eigenvalues e, (q*%) are the elementary symmetric functions of g™+~
i=1,...,n).

In fact, the g-shift operator 7 ,, acts on monomials in x = (xy, ..., x,) by

Ty (") =q"x", = (u,...,pun) €N (3.108)
fori =1, ..., n. Hence, for each polynomials f(§) € C[§]in& = (&, ...,&,), the
g-difference operator f (T ) = f(Ty ., - .., Ty x,) acts on monomials by

F(Ty0x" = f(g")x" (neN"). (3.109)

If £(§) is G,-invarinat, then f (7 ) acts on monomial symmetric functions m;, (x) =
Z/L&Gn.)\ xt by
(T om(x) = f(@Hmux) (e P, (3.110)

since f(g") = f(q°") = f(q") for u = 0.7, 0 € &,,. Taking elementary symmet-
ric functions e, (¢) for f (&), we obtain

e (Ty)my(x) = er(qk)ml(x) reP,,r=0,1,...,n). 3.111)

Similarly, the alternating polynomials A 5(x) = >
satisfy

pes, s San(@)x7 ) () e P,)

(T 0045 = F(@ A s(x) (A ePy) (3.112)
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for all f(£) € C[£]®". By conjugation, we introduce the g —difference operators

D = A f(Ty)A@) ™" (3.113)
Then, we see that the Schur functions s, (x) = Aj,s(x)/A(x) satisfy the g-difference
equations

Dls;(x) = f(@" ) (x)  (hePy) (3.114)

for all symmetric polynomials f (&) = C[£]®". The g-difference operators D of

(3.106) are the special cases of D,{, where f =e¢, (r =0, 1,...,n). We also remark
that the g-difference operators DY for all f(&) € C[£]5" pairwise commute since
they are conjugations of f (7, ) by A(x).

The differential operators x; 0y, = x;0/0dx; acts on monomialsinx = (xy, ..., X,)
» X0 x" = pixt, p=(u1, ..., puy) €N (3.115)
fori =1,...,n. Hence for any polynomial f(§) € C[§] in & = (&1,...,§&,), we
have

fxo)x" = f(ux" (ueN"). (3.116)
Hence for all f(£) € C[£]®", we have
F@xa)m; (x) = fFM)m; (x),  f(x0)Asqs(x) = f(A+8)Apys(x).  (3.117)
By conjugation, we introduce the differential operator
LY = A(x) f(xd,)Ax) (3.118)
Then, we see that the Schur functions satisfy the differential equations
Lisi(x) = fAL+8)s(x)  (hePy) (3.119)
for all f(&) = C[£]®". In particular, for L) = L% we have

LOs;(x) =e,(h+8)s(x) AeP,,r=0,1,...,n), (3.120)

where

LY ="

IK|=r

@A =Y Y G AW (500 3101

|K|=r ILJ=K A(x)

A()

with the notation (xd,)" = [T, .; xi 0y,

iel
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3.9 Link to the Representation Theory of GL,, (Overview)

In this section, we outline how the Schur functions arise, and how their properties
are interpreted, in the context of representation theory of general linear groups. For
the detail, see Goodman—Wallach [9] for example.

By a representation of a group G, we mean a C-vector space M endowed with
a group homomorphism y; : G — GL¢ (M), where GLc (M) denotes the group of
invertible C-linear transformations of M. In this situation, we also say that M isa G-
module, and use the notation of the left action g.v = Ty (g)(v) of g € Gonv € M.
Suppose that M is finite-dimensional, and fix a C-basis vy, ..., vy of M. For each

N ofry(g) M > M

g € G, we take the matrix representation ®(g) = ((p,-j (g))l. i=1

with respect to the basis (vq, ..., vy):

N
gy =my(@ ;) = Zv,-go,-j(g) i=1,...,N). (3.122)

i=1

Then we obtain an N x N matrix ®,,(g) = ®(g) whose entries are functions on G
satisfying the condition

D(lg) = Iy, P(g1g2) = P(g)P(g2), P(gH =D " (3.123)

3.9.1 Polynomial Representations of GL,

We consider the case of the general linear group GL,, = GL,,(C) of degree n. Express-
ing a general element of GL, as g = (gi.]')ﬁj:l, we regard g;; (1 <i,j <n) as
the canonical coordinates of GL,,. A representation M of GL, is called a polyno-
mial representation if the matrix elements ¢;;(g) are all polynomials of the coor-
dinates g;; (1 <i, j < n). It is known that any polynomial representation is com-
pletely reducible, and the isomorphism classes of irreducible representations are
parametrized by the partitions A € £ with £(1) < n. Namely, for each . € P,, there
exists an irreducible polynomial representation V(1) = V, (X) (with highest weight
M), uniquely determined up to isomorphism, such that V(1) % V(n) if A # w, and
that any polynomial representation M is decomposed into a direct sum of the form

M ~ @ V(1)®m (3.124)

LEP,

with some multiplicities m; € N. Weremark that V(1) = V(w,), @, = €1+ --- +
¢, (fundamental weights) (r = 0, 1, ..., n) attached to single columns are the alter-
nating tensor representation A" (V) of the vector space V = C on which GL, is
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defined, and V((/)) = V(le;) (I =0, 1,2,...) attached to single rows are the sym-
metric tensor representation SHV).

We denote by H, € GL, the diagonal subgroup of GL,. Expressing a general
element of H, as g, = diag(xy, ..., x,), we regard x = (x|, ..., X,,) as coordinates
of H,, and identify H, with (C*)", C* = C\ {0}. For each polynomial representation
M of GL,,, we define the function chy, (x) of x = (xy, ..., x,) € H, = (C*)" by

chy (x) = tr(mup(gx) : M — M) = tr ®y(gy), (3.125)
and call it the character of the representation M. For each u € N, we denote by
My=veM|gv=x"v e H)} M (3.126)

the subspace of weight 1. Since M decomposes into the direct sum M = € uene My
of weight subspaces, we have

chy(x) = Y (dimcM,)x" € Clx]. (3.127)

neNr

In this sense, the character ch, (x) provides the generating function for counting the
weight multiplicities in M. Note that chy, (1) = dimc M. Also, for two polynomial
representations M, N, the character of the tensor product representation M ® N
is given by the multiplication of the two characters as functions on H,, namely
chyen (x) = chy (x)chy (x).

A fundamental fact in the representation theory of GL,, is that the Schur function
55 (x) attached to each A € P, appears as the character of the irreducible polynomial
representation V (1), namely, chy ;) (x) = s, (x).

3.9.2 Weyl Character Formula and Branching Rules

In the context of representation theory, the determinant representation

Aj+n—j
det(x;’ Pi=1 _ Asgs(x)

det! .., AW

5. (x) = (3.128)

is called the Weyl character formula. The combinatorial description of s; (x) in terms
of semi-standard tableaux arises from the branching rule for the restriction of V (1)
along the tower of subgroups

GL, D> GL,_; D --- D GL;. (3.129)
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In fact, if we restrict the representation V(1) = V, (1) (A € ,) from GL, to GL,,_,
it decomposes into the direct sum

o= P Vew e (3.130)

nePy_1, A/p: h-strip

of irreducible GL,_;-modules. Passing to the level of characters, this multiplicity-
free decomposition of V,, (1) gives rise to the recurrence formula for Schur functions
of Theorem 3.3 with respect to the number of variables. Repeating this restriction pro-
cedure, we find that V(1) = V,, (1) foreach A € P, hasaC-basis vy (T € SSTab, (1))
parameterized by the semi-standard tableaux of shape A such that g,.v; = x""Dyy:

Vo) =P Vv, viv.= & Cor (3.131)

peNr T eSSTab, (1),

This gives rise to the tableau representation

55.(x) = Z xW‘<T>=ZKA,,Lx“ (3.132)

TeSSTab, (1) peNr

of the character s, (x); in particular, the Kostka numbers count the multiplicities of
weights in V (1), i.e. K, , = dimc V (X),. In the language of representation theory,
we have shown in this chapter that, from the Weyl character formula, one can derive
the combinatorial description of the weight subspaces of irreducible representations
V() (A ePn)

3.9.3 (GL,;, GL,) Duality

We also give a remark on the Cauchy formula for Schur functions. We consider
the space Mat,, , = Mat,, ,(C) of all m x n matrices. Denoting a general element
of Mat,, , as T = (&; j)l<i<m; 1<j<y> We regard #;; as the canonical coordinates of
Mat,, ,,. Then the coordinate ring of Mat,, ,, is identified with the ring of polynomials
in t;;, i.e. AMat,, ,) =Clt;; (1 <i <m, 1 < j <n)]. We regard A(Mat,, ,) as
a representation of the product group GL,, x GL, through the action of (g, k) €
GL,, x GL,, defined by

(g, m).o)(T) ="' Th) (¢ € AMat,,), T € Mat,, ). (3.133)

Then it turns out that A(Mat,, ,) has the irreducible decomposition

AMat,,) >~ P V) @ V), (3.134)

£(A)<min{m,n}
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where the sum is over all partitions A with £(1) < min {m, n}. From this (GL,,, GL,)
duality, we obtain the identity

chamag, ) (X, y) = Z chy, ) (x) chy, ) () (3.135)

£(A)<min{m,n}

for the (formal) character of the GL,, x GL,-module A(Mat,, ,), which is precisely
the Cauchy formula (3.59) for Schur functions. In fact, for each (x, y) € H,, x H,,
the action of (g, g,) € GL,, x GL, on the coordinates #; is given by

(&x, &) tij =xt5y; (1<i<m, 1=<j=<n). (3.136)

Hence (gx, &) acts on the monomials 14 = [, TT"
m,n (N) by

i1 U” attachedto A = (a;;);; €

(gx, gy).tA — nl_[(xitij)’j)a[/ — x”(A)tAy”(A), (3.137)

i=1 j=1

where the weights (t(A) € N and v(A) € N” are the row sum and the column sum
of A respectively, i.e. w(A); = >, aij, v(A); = )/, a;;. Noting that

AMat, )= P Cr*, (3.138)
AeMat,, ,(N)
we obtain
chamat, ) (x, y) = Z D oD
AeMat,, , (N)
= > ]_[]_[(x,yl)a,, _1‘[1‘[ e (3.139)

A=(q;;) i=1 j=1 i=1 j=I1

Sincechy,, ;) (x) = s, (x) and chy, ) (y) = s, (y), formula (3.134) implies the Cauchy
formula

ﬂ ﬂ Y swso. (3.140)

i=1 j=1 yj £(A)<min{m,n}



Chapter 4 ®
Macdonald Polynomials: Definition e
and Examples

Abstract The Macdonald polynomials are defined as eigenfunctions of the
Macdonald—Ruijsenaars g-difference operator acting on the ring of symmetric poly-
nomials. We also investigate some special cases where Macdonald polynomials can
be explicitly described, including the case of single rows.

4.1 Macdonald-Ruijsenaars g-Difference Operator

4.1.1 Macdonald—Ruijsenaars Operator D,

We regard the variables x = (xq, ..., x,) as the canonical coordinates of the n-
dimensional algebraic torus (C*)". We fix parameters ¢, t € C* = C\ {0} with |¢| <
1.

The Macdonald—Ruijsenaars q-difference operator of first order with parameter
t is defined by

Dx = ZAI'(X)T%X:‘ = Z l_[ txf' — xj Tq,x,w (41)

. X . . —Xj
i=1 i=1 1<j<n; j#i

where T, ., stands for the g-shift operator in the variable x;:

Ty fO1, o Xy, X)) = f(X1, 000, qxi,.0,x) (E=1,...,n). “4.2)

We remark that the coefficients of D, are expressed as

. . tx,-—xj_T,,xl.A(x) . N
A'(’”‘gxi—x,- = Aw= [T Gi-xp @3

I<i<j<n
in terms of the difference product A(x) of x.

In the following, we denote by D, , = (C(x)[Tqﬂ] the ring of g-difference oper-
ators with rational function coefficients

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 49
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https://doi.org/10.1007/978-981-99-4587-0_4


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-4587-0_4&domain=pdf
https://doi.org/10.1007/978-981-99-4587-0_4

50 4 Macdonald Polynomials: Definition and Examples

Ly= ) a,(x)T}, (finitesum), a,(x) eCx) (neZ"), (44)
HEZr

where T}, = T,'}, - - - T, . Note that the symmetric group &, acts on D, , through
the C-algebra automorphisms o : D,  — D, , (0 € &,) such that o (x;) = X5(),
o (Tyx) = Ty, (i =1,...,n). Note also that D, . acts naturally on the field C(x)
of rational functions in x.

4.1.2 Fundamental Properties of D,

We first give remarks on fundamental properties of the Macdonald—Ruijsenaars oper-
ator D,.

(1) The g-difference operator D, is G, -invariant, and hence the linear operator
D, : C(x) — C(x) stabilizes the field C(x)®" of symmetric rational functions,
ie. D.(C(x)®") € C(x)®".

In fact, the definition of D, does not depend on the ordering of {1, 2, ..., n}.

(2) The linear operator D, : C(x) — C(x) stabilizes the ring C[x]®" of sym-
metric polynomials, i.e. D, (C[x]®") € C[x]®".

If f(x) € C[x]®", then g(x) = D,(f(x)) is a symmetric rational function by the
&, -invariance of D,. Since A(x) D, has polynomial coefficients, A(x)g(x) € C[x]
is an alternating polynomial, and hence divisible by A(x). This means that g(x) =
D, (f(x)) € C[x]®". Warning: D, : C(x) — C(x) does not stabilize the polynomial
ring C[x].

Lemma 4.1 The linear operator D, : C[x]®" — C[x]%" is triangular with respect
to the dominance order of m) (x). Namely, for each . € P,

Domy(x) =Y dimy(x) = dymy(x) + Y dm(x) 4.5)

H=A H<A

n

for some constants dﬁ € C whered;, =d} =>_ 1" q".

Proof As for the dominance order, by Remark 2.1 we know that v < p if and only
if

XV = /) fx) (4.6)
for some ki, ..., k,_; € N. In view of this fact, for each u € N" we consider the
asymptotic expansion of D,x" in the region |xi| > |x2| > --- > |x,|, assuming
that |xo/x1|, ..., |x,/x,—1| are very small. Foreachi = 1, ..., n, the coefficient of

T, x, can be expanded into formal power series of x,/x1, ..., X, /X,—1 as
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l—[txl'—.xj‘ I l—[ tx,-—xj 1—[ txi—xj
i — Xj Xi — Xj Xi — Xj

X
j# !

1<j<i i<j<n
1—tx;/x; 1 —x;/tx;
= [T = ] =
I<j<i —Xi/X; i<j<n —Xj/%i

(1 + (lower-order terms))(t”’i + (lower-order terrns))

= 1"~ + (lower-order terms). 4.7

Hence we have

n
tx; —Xx; _
Dxx” — § | | "q"‘x"
Xi — Xj

i=1 j#i
= x" (Z ""'g" + (lower-order terms))

i=1
€ x" Cllxa/x1, ..., Xu/Xn—1] 4.8)

n

Hereafter, we set d,, = Zi:l t"~ig" for each p € N*. Then, for each A € P, we
have

Dymy(x) = Y Dyx*
nes, .

Z (dﬂx" + (lower-order terms))

HES, A

= d, x* 4+ (lower-order terms)
=dym; (x) + Y _dm,(x), (4.9)

H<A

since we know that D,m; (x) is a symmetric polynomial. This implies the triangu-
larity of D, with respect to < as mentioned above. ([

4.1.3 Diagonalization of Dy

With these preparatory remarks, we prove that D, is diagonalizable on the ring
C[x]®" of symmetric polynomials if the parameters ¢, ¢ are generic. In what follows,
we suppose that the parameters g, ¢ are generic in the sense that

Ao € Py, A FU = d;. i d[l.' (4.10)

Sinced; —d, =Y I, 1" (g™ — ¢"), this condition is fulfilled if 1, 7, ..., "' are
linearly independent over Q(g).
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Theorem 4.1 (Macdonald) Suppose that the parameters q,t € C* satisfy the gener-
icity condition (4.10). Then, for each partition . € P, there exists a unique symmetric
polynomial P, (x) = Py (x; q,t) € C[x]®", homogenous of degree ||, such that

(1) DPi(x) =dy Pi(x),  dy= ) 1"g", (4.11)
i=1
() Pi(x) =m;(x) + Zu; my(x) (uj, €C). (4.12)
<A

This eigenfunction P, (x) € C[x]®" is called the Macdonald polynomial attached
to the partition A € $,. We remark that, when we regard ¢, ¢ as indeterminates,
P, (x; g, t) is determined as a unique symmetric polynomial in Q(q, #)[x]®", where
Q(q, t) denotes the field of rational functions in (g, 7).

Proof (of Theorem 4.1) We assume that P, (x) is expressed as

Pox) = ufm,(x), u}=1. (4.13)

v<XA

With the coefficients dﬁ as in (4.5), we have

DXPA(x)zZ:u’SDXmD(x):Z Z whd” | my,(x). (4.14)

v<A n<t \ u<v=<ai

Hence the eigenfunction equation D, P; (x) = e P, (x), (¢ € C) is equivalent to the
system of equations

ewy= Y uldy, e (e—dul, = > uid), (4.15)

P=v=A H<V<\

for u € P, with u < A. From the case where u = A, (¢ — d;\)ui =0, ui =1, we
obtain ¢ = d,. With this eigenvalue, the equations

(dy —dul, = > uwld,  (u€Pu p<h) (4.16)

n<v<xi

for the coefficients uﬁ (u < X) can be solved in a unique way by the descending
induction with respect to <, provided that d,, # d, forall u < A. O

Note that, from the triangularity (2) of P, (x), it also follows that the Macdon-
ald polynomials P, (x) (A € P,) form a C-basis of the ring C[x]®" of symmetric
polynomials, namely

Clx]® = @ CP.(). (4.17)

rEP,
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Remark 4.1 The construction of P, (x) mentioned above can be explained in a
different way in terms of linear algebra. For a partition A € P, given, consider the
finite dimensional C-vector space V<; = €D, cp,. <, Cm,(x). The linear operator
D, stabilizes V,, and is represented by an upper triangular matrix with respect to
< under the basis m,, = m,(x) (u < A):

Di(c..omy,...omp)=0(..,my,...,m) (4.18)

dy,

Then, by the Cayley—Hamilton theorem we obtain [ u<i(Dx — du)|V<A = 0. From
this, we obtain B
(D —dy) H(Dx —dy)my(x) =0. (4.19)

n<A

Since

H(DX —dmy(x) = H(d* —d, )m; (x) + (lower-order terms), (4.20)

n<i n<X
we see that
D, —d,
Pi(x) = 1_[ ﬁ(mx(x)) = m, (x) + (lower-order terms) 4.21)
AT Up
<A

gives the eigenfunction of D, with leading term m; (x), under the condition that
d, #d forall p < A.

Remark 4.2 The Macdonald—Ruijsenaars operator D, also stabilizes the ring
C[x*"1®" of symmetric Laurent polynomials. In this setting, for generic g, ¢, the
linear operator D, : C[x*!]®" — C[x*!']®" is diagonalized by the Macdonald poly-
nomials P, (x) parameterized by n-tuples of integers A = (Ay,...,A,) € P =7Z"
such that A} > ... > A,. In the language of representation theory, the set of such A
is denoted by P, and called the cone of dominant integral weights of GL,,:

Po={reP|(a.2)=0(G=1....,n} 4.22)

Foreach A € P,, we have u = X + (I") € P, for a sufficiently large [ € Z~(. Then,
the symmetric Laurent polynomial

Po(x) = Pyan(x) = (x1 -+ x,) 7 P (), (4.23)
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defined by the Macdonald polynomial P, (x) attached to the partition u € P,, satis-
fies the eigenfunction equation

D.Pi(x) = dy Pi(x), dp=) t""g". (4.24)

Furthermore, these P; (x) (A € P, ) form aC-basis of the ring C[x*!1%" of symmetric
Laurent polynomials, namely, C[x*!]%" = €], _ p, CPi(x).

4.2 Some Examples

Single columns

Puy(x) =e(x) (r=0,1,...,n). Inparticular, Py (x) = X1 --- X,

If A is a single column (1") (r =0, 1, ..., n), Py (x) is the elementary symmetric
function e, (x) of degree r, since (1") is minimal with respect to the dominance order.
The equation D,e,(x) = d(irye,(x) already implies a nontrivial identity

Ix; —
ZH l €r(x1,-~7qxi,--.,xn)=d(1r)€r(x)7

P — X
tlj;él J

d(lr)ztnflq_'_._._‘_tnfrq_‘_tnfr 1+-~-+1=qt” r

In particular, from D, (1) = dy1 we obtain

txi —x; 1—1"
Z]‘[ ‘_xf_ — (4.26)

i=1 j#i Xi J

Exercise 4.1 Derive (4.26) from the partial fraction expansion in u,

ﬁtu—xj :i(l—l)fil—[tfi_x{ vy 4.27)

o WXy X L XX
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Adding columns of length n
Pigy(x) = (x1 - x,) Po(x) (A eP,; k=0,1,2,...).

Similarly to the case of Schur functions, by adding a column of length n the Macdon-
ald polynomial P, (x) is multiplied by x| - - - x,,. This follows from the commutation
relation D, x1 - - - x, = gXx; ...Xx, D, between D, and the multiplication by x; - - - x,,.

Cases wherer = l and 7 = ¢

t=1: P(x)=m(x), t=q: P(x)=s(x).

When 7 = 1, we have D, = )/ T, , and dy = Y _/_, ¢* = Y, ymq’ for each
A € P, with A = (1"2"2 ). Note that d, # d, for u # A if q is transcendental
over Q. In this case P, (x) coincides with the monomial symmetric function m; (x).
When ¢t = g, we have
— Ty (A(X)) I /Y% N i
p, =3 tesi 2y —( T, ,x.)A(x), dy =S gh i (4.08)
SL e T aw LT 2

i=1

In this case, for each A € P,,, we have Y7 T, (x70-9)) = (30 g0 xo-0-49)
= d, x” O+ for all 0 € &,,. From this we obtain Z;’zl T, v Agys(x) = dy Ajys(x)
and hence D,s; (x) = d,s; (x).

Case wheren = 1

Py(x)=x (1=0,1,2,...).

Case wheren = 2

For any A = (A, A2) € P2, A1 = Ay > 0, we have

Piy sy (X1, %2) = (x1%2)" Pyoy (X1, X2), 1= A1 — Ag, (4.29)
5 t; I
Poy(x1, x2) = (q. Al Z ( .q),“( _q)“z x)xh?, (4.30)
G, (@D (@ D

where (1; )k = (1 =) —qt)---(1 —¢*'t) (k=0,1,2,...) denotes the g-
shifted factorial.
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In the context of g-orthogonal polynomials [12], P ¢)(x1, x2) correspond to the g-
ultraspherical polynomials. As to the eigenfunctions in the case of two variables, we
discuss some detail in the next section.

Exercise 4.2 (Stability) Let A € P, and m < n. Then we have
P}\(XI,-.-,xm) (Z()") Sm)v

Po(x1,...,x,,0,...,0) = 0 €0 > m) 4.31)

4.3 Eigenfunctions in Two Variables

Restricting ourselves to the case of two variables, we investigate below a class of
eigenfunctions of the g-difference operator D, which are expressed as formal power
series.

4.3.1 Eigenfunctions in Power Series

In the case of two variables, the eigenfunction equation for D,

tx1 — x» X1 —Ix2
———(gx1, x2) + ———9(x1,gx2) = £ @(x1, X2) (4.32)
X1 — X2 X1 — X2

can be solved in a larger class of power series.
Note that, for u = (1, u2), A = (A1, Ap) € Z7,

HW=EA &= (= AL pr+ e =A+A)
— (w1, 42) = —k, Ay +k) forsome ke N. (4.33)

Extending this relation to multi-indices of complex numbers, we consider a formal
power series of the form

plxrx) = 3 el Rl = S /b, =1, (434)
k>0 k>0

for arbitrary A, A, € C, and solve the eigenfunction equation (4.32).

Proposition 4.1 LetA = (71, Ay) € C? be generic. Then, the eigenfunction equation
(4.32) has a unique solution of the form (4.34) with eigenvalue ¢ = tq™ + ¢’ It is
determined explicitly as

& . Aoa—Aq.
A (15 (@5 q)k
P(x1, X2) = X7 x

L kX:;:(q;q)k(q“‘““/t;q)

. (gx2/1x1)", (4.35)

where (a; q)r = (1 —a)(1 —ga) --- (1 —¢*'a) (k=0,1,2,...).
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Proof Setting 7z = x;/x;, we rewrite this equation by means of f(z) = Zkz() ek
Since ¢(x, xp) = xix‘xé‘zf(xz/xl), we obtain the equation

1—
i_qul flqg ')+ —tzq“f(qz) =¢f(2) (4.36)
-z 1-z2

to be satisfied by f(z), namely,
(t=2q" f(q7'2) + (1 = 12)4" f(q2) = e(1 = ) [ (2). (4.37)
This equation gives rise to the recurrence formulas for the coefficients
(1g" ™+ g2 —e)ep = (¢ 4 1g T —an (keD).  (438)

with ¢, = 0 for k < 0. This formula for k = 0 determines the eigenvalue as ¢ =
tq* + g**. Then the resulting recurrence formulas

(1 =g = g™/t = (g/HA —tg"H(A — g e (4.39)
fork =1,2,...are solved as

o= GG T g
=
(@5 (g4t )

(/D k=0,1,2,..)), (4.40)

by the notation of g-shifted factorials (a; q); = (1 —a)(1 —gqa)---(1 — g*'a)
(k=0,1,2,...). O

We remark that, under our assumption |g| < 1, this formal solution ¢ (xy, x) is
absolutely convergent in the domain |gx; /x| < 1.
4.3.2 Macdonald Polynomials in Two Variables

When A = (A1, A;) is a partition and [ = A; — A, € N, the power series solution
¢ (x1, x2) constructed above reduces to a polynomial in (x;, x;). In fact, we have

" AZZI: t: (@75 @

Px1, x2) = xp'x (qx2/tx))
P g elg T )

1
_ A t: i(a™"s @i R
= (x1x2) ;(q;q)k(q*’“/t;q)k(wt) xlkxk o (441)
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since (¢~!; ) = 0 for k > I. Also, by

@7 (@' @i v @ @ik '
= = Rk Sl 4.42
("t (Gt q) t/a) ) (G5 @ik t/a) (442)

we obtain

l

(q; 9 &Pk G Pr k&
(t; q) 2 @O @

P(x1, x2) = (x1x2)™
k=0

A (q,q)l ([;q)ﬂl(t;q)y.g H M2 4.43
) (t: q); 2 @D @D 2 (4:43)

r+pa=l

which is manifestly a symmetric polynomial in (x;, x). In this way we obtain the
expression of general Macdonald polynomials in two variables.

Proposition 4.2 The Macdonald polynomials in two variables are explicitly given
as follows: For each partition A = (A1, Ay) € Pa,

Py (X1, X2) = (1x2)2 Pyoy(x1, x2), [ = A1 — Ag, (4.44)
X t; t;
P(I,O)(X],)Cz) = (q q)l Z ( q)l’vl( C])M xi“x;z
G, o (@D (@5 D
! -1
I (; k(g™ @k x
=X (gxa/txr)". (4.45)
: kZz(; (@ D@15 @)k :

O

4.4 ¢-Binomial Theorem and g-Hypergeometric Series

In this section, we quickly review some basic facts about g-hypergeometric series.
They will be used to see how Macdonald polynomials attached to single rows are
related to g-hypergeometric series.

4.4.1 q-Binomial Theorem

Under our assumption |g| < 1, the infinite product

o0

@G =]]0-4'2) (€O (4.46)

i=0
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is absolutely convergent, and defines a holomorphic function in z € C. Note that the
g-shifted factorial (z;¢q); for k=0,1,2,... is expressed as the ratio

(@ Do/ ("2 Do
Proposition 4.3 (g-Binomial theorem) For any a € C, one has
[e.¢]

(az; q)oo (@ D
= 1). 4.47
(25 9)oo ,{XZO:(q;q)kZ (el =D @47

Proof Note that the left-hand side f(z) = (az; ¢)oo/(2; ¢) o 1S a meromorphic func-

tion on C at most with simple poles at z = 1, q‘l, q_z, .... Since
(qaz; q) 1 -1z (az; q) -z
flgz) = E2T Do L T2 p), 448
@9 1—az (9) 1—az
f (z) satisfies the g-difference equation
(I—az)f(gz) =1 —2)f(2) (4.49)

with initial condition f(0) = 1. In terms of the Taylor expansion f(z) = > ;- b
of f(z) around z = 0, this equation gives rise to the recurrence formulas

=g =0-¢""a)ersy  (k=0,1,2,..) (4.50)
with c_; = 0, ¢g = 1. Hence we obtain
1—¢"'a (1 —g¢*"'a)(1 — ¢"*2a)

Cr = Clr_1 = Clk—

T g T —gha -y T
_ . _ @k k=0,1,2,...). 4.51)

(q; @

0

We remark that this g-binomial theorem contains two formulas

1 =1, . (—Drg®
= s @GP =Y ——— 7k 4.52
(2 @)oo ,;(q;q)kZ @ ; @ (352

The first one is the special case where @ = 0, while the second is obtained by replacing
z with z/a, and then by taking the limit as a — o0. These two formulas can be found,
with proofs similar to the one mentioned above, in Euler’s monograph Introductio
in Analysin Infinitorum (1748) [6, Caput XVI]. According to [8], the g-binomial
theorem in the form of (4.47) appeared in the middle of 19th century in works of
Cauchy, Heine and others.
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4.4.2 q-Hypergeometric Series

We introduce the notation of g-hypergeometric series ,1¢,:

ap, a a o (03 Qi@ @k -+ (ar; )i
: ¢,[ e by ,Z}z pINn B ORI CE)
" N ; (@ Db O+ (r @)

We remark that this series is absolutely convergent for |z| < 1. Note that , ¢, series
(4.53) is a g-version of the generalized hypergeometric series

|:a0, ALy ooy O ] _ i (ao)k(al)k"'(ar;q)kzk (4.54)

Bio b T T B o

defined with shifted factorials (@) =a(@a+1)--- (¢ +k—1) (k=0,1,2,...).
The 41 F, series of (4.54) is obtained, at least in the sense of formal power series in
z, from the ,41¢, series of (4.53) with a; = g%, b; = ¢P, c; = q" by the limiting
procedure as g — 1.

The g-binomial theorem can be interpreted as the summation formula for general
1@ series:

a - (@; @k k (az; @)oo
g, z| = = . 4.55
1%[' K Z} kZ:(; @G @D >3

This is a g-version of Newton’s binomial theorem:

1F0|: % Z} =y sz => (_ka>(—z)k = (-7 (4.56)
: k=0

The ¢, series

a, b, — (@3 e @k
iq, | =) 4.57
2¢1[ ¢ 1 Z} ,;(q;q)k(c; i 37

is a g-version of the Gauss hypergeometric series

e, } S @B iss
? 1[ y ¢ g(nkmlf #4359

The eigenfunction (4.35) of D, in the case of two variables is expressed by ¢,

series as
Aa—A

) t,
o(x1, x2) —xllxzA 2¢>1[ A q,\1+1/t, q, qJC2/tx1:| (4.59)

This class of eigenfunctions includes Macdonald polynomials as special cases where
A = (A1, Ay) € P, are partitions.
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4.4.3 Generating Function of Two Variable Macdonald
Polynomials

We also know that the Macdonald polynomials Pg)(x;, x2) attached to single rows
in two variables are expressed as

5 t; L ) 5
Puy(x1, x2) = —(Ctl_ Al Z D Dy _q)”“'( _Q)”‘ xi'xy? (4.60)
( 761)1 o=l (C], q)p,l(Q7 CI)M
for/ =0, 1,2,.... This expression implies that Py)(x, xp) arise as the expansion

coefficients of a generating function as specified below.

Proposition 4.4  With an extra variable u, we have

oo

(tx1u; @)oo (tX2U; §) oo _ Z @ q)

Py (xy, xo) u'. 4.61)
(X113 @) oo (X2U; @)oo (q; 91 O

1=0
Proof We expand the left-hand side by the g-binomial theorem:

oo o0

(tx1u; @)oo (tX2U5 @)oo G “ (13 D, s
(X1 Qoo (2tt; Qoo Z (45 @y, () Z (g5 D, (oot

u1=0 n2=0

o0
_ Z Z (t5q) 1, (8 @y x“‘xgz ul

. . 1
S\ o @D @ D

_ 2 ((;?; y " By )l (4.62)
]
4.5 Macdonald Polynomials Attached to Single Rows
4.5.1 Macdonald Polynomials P)(x) and g;(x)
Returning to the general setting of n variables x = (x1, . .., x,), we define a sequence

of polynomials g;(x) = g;(x;¢q,t) (Il =0, 1,2, ...)by means of the generating func-

tion
n

G(x;u) = 1_[ M = Zg;(x) ul. (4.63)

izl (xXiu; @)oo =0
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By the g-binomial theorem, this function is expanded as

G(x:u) = Z ( 'q)m ( .‘Z)m Xl
(@ Duy (G5 Py,

t; - (8
S D G D o | 1 (46
2 G Dy (@ Dy,

I
e

1=0 \pi+...+un

Hence we have

Z G GT» PR

gix) = (q;CI)p.] "’(q;q)p.n 1 n

it =l
(g
(g5 9

x{ + (lower-order terms) (I =0,1,2,...). (4.65)

Theorem 4.2 For eachl =0, 1,2, ..., g/(x) satisfies the eigenfunction equation

D, gi(x) = dygi(x),

1— !
d(l)ztn—lql+tn_2+...+1:tn_lq[—i—ﬁ, (466)
and hence )
t;
21 = -—LLpy (x). (4.67)
(g;9)

Proof Since G(x;u) =Y o, g1(x) u', we have

o0 oo
D,G(xiu) =Y Degix)u', T,,Gxiu)=)» q'gx)u'.  (4.68)
1=0 1=0
Hence, the eigenfunction equations

1 — n—1
D,gi(x) = (r"—‘c/ + 1—_’t> g1(x) (4.69)

for g;(x) I =0,1,2,...) are equivalent to the identity

n—1

D.G(x;u) = (t”’qu,u + T—;

)G(x; ) (4.70)
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for the generating function. Noting that

1 - " l—x;u
Tyx Glxsu) = 1—; Y Gxiu). TyuGx;u) = ]_[ /'uG(x;u), 4.71)
l

we see that identity (4.70) is equivalent to the identity

Zl—[tx, x; 1—xu =nll—[1—x1u 1 — ! @72
ks xi—x;j 1 —txju L —txju 1—1¢ ’

of rational functions. As rational functions of u, both sides are of the form

p(u)

@’ p@),q(u) € Clu], deg, p(u) <n, deg, q(u) =n. (4.73)

Then, one can verify identity (4.72) directly by comparing the residues at n points
u=1/t;x; (i =1,...,n)and the value at u = 0 which reduces to (4.26). ([l

4.5.2 Expression in Terms of ¢p

Similarly to the case of two variables, the Macdonald polynomials

Z (I, Cl)m e (l, q)un xitl . xlln (474)
it =l (q; q)/L] (g q)“"

gi(x) =

attached to single rows are expressed in terms of certain g-hypergeometric seires in
n — 1 variables. Using pu; =1 — o — - - - — [, we rewrite the factor containing p|
as follows:

&GPy G Di—py——p,

@D @Dy,
G @ ),
g (@R Q) e,

GEVEC T e— o
= — (g /t)feTT (4.75)
(@5 D1 (@7 Dot

Hence we have

(g N G Dyt Dy D,
gix) = @ Z (@™ @ bty @ Dy - (@ D,

-(qxz/lxl)"2 ce(gxn/tx)". (4.76)
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We now introduce the g-hypergeometric series

a, by,...,b
¢D|: IC " q; Zly--~,Zmi|

; by; < (b
— Z (a q)k1+ +km ( 1 q)kl ( q)km ]161 . Z}];;" (4‘77)
o0 @Dtk (@5 Dr (5 @k,

in m variables, which is a g-analogue of Lauricella’s Fp, (Appell’s F; whenm = 2).!
Then the Macdonald polynomials attached to single rows are expressed in terms of
¢p inn — 1 variables as

-
I SR |
P(l)(xl, X)) = x% ¢D|:q qflJrl/t ; q; qu/txl, - ,qx,,/txl:| 4.78)

for/=0,1,2,....

4.5.3 Wronski Relations

We compare this generating function

n

L @xiyi e )
G(x;u) = ]] e 3 g (u. (4.79)

with that of elementary symmetric functions
EGu) =[]0 +xu) =) e(x)u’. (4.80)
i=1 r=0

Note that G (x; u) satisfies the g-difference equation

n

(gtxiu; q)oo ﬁ 1 —x;u

G(x; qu) = G(x; 4.81
(rsqw E (qxiu; @)oo 7 1 —txin (s @50

with respect to u. This means that
[0 = txiw) - Gxs quy = [ A = xiw) - G(x; ), (4.82)

i=l1 i=1

I See [15, Chap. 6] for Appell’s and Lauricella’s hypergeometric series in many variables.
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namely,
E(x; —tu)G(x; qu) = E(x; —u)G(x; u). (4.83)

Comparing the coefficients of u* in this equality, we obtain
D (=gl e(ngix) = Y (—Diei(n)gi(x) (k=0,1,2,...), (4.84)
itj=k itj=k

and hence -
Z (=D'(t'q’ — Dei(x)g;j(x) =0 (k=1,2,...). (4.85)
i+j=k

This formula is the counterpart of Wronski’s relations in the case of Macdonald
polynomials between those attached to single columns and single rows.



Chapter 5 ®)
Orthogonality and Higher-Order oo
q-Difference Operators

Abstract We show that the Macdonald polynomials satisfy the orthogonality rela-
tion with respect to a certain scalar product on the ring of symmetric polynomials.
We also explain how this orthogonality is related with the existence of commuting
family of higher-order g-difference operators for which Macdonald polynomials are
joint eigenfunctions.

5.1 Scalar Product and Orthogonality

As always, we fix the parameters ¢, t € C* with |¢| < 1. Also, keeping the conven-
tion of the previous chapter, we suppose that the parameters g, ¢ satisfy the genericity
condition (4.10).

5.1.1 Weight Function and Scalar Product

We define a meromorphic function w(x) = w(x; g, t) on (C*)" by

_ (Xi/Xj5 Qoo (Xj/Xi5 @)oo
W) = l_[ (1% /%5 Qoo (1X) /%15 Qoo ©-1)

I<i<j<n

Note that w(x) is &,-invariant and also w(x~!) = w(x). We assume |f| < 1 so that
w(x) is holomorphic in a neighborhood of the n-dimensional torus

T ={x=@1,....5) €(CY || =1G=1,....,m)} C(C). (52

For a pair of holomorphic functions f(x), g(x) in aneighborhood of T", we define
the scalar product (symmetric bilinear form) (£, g) as

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 67
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(£.8) = %ﬁ /T n f(x—l)g<x>w<x>% (5.3)
by the integral over T" with orientation such that
1 o-dx,
PN /T dii“_j: =1. (5.4)
The scalar product is alternatively expressed as
(7.8)= - CT[f Dgow)], (5.5)

in terms of the constant term CT (coefficient of 1) of the Laurent expansion of a
holomorphic function around T".

Theorem 5.1 Suppose that |t| < 1. Then, the Macdonald polynomials are orthog-
onal with respect to the scalar product defined by (5.3):

(P, Pu) =830 Ny (A, € Py) (5.6)

for some constants N; € C (A € P,,).

We remark that, if g, t € Rand |g| < 1, |¢] < 1, the Macdonald polynomials have
real coefficients, and (, ) defines a positive definite scalar product on R[x]®".

Remark 5.1 In Macdonald’s monograph [20, Sect. V1.9], the scalar product ( f, g)
of (5.3) is called another scalar product and denoted by (f, g)/. It should be noted
that our scalar product is different from Macdonald’s ( f, g), defined by [20, Chap.
VI, (2.20)].

5.1.2 Constant Term and Scalar Products

It is known [20, Sect. VI.9] that the constant term and the scalar products are deter-
mined explicitly as follows.

Theorem 5.2 For each ). € P,, the scalar product N) = (P,, Py) is explicitly eval-

uated as N N
No= ] (@7 oo (@ T T @)oo
o (gh =2t g) oo (g =l )

1<i<j<n

(5.7)

In particular, the constant term of the weight function CT[w(x)] =nlNy =n!(1, 1)

is given by
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G D\ T T )
CT[W(X)]_H!<(q;q)oo) T o8

In this book, we will not go into the proof of these explicit formulas. For proofs of
this theorem, we refer the reader to Macdonald [20, Sect. VI.9], and Mimachi [21]
(see also Macdonald [22]).

5.2 Proof of Orthogonality

The orthogonality of Macdonald polynomials is a consequence of the facts that:

(1) The g-difference operator D, is (formally) self-adjoint with respect to the
weight function w(x).
(2) The partitions A € P, are separated by the eigenvalues of D,, namely

d, # d,, for any distinct pair A, u € P,.

Along this idea, we explain step by step how the orthogonality of Theorem 5.1 can
be established.

5.2.1 Cauchy’s Theorem as a Basis of q-Difference de Rham
Theory

Let ¢(z) be a holomorphic function in an neighborhood of a closed curve C in C*.
We suppose that the contour C can be deformed continuously to ¢C in a domain
where ¢(z) is holomorphic. Note that this condition is satisfied either if the domain
of holomorphy of ¢(z) is sufficiently large, or if g is sufficiently close to 1. Then, by
Cauchy’s theorem, we have

d d d
/ olq ™ = f o) = / o0 Z, (5.9)
C Z qC Z C Z

namely

d
fcquﬂ(Z) / (z)—, Le. /( —1)(¢(Z))7Z=0- (5.10)

In particular, we have

d d
[Tte@pes = [ o1l (5.11)
c Z C Z

This formula plays the role of integration by parts.
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5.2.2 Formal Adjoint of a q-Difference Operator

Let L, € D, , = C(x)[Tq%;] be a g-difference operator in x = (x1, ..., x,) with
rational coefficients:
L, = Z a, ()T}, (finite sum), a,(x) € C(x) (u€Z"), (5.12)
WEL

where T,y = T/, - - - Ty, . We define the formal adjoint L* of L, by

Lt = Z T, la,(x), (5.13)

WEZ

so that (L, M,)* = M}L%. Then, we have

d
(L ) (x Hgwx) =
" X

_1 dx
= | L fxT)gwlx)—
Tn X

RN dx
= | feH(LLgmw)—
™ X
d
= (x—‘)(w<x>—1L;]w(x)g(x))w(x);x, (5.14)
and hence
(Lf.g)=(f.LTg), L"=w@) 'L*wk), (5.15)

provided that ¢ is sufficiently close to 1 and that Cauchy’s theorem can be applied to
L,. We say that L, is formally self-adjoint with respect to w(x) if LT = L,, namely
wx)Lywx)™ ! = Ly,

5.2.3 Dy Is Self-Adjoint with Respect to w(x)

Note that
Tq,x,.w(x):nl—zx,-/xj V=xj/qn A
w(x) i 1 —xi/x; i 1—tx;/qx; T, A (x7h)
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This implies that

w(x)

w(x) Dew(x) ™! ZA ) 7oy T —Z< Ty AN Ty,

T‘] W

(5.17)
= Z T, Aix™) =D},

i=1

It can be verified directly that (Dx f, g> = <f, ng) if |f] < |g| < 1. Note that the
poles of A;(x) along A(x) = 0 are canceled by the zeros of w(x).

5.2.4 Orthogonality

Since D, is self-adjoint with respect to the scalar product, for any A, u € $, we have
the equality
(DXP)\.('X)’P/l(x)>=<PA(x)7DXPM(X)>’ (5.18)

and hence
d,(Ps, Pu) = du(Ps. Py). (5.19)

Under our assumption that d;, # d,, (= # ), we obtain (Py, P,) =0 (A # p).

5.3 Commuting Family of g-Difference Operators

5.3.1 Macdonald-Ruijsenaars Operator of rth Order

Foreachr =0, 1, ..., n, we define the Macdonald-Ruijsenaars q-difference oper-
ator D" of rth order by

1 tx;i —Xx;

DV= 3 AT, A =G ] —, (5.20)
I1C{l,...n}; |I|=r iel, j¢l Xi = Xj

where T, = [];c; Ty, sothat DI =1, DV = D, and D{" = (OT, . T,
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Example: D" (n =3, r=1,2,3)
@ _ (tx1 —x)(txy — x3) (tx2 — x1)(1x2 — x3)

T —x) g —xg) (x2 — x1)(x2 — x3)
(tx3 — x1)(tx3 — x2)

q,%X2

(3 —x)(x3 —x) TF
(tx; — x3)(tx2 — x3) (tx1 — x2)(tx3 — x2)
D)(cZ) =1 ( q.,x1 Tq-Xz +1 g.x11q,x;
X1 — x3)(x2 — x3) (x1 — x2)(x3 — x2)
(txy — x1)(tx3 — x1)
(2 —x)(xz —x) 700
DY =T, Ty Ty (5.21)

Exercise 5.1 Show that the coefficients A;(x) can be expressed as

A = B0 g 5.22
I(X)_W (I c{1,...,n} (5.22)

in terms of the difference product A(x) = [, _;, (xi — x;).

As we will see below, the g-difference operators fo) (r =1, ...,n) commute
with each other, and are simultaneously diagonalized on C[x]®" by the Macdonald
polynomials.

5.3.2 Fundamental Properties of D"

By the same method as we applied to D,, one can directly verify:

(1) The g-difference operators D)(C’) (r =1,...,n) are invariant under the
action of G,,.

(2) The linear operators D : C(x) — C(x) stabilize C[x]®",i.e. DI (C[x]®")
C Clx]®".

As to the triangularity of D, we have:

Lemma 5.1 The linear operators D)((") :C[x]® — C[x]® (r =0,1,...,n) are
triangular with respect to the dominance order of m; (x): For each A € Py,

DOm;(x) =D d) mu(x) =d my(x) + Y dy) my(x), (5.23)

H<A n<i

where d.” = dir; = e,(t%q") are the elementary symmetric functions of degree r in
téqk ==(tnilqkl,tniquz,...,qk”)
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Proof We follow the same approach as in the case of D, = D" (Lemma 4.1). For
each I C {1,...,n} with |I| = r, we have

A[(_x):[(;) 1_[ tl_xj/txi l—[ l_t-xj/-xi

i<j l—xj/x,- l—xj/xi
iel, j¢l i¢l, jel
= t2ier =) 4 (Jower-order terms), (5.24)

where, for I = {i; < --- < i,}, the exponent of ¢ is computed as

\S]

<r>+#{(i,j)|i<j,iel,j¢l}

= <r> Y =i+ —k) =) (n—i). (5.25)

k=1 iel

\S]

Hence, we have

DOx" =" A(x)gict Hix!

||=r
= ( Z tZiél(””')quel “")x" + lower-order terms (5.26)
[|=r

= e,(1°¢")x" + (lower-order terms). (5.27)

This implies
D)(Cr)m,\(x) = e, (1°¢")m;.(x) + (lower-order terms) (A € P,), (5.28)
as desired. O
It is convenient to introduce the generating function for D)(r’) r=0,1,...,n)

with an extra parameter u:

D)= (—uyD" = > (A7), (5.29)
r=0 I<{l,...,n}

Then, by Lemma 5.1, we have

D (u)ym; (x) = dy (wym;, (x) + Y ds () my, (x),

H<A

dw) =) (~u) e, (1" = [ —ur"'q™). (5.30)
r=0 i=1
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5.3.3 Macdonald Polynomials as Joint Eigenfunctions

We prove the following two theorems in the subsequent sections.

Theorem 5.3 The g-difference operators D) (r = 1, ..., n) commute with each
other:
DYDY =D¥DY  (rs=1,...,n), (5.31)

Theorem 5.4 For each A € P, the Macdonald polynomial P, (x) satisfies the joint
eigenfunction equations

DYP(x) =d"P(x), d =e(’q") (r=1,....m). (532

We have assumed the genericity condition (4.10) of parameters for the existence
of Macdonald polynomials, as well as |¢g| < 1. In this setting, Theorems 5.3 and 5.4
are equivalent. In fact:

Theorem 5.3 implies Theorem 5.4: By the commutativity of D" with D, = DM,

we have
D, D" P, (x) = D D, P,(x) = d, D" Py (x), (5.33)

namely D" P, (x) is an eigenfunction of D, with eigenvalue d; . Since the eigenspace
of D, in C[x]®" with d, is one-dimensional, we have ch") P, (x) = e P, (x) for some
constant ¢ € C. Since P; (x) = m; (x) + (lower-order terms) and also D;")mx(x) =
dx(r)m 2 (x) 4+ (lower-order terms), we conclude ¢ = dir) as desired. Conversely:
Theorem 5.4 implies Theorem 5.3. Since D" (r = 1,...,n) are simultane-

ously diagonalized by P, (x) (A € ,), for any pairr, s € {1, ..., n} the commutator
[DY), DW= DD — DD is 0 as a linear operator on C[x]®~. From this,
it follows that [D{"”, D] = 0 as a g-difference operator thanks to the following
lemma.

Lemma$5.2 Let L, € D, = C(x)[Tqﬂ] be a g-difference operator with rational
function coefficients, and suppose that L, f(x) = 0 for all f(x) € C[x]®". Then
L, = 0 as a g-difference operator.

Proof Without losing generality, we may assume that L, has the form

Le= Y a0T),, deN, (5.34)
neN:|u|<d

namely, L, € C(x)[T, ] and ord L, < d. Supposing that L|c[,js. = 0, we prove
L, = 0 by the induction on d. Since this statement is obvious for d = 0, we assume
d > 0. Introducing variables y = (yy, ..., ¥4), we consider the polynomial

n d
Fesy) =[] = xiy) € Clx1®(y] (5.35)

i=1k=1
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in (x, y). Then we have L, F(x; y) = 0, namely

n d
Yo a@F@ sy =Y au ][]0 -g"xy) =0, (5.36)

lnl=d lul=d i=1 k=1
For each « € N with || = d, we define the reference point 1, (x) € (C*)? by

Ne(X) = (1/x1, 1/gx1, ..., /g Vxrs o3 1%, 1/qxn, ..., 1/¢% 'x,). (5.37)
Then we have

n n 01_;‘*1

Fg"x.na) =TT - a"x/a"xp

i=1 j=1 v=0

=[] 1@" " xi/x): @, (5.38)

i=1 j=1

Note that F(g"x; ny(x)) contains []/_, (g*~**!; q)q, as diagonal factors. If |u| <
d and pu # «, there exists an index i € {1, ..., n} such that u; < «;, and hence
(q“f’“"“; q)e;, = 0. This means that, if |u| < d, F(q"x; ne(x)) = O unless u = a.
Also, we have F(g%x; ny(x)) = ]_[ijl(q“f’“f+1xi/xj; q)«; # 0. Hence, evaluating
(5.36) at y = n4(x), we obtain

LyF(x, Y)]y = ao (X)F(q%x; 1 (x)) = 0. (5.39)

=7a (X)
This implies that a, (x) = 0 for all « € N" with |«| = 0, namely ord L, < d. Hence,
by the induction on d we conclude that L, = 0. (]

5.4 Commutativity of the Operators D,(Cr)

In this section, we give two proofs of Theorem 5.3 of commutativity of the g-
difference operators D)(C’) (r =1, ..., n).One proof, due to Macdonald [20], is based
on the orthogonality of Macdonald polynomials, and the other is a direct proof due
to Ruijsenaars [30]. Theorem 5.4 follows from Theorem 5.3 as we already explained
in the previous section.
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5.4.1 Orthogonality Implies Commutativity

One can show that, foreachr =1, ..., n, fo) is formally self-adjoint with respect
to the scalar product defined by w(x), by a method similar to the one we used in the
case of D, = DV, Since D" : C[x]®" — C[x]®" is lower triangular with respect
to the dominance order, we have

DO P.(x) = a)), Py(x), (5.40)

M=A

for some a;), € C, with leading coefficient a", = d". Since

(DOP,, P)=al (Pu. P, (P..DOP)=0 (u <), (5.41)
and (P,, P,) # 0, we have a;:L =0 for u < A. This means that D" Py (x) =
d"” P, (x). In this way, the linear operators D) : C[x]®" — C[x]®" (r =1,...,n)

are simultaneously diagonalized by the Macdonald basis. This gives a proof of Theo-
rem 5.4, as well as Theorem 5.3 by the argument we already explained in the previous
section.

5.4.2 A Direct Proof of Commutativity

Here we explain a direct proof of Theorem 5.3 of commutativity, following the idea
of Ruijsenaars [30].
The composition D" D is computed as

DIDY = > Ajx)A; (G 0OTI (5.42)
|I|=r|J|=s
where e, =), &, & = (8 j)i<j<n € Z". Setting K =1NJ, L =1 UJ)\K,
P =1\K, Q = J\K, we rewrite (5.42) as
D" DY
= Y (X Acr@®Akue@ o) TR (5.43)

KNL=¢ PLQ=L
|K|<min{r,s} |K|+|P|=r|K|+|Q|=s

Then the commutativity D" D = D® D) is equivalent to the following state-
ment: For each K, L C {1,...,n} with K N L = ¢, and for any p, g € Z>( such
that p + ¢ = |L|,
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Z Agup(X)Aguo(g®**rx)
PUQ=L
[Pl=p.1Ql=q
= ) Akuo®Agup(gTOx). (5.44)

PLUQ=L
|[P|=p,|0l=q

Analyzing this equality carefully, we show that the statement (5.44) is reduced to an
identity of rational functions, which we call the Ruijsenaars identity.
For each pair (1, J) of subsets of {1, ..., n} such that I N J = ¢, we set

1 —tx;/x;
A — i 5.45
L= ]] T (5.45)
iel; jeJ
so that 0
Arx) =1 A ), IS={1,...,n)\L (5.46)

We use below the properties that A; ;(x) is distributive in I and J in the sense

Apun, () =An g(0)AL (X)), Apqun(x) =Ar 5 (0)A; LX), (5.47)

and that A; ;(x) depends on the ratios x; /x; (i € I, j € J) only.
WesetM ={1,...,n}\(KUL),sothat KLUPL QUM ={1,...,n},toobtain

t_(IK;P\)_(\K;Q\)AKuP(x)AKuQ(an+apx)

= Agup,muo(X)Akuo mup (@< x)

=Ag u(x)Ag o(xX)Ap y(x)Ap o(x)
A (@) Ak p(@T T X)Ag (X)) Ag.p ("7 x)

= Ag M)Ak p(X)Ag 0(X)Ap p(x)Ag m(x) Ak (g™ x)
“Ap,o(x)Ag p(g* x)

= Ax M)Ak L)AL M)A m(@T*x) - Ap o(X)Ag p(q°"x). (5.48)

Exchanging the roles of P and Q, we have

=D Ao () Arur (g F0x)
= Ax M)Ak, L (DAL M)Ak m(@x) - Ag p(Xx)Ap o(g*x). (5.49)

Hence, equality (5.44) is equivalent to:

> AroWAgr@Tx)= Y Agr(0)Apro(@x)  (550)
PUQ=L PLUQ=L
[P|=p.,|0l=q |P|=p.,|0l=q
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forany L C {1,...,n}and p, g with p +¢g = |L|.
Changing the notation, we see that the commutativity of the Macdonald—
Ruijsenaars operators is reduced to proving the identity

Y ALMALGT) = Y AL ()AL (5.51)
IuJ={1,...,n} IuJ={1,...,n}
|I|=r,|J|=s |I|=r,|J|=s

for any r,s such that » + s = n. To be explicit,

Lemma 5.3 (Ruijsenaars identity) Foranyr,s € Zso withr +s = n,

Z l_[ (I —tx;/x;))(A —tx;/qx;)
A —=xi/x;))(1 —x;/qx;)

TIuJ={1,..., n}iel
= r u| s JEJ

—t 1 —tx;
= Z [ 8t~ /) (5.52)
TuJ={1,..., n}iel (1 _x//x’ (1 _xl/qx])
II\—r \JI s JeJ

Proof We denote by F, ;(x) the left-hand side of (5.52):

l—[ (tx; — x;)(gx; —tx;)

Fu@= ) [lFs0 Fae= @ —x)qx —x)

IuJ=[n] iel iel
[I=r,|J|=s j€J jelJ

(5.53)

where [n] = {1, ..., n}. Then the right-hand side is given by Fm(x“) = F,,(x).
We remark that F; ;(x) is a symmetric function and A (x) F;. ;(x) is regular along the
divisors x; — x; = 0 (1 <i < j < n). From this fact it follows that F, ;(x) itself is
regular along these divisors.

We prove by induction on 7 that G, (x) = F, (x) — F,;(x~!) = 0 for any pair
(r, s) such that r + s = n. We first remark that G, ;(x) =0if r =0 or s = 0, and
that G, ;(x) =0forn =r 45 =0, 1. Assuming that r, s > 1, we regard F, ;(x) as
rational functions of x,,:

(tx, —x;)(gx, —tx;)
Fo= Y 5L Fnmsow)
U =[n] el (x, xj)(qxn -xj)
|I|=r,|J|=s, nel

(xp — tx;)(tx, — qx;)

Fpm,s(xa),  (5.54

’ IuJZ:[”] 113 (Xn _xi)(xn - qxi) AN }’J(x ) ( )
|I|=r,|J|=s, neJ
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where x; = (xy,...,x,-1). Note that F, (x) has at most simple poles at x, =
qXi, q’lxk fork =1,...,n — 1; it is regular at x, = x; as mentioned above.! We
look at the residues at x, = gx;:

Res(Fy s (x)dxy|x, = qxi)
_d=-nt-q) Z 1—[ (gxi — tx;) (tx, — X;)

(gxr — x;)(xx — x;)

Fr p\ny(7)

—1
q IuJ=[n] iel\{k}
|I|=r,|J|=s; kel,neJ

_d=-0t-q 3 I (gxx — 1xi) (tx, — xi)

q-1 1uJ=[n] iel\{k} (gxi — xi) (X — x;)

|I|=r,|J|=s; kel,neJ
1—[ (txr — x;)(gxi — tx;)

| (xx — x;)(gxx — xj)

Fryy, iy ()
JjeJ\{n

=00 —q) 7 % —x)(gx —1x)
- g-1 ,};I (o — x0)(gxe — x1) 2

Fp y(xgz), (5.55)

I'uJ’=[n]\{k,n}
['|=r—1,]J'|=s—1

where x; = (x1, ..., x,—1) andxg5; = (x1, ..., k, ..., x,_1). Similarly, we compute

ReS(Fr,s(xil)dxnlxn = qx;)
_(d=-0t-q 1—[ (txx — x1)(qxx — 1X1) Z

(e — x)(qxi — x1)

Fp p(xz7). (5.56)

qg—1
I#k.n 1'ul’=[n\{k,n}

= —1,]/ |=s—1
Hence, for G, s(x) = F, (x) — F,;(x~!) we have

Res(Gr,s (x)dx,|x, = qu)
_(d=-nt—-q l—[ (txx — x;)(qx; — 1x1)

q—1 Ik (ke — x)(gxx — x1)
> (FroGea) = Froea) =0 (5.57)
I'uJ’'=[n]\{k,n}
|I'|=r—1,10'|=s—1
fork =1,...,n — 1, by the induction hypothesis of the case of n — 2 variables. By
the same argument we obtain Res(G, ;(x)dx,|x, = g 'x)) =0fork=1,...,n—
1. This implies that G, ;(x) is constant with respect to x,,. Since G, ;(x) is symmetric
with respect to x = (xy, ..., X,), we conclude that G, ;(x) is a constant, i.e. does
not depend on x; (i =1, ..., n). However, G,(x) = F,5(x) — F,,S(x_l) satisfies
G, (x7 ') = —G,4(x), and hence we obtain G, (x) = 0. O
1 One can also show directly that Res(F} s @Edxplx, =x) =0k =1,..., n — 1), by a com-

putation similar to the one presented below.
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We remark that Ruijsenaars [30] proved the commutativity of the elliptic version
of D (r =1, ..., n) along the same line as above, on the basis of the corresponding
identity for the Weierstrass sigma functions.

Remark 5.2 In Chap. 8, we will explain a construction of the g-difference operators
D) as well as their commutativity, following the idea of Cherednik based on a
representation of the affine Hecke algebra.

5.5 Refinement of the Existence Theorem

Once commutativity of the Macdonald-Ruijsenaars operators D) (r = 1,...,n)
has been established, the existence theorem of Macdonald polynomials can be refined
as we formulate below. Here we fix the parameters ¢, t € C* with |¢| < 1, and sup-
pose that the parameter ¢ € C* satisfies the condition ¥ ¢ gZ< fork = 1,...,n — 1.
In this setting we give a proof of existence of the Macdonald polynomials, indepen-
dently of the previous existence theorem (Theorem 4.1).

Theorem 5.5 Suppose that the parameter t satisfies the condition that t* ¢ g%<0
(k=1,...,n— 1). Then, for each partition A € P, there exists a unique symmetric
polynomial P, (x) € C[x]1S" such that

(1) DOPx)=d"P(x) r=1,...,n), (5.58)
2) P(x) =my(x) + Zuﬁ m, (x) (uﬁ e O). (5.59)
H<X

We remark that, in terms of the generating function Dy (u) = Y '_,(—u)" D",
the joint eigenfunction equations for P (x) are unified in the form

D () P,.(x) = dy () Po(x), dy(u) = [ [(1 —ut""g™). (5.60)
i=1

Note that, for a pair A, u € P,, dy(u) = d,(u) as polynomials in u if and only if
there exists a permutation o € &, such that

"Tigh = o Dglo (1=1,...,n). (5.61)

Under our assumption |g| < 1, we have:

Lemma 5.4  Suppose that t* ¢ g% (k = 1,...,n — 1). Then, d; (u) # d,(u) for
any distinct pair A, i € P, as polynomials in u, and also for generic u € C.

Proof We first show that, if |¢| < 1, then d, (1) # d, () as polynomials in u for
any distinct pair A, i € P,. Under the assumption |¢| < 1, the sequence |t"~g*i|
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(i=1,...,n) is weakly increasing for any A € #,. From this it follows that, if
dy(u) = d,(u) for A, u € P,, then we have |""Ig*| = |t""g"| (i =1,...,n).
Hence, fori =1, ..., n, we have |g|% = |g|* and A; = u; since |g| < 1. Namely,

if [#| < 1, then d, (u) = d,, (u) implies A = p.

We now consider the case |¢| > 1. Suppose that d; (¢) = d,, (1) as polynomials
in u for some distinct pair A, u € P,. Then, there exists a permutation o € G, such
that

t"ight =" Dgho (i =1,...,n). (5.62)
Since A # u, wehave o # 1, and hence there exists anindex o (i) > i. Then we have
70— = groo =i ¢ g% which means t* € g% for k =0 (i) —ie{l,...,n—1}.
Since |t| > 1, t* € g%< forsome k € {1,...,n — 1}.

Suppose that d (1) # d, (u) for any distinct pair A, i € $,. Since the set
S ={a e C*|dy.(a) =d,(a) for some distinct pair A, u € P,} (5.63)

is countable, the complement C*\ S is non-empty. Then, for any ¢ € C*\ S, we have
dy(c) # d,,(c) for any distinct pair A, i € P,. [l

Proof (of Theorem 5.5) Under the assumption that t* ¢ gZ<0 fork =1,...,n — 1,
by Lemma 5.4 we can find a constant ¢ € C such that d;(c) # d,(c) for any
distinct pair A, u € P,. From the facts that D,(c) : C[x]®" — C[x]®" is trian-
gular with respect to the dominance order and that the eigenvalues d, (c) sepa-
rate P,, it follows that for each A € P, there exists a unique symmetric poly-
nomial P, (x) € C[x]®" such that P, (x) = m, (x) + (lower-order terms) € C[x]S"
and D, (¢) P, (x) = d,(c) P, (x). Note that P, (x) (A € P,) form a C-basis of C[x]®",
and have mutually distinct eigenvalues d, (c¢) with respect to the linear operators
D, (c). We remark that these P, (x) do not depend on the choice of ¢, as we will see
below.

Since D" commutes with D, (c) forr = 1,...,n, we have D,(c)D" P, (x) =
DD, (c)P;(c) = dy(c)D") P, (x). This means that D" P (x) is an eigenfunc-
tion of D,(c) with eigenvalue d,(c), and hence DJ(C’) P, (x) is a contant multi-
ple of P;(x) by the fact that the eigenspace of D,(c) with eigenvalue d; (c)
is one-dimensional. Since D)(C’) P(x) = di")m 2 (x) + (lower-order terms), we have
DY) Py (x) = d\” P, (x). Namely, we obtain

Clx]® = @D CP(x), Di(u)Py(x) = dy.(u) P(x). (5.64)

rEP,

This also implies that the polynomials P, (x) do not depend on the choice of ¢ € C*
with which we started. (]
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5.6 Some Remarks Related to D, (1)

5.6.1 Macdonald Polynomials in x !

Consider the g-difference operators D)(Cr,), (r=0,1,...,n) in the variables x~! =

(', ..., x;!) such that

DY (x_l)szC’)f(x)‘ (5.65)

These operators are then explicitly given by

. IX; —x;
D" =310 T] 117 (5.66)
||=r iel, j¢l XX e
Lemma 5.5 Foreachr =0,1,...,n,
DY = (=Vr=GpriIT, T, (5.67)

In terms of the generating function, we have
Do) = ()"t O Dr (™ Ty Ty, (5.68)
We leave the proof of this lemma as an exercise.
Let A € P, be a partition and suppose that X is contained in the n x / rectangle
(A1 < 1). Then we have

(x ---xn)lPA(x’l) = mn—v(x) + (lower-order terms) € (C[x]G”, (5.69)

where LY = (A, ..., A1) denotes the reversal of A = (A1, ..., Ay).

Proposition 5.1 For each partition . € P, with ., <1, € N, we have
() Pux ™) = Py (1), A = (R M), (5.70)

One can verify the eigenfunction equation

D)(xy -+ x) Py = [ (4 —ur" g ) - (o) P! (571

i=1

by using Lemma 5.5.
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5.6.2 Determinant Representation of D, (u)

The generating function D, (1) of the Macdonald—Ruijsenaars g-difference operators
can also be expressed in terms of the determinant of a matrix of g-difference operators.

For an n xn matrix L = (L;;);;_; with entires in a ring, possibly non-
commutative, we use the notation det(L) for the column determinant

det(L) = Y sgn(0) Loyt -+ Logun- (5.72)

oe’,

Theorem 5.6 The generating function D, (u) = Y _,(—u)" D" of the Macdonald—
Ruijsenaars operators is represented by the column determinant

n

1 o .
A( )det(xl- (1 —ut /Tq,x,))

i,j=1

D,(u) =

(5.73)

_— T ).
-3¢ 05 Sgn(g)nx"“) )

We remark that the g-difference operators L;; = xl-" = u"i T, x,) satisfy the
commutativity L;; Ly = Ly L;; (i # k). This implies that the product ]_['}=1 above
does not depend on the ordering.

For a g-difference operator L, = ) ez Ap )T, € C(x)[Tqﬂl], we define its
symbol by

symb(Ly) = Y a,(0E* € COEF'], & = (& &) (5.74)

WEL

Note that two g-difference operators L,, M, coincide if symb(L,) = symb(M,).
We compute the symbol of D, (u) as follows:

symb(Dy (u))

LAX) 1 -
B Z( o Tam ¢ A(x)(lg{;n}(_“)IS Tr,x)A(x)

e )]_[(1 wE T )A(x) = det (x/ /(1 —u "I gN

( )

- A( ) b Sgn@f)l_[ X —ut" I ), (5.75)

eSS,

which coincides with the symbol of the right-hand side of (5.73).
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5.6.3 Limit to the Differential (Jack) Case

If we set ¢ = e® with a small parameter &, we have

0o
iax- k ¢ C
= Z Mx“ — gsxia—tixﬂ = qx,'dx,.xﬂ. (576)

In view of this fact, we rewrite the g-shift operators as 7T, ,, = ¢*% by the
Euler operators x;dy, = x;0/dx; (i =1, ...,n). Then we take the scaling limit of
D.(u)/(1 —q)" asqg — 1 witht =¢q#,u = q":

1
S, (v) = lim ————(D.(q")],_,)

g=1 (1 —¢q)"
1 ] — gvt=DBtxdy | g
= lim det( g ) )
A(x) g—1 1—¢q i,j=1
_ ! det( "Iy 4 x;8, + (n —]),3)) (5.77)
) 10, o .
The resulting operator S, (v) satisfies
;PP ) = PP [[o+r+n-Dp (e, (5.78)

i=1

where P (x) = lim1 P, (x; q, q") are the Jack polynomials. Denoting by S the
q—
coefficients of v"~" of S, (v), we obtain a commuting family of differential operators
S)E’), called the Sekiguchi—Debiard operators, such that
SOPP(x)y =e, A+ BHPP(x)  (r=0,1,....n), (5.79)

where§ = (n — 1,n — 2, ..., 0). The eigenvalues e, (A + B5) are the rth elementary
symmetric functions of A; + (n — i) (i = 1,...,n).
From the determinant representation (5.77), by a computation similar to that of

(5.75) we obtain the following expression for the Sekiguchi—Debiard operators:

s =3 Zﬂ“‘\"(xa) TAW) (o =01, .n). (580)
IK|=r JCK Al)
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where the sum is over all pairs (J, K) of subsets of {1, ..., n} such that | K| = r and
JCKZIn particular, we have

S = " xidy, + Ber(9),
i=1

t
£8
]

I

! > x,ax,x,ax,wz a®) = — le xi0, + B2e2(8),(5.81)

I<i<j<n ]7&1 J

where ¢;(8) = gn(n — 1) and e(8) = 5;n(n — 1)(n —2)(3n — 1). Recall that
power sums are represented as

pi=el, pr=el—2e, p3=e; —3eier+3es, ..., (5.82)

by elementary symmetric functions. In view of these formulas, we introduce the
differential operators L®) (k = 1,2,...) by

LD — e 7@ _ (S(l))2 —28@ 106G — (S(l))3 —35sMWg@ 4 360
(5.83)
Then we have

LYPP (x) = p(h+BHPP (x) (k=1,2,..), (5.84)

with eigenvalues py(A + B8) =Y ' (A + (n — i)B)* expressed by power sums.
Explicitly, L and L» are given by

LY =" xid, + Bpi(8),

i=1

L)(f):Zx, ) +2/BZ Z i - | xidy, + B7pa(8),  (5.85)
i=1 i=1 \ g YN

where pi(8) = in(n — 1) and py(8) = ¢n(n — 1)(2n — 1).> We now conjugate
these operators by the power A(x)? of the difference product:

2 For a differential operator Ly =Y peln Au (x)(x0x)* (finite sum), consider the symbol
symb(Ly) = ZMENH a, ()M withd = (Aq, ..., A) regarded as variables. Note also that L @M =
symb(L,)x*.

0y (A(x
3 Set Up(x) = S (800

o = Z#i X,*_—‘X, for each i, and U;j(x) = x;9y; (U;(x)) =

. . X0, 60y (AG) "
distinct pair i, j, so that — e = Ui(x)Uj(x) + U;j(x). Then we have i Uikx) =

pi(8)and Y ", Ui2 -2 Zlﬁl—an Uij(x) = p2(8). Use these formulas to derive (5.81) and (5.85).

XiXj

P for
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P=Ax)LOARX)F = inaxi, (5.86)
i=1

H=AGLOA ™ =Y (xd,) =288 1) Z x’x’. S (5.87)

i=1 1<l<_]<l’l
Then the functions ¥, (x) = P”’ (x) A(x)? (A € P,) satisfy

Py(x) = pi(h + BV (x),  HYi(x) = p2(h + O Y. (x). (5.88)

The operators P and H are the momentum operator and the Hamiltonian for the
Calogero—Sutherland model with coupling constant 8. Note that, in terms of the
angular coordinates 6; (i = 1, ..., n) such that x; = eV 10 , the operators P and H
are expressed as

Zag H=— Za(, ﬁ(ﬁ D > 2;0_9/ (5.89)
=

I<i<j<n sin



Chapter 6
Self-duality, Pieri Formula and Cauchy Guca i
Formulas

Abstract Self-duality (evaluation symmetry), which we are going to discuss below,
is one of the most characteristic properties of Macdonald polynomials. In this chapter,
we explain how the Pieri formulas (multiplication formula by e,) are obtained from
the action of Macdonald—Ruijsenaars operators D" through the self-duality. We
also investigate the Cauchy formula and the dual Cauchy formula for Macdonald
polynomials and the relevant kernel identities.

6.1 Self-duality and Pieri Formula

We have seen in the previous chapter that, for generic ¢, t € C* the Macdonald
polynomials P, (x) = P;(x; g, t) (A € P,) arejoint eigenfunctions of the commuting
family of Macdonald—Ruijsenaars g-difference operators D) (r =1, ..., n), and
that they form a C basis of the ring of symmetric polynomials C[x]®":

Clx1® = @ CP.(x). D) Pi(x) = dy(u) P (x). 6.1)

LEP,

Note that, under our assumption |g| < 1, the genericity condition for ¢ is fulfilled
if t* ¢ g%Z<0 for k =1,...,n — 1, and in particular, if |t| < 1. Also, if we regard
q,t as variables (indeterminates), the (monic) Macdonald polynomials P, (x) are
determined uniquely as symmetric polynomials with coefficients in the field Q(qg, t)
of rational functions in (g, t); their coefficients are regular in the domain |g| < 1,
[t] < 1.

6.1.1 Principal Specialization

Asto the values of Schur functions s, (x) at the base point x = ¢?, we gave two explicit
formulas in Propositions 3.1 and 3.2. Those evaluation formulas are generalized to
the case of Macdonald polynomials as follows.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 87
M. Noumi, Macdonald Polynomials, SpringerBriefs in Mathematical Physics,
https://doi.org/10.1007/978-981-99-4587-0_6
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Theorem 6.1 (Principal specialization) For any A € P, the value of P, (x) at x = t°
is given explicitly by

1— tn—l;(s)qag(s) _ tn(k) n;lZI(tn—i—H; q))\i

) = — — , (6.2)
1 — t//h(S)Jrlqﬂx(S) l_[lsifjgn (t/ l+1q)nl )nj; q))\j_)\pr]

P)L (tﬁ) — til()u) 1_[

SEA

wheren(X) =Y (i — 1)A; and, foreachs = (i, j) € L, li(s) =i — landd;(s) =
Jj — 1 denote the co-leg length and the co-arm length, respectively.

The proof of this evaluation formula at x = ¢® will be given in Sect.6.3, under the
assumption that Theorem 6.2 (below) of self-duality holds.

6.1.2 Self-duality

At this moment, we know at least that P, (%) # 0 as a rational function of (g, 1),
since the Schur functions are the special case of Macdonald polynomials where
t =gq,i.e. P.(x;q,q) = s,(x). Keeping this in mind, we normalize the Macdonald
polynomials as

P (x)

P =30

A ePy) (6.3)

so that P; (t%) = 1. Then we have the following self-duality (evaluation symmetry).

Theorem 6.2 (Self-duality) The normalized Macdonald polynomials ﬁx x) =
P, (x)/ P,(t%) satisfy N N
P.(1°q") = P, (1°q") (6.4)

for all pairs (A, n) € P X Ph.

We regard x = t°q* as the position variables and & = t3q" as the spectral variables.
Then (6.4) means that the normalized Macdonald polynomial P, (t%g™), regarded
as a function of (A, u) € P, x P,, is invariant under the exchange of position and
spectral variables on the discrete set.

We include a proof of Theorem 6.2 due to Koornwinder [14, 20] in Sect. 6.4.

6.1.3 Pieri Formula

For each A € #,, the Macdonald polynomial P, (x) multiplied by an elementary
symmetric function e, (x) (r = 1, ..., n) can be expanded into a linear combination
of Macdonald polynomials:
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eGP = Y Y, Pix), (6.5)

LEP,
ASpA(1")

with some coefficients v} /u € Q(g, t). This type of expansion formula is called the
Pieri formula. In order to describe the expansion coefficients in the Pieri formula,
we introduce certain rational functions in (g, t).

For each pair A, u € P of partitions with u C A (i.e. u; < A; foralli > 1), we
define a rational function v, ,,(q, t) € Q(q, t) by

Vi@ =[] A St TG ST VTR
A ) —_ T . - . 3 .
" I<i<j<(n) (t/="q" AR q))ti*lii (/ l—HqM' )\"“;q)k;*l/-i
and set

Wi/ﬂ(qa 1) = Yy, q). (6.7)

Recall that a skew diagram A/u is called a horizontal strip (“h-strip” for short) if
the complement A\ u contains at most one square in each column. Similarly, we say
that a skew diagram A/ is a vertical strip (“v-strip” for short) if the complement
A\u contains at most one square in each row. Note that ¥, /,(g,¢) = O unless A/u
is a horizontal strip, and that ¥/} /g, 1) = Ounless A/p is a vertical strip.

Theorem 6.3 (Pieri formula) For each i € Py andr =1, ..., n, P,(x) multiplied
by e, (x) is expanded in terms of Macdonald polynomials as

eGP = Y Y, P (6.8)

A/ v-strip
[A/ml=r

with coefficients r; = 4 (g 1) in(6.6)-(6.7), where the sumis over all partitions
A e P,withp C A |A| = || + r, such that the skew diagram A/ i is a vertical strip.

Theorem 6.3 will be proved in Sects.6.2 and 6.3 before Sect. 6.4, assuming that
Theorem 6.2 holds.

6.2 Self-duality Implies the Pieri Formula

Note that the fact that P, (#°) # 0 (as a rational function of (g, ¢)) follows from
the principal specialization of the special case t = g, where Py (x|q, g) = s;(x).
Assuming that the self-duality (6.4) has been established, we explain here how one
can obtain the Pieri formula (6.8) and the evaluation formula (6.2) from the g-
difference equations for P, (x), by way of the self-duality.
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Foreachr =1, ..., n, the eigenfunction equation
DY Py (x) = e,(t°q™) P..(x) (6.9)
implies
Y A0 Pi(gx) = e (t°gM) Pr(x), (6.10)
|1|=r

where ¢; = Zie] &;. Bvaluating this formula at x = t%¢* (u € P,), we obtain

> AIPGY P = e (10" P’ g"). (6.11)
|I|=r
Suppose that v = u + ¢ is not a partition, i.e. u;—; = u; for some i € {2,...,n}

withi € I andi — 1 ¢ I. In such a case, we have

" tn—i+lqu,» _ tn—jquj
A g") = 1(2) I

iel, j¢T

- - =0 (6.12)
tn=ighi — tn=ighi

since tx; —x; =" Hgti —n=itlghici =0 (i€, j=i—1¢1I). This means
that the sum in the left-hand side of (6.10) is over all I C {1, ...,n} with |I| =r
such that v =  + ¢; is a partition. A skew partition v/u is a vertical strip if and
onlyifv = u + ¢;forsome !/ C {1, ..., n}.Inthe following, for each pair u, v € P,
with u C v, weset A/, = A;(tg™) if v/ is a vertical strip with v = u + &; and
A,/ = 0 otherwise. Then we have

Yo AP(g) = e, (P g P (g, (6.13)

v/ v-strip, [v/pl=r

We now apply the self-duality (6.4) to obtain

Y AP = e, (P g Pu(tgh). (6.14)

v/ v-strip, [v/pl=r

This means that equality

e, (x) P, (x) = > Ay Py (x) (6.15)

v/ v-strip, |v/u|=r

holds for x = t3¢* (A € P,). It also implies that (6.15) is an identity in the ring
C[x]®" of symmetric polynomials, since a polynomial f(x) € C[x] such that
f(#%q*) = 0 for all A € P, must be zero as a polynomial in x. Namely, if the self-
duality (6.4) has been established, the g-difference equations (6.9) for A € P, implies
the Pieri formulas (6.15) for the normalized Macdonald polynomials ﬁﬂ (x) with
coefficients A, /.
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Exercise 6.1 Prove: if a polynomial f(x) € C[x] vanishes at all points x = t’g*
(A € P,), then f(x) = 0 as a polynomial in x.

Supposing that A/u is a vertical strip, we express A as A = u + ¢; with a subset
I C{l,...,n}with |I| = |A/u| = r. In this setting, we derive an explicit formula
for the Pieri coefficient

Aspu = Ar(t°q") (6.16)

for Fﬂ(x). Since A(x) = []p_, x*7! [Ticacpen(l = Xa/Xp), we have
A([‘Hslé]u)

A(tqh)
1— tb*a“’lqﬂa*ﬂh

Ay = A(t°q") =

— D 1_[ l—[

l1<a<b<n l<a<b<n
ael,b¢l ag¢l,bel

1 — th—a=1gta—it
LA L (6.17)

1 — tb—aquu—ub 1 — tb_aqﬂa_ﬂb ’

We use the conjugate partitions A’, &’ € P, noting that they satisfy the interlacing
property

n=A ===, > A > (6.18)
Then, the subset I C{l,...,n} and its complement J = {1,...,n}\[l are
parametrized as
k—1k k+1
])‘k+2

l"k+1
, )‘k+1

I=| | Io=(uj. 20,
k>1

T=| |7 5= iy
k>1

(6.19)

(A = o =n)

in the notation of an interval (a,b] = {k € Z | a < k < b} of integers. Note that,
wi=k—1,7 =kifi e lyand u; =A; =k —1if j € Ji). Then we have

_ tn(81) l_[ 1 — tb —a+1 1 Jj 1_[ 1 — tb—a—lqj—i
l—tb a i—j 11 l_tbfaqui
Jj<i i<j
ael; ael;
belJ; bel;

—M+1 Wil gi=ie gy , .,
_ n(gl)n(tﬂjl q’ J- l)x ! l_[(t i-1q’ l,t)MH—K,- 6.20)

pym T
(G R L PR I g O

j=<i K i<j
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and finally

Wl -1,
A;L/M::t"(gl)l_[(t" i+ q’ ’t))»'j—u'j
Jj=1
T i—i]. gl iidd.
Hi<j(tul gl ’t)*}—u} Hisj(tul High=+ ’t)#}_)‘}ﬂ (6.21)
NnN+1 . N i+l AN
Hifj(t’ itlgi SO Higj(f’ Higi 'Hat)u}—’v‘

Jj J+1

In combinatorial terms of Young diagrams, this can be written alternatively as

O " ),

O T @),

]‘[SEMHRW (1 — @+ gau(s)y Hseu\RW (1 — ¢l ® g+l
. ]_[SemR-A/,L(l — th O+ ga () Hse,\\R-A/,L(l — th®) gar)+1) )

AK/M =

(6.22)

where R;;,, = I x Z denotes the union of rows intersecting with the vertical strip
AL

6.3 Principal Specialization: Evaluation at x = ¢°
The normalized Macdonald polynomials P, (x) can be written as

~ 1 1
P(x) = ZPA(X) = amx(x) + (lower-order terms), a; = P, (t°).  (6.23)

We compare the coefficients of m; (x) of the both sides of (6.15) for A = u + @,
w, =€ +---+¢& = (1"). Then we obtain

1 1 .
— = A)»//L_9 1.6. a, = aMA,\/M (624)
a, a;,

for A = u + @,.

We make use of this recurrence formula for the case where £(u) < r and A =
U + @,. Since

r 1 — tn—i+lqu,- 1 — tn—l,’\(s)qak(s)

— (@)
1— tr*iJrlq/L,‘ =1 Y!:! 1— tlA(S)+1qak(S) ’ (625)
sEA\L

A)M/M = t(;)

i=1
by a) = a, Aj /., we obtain
1— tn—l;.(x)qak(s)

— (@)
a =dy -1 [ | — fhoriga®’ (6.26)
ser\u
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if £(u) < r and A = u + @,. Noting that any A € $, is expressed as A = @y +
ety [ = A1, we can apply the recurrence formula (6.26) to obtain

1— z‘n—l)’\(.v)qa-ﬂ(s) tl;(s) _ tnqa)’\(x)

) _
@ =t 1_[ 1— [lx(S)Jrlqu(S) - 1 — [l)‘(5)+1qax(s) (6.27)
SEA SEA

for any A € P,. In terms of the components of A, a; is expressed alternatively as

tn(k) 1_[;1:1 (tn—i+1 : q))w

= S : (6.28)
ngigjgn(”_’ﬂl]'\’ M @)

a,

Note that the pair (i, j) of indices with 1 <i < j < n in the denominator covers
the sequence of squares s = (i, k) with k € (A1, A;], for which [, (s) = j — i and
a, (S) = )\i — k.

[ ]

..... B Ai

J y
Aj+1

(6.29)

Formulas (6.26)—(6.27) are the explicit formulas for P (t%) = @, in Theorem 6.1.
Also, the Pieri coefficients w?/»/u in (6.8) for A\=pu+¢e;, I C{1,...,n} are
obtained from (6.15) by

a
Vi = A Aru = Ar(°g™). (6.30)
A

Writing down this formula in terms of A, u € #,,, we obtain the explicit formula for
W,{/M = Wi/u (g, 1) asin (6.6). By (6.22) and (6.27) we obtain

/ al’«
= —A,;
w)»/u a, /n
Hsex(l — tl;~(‘v)+lqm(‘v))
 eu (1 — 0+ 1get)
L(s)41
nxeuﬂRk/u(l — 1 qal (Y)) nseu\RL/u

HseAmRW(l _ tll(“)Hq‘“(‘Y)) Hse)\\RW(l _ tlx(s)qa»\(x)-‘rl)

(1 _ tlu(“)q”u(‘?)""l)

1— tl,\(x)—&-lqa-h(s) 1— tlu(x)qau(s)+1

= 1_[ 1 — l®gam e+l 1_[ 1= hHga
SEMNR) SEU\Rs

(6.31)
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In terms of the components of A, u, this formula can be rewritten as

l/fi/u = H

M=+l j—i. W= o j—i41.
@h T gl t)ﬂ}*)h;H i Hig/ ; I)H’/_,)L’Hl

N—p i—itl.
(g D)

Wit =i gy o
(t q 7t)[4/-7)»/-+

i<j )‘//+1 1
Wl il i,
_ (IM it g’ [)A,f—u; (tu' quj l+1’ t))\;—u; (6.32)
A L R ey, R i '
i<j q > N =1 q > A=l

This gives a proof of Theorem 6.3 (under the assumption that Theorem 6.2 holds).
Note that the two expressions in (6.32) are transformed into each other through the
formula
@ape @ (Graiq)
(@@ (@qilaqr (a9

(k,l e N) (6.33)

for g-shifted factorials.

6.4 Koornwinder’s Proof of Self-duality

In this section, we present Koornwinder’s inductive argument which proves the self-
duality and the Pieri formula for P, (x) simultaneously (see Macdonald [20] and
Koornwinder [14]).

Forpu e P,andr =0, 1, ..., n, we consider the expansion of e, (x)ﬁu (x) in terms

of P(x) (A € P,):

eMPx) = > BiuPi(x). (6.34)

MEPy, ASp+m,

The coefficients B, /, are defined forall A € , suchthatA < u + w,; weset By, =
0 otherwise. For each pair A, u € P, with u C A, we set A/, = Ap(8g™)if A/ is
a vertical stripwith A = +¢;, I € {1,...,n}, and A;,, = 0 otherwise.

We prove the following two statements for A € $,, simultaneously by the induction
on |A| combined with the dominance order of partitions:

(@), Py(t°q") = P,(t°%q") forall € P,.
(b),, Suppose that r € {1,...,n} and A — @, € P,, and set k = A — @,.
Then, B, = A,/ forany v € P, withv < A =« + @,.

For the induction, we use the partial order v <4.4om t for v, u € P, defined by
V Zqdom b [v| <|u| or (Jv|=|ulandv < ). (6.35)

Statement (a),, holds for . = 0 since ﬁ)\ (%) = 1 forall » € P, while (b) u 1s empty
for u = 0.
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Assuming that A € P, and |A| > 0, we first prove (b),. Suppose that x € P,
re{l,...,n}and A = k + w@,. By the argument of Sect. 6.2, (6.13), we know

e (P q) = Y AucPu(t’q’) (1w EPy). (6.36)

v/K: v-strip
lv/kl=r

Note that we have v < k 4+ @, = A if v/ is a vertical strip with |v/k| = r. On the
other hand, we have

e (P q" P(t°q") =Y By Py(°q") (1w €Py) (6.37)

V<A

by (6.34). Since || < |A| we have P t’q") = (t “) by the induction hypoth-
esis. Also, we have P (t‘S "y = P (t“ "y for all pair i, v < A by the induction
hypothesis; in fact we have © < A or v < A if u # v. Hence we have

e (g P q) = By Pu(t’q") (1€ Py < ). (6.38)

v<\A

From (6.36) and (6.38), we obtain

> AuPut’q) = By Pu(tq")  (nePu i) (6.39)
v/K:v-strip V<X
lv/k|=r

Then, statement (b);, follows if we confirm that det (PM @° q”))u L, # 0, which will
be proved below in Lemma 6.1. a
Knowing that (b), holds, we can rewrite (6.37) as

e (g P(t’g") = Y AuP(’q")  (nePy). (6.40)

v/ v-strip
[v/pl=r

We now compare (6 36) and (6.40) for arbitrary u € P,. Since P, (t’sq") = P @° q")
and P, (15q”) = P (t‘s ") for any v < A = k + @,, we obtain

A Pt q) = Ay P(t°q™). (6.41)
Since A; /, # 0, we obtain PM (t3g*) = P, (t%q") for all u € P,, as desired.
Lemma 6.1 Forany A € P, det (Pu(t‘sq”))%vﬂ # 0.

Proof This statement is equivalent to det (P,(t%¢"))
P,(x)/a,, and further to det (inﬂ(z“sq"))%vS
(lower order terms with respect to <). Note that

<y 7 0 since Py (x) =
L #0 since Py(x) =m,(x)+
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my (°g") =t g 4 (lower degree terms in7), (6.42)
and hence

det (m,t(t‘sq"))u’vs)\
— det (IW’%W'V})M,@

— tZuﬁ(l’va) det (qW

+ (lower degree terms in ¢)

>)M,V§A + (lower degree terms int). (6.43)

Setting N = #{u € P, | u < A}, parametrize all 4 € P, with u < xas u, ...,
w™ _ Then we have

@ DWW N N @) (o)
et (¢),_, = det (¢4, = 3 sgn(o)gh
(TEGN
T D0y ;
= g&~i=1" + (lower degree terms ingq). (6.44)

In fact, for o # 1, 1nequa11ty SN (@ — p@O @ @@y 5 0 implies
SN (O, u®y > SN (O ey, Hence we have det (¢ )u,vsx £0. O

We remark that the self-duality of Theorem 6.2 can also be proved by means of
the Cherednik involution of the double affine Hecke algebra (see Sect. 8.5).

6.5 Cauchy Formula and Dual Cauchy Formula

The Cauchy formula of Theorem 3.2 and the dual Cauchy formula of Theorem 3.4
for Schur functions can be generalized to the case of Macdonald polynomials.

Theorem 6.4 (Cauchy formula) For two sets of variables x = (x1, ..., xy,) and
y=(1,---»Yn), we have

1—[ 1—[ (tx,y,, Q)oo _ Z by P, (x)P,(y), (6.45)

i=1j=1 ()C Yis q)oo £(A)<min{m,n}

where A runs over all partitions with £(A) < min {m, n}, and the coefficients b, are
given by

) l_[ 1— tlA(s)+lqa;\(S) 1_[ (tj 1+1q)\,-7)t<; q))L A (6 46)
A= PGP RO riigh L : :
i LY 1<i< <00 (t /TR,
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We remark that, when g = ¢, formula (6.45) reduces to the Cauchy formula

m n

=

i=1 j=I1

Ty, D s@n0), (6:47)
(A)<min{m,n}

with coefficients b, = 1. In Sect. 6.6, we give a proof of the fact that the left-hand

side of (6.45) has an expansion formula of the form (6.45) for some constants b,

(A € P,); aderivation of the explicit formula (6.46) for b, will be given in Sect.7.3.

In Macdonald’s monograph [20], the notation Q; (v) = b; P, (y) for the “dual” Mac-

donald polynomials is consistently used in view of their roles in duality arguments.

Theorem 6.5 (Dual Cauchy formula) For two sets of variables x = (x1, ..., Xp)
andy = (y1, ..., ya), we have

[TTTa +xyp = D> Pixiq,0P(yit, 9), (6.48)
i=1 j=I1 AS(n™)

[T+ =D Pixiq.0Pe(yit.q), (6.49)
i=1 j=1 A (nm)

where the sum is over all partitions )\ contained in the m X n rectangle (n™); X' =
(Ao Ay and A = (m — A, ...,m — A}) denote the conjugate partition of A
and the complementary partion of A in (n™) respectively.

In what follows, we set

M (X ¥) = ]_[]_[ (12 @)oe (6.50)

i= l] 1 ('xly]a q)OO

and regard IT,, ,(x; y) as a formal power series in C[[x, €7 *Gn 1 We also set

m

My, 09 =[]0 +xiy)) € Clx, 1. (6.51)

i=1 j=1
It is sometimes more convenient to use the generating function

m

W (s y) =[] i + 3)) € Clx, y1977©. (6.52)

i=1 j=1

U In fact, IT,, , (x; y) is a meromorphic function on C™ x C" under our assumption |g| < 1. It is
also holomorphic in the domain |x;y;| < 1 fori € {1,...,m},j e {l,...,n}.
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Since

m n

W y) =01y [T +x07D = Gy T, (5 y7)), (6.53)

i=1 j=1
formula (6.48) is equivalent to

m

[T+ =D Pig. G- y)"Pu(y i1, ). (6.54)

i=1 j=1 re(nm)
By Proposition 5.1, for each partition & C (n™) we have

D1 y)" Py~ 1, q) = Pe(ys t, q), (6.55)

where
A= ((m") = A) = @m — Ayevesm—X)) (6.56)

denotes the complementary partition of A in the m x n rectangle. Hence formula
(6.48) is equivalent to (6.49). We give a proof of the dual Cauchy formula (6.49) in
the second half of Sect. 6.6.

6.6 Kernel Identities

6.6.1 Kernel Identity for the Cauchy Formula

We consider the case where m = n. We first remark that there exists an expansion
formula as (6.45) with some constants by, ifand only if I1(x; y) = I1, ,(x; y) satisfies
the kernel identity

Dy (u)TT(x; y) = Dy ()T (x; y). (6.57)

Expand IT(x; y) in terms of Macdonald polynomials P, (x) (A € P,) as

sy =Y POy, 0. eClyI® (hePy). (6.58)

rEP,

Since

n

D.(x;y) = Y PG [ [ —u" g™,

1P, i=1

Dy)I(x; y) = Z Py (x) Dy (u) Q1 (y), (6.59)

rEP,
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identity (6.57) implies D,(u)Q;(y) = @; () [[';(1 —ut"~/g*i) and hence,
0, (x) = b; P, (x) for some b, € C.

Proposition 6.1 For two sets of variables x = (x1,...,%,), Yy = (Y1, ..., Yn), the
formal power series

Moy = [T &80 ¢ oy, ygomees (6.60)

imt jo1 (i) @)oo

satisfies the kernel identity
D, (u)I1(x; y) = Dy(u)II(x; y). (6.61)

Proof Recall that

D, (u) = Z (—u)'”t(g‘) 1—[ tx; —le—[ qx‘

l

I1<{l,....n} iel, j¢l iel
K| De—xn
Dy = > (-l ]_[ — [ - (6.62)
K<(l,...n) kek 1¢k Yk TV pek

Since

HTq,x,H(x;y) HH ::y)f I(x; y),

iel iel I=1
Xj Yk
I / M(x: y), 6.63
[1% 06y = HHl_txyk @ ) (6.63)
kekK keK j=1

Equation (6.61) is equivalent to the source identity

Z ( )11 (2) l_[ — Hl_[ 1 —t);i)zz

iet; jgr YT M el 1= 664
= Z o) ] e A
KS{l,.on) ke 1k Yk TV ek i 1 —txjy

An important observation is that this identity does not involve g. This means that, in
order to prove (6.64), it is sufficient to prove (6.61) for ¢ = ¢. However, we already
know that (6.61) holds when g = ¢ by the Cauchy formula for Schur functions. [

The existence of an expansion formula of the form (6.45) for difference num-
ber of variables m, n follows from the stability of Macdonald polynomials as in
Exercise 4.2. Also, for a given partition A € P, the coefficient b, of P, (x) P, (y) in
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(6.45) is determined independently of the choice of m,n such that
m > L(A),n > £L(L).

It should be noted that we need some other arguments to obtain the explicit formula
(6.46) for b, ; a proof of (6.46) will be given in Sect. 7.3, on the basis of compatibility
of the Cauchy and the dual Cauchy formula for Macdonald polynomials.

In the setting of Theorem 6.4, suppose that m > n. Then for each A € P, we
have

D ()P, (x) = P.(x) [ (4 —u™ g™y TT (1 —ur™™)
i=l

i=n+1

Dy()Pi(y) = Py [ [ = ve"g™). (6.65)

i=1

We also remark that (6.45) for the case where m > n corresponds to the kernel
identity
Dy () (x5 y) = (W5 1) y—n Dy (ut™ ") 0 (x5 y). (6.66)

Remark 6.1 We have used here the kernel identity for IT,, ,(x; y) to prove the
Cauchy formula for Macdonald polynomials. Another important application of the
kernel identity is the integral transform of the form

dy; ---dy,
[T (5 )Y (0w (y) 2
iy

n

1
- 6.67
¢ (x) ond Ty /T (6.67)

It transforms joint eigenfunctions ¥ (y) of the Macdonald—Ruijsenaars operators
Dy (v) in y variables to joint eigenfunctions ¢(x) of D,(u) in x variables. This
property is a consequence of the kernel identity for I1,, , (x; y) combined with the
self-adjointness of D, (v) with respect to the weight function w(y).

6.6.2 Kernel Identity for the Dual Cauchy Formula

Here we give a proof of formula (6.49) which is equivalent to (6.48), on the basis of
a relevant kernel identity.
For two sets of variables x = (xy,...,x,)and y = (y1, ..., Y»), We set

Pu(x) = Pu(x:q,1) (n € Pu), PJ(y) =Pu(yit,q) (v €Py). (6.68)

We also denote by
oY aye — v
Dy = E | | —T (6.69)

k=1 1<i<n; 12k Yk T~

the ¢-difference operator obtained from D, by exchanging ¢ and ¢.
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Note that the polynomial

m

W (s y) =[] i + v) € Clx, y1&® (6.70)

i=1 j=1

is of degree mn in (x, y), and symmetric both in x and in y. Since W, ,(x; y) is of
degree < n in each x; and of degree < m in each y;, it can be expressed as

Uiy = > cun P PI(y) (6.71)

nE(n™); ve(m")

with some constants ¢, ,,. For each partition © € (n™), we defined the complementary
partition pinthe m x nrectangle by u® = (m — ), n —u,_,,...,m — u}) (see
the figure in (3.82)). In this setting, we show that ¢, , = 0 unless v = u°, namely

sy =[] +y) =D aP@PLY) (6.72)

i=1 j=1 ACS(m™)

for some constants ¢; € C.
In the eigenfunction equation

D Py(x) = d, Py(x), dy=) 1""q", (6.73)
i=1

the eigenvalue d, has the following combinatorial meaning:

m

o) = e e

qg—1
m ,‘

_ZZI’”’] = Z Mg (6.74)

i=1 j=I s=(i,j)eD(X)

Similarly, as for the eigenvalue d;. in the equation
n
DyPL(y) = diPR(y), d =) q" /1Y, (6.75)

we have

n A

i

t—l 1(d;° - 6;"_—11) =Y > il = Y g (6.76)

j=1 i=I s=(i, j)eD(A)*
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where D()1)¢ stands for the complement of D(}) in the rectangle {1, ..., m} X

{1,...,n}. Since
m—i  j— tm_lqn_l
I T ©7
s=(,j)en™) q

the existence of a formula in the form (6.72) is equivalent to

1 (D t’"—l)+ 1 <D° q”—l)\y )
g— I\ T o) T\ T o)) e

" —1q" -1
= Winn (X5 ), 6.78
T ) (6.78)
namely,
(Dot D) Wiy = iy, (679)
q—l P 1 m,nx’y—(t_l)(q_l) mn X5 Y). .
Proposition 6.2 For two sets of variables x = (x1,...,xu) andy = (Y1, ..., Yn),
the polynomial
W esy) =[] ] + yj) € Clx, y] &S (6.80)
i=1 j=1
satisfies the kernel identity
(oDt D)) = T L, i) 68D
q—l 1 y m,n x’y _(t—l)(q—l) m,n 'x7y' N

Proof This kernel identity is equivalent to the following identity of rational func-
tions:

Ixj —Xx; qxi +y
;E Xi — Xj ll_! Xi+w

ZH S~ ]_[ LA LA . (682
o Ve Yo Xty =Dlg=1D

which can be verified directly by the residue calculus combined with induction on
the number of variables. In fact, equality (6.82) for n = 0 is the same as (4.2). When
n > 0, we regard the left-hand side as a rational function of y,. Then, we see that
the residues at y, =y (k=1,...,n—1)andaty, = —x; (i =1,...,m) are all
zero. We can also verify that the limit as y, — 0 gives the value of the right-hand
side, by using the induction hypothesis of the case (m,n — 1). (]
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Finally, we show that ¢, = 1 for all A € (n™). We denote by A,,, the set of
all m x n integer matrices A = (a;;j)1<i<m; 1<j<n Such that a;; € {0, 1} for all i, j.
Also, for a pair of multi-indices (i, v) € N” x N”, we denote by A, , the set of all
A = (a;j) € Ay, such that

n m

Za,,-:m Gi=1,....,m), Za,-j:vj (j=1,...,n). (6.83)

j=1 i=1

Then W, ,(x; y) can be expanded as follows:

m n
o l—aj;
\Ijm,n(x;y)= Z Hl_[(x;l]yj fl/)
A=(ai;)) €Ay, i=1 j=1
= Z #HALY) x“)’(m”)iv = Z #A L (mmy—v) xty?
neN" veN" neN" veN"
= D HAp ) mu(x) mye (). (6.84)
wvS(n™)
Since (m") — v¢ = (v, ..., vy) is the reversal of v/ = (v{, ..., v)), we obtain
Won(xiy) = Y #A) mu(x) mue(y). (6.85)
wv(n™)

We now look at the coefficients of m , (x)m . (y) for partitions u C (n™).

Lemma 6.2 For each partition p < (n™), #A,, v = 1.

PI‘OOf Define A = (a,-.,-)lggm,ls,-gn by
a,jzl (15]5/1,,), (l,‘j:O (M,<]§l’l) (686)

foralli € {1,..., m}, sothat

{s=Gpe{l,....m}x{l,....n}|a; =1} = D). (6.87)
Then, one can verify that this matrix A it is the only element of A, ;.. O
wimh o M
K1
w2
Hm

(6.88)
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This lemma implies that, for each partition u C (n™), the coefficient of x* y"c in the
expansion of W,, , (x; y) is precisely 1. In the right-hand side of (6.72), the monomial
x*y" arises only if there exists a partition A € (n) such that u < A and u® < A°.
One can directly verify that the condition u¢ < A€ implies &’ < A/, and hence & > A.
Together with ;© < A, we obtain A = p. This implies that the monomial x* y"c arises
only from the term P, (x)Pljc(y). This also means that the coefficient of x* y"c on
the right-hand side is given by c,,. Hence we have ¢, = 1 for all partitions u € (n™).
This completes the proof of the dual Cauchy formula (6.49) of Theorem 6.5, and
also the proof of (6.48).



Chapter 7 ®)
Littlewood—Richardson Coefficients Geda
and Branching Coefficients

Abstract The Littlewood—Richardson coefficients are the structure constants for the
multiplication of Macdonald polynomials. On the other hand, the branching coeffi-
cients describe the expansion of Macdonald polynomials by products of Macdonald
polynomials in smaller dimensions. We explain here that these two types of coeffi-
cients are intimately related to each other through the Cauchy formula for Macdonald
polynomials. We also present a commuting family of g-difference operators of row
type for which Macdonald polynomials are joint eigenfunctions, and explain how
they are related to the Pieri formula of row type.

7.1 Littlewood—Richardson Coefficients and Branching
Coefficients

For a pair of partitions 1, v € $,, one can expand the product P, (x)P,(x) of
Macdonald polynomials as a linear combination of Macdonald polynomials P; (x)
rePy):

P.)P,x)= Y i, P (7.1)

APy [A|=|pl+|v

with coefficients ¢}, , = ¢}, (¢, 1) € Q(g, 7). These expansion coefficients c}; , are
called the Littlewood—Richardson coefficients (or Clebsch—Gordan coefficients). We
remark that the coefficient cﬁ‘v € Q(g,1t) for A, u, v € P does not depend on the
choice of n such that A, 11, v € P,, thanks to the stability of Macdonald polynomials
of Exercise 4.2 with respect to the number of variables.

Ifv = (1) isasingle column (r =0, 1, 2, .. .), the coefficients cﬁ’(l,) are nothing
but the Pieri coefficients 1/’,{/,L = Y (t, ) of Theorem 6.3 since P(iry(x) = e, (x):

Pue(x) = Y 5, Px) (r=0,1,...,n), (72)
A2 A/ ml=r
A/ v-strip
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 105
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where the sum is over the vertical strips L/ with |A/u| = r. Namely, cﬁ,(l,) =
Yoy (t, q) if A/ is a vertical strip with [A/u| = r, and ¢}, ) = 0 otherwise.

These Littlewood-Richardson coefficients c/; ,, are closely related to the branching
coefficients bﬁ’ , tobe defined below. We expand the Macdonald polynomials P; (x, y)
(A € Ppypn) in m + n variables (x,y) = (X1, ..., Xm, Y1, ..., ¥y) in terms of the
Macdonald polynomials P, (x) of m variables x and P, (y) of n variables y:

Px, )= Y b, Pux)P(y) (7.3)

HEP,, VEP,
with some coefficients b’ , = b’ (¢, 1) € Q(g, 1). The expansion coefficients b”; ,
are called the branching coefficients. Note that bfw = O unless |A| = |u| + |v]. We

also remark that the branching coefficient bfw € Q(g, 1) for A, u, v € P does not
depend on the choice of m,n as faras u € P, v € P, and A € Py

When n = 1, the branching coefficients are expressed by the Pieri coefficients
Y¥i/u(q, t) defined in (6.6).

Theorem 7.1 For each ) € P,, the Macdonald polynomial P;(x) in n variables
x = (x1,...,Xx,) is expanded in the form

Pax)= Y Y P MM X = (L xn), (7.4)

HCA
|A/ | h-strip

in terms of the Macdonald polynomials P, (x") in n — 1 variables and x,,, where the
sum is over all horizontal strips X /u with £(u) < n — 1 and the coefficients ¥,

are given by V., = ¥au(q, 1).

In terms of the branching coefficients, this means that bﬁ,(z) =Yg, )ifd/pnisa
horizontal strip with | /| = [, and bz,(/) = 0 otherwise. Theorem 7.1 will be proved
in the next section. Note also that Theorem 7.1 is a generalization of Theorem 3.3 of
recurrence for Schur functions.

Remark 7.1 As we explained in Sect. 3.9, for each partition A € P, there exists
an irreducible polynomial representation of GL,, = GL,,(C) with highest weight A,
which we denote by V,(1); the character of V(1) is the Schur function s, (x) in
x = (x1,...,x,). In this context where ¢t = ¢, the Littlewood—Richard coefficients
cl’\w (A, u, v € P,) are non-negative integers, and they represent the multiplicities of
V(1) in the irreducible decomposition of the tensor product representation V,, (1) ®
V. (v). In fact, for any pair u, v € P,, we have an isomorphism

V(i) ® Vo (v) = @ Vi (0@ (7.5)
rEP,
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of GL,-modules. On the other hand, for A € P, 4,, & € P, v € Py, the branching

coefficients bf; , are non-negative integers, and they represent the multiplicity of

V() ® V,(v) in the restriction of V,,,(A) from GL,,, to the subgroup GL,, x
GL,. In fact, for each A € #,,4,, we have an isomorphism

GLy4n

Res[o™ Vo= @ (Vaw @ V,0)*™  (16)

WEPy, VEP,

of GL,, x GL,-modules.

7.2 Relation Between c , and b"

Recall that the Macdonald polynomials have the kernel functions of Cauchy type,
and of dual Cauchy type (the Cauchy formula and the dual Cauchy formula): For
two sets of variables z = (z1, ..., zy) and w = (wy, ..., wy),

(tzrwy; q)
My (25 w) = HH o Pe— Y hP@PW,
k=1 =1 AW Qoo £0)<min{M,N} a7

M N
My yv@w =[[[Ja+zw = > P@PLw).

k=1 1=1 AS(NM)

where Py (w) = Py(w; ¢, ¢). In what follows, we denote by -° : Q(g, 1) — Q(q, t)
the involutive automorphism such that g° = ¢ and #° = q.

Theorem 7.2 Let u € P, v € P, and ) € Pyyyy. Then we have

(1) byb),, = bubyc, @) b, = () (7.8)

w,v?
Proof (1) Setting M = m + n in (7.7), we suppose that N > M. Then we have

Mgy (6, y;w) = Y by Py(x, y) P (w)
rePN

=3 Y B ROPGPw).

LePN UEP,, VEP,

(7.9)

On the other hand,
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Ty (6 W) Ty v (v; W) = D b Pu(x) Pu(w) Y by Py(y) Py(w)

WEPm veP,

= > bubyPu(x)P,(y) Pu(w)P,(w)

WEPm, VEP,

= > bbPOPO) Y e Pw)

WEPy, VEP, rEPN

= > Y bubuc) ,Pu(x)P,(y) Pr(w).

WEPy, VEP, LePN

(7.10)

Since My v (X, y; w) = Ty v (x5 )T, n (y; w), we obtain b, b7, | = b,b,c}, .
(2) Setting M = m + n in (7.7), we have

My, v y;w) = Y Pilx, y) PY(w)
}Lg(Nern)

=Y 3 B PP PLw)

NePy nweP,, veP,

(7.11)

where ° denotes the operation of exchanging the parameters g and ¢. On the other
hand,

My v w) Yy (s w) = Y Pux)Po(w) Y Pu(y)Py(w)
HE(N™) vE(N™)

= ) P@POGPIwPIW)

HE(N™), vE(N™)

= > 3 () Pu) P P (w).

ME(N™), vE(N™) X S(Nm+m)
(7.12)

Since I, v (x, y; w) = T, (x; w)IT; \ (y; w), we obtain b}w = (cz/,’v,)o. O

Proof (of Theorem 7.1) By the Pieri rule (7.2), for A, u € £ and k > 0 we have
oty =V = Vw6, @) = V5 (7.13)

if A/ is a vertical strip with A /u| = k, and C;);,,(l’) = 0 otherwise, Then, by Theorem
7.2, we obtain

briwy = (€l 1)° = Vg = Vg (q. 1) (7.14)

if A/p is a horizontal strip with |A/u| = k, and bﬁ,(k) = 0 otherwise. This implies
the branching rule of (7.4). (]
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7.3 Explicit Formula for b

In this section, we derive the explicit formula (6.46) for the coefficients b, from the
compatibility of the Cauchy formula and the dual Cauchy formula for Macdonald
polynomials,

We consider the Cauchy formula for two sets of variables x = (x1, ..., x,) and
y=(1,..-,Yn), assuming that n > m:

M (x; ) = ]"[H(tx’y”‘”"" Y LP®PG). (115

el j=1 (xzy/, Q)oo P,
Setting y = 5" = " u, " 2u, . u), 8" =m—1,n—2,...,0), we obtain
1A s 11 "X @)oo
Z u™'b Py (x) Py.(¢ ):Hﬁ, (7.16)
rEP, iz it @)oo
or, equivalently
S )b, Py () P ) = e (s @)oo 7.17)
ey iy g Do

On the other hand, specializing the dual Cauchy formula for variables x = (x, ...,
Xm)and z = (21, ..., 2N),

m N
o,y =[[[Ja+xz)= > PP, (7.18)
i=1 j=1 AS(N™)
byz=—¢""u=(—g"'u,..., —u), we obtain
Y PP Py = [ Gius ). (7.19)
AC(N™) i=1

Comparing (7.17) and (7.19), we set t = q’% so that

Y @M PP = Y (M PP, (7.20)

rEPy AS(N™)

Note that the genericity conditionont = g~ i for the existence of relevant Macdonald
polynomials is fulfilled by infinitely many N/n € Q (taking distinct pairs of primes
n, N > m for example). From (7.20), we have
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t_nleAP)L(s(n)) — (_1)|MP}L°,(Q5(N>), i.e.

o, s
1)/4 112 Px'(‘la )

b, =(-1) P

(7.21)

for A € P, with A; < N, and b; P, (§") = 0 for A € P,, with A; > N, in this spe-
cialization. By Theorem 6.1 we already know the explicit formulas

P = [
A = 1 — th@&+1gas) ’

SEL
qu(s) thl/{(s)

o sy
P = I —awmmer (7.22)

SEA

where we used [y (s) = a, (s), av(s) = Li(s), [;,(s) = a;(s), a;,(s) =[;(s). Note
that, for A € P, with A; > N, P, (t%") = 0 since 14 — 1ga®) =1 — gV =0
ats = (1, N + 1) € 1. Hence, we obtain

— ( 1)|/\\tn|)»| 1_[ q GE) — thlA ) 1 - [lk(s)-anA(s)
a, (v)+1tl (s) tl (s) _ tnq as (s)

SEA

1 — thOF g

=l — 7.23
1_}! 1 — th@gas+l ( )

under the specialization t = q_%. Since (7.23) is valid for infinitely many values of
t, this formula gives the expression of b, as a rational function of (g, t).

Remark 7.2 In view of the stability (4.31) of Py (x) with respect to the number
of variables, Macdonald [20] introduces Macdonald functions P, (x) = Py(x|q,t)
in infinite variables x = (x;);>; = (x1, x2, ...). Letting M — oo and N — oo in
(7.7), we have

Mooz w) = f]fl“””’”w 3 bR ()P ().

lyjs Q)oo AP

i>1 j>1
my Gy = [[[Ja+xy) =D P@PIG). (7.24)
i1 j>1 rEP

with sums over all partitions A € $, where Py (x) = P, (x|t,q). In terms of the
power sums pi(x) = x§ + x5 + ... the kernel functions IT(x; y) and 1" (x; y) are
expressed as
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oo (x5 y) = exp (Z % kpk(x)pk(y))

~
—_

M5, (x5 y) = exp (Z -

k=

pk(x)Pk(y))- (7.25)

—_

A big advantage of passing to infinite variables is that the power sums p; = pr(x)
(k=1,2,...) become algebraically independent. Denoting A = C[p, pa, ...] the
ring of symmetric functions in infinite variables, Macdonald introduces the algebra
automorphism w, , : A — A by

qk

@g.1(pr) = (=1)*7 1 —7

pe (k=1,2,..) (7.26)

in terms of the power sums, so that w;,,(l'[(x; y)) = IV (x; y), where w;., denotes
the automorphism w, , acting on y variables. This implies

Y bR )@y (P(y) = Y PP, (7.27)
rep reP
and hence
brwg(P)=P,. (e (7.28)

In Macdonald [20], the explicit formula (6.46) for b;, is proved by a somewhat tricky
argument based on the compatibility of b, w, ;(Py) = Py, with the evaluation formula
of P,(+"~ !, "1, ..., 1) in n-variables.

7.4 Tableau Representation of P, (x)

We already know that the Macdonald polynomials P;(x) (A € P,) of n variables

x = (x1, ..., x,) satisfy the recurrence formulas
Poxi X x) = Y Yy Pulrr, )M (7.29)
WEP, 1

WA, A/p:h—strip

with respect to the number of variables, where the sum is taken over all partitions
w € Pn_y such that u C A and A/ is a horizontal strip. Note that v/, = 0 unless
A/ is a horizontal strip. Repeating this procedure, one can express P; (x) as a sum

P(x) = Z 1_[ Yoo p6-n xkA(A)/A(k I (7.30)

P=2OcrDc...cam=) k=1
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over all weakly increasing sequences A0k =0,1,...,n)of partitions connecting ¢}
and 1 by 7 steps such that the skew partitions A*) /A®=D (k = 1, ..., n) are horizontal
strips. This representation can be interpreted as the sum

n
Py =Y YDy =] [Vaw e, (7.31)
T eSSTab, (1) k=1

over all semi-standard tableaux of shape A. Here the coefficients 1/ are expressed
as

it Q=1 _; G-
/i gt Y RGN =)
= ( q S ONCIY
o AD een
I<i<j<k<n (2 igh j ; q))hl(k)_)\l(k—l)
N )
@t/ A )»j+|+1; q))\(.k)i)\(k—l)
1 1

(7.32)

T =1 _, &)
—i41 A A,
(t/—i+ q" it q))bjk)_)tgk—l)

7.5 Macdonald-Ruijsenaars Operators of Row Type
(Overview)

In this section, we give an overview of the commuting family of g-difference oper-
ators of row type for which Macdonald polynomials are joint eigenfunctions (for
the details, see Noumi—Sano [26]). We also explain how they are related to the Pieri
formula of row type.

7.5.1 q-Difference Operators H,El) of Row Type

Let R =C[D", ..., D] be the commutative ring generated by the Macdonald—
Ruijsenaars g-difference operators. Then, for each symmetric polynomial f(§) €
C[£]1®", & = (&1, ..., &), there exists a unique g-difference operator L, € R such
that

LiPi(x) = f(°q)Pa(x) (1 € Py). (7.33)

(Express f as f = F(ey, ..., e,) by a polynomial of ey, ..., e,. Then the operator
L, is given by L, = F(D;l), e, ch”).) This correspondence L, — f defines an
isomorphism C[D(", ..., D] = C[£]®" of commutative C-algebras (a variation
of the Harish—Chandra isomorphism).

Foreachl =0, 1,2, ..., we define a g-difference operator H{" by
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A(g" " tx;/x;; .
Hx(l) — Z iq X) l_[ ( X /xj .q)ll, quf,w (734)

neNn; |ul=l ()C) —1 (q-xl'/xj’ q);t,'
where T, = Tj, - - - Ty, . Thenitis known that H’ € C[DV, ..., D], and that
HOY P, (x) = gi(°¢"HPi(x) (1=0,1,2...), (7.35)

where g;(§) denotes the Macdonald polynomials attached to (/) of a single row:

aer= 3 & Dpy - 5 D, g — & By &) (136

periuet @ D (@ Dy, (49
forl =0, 1,2, .... In view of the generating function
o (tEiu; q) =
GEw =[]t =Y g (7137)

i G i

of Macdonald polynomials of single rows, we introduce the generating function
Hy(u) =Y ;2 u H. Then we have

- i+1 A
H, ) P,(x) = P,(x) H ¢ o quu”q’i)“’ (7.38)

Also, it is known that H, (1) satisfies the kernel identities

. _ (tminu; q)OO m—n .
H ()0 (x5 y) = .—Hy(t Wy . (x5 y),
(3 9) oo
(U5 @)oo He )T, (63 ) = (1" q" 15 @)oo Dy )T, , (x5 ). (7.39)

7.5.2 Wronski Relations

As we proved in Sect.4.5, the two generating functions E(x; u) and G(x; u) sat-
isfy E(x; —u)G(x; u) = E(x; —tu)G(x; qu). This means that e, (x) and g;(x) are
related through the recurrence relations

DY A= ghe ) =0 (k=1,2,..) (7.40)

r+l=k

of Wronski type. One can verify that the operators H f) (I =0,1,2,...)defined above
satisfy the Wronski relations
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D) U-t'ghDPHY =0 (k=1.2,...). (7.41)
r+l=k
From this, it follows that H' € C[DV, ..., D] and that H") are diagonalized by

the Macdonald polynomials as in (7.35).

7.5.3 Pieri Formula of Row Type

In the same way as we obtained the Pieri formula of column type from D", we can
derive the Pieri formula of row type from

n

A(g” 1x; j s Vi
HY =Y H,®T!,. H = ("x) I (0xi/xj: D, (7.42)
ot ’ AX) 52 @i/ X gDy
In fact we have
Y H(g P ") = 2P g P O € P). (7.43)
[v|=l
Since H,(t°q") = 0 unless (i + v)/u is a horizontal strip, we obtain
Y H(°¢M) Pu (Ph) = (P g Pu(i°gh) O e P, (7.44)
lv|=l
and hence ~ _
Y H(°¢M Py (x) = () Pu(x) (€ Py). (7.45)

lv|=l

This means that

gP(xX) Y HyuPi(x), Hipy=Hiu(t’q") (neP),  (746)
A/ul=t

where the sum is over all A € $,, u© € A, such that the skew diagram A/u is a
horizontal strip with |A/u| = I. Hence we obtain

au
g1 (xX)Py(x) = E O PL(X), o = a—HW. (7.47)
/=l A

Since g;(x) = by Py (x), this means that
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1 a
P,(x)Pgy(x) = Z C/);.,(Z) P, (x), cl’\%(l) = ——“HA/M.
/=t b a

The corresponding branching coefficients are also determined as

b b([) a,b
—pr =220 P
Vs = by b, w0 T o Ak

The coefficients H;, = Hy_, (t°¢") are explicitly computed as follows:

- i1 i
Hypo = "7 [ 10" @i,

i>1
j—i—1 i—x+1. j—i1 o pi—p .

Hi<j(tj ' q“ al 76]))\,'*141' l_[igj(tj " 6]” “’,Cl)u,—x,u,l

Hifj(tj*iq)ui—}»j'ﬁ'l; q))\/_,” Hisj(tjftﬂqx,»—u/; Q)M;—MH

In combinatorial terms, we have

tn()») Hizl (tn*iJrl; q))”_
"0 [lis (5 ),

HseuﬁC;‘/u(l _ tlu(s)q“u(s)"’]) Hse;L\C)\/“ (1 _ tlu(s)+1qau(5))
ermcw(l — th®) gae)+1) erk\cw(l — thOH g ()’

H/\/u =

115

(7.48)

(7.49)

(7.50)

(7.51)

where C,/,, denotes the union of columns intersecting with the horizontal strip A/ .

Combining this with

tn(A)(tn—iH; (I)A; b l_[ 1 — th(s)-&-lqax(s)
[iai (1 = b0+ Tgastn ™

— thi(s) gar(s)+1°
SE)\.I r q

a, =

by (7.49) we obtain

1— [lx(S)qa,\(S)-H 1— tl#(s)+lqau(5)
Viju = l_[ 1 — O+ ga)

1 — l‘lu(“‘)qau(s)"'l :
SEMNCip SEUN\Co/p
In terms of the components of A, 1, we recover the formula of (6.6), namely

j—i A=+l =i+ pi—p;
l—[ @ gt @) TG T @)

j—i Ai—pj- j—i gpi—pjt+1.
(t) :+1q uj,q)uj_)%] (ti—tgh it »q)u,-—)»,url

W)»/u =
I<i<j=<e(n)

l_[ (,j—iqkf—MHH; @i (,j—i+1qu,—m; D
(RS ) DU (¥ a7 L AR D PR

I<i<j=<t(n)

(7.52)

(7.53)

(7.54)
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The relationship between the explicit formulas (7.53) and (7.54) for the coefficient
Y./, can be read off from the picture below:

(7.55)



Chapter 8 )
Affine Hecke Algebra and ¢g-Dunkl e
Operators (Overview)

Abstract In this chapter, we give an overview of the Macdonald—Cherednik theory
of Macdonald polynomials based on the affine and double affine Hecke algebras,
taking the example of type A,—;. (For a more comprehensive exposition, see Mac-
donald [22].) We explain how the commuting family of Macdonald—Ruijsenaars
operators arise naturally in the framework of affine Hecke algebras. We also show
how the self-duality of Macdonald polynomials can be established by means of the
Cherednik involution of the double affine Hecke algebra.

8.1 Affine Weyl Groups and Affine Hecke Algebras

We denote by W = &,, the symmetric group of degree n (Weyl group of type A, _1),
following the convention of Macdonald—Cherednik theory for general root systems. !
In this chapter, we denote by 7; = T, , (i =1, ..., n) the g-shift operators in vari-
ables x;, in order to avoid the conflict with the generators 7; of Hecke algebras. Setting
T =(11,...,T,), wedenote by D, , = C(x)[t*!] the algebra of g-difference oper-
ators in x variables with rational coefficients, and by O, .[W] the algebra of all
operators of the form

A, = Z ay . (x) " w (finite sum),
nerP, wewW

apw(x) eClx) (neP, weW), (8.1)

called the g-difference-reflection operators, where P = Z" (weight lattice of GL,,),
and for 0 = (1, ..., pn) € P, t# = 7{"" --- 7. Through their natural action on
rational functions, we regard D, ,[W] as a subalgebra of Endc(C(x)).

We denote by ¥ = {t# | u € P} the group of g-shift operators (translations)

with respect to P, and define the extended affine Weyl group W by

! We define a version of ¢g-Dunkl operators from which Macdonald—Ruijsenaars operators directly
arise. Notice that our convention of g-Dunkl operators and nonsymmetric Macdonald polynomials
is different from that of Macdonald’s monograph [22].

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 117
M. Noumi, Macdonald Polynomials, SpringerBriefs in Mathematical Physics,
https://doi.org/10.1007/978-981-99-4587-0_8
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W=t"xW={t"w|peP weWl,
wtt =1t"*w (e P, weW), (8.2)

which is an extension of the standard affine Weyl group W = 12x W with
the group of translations by Q ={u € P | |u| = pu1 + -+ + w, = 0} (voot lat-
tice). Denoting the canonical basis of P by ¢; (i = 1, ..., n), we use the notation
o] =€ — &, ) =8 — &3, ..., Up_1 = &,—1 — &, for the simple roots, so that
Q=70 ®---®Za,—; < P. The idea of (affine) Hecke algebras is to construct
t-deformations of all groups

W=6,CWT=t2aWcW=1"xWcD,,[W] (8.3)

within the algebra D, .[W] of g-difference-reflection operators. Note that the group-
ring of W _
C[W]=C[t"x W] = C[t*][W] € D, . [W] (8.4)

is the ring of g-difference-reflection operators with constant coefficients.
We denote by

s1=(12), s =023), ..., -1 =m—1,n) (8.5)

the adjacent transpositionsin W = S,, (simple reflections) sothat W = <s1, e sn,l).
Note that s; acts on the x variables by exchanging x; and x; . Besides these gener-
ators, we use the affine reflection sy and the diagram automorphism w by setting

so=1"t,(L,n) e W w=1,0,n—1,...,1)=1,5,_1---51 € W, (8.6)

where (1, n) stands for the transposition of 1 and n, and (n,n — 1, ..., 1) for the
cyclic permutationn — n —1 — --- — 1 — n. These sy and w are characterized
as field automorphisms of C(x) acting on the x-variables by

s0(x1) = qxa, o) =xi (=2,...,n—1), so(x,) =¢q x|

w(x) =qxy, o) =x, ..., ©K) =X (8.7)
If fact, it is known that the three groups in (8.3) are generated by these operators as
W= (51, 501) € W = (50,51, ..., 80m1) W = (50,81, S0t @),

(8.8)
with the fundamental relations:
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0 =1 (G=01,...,n—1),

()  sisj=s;5 (j#i,i£l mod n),

(2) sisjsi=sjs55; (j=ix1l mod n),

B wsi=sij0o (=1,...,n—1), WSy = Sy_ 1. (8.9)

In terms of these generators, the g-shift operators 7; (= 7} ,,) are expressed as fol-
lows:

Ty =81 Sy @, Tp =252 8S_1WS|, "+, Ty =S| Sp_]. (8.10)

We now define the g-difference-reflection operators 7; i =0, 1...,n — 1), called
the Demazure—Lusztig operators, by

1

1—[,' i 1—li i tl—[77
e ) e W NP SR S Vo WL L BN S TN
1 — X /Xi41 1 —xi/xip1 1 — x;/Xiv1
fori=1,...,n—1and
1 — tgx, l 1 — tgx, th—t73
VO L LT P GPE RIS L LT P . (8.12)
I —gx,/x1 I —gx,/x1 I —gx,/x1
Note that x;/x;4; =x% (i =1,...,n—1) correspond to the simple roots, and

qx,/x1 = x* tothe simple affine root oy = y — €1 + &, with the convention x¥ = ¢,
where we denoted the null root by y to avoid the conflict with the notation of staircase
partition §.

Theorem 8.1 The operators T; (i =0,1,...,n— 1) in D, ,[W] together with ©
satisfy the following relations:

©) (=T 4+15)=1 (i=0,1,....n—1),

() TT;=T;T, (j#i,i+x1l modn),

Q T =T,TT; (j=i+1 modn),

B ol,=T_jo (i=1,....,n—1), oTy=T,_ 0. (8.13)

In this way, we obtain 7-deformations of the group-rings of W, waft W in Dy (W]
as follows:

C[W]=Csi,...,S1) HIWI=CTy, ... T,),
N N
CIW™™] = Clso, 51, - -+, Sn1) HIW* =C(Ty, T, ..., Thoi),
N N
L] = (C(so, St S, w:l:l) H[W] = (C(TO, Ti,...,T,_q, a):tl).
(8.14)
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Here H (W) denotes the Hecke algebra associated with the Weyl group W; H (W)
and H (VT/) are called (extended) affine Hecke algebras. Note that the fundamental
relations s? = 1 are replaced by the quadratic relations (7; — ¢ 2)(T; +1t72) = 0,and
hence Ti_l =T — (t% — t’%).

8.2 ¢-Dunkl Operators

In view of the two expressions
CIW1 = Clso, 51, -+, Sut, ™) = ClH W] (8.15)

of the group-ring of W, it would be natural to ask what are the “translations” in
H(W). Imitating the formulas (8.10) for ; (i = 1,..., n), we define the g-Dunkl
operators (or Cherednik operators) Yy, ..., Y, € H(W) by

Yi=T- T o, Yo=T--T, oI, ..., V,=0T " ---T . (8.16)
Notice here that 7; are replaced by their inverses Ti_I when they are located to the
right side of w.

Theorem 8.2 The q-DunkloperatorsYi, ..., Y, € H (W) commute with each other.
Furthelmore, they generate a commutative subalgebra C[Y*'] = C[Y lil, e, Ynil]
C H(W) isomorphic to the algebra of Laurent polynomials in n variables.

One can directly verify the commutativity Y;¥; = Y;Y; (i, j € {1, ..., n}) by the def-
inition (8.16) and the fundamental relations of 7;, w in (8.13). With this “translation
subalgebra” of ¢g-Dunkl operators, the extended affine Hecke algebra is expressed in
the form

H(W)=Cly*'|@ HW) = P ClY*'1T,,, (8.17)

weW
where, for each w € W, T, is the element defined as T,, = Ty, - TX,., in terms of a
reduced (shortest) expression w = s;, - - - 5;, of wj this definition does not depend on
the choice of the reduced expression (Iwahori-Matsumoto Lemma). From this, we
see that one can take T, ..., T,—; and the g-Dunkl operators Y’ lil, e, Ynil for the

generators of the extended affine Hecke algebra:
HW)=C(Ty, Ty, ..., To; ™) = CTy, ..., T, Y, Y. (8.18)

The following theorem is the key for relating g-Dunkl operators with Macdonald—
Ruijsenaars operators.
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Theorem 8.3 (Bernstein) The center ZH (W) of the extended affine Hecke algebra
is precisely the W -invariant part of the commutative algebra of q-Dunkl operators :

ZHW) =Cly* 1 ={f) | f&) e Cle*Y}, £ =(&,....8). (8.19)

8.3 From g-Dunkl Operators to Macdonald-Ruijsenaars
Operators

Let A, € D, «[W] be a g-difference-reflection operator in the form

A, = Z ayw(x) T w (finite sum),
neP, weW
auwx) eClx) (neP, weW). (8.20)

If p(x) is a symmetric (W-invariant) function, A, acts on ¢(x) as a g-difference
operator. Since wp(x) = ¢(x) (w € W), we have in fact

Ap(¥) = Y @) o) = Lip(x),
HeP, wewW

> apwn) T (8.21)

HeP, wewW

L,

In order to describe the action of g-Dunkl operators, we set

1—1¢ 1
- ZZ de(z) =12 — c(2) (8.22)

1
2

clz) =t
so that

T = c(xi/xip)si +de(xi/xi) G=1,....,n—1),
T = c(qxa/x1)s; + di(gx,/x)). (8.23)

Note also that c(z) satisfies ¢(z) + c(z7') = 1t 4170,

Example: Case n = 2

In this case, we have two ¢g-Dunkl operators

Y1 = To = c(x1/x2)s10 + dy (x1/x2)w = c¢(x1/x2)T1 + di(x1/x2) 251,
Yy = 0T = wc(x1/x2)s1 + wd_(x1/x2) = c(qx2/x)T2 + d_(qx2/x1)T251.(8.24)
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Then, we compute

Yi+ Y, =clxi/x)t + c(qxa/x1)t0 + (d-(gx2/x1) + d(x1/x2)) 281
Y2V, = o’ = 1. (8.25)

Since

c(gxa/x1) +d_(qxa/x2) +dy (x1/x2) =177 +17 — c(x1/x2) = c(x2/x1),

(8.26)
for any symmetric function ¢(x) = ¢(x1, x), we have
(Y1 + Y2)o(x) = (c(x1/x2)T1 + c(x2/x1)T2) @ (x)
1 1—1‘)(1/)(2 l—txz/xl
=1
2( 1—)61/)62 ! 1—)(2/)(1 Tz)(p(X)
= 172D p(x)
(1 YDe(x) = 1inap(x) =t ' DPo(x), (8.27)

where DV, D are the Macdonald-Ruijsenaars operators in two variables.

For each f(£) € C[£*'], there exists a unique g-difference operator Lf € D, such
that

f(Nex) = Lip(x) (8.28)

for any symmetric function ¢(x); express Ay = f(Y) in the form (8.20), and take
L, = L{ asin (8.21).

Theorem 8.4 Forany f € C[g*!]V, L;f € D, » isa W-invariant q-difference oper-
ator. Furthermore, L'f: (f € C[eEY) commute with each other L;’;Lf"' = LﬁL;{for
any f, g € C[eF!1V.

Let’s take the elementary symmetric functions e, (&) € C[EF'Y (r =1,...,n)
for f(£). Then, one can show that the g-Dunkl operators

o)=Y  Y,-¥, (8.29)

1<ij<--<i,<n
induce a commuting family of W-invariant g-difference operators L¢ of the form

Lf;:( I1 z%%)n.--zﬂu---. (8.30)

1<i<r
r+l<j<n
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This implies that L% are constant multiples of D" respectively,

Lo =127 DO (r=0,1,...,n), (8.31)
and also that they are diagonalized by the Macdonald polynomials:

LY Pi(x) = e, (t°g") Po(x) (A € Py), (8.32)
where p =13, (n —2i + De; =8 — (n — DH(A").
To summarize: There is an isomorphism of commutative algebras

ZHW) =Cciy*1" S b, ..., D", (D)1 f¥) > LI (8.33)

from the algebra of symmetric g-Dunkl operators to the algebra of Macdonald—
Ruijsenaars operators. Furthermore, for all f(£¢) € C[£']", we have

f(Y)Pu(x) = LIP.(x) = f(t"q") Pi(x) (A € Py). (8.34)

8.4 Nonsymmetric Macdonald Polynomials

One can directly check that the operators 7; (i = 0.1, ..., n — 1) stabilize the algebra
C[x*'] of Laurent polynomials in x = (xy, ..., x,). Hence C[x*'] can be regarded
asaleft H( W)-Nmodule. It would be natural to expect that the commutative subalgebra
C[Y*'] of H(W) can be simultaneously diagonalized on C[x*!]. In fact, the g-Dunkl
operators have common eigenfunctions E,(x) (u € P), called the nonsymmetric
Macdonald polynomials, parameterized by the weight lattice P.

In the following, we denote by

Pr={A=01....,) €P A 2 A== Ay}
=Nw & ---® Nw,_| & Zw, (8.35)

the cone of dominant integral weights, where, forr =1,...,n, @, = (1") = ¢ +
-+ + & (fundamental weights). Then, foreach u € P, thereexistsaunique 4 € Py
in the W-orbit of u: W.u N Py = {u}. For the diagonalization of the g-Dunkl
operators, we make use of the partial order

U=V <<= upr<vyor (uy =vyand pu <v) (8.36)
defined by applying the dominance order in two steps. For each u € P, we denote

by w,, the shortest element among all w € W such that w.u = u, and set p, =
wy,.0 € P.



124 8 Affine Hecke Algebra and g-Dunkl Operators (Overview)

Theorem 8.5 Assume that t € C* is generic. Then, for each p € P there exists a
unique Laurent polynomial E, (x) € C[x*'] such that

() fYE,(x) = f(t"q")VE,(x) forall f(&) e CIET],  (8.37)
(2)  E.(x) =x" 4+ (lower-order terms with respect to <). (8.38)

Then, regarded as a H (W)-module, the algebra of Laurent polynomials C[x*!]

is decomposed into irreducible components as follows:

Cx'1=P V). V)= @ CEux). (8.39)

rePy neW.a

Furthermore, for each A € P,, we have
VoM — [u eV | Tv=1tv (i=1,....,n— 1)] —CP.(x), (840)

where P, (x) is the Macdonald (Laurent) polynomial attached to A € Py; if we
take / € Z and u € P, such that A = u + (I"), then P, (x) is expressed as P; (x) =
(xp...x)! P, (x) in terms of the Macdonald polynomial P, (x) attached to a partition
ueP,.

In this picture, for each A € P, the Macdonald polynomial P, (x) is expressed
as a linear combination of nonsymmetric Macdonald polynomials E,, (x) (u € W.1)
with explicitly determined coefficients. Also, P, (x) is obtained by applying the
symmetrizer ", .y 12°T,, of the Hecke algebra H(W) to Ej (x).

8.5 Double Affine Hecke Algebra and Cherednik Involution

The algebra D, [W] contains the subalgebra

CIx* s e= Wl =Clxi™, o oxf st e sums T e T ) © Dy [W]
(8.41)
of g-difference-reflection operators with Laurent polynomial coefficients. This alge-
bra can be thought of as a g-version of C[x; 9, ][W] (crossed product of the Heisen-
berg algebra and the Weyl group). One can consider the ¢-deformation of this algebra

DH(W) = Clx*'1® H(W) ® C[Y*']
=Clxi xS T T YY) S D (WL (8.42)

called the double affine Hecke algebra. This algebra consists of all operators of the
form
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A= > @uuyX"T,Y" (finitesum) (a,.., € C). (8.43)

p,veP; weW
Also, the commutation relations between 7; and x;, Y; are given by

TixiTi=xin (i=1,....,n=1), Tix;=x;T; (j#i,i+1), (8.44)
and

Y=Y, (i=1,...,n=1), TY;=Y;T, (j#i,i+1). (8.45)

Theorem 8.6 (Cherednik) There exists a unique involutive anti-homomorphism ¢ :
DH(W) — DH (W) such that

px) =Y, pM)=x7" (i=1,....n),
d(TH=T G(G=1,....,n—1). (8.46)

This anti-involution ¢ is called the Cherednik involution (¢p(1) =1, ¢(ab) =
(b)Y (a), p* = 1).
We define the expectation value ( . ) :DH (W) — Cby

(A)=A)| = Y @t e (8.47)

x=t="*
n,veP;weWw

where £(w) the length of w (i.e. the number of inversions). We also define a scalar
product (bilinear form)

(,): DH(W)x DH(W)— C (8.48)

by
(A, B)=(¢(A)B) e C (A, B € DH(W)). (8.49)

By the definition of the Cherednik involution, we have
(p(A))=(A), (A, B)=(B, A). (8.50)

(This bilinear form is a variation of Fisher’s scalar product.)

We apply formula (8.50) to Macdonald polynomials A = P, (x) and B = P, (x)
(}\, Ve P+)

(Pr(x), Pu(x)) = (¢ (P(0)) Pu(x)) = (PA(Y ") Pu(x)

8.51
=<Pk(t7pqiﬂ)P/L(x)> = Pk(tipqi'u)P/L(tip)- ( )
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Since (P5.(x), Py (x)) = (P, (x), Py(x)), we have
Pt~ g PP = PtTPgTPLT) (€ Py, (8.52)

and hence

Py P,(t7"q™
W(t7Pq7") PP 8.53)
Py (t7) Py (17°)
By the property Py (x;q.t) = Py(x;g~"',t~") of Macdonald polynomials, from
(8.53) we obtain
Pi(t’q")  Pu(t"q")

XN X (n, j € Py). (8.54)

Sincep =8 — %(n — 1)(1™), this formula is identical to the self-duality we discussed
in Chap. 6.



Notation

N=Zsy=1{0,1,2,...}
Z =10, £1,£2,...}
Q,R,C

C =C\ {0}

R[x] = R[x1, ..., x,]

Rx*'] = R[x, ... xF
R[['x]] = R[[XI, e 7xn]]
RG

Kx)=K(xy,...,x,)

K[Gl =@, Kg

S,

sgn(o)

(o)

GLn = GLn ((C)
P =@, Le
P, =@, No;

T,x (i=1,....n)
qu,x = Hiel Tq,x,
Dq,x = (C(x)[Tqixl]

set of natural numbers (nonnegative integers)

set of integers

sets of rational, real, complex numbers
multiplicative group of nonzero complex numbers

ring of polynomials in variables x = (x, ..., x,)
with coefficients in a ring R

ring of Laurent polynomials in x = (xy, ..., X,)
with coefficients in a ring R

ring of formal power series in x = (xy, ..., X;)

subring of G-invariant elements in a ring R on
which a group G acts by ring automorphisms
field of rational functions in x = (xy, ..., x,) with
coefficients in a field K

group-ring of a group G with coefficients in a field
K

symmetric group of degree n, group of permuta-
tions of {1,...,n} [1.1]

sign of a permutation o0 € G,, [2.2]

number of inversions of a permutation o € G,
[2.2]

general linear group of degree n, group of C-
automorphisms of C" [2.4, 3.9]

weight lattice of GL,, [2.4, 8.4]

cone of dominant integral weights [4.1, 8.4]
g-shift operator in x; [1.1, 3.8, 4.1]

q-shift operator in x; (i € I) [5.3]

ring of g-difference operators with coefficients in
C(x) [4.1]
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(@ = [T (e + 1)
cFe(r=0,1,2,..))
(@ @i =12y (1 = ¢'a)
(@ @)oo = [172p(1 = q'a)
r1¢, r=0,1,2,..))
ép

P

P

A=A,
= (M,

)

a (s), L.(s)

ci(s), hi(s)

n(A)
S=m—-1,n—-2,...,0)

M={r+n—ili=1,...,n

=
e (x), hy(x), pi(x)

m), =m;(x) (A € Pp)
A@) =TTiicjen i — x))

A (x) =det(x/ )},
s =85.x) = A5 () /A(x)
SSTab, (1)

Py (x) = Pu(x;q,1)
Py (x) = Po(x)/Pp(t%)

PP (x)

Dy

dy, = Z?:l tn_iq}\i
w(x) =w(x;q,1)
(f. 8)

D)(C’) (r=0,1,...,n)

Dy (u) =
Ar(x)
Y = Vau(q, 1)
Vi = VYot q)
[0 (x5 y)

I, ()

Wi (X5 Y)

Y (=)' D"

Notation

shifted factorial (k € N) [4.4]

generalized hypergeometric series [4.4]

q-shifted factorial (k € N) [4.2]

g-infinite product (|g| < 1) [4.4]
q-hypergeometric series, g-analogue of , | F, [4.4]
g-analogue of Lauricella’s hypergeometric series
Fp in n variables [4.5]

set of all partitions A = (Aq, Ay, ...) [1.1]

set of partitions A = (A, ..., A,) with £(X) <n
[1.1]

partition of |A| = A; + A, 4+ - -+ [1.1]

conjugate (transpose) of a partition A [2.4]
number of nonzero parts of a partition A [1.1]
arm and leg lengths of s € A [3.2]

content and hook length of s € A [3.2]

Y= Dai =Y, (4) 32, 6.1]

staircase partion of n — 1 parts

Maya diagram attached to A € P, [3.1]
dominance order of multi-indices @, v € N” [2.4]
elementary, complete homogenous and power sum
symmetric functions [2.1]

monomial symmetric function of type A [1.1, 2.4]
difference product, Vandermonde determinant [2.2]

alternating polynomial of monomial type u [3.2]
Schur function attached to a partition A [1.1, 3.1]
set of semi-standard tableaux of shape A [3.1]
Macdonald polynomial [1.1, 4.1]

normalized Macdonald polynomial [6.1]

Jack polynomial lim,_,; P, (x; ¢q, q?) [1.1,5.6]
Macdonald-Ruijsenaars g-difference operator (of
first order) [1.1, 4.1]

eigenvalues of D, (A € P,) [1.1, 4.1]

weight function for the orthogonality [5.1]

scalar product with weight function w(x) [5.1]
higher-order Macdonald—Ruijsenaars g-difference
operators [5.3]

generating functionfor D (r =0, 1, ..., n)[5.3]
coefficient ¢(2) ]_[ielij 'xx’_‘:xf D(’) [5 3]

Pieri coefficient for a horizontal strip A/u [6.1]
Pieri coefficient for a vertical strip A/ [6.1]

[T [T} ((f;; ’;1))"" (Cauchy kernel) [6.5]
I, H;:l(l + x;¥;) (dual Cauchy kernel) [6.5]
[T [T (i + yy) [6.5]




Notation

by, =by(q,1)

cfw =c}, ,(q.1)
by =by,(q.0)
W, H(W)

Waff’ W

HWaty, H(W)
T,(i=0,1,...,n)
s; i=0,1,...,n)
w
Yii=1,...,n)

E,(x) (i € P)
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coefficients of the Cauchy formula (A € P) [6.5]
Littlewood-Richardson coefficient (A, u, v € P)[7.1]
branching coefficient (A, u, v € P)[7.1]

Weyl group and its Hecke algebra (W = G,,)) [8.1]
affine and extended affine Weyl groups [8.1]
affine and extended affine Heck algebras [8.1]
Demazure—Lustzig operators [8.1]

simple reflections [8.1]

diagram rotation [8.1]

g-Dunkl operators [8.2]

nonsymmetric Macdonald polynomials [8.2].
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