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Abstract The current study aims to identify all possible factors influencing bus 
travel time near signalized intersections and predict the arrival time to stop line under 
the heterogeneous and lane free traffic conditions. Preliminary analysis of the bus 
trajectories grouped them based on uniform and non-uniform movement and whether 
the bus stopped or not. The prediction model is formulated considering all possible 
events in which a bus can get detected near an intersection, especially when the bus 
arrival is during the later green and early red phases. The algorithm is developed 
integrating the bus, traffic, and control information. Implementation and evaluation 
of the models developed has been carried out to understand their performance under 
varying conditions. Bus information is collected using the DSRC (dedication short 
range communication) devices. Results showed very good prediction performance 
with the errors reducing as the bus approached the stop line. The findings of this 
study can be used to predict the arrival time of the bus at the stop line, which can 
further be used for various applications including bus signal priority. 

Keywords Bus arrival time prediction · Trajectory analysis · Signalized 
intersection 

1 Introduction 

Severe traffic congestion has become a major challenge to tackle by transportation 
agencies all over the world. Cities have been witnessing significant developments in 
the field of transportation as a consequence of rapidly growing economy, increasing 
levels of vehicle ownership and high expectations for superior infrastructure and 
services. These are more challenging in developing countries like India where 
uncontrolled growth of vehicle population, relatively slow infrastructure growth, 
and rampant encroachment of carriageway are leading to traffic snarls on a daily
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basis. One way to address this inefficient and inadequate system is to improve the 
public transport system in an effective and sustainable way. 

One of the major drawbacks of the public transport bus service is its unreliability. 
Buses face maximum delay in urban arterials near signalized intersections. Thus, if 
bus delay at intersections can be reduced, more people may shift to public transport 
from personal vehicles. This in turn will help to reduce traffic congestion because of 
the high occupancy of the buses than personal vehicles. Bus Signal Priority (BSP) 
system helps to achieve the same by detecting a bus as it approaches the intersection 
and providing green time to that approach so that the bus can pass the intersection 
without much delay. The reliability of bus services can be improved if such a BSP 
system is implemented accurately. This would be a more desirable and sustainable 
strategy than the infrastructure expansion to meet rapid traffic growth needs. 

For the successful performance of the BSP system, a better understanding of the 
behavior of buses near intersections and in turn an accurate bus arrival time prediction 
to the stop line is crucial. This will help to decide how much the present green phase 
is to be prolonged or the current red phase is to be truncated. The present study 
focuses on these two aspects of understanding the behavior of bus near intersection 
and quick and reliable prediction of its arrival to the stop line. One major requirement 
for these is high-resolution, real-time data collection. The common sensors used for 
this purpose include intrusive sensors such as inductive loops [7], magnetometers 
[23], piezoelectric sensors [7], pneumatic tubes [9] and non-intrusive sensors like 
video cameras [3], microwave radar [6], LiDAR (Light detection and ranging) [16], 
ultrasonic [12], and hybrid sensor technologies [17]. Intrusive sensors are installed 
beneath the road surface and hence invasive to the pavement. Location-specific non-
intrusive sensors though useful to detect the presence, speed, type of vehicle, lane 
crossing, etc., are expensive and their performance gets affected by traffic and climatic 
conditions. On the other hand, onboard tracking solutions like global positioning 
systems (GPS) help to determine the exact location of a vehicle and are more efficient 
under heterogeneous and less lane disciplined traffic conditions such as the one in 
India. A detailed literature review of data collection, data analysis, and prediction 
near signalized intersections is conducted to understand the gaps in this area of 
research. 

2 Literature Review 

Bus arrival time can be predicted either for a midblock section or near intersections. 
The studies on the prediction of bus travel time for midblock sections, especially to 
the next bus stop reported the use of different prediction methods such as time series 
analysis [4], ANN technique [11], SVR technique [21], Kalman filtering technique 
[20]. 

Most of these studies were developed for the purpose of prediction to bus stops. 
However, for the BSP application, the requirements are different with the prediction 
focusing on a small stretch of roadway near to the intersection, at high resolution,
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where the stochasticity is more. This means that the space span of prediction is shorter 
and prediction accuracy must be stricter for the same [8]. 

Lee et al. [13] reported a more advanced method of bus signal priority control 
which consisted of two parts: a high-performance online microscopic simulation 
model for prediction of transit travel time up to the stop line using sensor data and a 
priority operation model to select the best priority strategy based on the prediction 
results. Another related research work was reported by Tan et al. [19] using both 
historical and adaptive model. Automatic Vehicle Location (AVL) data and wheel 
speed data were taken as inputs for this study. However, this method was reported to 
be not suitable for heavily congested traffic. 

Ekeila et al. [5] used AVL systems which are mostly installed on many transit 
buses for the dynamic BSP strategy. Li et al. [15] reported a predictive BSP control 
that predicted the arrival time of the bus until the stop line of the subject intersection 
by detecting the transit vehicles upstream (e.g., immediate upstream intersection 
of the subject intersection). Bie et al. [2] developed an analytical model using the 
traffic flow and time headway-based equations based on the field data. Yu et al. 
[22] presented an estimation algorithm based on the equations of motion for the 
arrival time prediction of buses to the stop line. Gang et al. [8] proposed a deep 
learning-based model for bus travel time prediction to the stop line. They presented 
a stacked auto-encoder (SAE) neural network, which is a pre-training model and 
included logistic regression model as the predictor. The limitation of this study is 
that the experimental data used was created through traffic simulations rather than 
being gathered in the actual world. 

There are various factors which affect arrival time prediction namely, spatial and 
temporal factors, conditions of traffic, driving behavior, and vehicle characteristics. 
Travel time is correlated with characteristics of the route such as road segment, road/ 
route length, intersections, bus stops near the intersection and turning movements. 
The main temporal factors considered for arrival time prediction for BSP include 
dwell time and intersection delay. Prediction accuracy can be enhanced by improving 
the dwell time and intersection delay estimates [1]. Yu et al. [22] considered bus dwell 
time for the estimation of arrival time. Analytical models were developed by Bie et al. 
[2] for the estimation of arrival time of bus up to the stop line, taking into account the 
bus delay at the intersection. However, the model needed detailed speed and signal 
settings data. For the prediction of arrival time, the average delay at intersection has 
also been calculated in some studies [9]. However, intersection delay modeling by 
an average value can sometime reduce the accuracy of bus travel time prediction 
models. 

Traffic information such as speed, flow, density, and queue length has a direct 
impact on arrival time prediction. Studies based on historical data used constant 
average speed [9]. Adaptive average speed based on real time data was used by Yu 
et al. [22]. Only a few studies have considered arrival rate, discharge headway, and 
signal timing details for the arrival time prediction to the stop line [2]. 

Driving and vehicle characteristics can also contribute to variation in arrival 
time. Lee et al. [13] presented an arrival time prediction model which incorporated 
driving characteristics (i.e., aggression level) and behavior of the adjacent vehicle
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(lane changing and queuing at the stop line). Based on these factors, the prediction 
model included a set of driving rules (initialization rules, free-flow driving rules, car-
following rules, lane changing rules, traffic signal reaction rules, and transit vehicle 
rules) using real-time traffic count and transit location information. 

It can be observed that most of the above studies on bus arrival time prediction for 
implementation of BSP are based on traffic conditions in western countries and these 
studies cannot be directly implemented in India where lane discipline is not followed 
and too many vehicle types are sharing the road space. Hence, a research study on 
arrival time prediction to stop line near signalized intersection under mixed traffic 
conditions is needed for a successful BSP implementation under the heterogeneous 
and lane less traffic conditions. 

3 Study Site, Data Collection, and Preliminary Analysis 

3.1 Study Site 

The study area selected is Tidel Park junction connecting Rajiv Gandhi IT expressway 
and East coast road (Fig. 1a). This is one of the nine major intersections in Rajiv 
Gandhi Road which is a busy arterial road in Chennai. IT-enabled service companies, 
industrial estates, educational institutions, and residential developments are located 
around this roadway. There is also a local railway line that runs parallel to this road 
section. 

The Tidel Park intersection is a four legged one with Madhya Kailash to the north 
at a distance of 2.2 km, East Coast Road (ECR) to the east at a distance of 1 km, SRP 
tools to the south at a distance of 1.5 km and Tidel park service road to the west at a 
distance of 0.6 km. Since Tidel park service road is a free left road, this intersection 
can be taken as three legged. A six-lane roadway is in the north–south direction with 
three lanes in each direction having a width of 3.5 m/lane. The east bound ECR

Fig. 1 a Study Area (Source https://www.openstreetmap.org/), b OBU installed in Bus c RSU 
installed on signal pole 

https://www.openstreetmap.org/
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approach is a four-lane divided carriageway. The traffic volume was observed to be 
around 4000 veh/hr for north bound, 3800 veh/hr for south bound, 1200 veh/hr for 
west bound, and 100 veh/hr for east bound. 

3.2 Data Collection 

Continuous information on position, speed, direction and acceleration and decelera-
tion characteristics of buses are required for the successful implementation of BSP. 
This high-resolution data was guaranteed by using Dedicated Short Range Commu-
nications (DSRC) based devices. DSRC devices include On-Board Units (OBU), 
which communicates with Road Side Units (RSU) fixed at the intersection, when 
they are in the line of sight. Along with bus information, traffic and signal information 
are concurrently collected from video recordings. 

Bus Data. For the present study, DSRC devices were used for bus detection and 
tracking near the intersection. The RSU is fixed at Tidel Park signal and OBUs were 
fixed in seven buses of route number 19 that are crossing this intersection, with OBU 
IDs 21, 22, 23, 25, 26, 27, and 28. When OBU installed bus comes in the vicinity 
(roughly around 300 m) of the RSU location, the OBU starts sending data packets to 
RSU and the RSU, in turn, would send that information to the server. Figure 1b&c 
shows OBU device installed inside a bus and the RSU that is installed at Tidel Park 
signal. 

Data collected for five days—08/02/2022, 09/02/2022, 10/02/2022, 11/02/2022, 
and 14/02/2022 was used. Table 1 shows the details of the DSRC data collection 
period and number of trips made on each day. 

Continuous information on speed, position, acceleration, or deceleration of buses 
was communicated till the bus leaves the intersection area. The type of movement 
(turning or straight) and route of each bus was obtained based on the changes observed 
in latitude and longitude values. 

Signal and traffic data. Manual data collection using video recordings was done 
for signal timing details, arrival rate, and saturation discharge headway. For the 
proposed study, two video cameras were installed. One camera was placed facing 
the signal head along with vehicles crossing the stop line, to collect the signal timing 
details and saturation headway. Another one was installed facing the arriving vehicles

Table 1 DSRC data details 

Date DSRC Data Collection Period No. of trips made by buses 

08-02-2022 5 am to 8 pm 29 

09-02-2022 6 am to 10 pm 25 

10-02-2022 5.30 am to 11 pm 31 

11-02-2022 5 am to 9.30 pm 36 

14-02-2022 6 am to 9.30 pm 24 
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about 250–300 m away from signal, to collect the arrival rate of vehicles. These 
manually collected traffic counts were converted into Passenger Car Unit (PCU) 
using PCU factors suggested in IRC 106 [10]. 

3.3 Data Cleaning and Preliminary Analysis 

Duplicate values were removed from raw data as part of data cleaning. After that, 
check for outliers was done on the basis of speed thresholds, i.e., speed cannot be 
less than zero km/h and the upper threshold was taken as the 95th percentile speed. 

Next level data cleaning was done using Quantum Geographic Information System 
(QGIS) software. By importing latitude and longitude values into QGIS, a dynamic 
display of bus position was created. By analyzing the routes of buses in QGIS soft-
ware, the trips which do not pass through the study area were identified. Such trips 
were removed, and remaining trips were selected for the bus arrival time prediction 
to the stop line. Table 2 shows the details of the final data set used. 

As part of the preliminary analysis, using the information of continuous positions 
of buses with timestamp, bus trajectories were created. Then trajectories of each 
bus were plotted in tableau software. The trajectories were found to be falling into 
the following two groups: Uniform trajectories, and non-uniform trajectories with/ 
without stopping. 

Figure 2 shows sample trajectories falling under these groups. Prediction was 
done separately for each of these groups.

Table 2 Final data set 

Description Date of data collection 

08/02/2022 09/02/2022 10/02/2022 11/02/2022 14/02/2022 

Total number of trips after 
preliminary data cleaning 

29 25 31 36 24 

Number of trips available 
in signal video data 

17 20 21 19 13 

Number of trips which 
shows error in QGIS 

5 7 8 3 3 

Remaining number of trips 
for implementation 

12 13 13 16 10 

Number of trips from 
Madhya Kailash 

1 2 1 4 3 

Number of trips from 
Thiruvanmiyur 

1 0 0 1 1 

Number of trips from SRP 
Tools 

10 11 12 11 6 
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Fig. 2 Sample trajectories of the identified groups a Uniform trajectory with stopping, b Non-
uniform trajectory with stopping, c Uniform trajectory without stopping, d Non-uniform trajectory 
without stopping 

4 Bus Travel Time Prediction Model 

The prediction model assumes that the intersection is under-saturated such that 
queuing vehicles clear within the cycle without any residual queue. The model splits 
the travel time into three parts from the advanced detection position to stop line, as 
travel time from detection point to the end of queue, waiting time in the queue, and 
time for discharging of queued vehicles in front of the bus. A model proposed in 
Bie et al. [2] was used as the base model for the present study. An advantage of this 
model is that it takes into account all possible outcomes, especially when the bus 
arrives in the later green light and early red-light stages. Modifications were made 
to this base model to take into account the heterogeneous traffic conditions and the 
lane free movement in the study area.
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4.1 Model Formulation 

Suppose the signal has n phases and current green phase is k. Let the bus placing the 
priority request is on phase j. Let G denotes green time, Y denotes yellow time, and 
R denotes red time. Based on the signal operating status when a bus is detected, the 
model is classified into different categories as discussed below. 

Priority phase as current green phase (k = j). In this category, when the bus 
is detected first, phase j is having green time or in other words, the bus is detected 
during the green signal. The main concern in this situation is whether the bus can 
arrive at the stop line before the end of current green signal. If bus can reach stop line 
within available residual green time, bus need not make a stop and anterior queue 
length determines its arrival time to stop line. If it cannot reach within the given 
residual green time, it needs to make a stop and wait for green signal in the next 
cycle. Free-flow travel time from the current position to the stop line determined as 
in Eq. (1) can be used to check whether the given residual green time is sufficient to 
cross. 

T f = 
D 

V f 
, (1) 

where D = Distance between the current location of the bus and stop line in m, and 
Vf = Free-flow speed in m/s. This Vf is taken as 95th percentile speed of buses in 
that link. 

When free-flow travel time is more than residual green time (Tf > Gr), bus cannot 
pass the stop line in the current cycle. For this case, bus arrival time T from the 
current position to the stop line, including waiting time for green in next cycle and 
anterior queue length to discharge, can be obtained as shown in Eq. (2). 

T = Gr + Y + Rc + Rn + N t + ϕ, (2) 

where T = Predicted arrival time of the bus in seconds; 

Gr = Residual green time of phase j in seconds; 

Y = Yellow time of phase j in seconds; 

Rc = Red time in current cycle after detection point in seconds; 

Rn = Red time in next cycle before start of green time in seconds; 

t = Saturation discharge headway in seconds per PCU; 

ϕ = Time interval between front end of the bus and rear end of adjacent anterior 
vehicle in seconds (it is nearly a constant number when vehicles are discharging at 
saturation flow rate and can be obtained by field survey); 

N = Queue length in front of the bus up to the stop line.
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Since no residual queue is left at the end of each cycle and vehicles at the 
intersection arrive randomly, N can be expressed as 

N = (
T f − Gr

)
q, (3) 

where q is the average vehicle arrival rate of phase j in PCU/second, and (Tf − Gr) 
is elapsed red time of phase j in seconds. 

When free-flow travel time is less than residual green time (Tf ≤ Gr), bus need not 
stop before reaching the stop line since sufficient residual green time is available. The 
key issue for this case is whether the bus can move forward without being hampered 
by the queue length. Intuitively, if the queue is short, the bus can arrive at the stop 
line freely. Otherwise, it has to alter its speed. Therefore, it is necessary to determine 
the critical number of anterior vehicles that could affect the bus. However, for the 
bus to arrive at the stop line freely, the number of anterior queue vehicles should be 
such that. 

Nc = 
T f 

t 
, (4) 

where Nc = critical number of queue vehicles in front of the bus, 

Tf = free-flow travel time from the current position to the stop line in seconds and 
t = saturation discharge headway in Seconds/PCU. 

Since the bus is coming during the green time, vehicles in front of it are 
discharging. Hence, actual anterior queue length up to the stop line can be calculated 
as 

N =
[
Rp + R ′

c + Ge

]
q −

[
Ge 

t

]
, (5) 

where Rp = Red time in the previous cycle after end of green time in seconds; 

R’c = Red time in the current cycle before detection in seconds; 

Ge = Elapsed green time in the current cycle in seconds. 
The number of vehicles that arrived since red light of phase j started is the first 

term of the Eq. (5) and the second term is the number of vehicles that have been 
released since the green light started. To avoid negative N, the above equation can 
be modified as. 

N = max{
[
Rp + R ′

c + Ge

]
q −

[
Ge 

t

]
, 0}. (6) 

If N ≤ Nc, the bus arrival time T = Tf . Otherwise, arrival time will be affected 
by queue length and arrival time can be updated as 

T = N t + ϕ. (7)
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Priority phase as red phase (k �= j). In this case, phase j has red time when the bus 
places a priority request or in other words, bus is detected during the red indication. 
Since the signal is not a fixed time one, the timings in adjacent cycles are different 
making the waiting time for the green varying. If bus is placing a priority request 
after the green time of phase j in the current cycle, it needs to wait for the green 
signal in the next cycle. However, if bus is placing priority request before the green 
time of phase j in current cycle, it can wait for its right of way in the current cycle 
itself. It can be noted that the waiting time for the latter case will be less compared 
to the former. 

Priority phase before the current green phase (k > j). In this case, the green time of 
phase j has ended in the current cycle and bus needs to wait for the green in the next 
cycle. Since bus is coming during the red time, there will be two types of vehicles in 
front of the bus—vehicles which already formed the queue during the red time and 
vehicles which are moving in front of the bus to join the end of queue. Out of these, 
the number of vehicles in front of the bus which already formed the queue during 
the elapsed red time can be calculated as. 

N1 = Req, (8) 

where Re = Elapsed red time in seconds. 
Travel time needed from current bus location to the end of this queue is. 

T
′
f = 

D − (N1 × L) 
V f 

, (9) 

where L = average vehicle length in meters. During this time interval, vehicles will 
be moving in front of the bus to join the end of queue. Number of such vehicles will 
be 

N2 = T ′
f q. (10) 

Thus, the total number of vehicles in queue in front of the bus will be 

N = N1 + N2 = Re · q +
(
D − (Re × q × L) 

V f

)

q. (11) 

Sometimes, the second term in Eq. (11) can be negative and in such cases, it may 
indicate that bus made a lane change. In such cases when D < (Req L), the anterior 
queue length is updated as shown in Eq. (12). 

N =
(

D 

V f

)
q = T f q. (12) 

Finally, the time for bus to reach stop line is
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T = Rc + Rn + N t + ϕ, (13) 

where Rn = Red time in the next cycle before the starting of green. 
Priority phase after the current green phase (k < j). In this case, green time of 

phase j has not started in the current cycle and the bus has to wait for its right of way 
in the current cycle itself. 

Queue length calculation in this case is similar to that of case k > j. The number 
of vehicles which already formed queue in front of the bus is 

N1 =
(
Rp + Re

)
q, (14) 

where Rp = Red time in the previous cycle after the end of green time in seconds; 

Re = Elapsed red time seconds. 
In this case, the bus travel time from the current position to the end of queue is 

calculated as in Eq. (9) and number of vehicles arriving to join the queue is calculated 
as in Eq. (10). Thus, the total number of vehicles in queue in front of the bus is 

N = (RP + Re)q +
(
D − [(

Rp + Re
) × q × L

]

V f

)

q (15) 

Here also when D < (
(
Rp + Re

)
q L), anterior queue length is updated as in Eq. (12). 

Then, the time for bus to reach stop line can be obtained by substituting queue 
length value in. 

T = Rc + N t + ϕ. (16) 

If queue length value obtained in any of the above-mentioned cases is closer to 
zero, the arrival time to stop line can be updated as Tf, irrespective of the signal in 
which the bus is detected. 

The overall methodology for arrival time prediction model is given in Fig. 3.

5 Implementation and Evaluation 

Evaluation of the model was done by comparing the actual arrival time, with the 
predicted arrival time at different distances from the stop line. Madhya Kailash to 
Tidel Park approach was selected for implementation and evaluation. The phase plan 
of the selected signal is shown in Fig. 4. Since the priority phase is the 3rd phase in 
the phase plan, case c (waiting time > threshold value) does not exist. Trajectories 
are classified into case a, b, and d by comparing bus detected time with actual signal 
time.
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Fig. 3 Methodology for arrival time prediction model

Performance evaluation was done at 300, 250, 200, 150, and 100 m away from 
the stop line to see how prediction varies as the bus comes closer to the stop line. 
Thus, five detection points were there for each trajectory. From the detection time 
at mentioned distances and comparing it with signal time, bus trajectories were 
classified as per the model and 3.63% were found to fall in case a, 40% in case b and 
56.36% in case d. As the bus is moving after the first detection, the signal status may 
change. Hence, the same trajectory may show different cases at different positions. 
Table 3 shows sample classification details of OBU 21 detected on 11/02/2022 at 
different distances from stop line. It can be seen that the status was d when the bus 
was first detected, which changed to b as it was traveling.

Performance of the developed analytical model was checked by observing the 
error between actual and predicted arrival times for each individual bus at 300 m,
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Fig. 4 Phase diagram for the study area

Table 3 Classification details of OBU 21 at different distances 

Detected 
time 

Distance from 
current position to 
stop line D (m) 

Free-Flow 
speed Vf 
(m/s) 

Free-flow 
travel time 
Tf (s) 

Signal status 
at detected 
time 

Residual 
green 
time Gr 
(s) 

Category 

10:52:22 300 15.06 19.92 Red – Case d 

10:52:33 250 15.06 16.60 Green 66 Case b 

10:52:40 200 15.06 13.28 Green 59 Case b 

10:52:46 150 15.06 9.96 Green 53 Case b 

10:52:55 100 15.06 6.64 Green 44 Case b

250 m, 200 m, 150 m, and 100 m away from stop line. Then the variation of this error 
with distance from the stop line (Fig. 5) was analyzed to understand the prediction 
accuracy.

Average errors were analyzed next by considering all 11 trajectories together at 
different distances from the stop line. Figure 6 shows average error values along with 
maximum and minimum error value observed for varying distances from the stop 
line. From Fig. 6, it can be observed that error value is decreasing as the distance 
from the stop line decreased.

Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) were 
calculated to quantify the errors for all predictions from each category using Eqs. (17) 
and (18) respectively [18]. 

MAE  = 
1 

n

∑
|xo − xp|, (17) 

MAP  E  = 
1 

n

∑
[∣∣xo − xp

∣∣

xo

]

100, (18)
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Fig. 5 Variation of the error for each bus coming on 11/02/22 with distance from the stop line
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Fig. 6 Plot of maximum, minimum, and average error values at different distances from the stop 
line

where n is the number of observations; xo is the observed value; and xp is the predicted 
value. 

Figure 7 shows the variation of MAE and MAPE values for all predictions from 
each category (case a, case b, and case d). It can be seen that the MAE is below 
5 s for cases a and d. MAPE also shows acceptable range (Lewis et al., 1986) of 
values for all cases. A higher MAPE value can be observed for case b compared to 
other categories since its arrival time prediction was mainly based on the constant 
free-flow speed value, which is an assumption that needs verification.
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Fig. 7 MAE and MAPE for cases a, b and d 

6 Summary and Conclusions 

The goal of the present study was to accurately predict the time of arrival of buses, 
which are detected in the vicinity of an intersection, to the stop line, that can be used 
for the development of an efficient BSP solution. The bus data were collected using 
DSRC-based OBU and RSU devices. On the other hand, traffic data were collected 
from video recordings and signal timings by manual observation. 

Preliminary analysis of the data showed different types of trajectories, which were 
grouped based on uniform and non-uniform movement and whether the bus stopped 
or not. Analytical models were developed for each group separately considering 
the signal timings and queue condition. Performance evaluations were conducted for 
each group at different distances from the stop line. It was found that the errors reduce 
as the bus comes closer to the stop line. MAPE values calculated for all scenarios of 
the model were within 20%, indicating good performance of the model (Lewis et al., 
1986). 

As future extension, the queue length calculation can be done by incorporating 
actual speeds, which will capture the deceleration and acceleration characteristics of 
the bus, instead of a constant free-flow speed value. 
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