
Securing Farm Insurance Using
a Private-Permissioned Blockchain
Driven by Hyperledger Fabric and IPFS

Nishat Tasnim Haque , Zerin Tasnim , Ananya Roy Chowdhury ,
and Saha Reno

1 Introduction

The majority of the population in Bangladesh depends on farming. Livestock farming
is an integral element of our country’s agriculture production system, which provides
multiple sources of food, employment opportunities, agricultural development, and
other services. However, it is concerning that a larger percentage of them are not
protected by a safe insurance system that will offer financial security or compen-
sation for damages. As a result, they are unable to recover from the immense loss
they experience in the event of incidents like fires or natural disasters. An insurance
management system that records crucial data about a farm, its owner, loss history,
etc., is needed to ensure that livestock farmers can claim refunds in case of mishaps
or unforeseen events. And on account of this, it will be effortless to provide the insur-
ance they require based on their circumstances and to identify fraudulent insurance
claimants.

Various authors have provided numerous ways to secure insurance management;
however, the constraints in their systems prevent real-world use of these approaches.
Raikwar and his co-authors suggested a permissioned blockchain-based approach [8]
for insurance processes using Hyperledger Fabric v1.0.0-beta. Golanf v1.8 was used
to create the chaincode. However, their database is not encrypted, and each transac-
tion cannot have its own set of endorsing peers since smart contracts are not imple-
mented at the transactional level. Additionally, the confirmation time will increase
with node count, making the network slower. The authors of “NEO smart contract
for drought-based insurance” [7] developed a system for South-East Asian (SEA)
countries where small households experienced insufficient crop production due to
heavy drought. The system was built on the NEO blockchain technology and runs on
NeoVM. Given that this system’s consensus protocol lacks a fallback mechanism, the

N. T. Haque · Z. Tasnim · A. R. Chowdhury · S. Reno (B)
Bangladesh Army International University of Science and Technology, Cumilla, Bangladesh
e-mail: reno.saha39@gmail.com

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
J. K. Mandal et al. (eds.), Proceedings of International Conference on Network Security
and Blockchain Technology, Lecture Notes in Networks and Systems 738,
https://doi.org/10.1007/978-981-99-4433-0_29

347

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-4433-0_29&domain=pdf
http://orcid.org/0009-0009-6968-5697
http://orcid.org/0009-0003-0687-1448
http://orcid.org/0009-0005-6090-9376
http://orcid.org/0000-0003-1897-9002
reno.saha39@gmail.com
 854 57535 a 854 57535 a

mailto:reno.saha39@gmail.com
https://doi.org/10.1007/978-981-99-4433-0_29
https://doi.org/10.1007/978-981-99-4433-0_29
https://doi.org/10.1007/978-981-99-4433-0_29
https://doi.org/10.1007/978-981-99-4433-0_29
https://doi.org/10.1007/978-981-99-4433-0_29
https://doi.org/10.1007/978-981-99-4433-0_29
https://doi.org/10.1007/978-981-99-4433-0_29
https://doi.org/10.1007/978-981-99-4433-0_29
https://doi.org/10.1007/978-981-99-4433-0_29
https://doi.org/10.1007/978-981-99-4433-0_29
https://doi.org/10.1007/978-981-99-4433-0_29

348 N. T. Haque et al.

consensus must be forcibly reset when the code cannot reach consensus. NEO con-
sensus relies on bookkeeper nodes that stop trying to come to an understanding when
the time difference between the timestamp of the previous block and the present time
exceeds 10 min. “Application of smart contracts based on the Ethereum blockchain
for the purpose of insurance services” [1] proposed an Ethereum blockchain-based
solution for insurance processes. They created a decentralized crypto-token based on
the ECR20 smart-token standard. The problem with their approach is that they auto-
mated the handling of insurance claims using a public, permission-free blockchain,
which could cause problems with real-time confirmation. On top of that, Ethereum
employs a computationally intensive consensus process known as proof-of-work
(POW), which has a significant scalability issue that restricts it to about 20 transac-
tions per second.

In this study, we developed a system that handles applicants’ information for
insurance companies in the safest and most practical way possible using the hyper-
ledger fabric blockchain. It’s a special form of a private blockchain that enables the
transaction of an asset or its state to be consented upon, maintained, or observed by
only the members of a permissioned group [5]. Despite the fact that it is built on the
idea of a distributed or shared ledger, each participant must be verified. This assists
in concealing sensitive data and prevents data manipulation (i.e., creating new data,
updating old data, or deleting existing data). Hyperledger fabric does not require
consensus techniques like the computationally demanding proof of work (POW) or
proof of stake (POS) used in blockchain networks because it is a private and permis-
sioned network [2]. Scalability, transaction speed, and overall network performance
are all boosted by doing this [9]. Last but not least, hyperledger fabric gives users
the option to alter the entire blockchain’s underlying infrastructure. Our proposed
system offers

(i) Information access control within a permissioned group. Outsiders are not
permitted to change the data; only the allowed participants can add new assets,
along with updating, deleting, and searching the existing information.

(ii) An insured is only permitted to read his/her transaction information in order to
prevent data manipulation.

(iii) Insurance companies can look up information about an insured by the asset
ID, which is a unique identification number that prevents them from claiming
insurance to which they are not entitled.

2 Literature Review

Over the past several years, blockchain research has gained popularity. Numerous
people have introduced their outstanding efforts to address significant issues regard-
ing insurance with a blockchain-based solution. Loukil and others proposed CioSy,
a collaborative blockchain-based insurance system for monitoring and processing
insurance transactions [6]. Through the use of three smart contracts, they created

Securing Farm Insurance Using a Private-Permissioned … 349

a community of insurers, acquired insurance from the insurer, submitted claims in
accordance with the insurance contract, and automated the processing of claims and
refund payments. This system, though, works best for goods with extremely low risk
expectations. Premiums for claims in the event of sudden catastrophes, like natural
disasters, may be woefully inadequate.

The MIStore is a medical insurance storage system [12] by Lijing and his co-
authors that achieves several unique features, including decentralization, secure data
storage, threshold, efficient verification, and efficient homomorphic computation.
The tamper-resistance of the blockchain provides users with great trust; and because
it is decentralized, users may connect with one another without the use of interme-
diaries. The system’s drawbacks include that it utilized the Ethereum blockchain
approach, which presented challenges with scalability due to its multipurpose ledger
and complex programming language.

In [11], by Iman and others, a new framework is presented for securing a cyber-
product using blockchain technology. To share the risk of insurance, they have applied
for crowdfunding through a sealed-bid auction process. The binding property ensures
that a commitment cannot be opened to another value, whereas hiding demands that
a commitment not reveal any information about the committed value. They used the
Ethereum-SHA3 hash function (Keccak256) as the commitment scheme for their
implementation. The drawback of this work is that the price of Ether has fluctuated
dramatically in the past, so beginners may find it risky to invest in this currency.

A framework for using smart contracts and storing them in blockchain for insur-
ance contracts is presented in [3] by Abid and his co-authors. The proof of authority
(PoA) consensus algorithm is used to verify the transactions, and it rejects any invalid
transaction requests. Any incorrect endorsement will be obvious and detectable; the
algorithm operates on both private and public networks. A drawback of smart con-
tracts is that they significantly limit the volume of transactions that the network can
handle in a given second.

A solution [10] by Rui and others proposed that prevents specific sorts of fraud
in the field of vehicle insurance was created using blockchain and smart contracts.
The double dipping fraud arrangement is the use case for the created Ethereum-
based blockchain system to prevent insurance fraud. Drawback is that they are now
in the prototyping stage of their suggested solution. It has been tested using data
from hypothetical insurance companies, clients, and vehicles, and it has shown to be
effective. However, expanding the solution’s capabilities and developing a finished
product are required.

Nishant and others have developed a blockchain-based crop insurance for Indian
farmers [4]. Due to the fact that latest blockchain-based frameworks are built on the
idea of smart contracts, they offer a tamper-proof environment where a transaction
is only carried out after receiving validated data, and no bad user is able to alter
the system. When the instances were upgraded, the throughput rose to 220. When
the CPU load was 70%, RAM consumption reached 80%. Drawback is, since this
system doesn’t directly employ any cryptocurrencies like Bitcoin, system failure in
unstable cryptocurrency markets may be more likely.

350 N. T. Haque et al.

Fig. 1 Basic architecture of the proposed system

Our system overcomes the aforementioned shortcomings as: (i) it does not require
any transaction fee, (ii) has better throughput rate (0.021 s per transaction), (iii)
supports querying the ledger using SQL and (iv) has a robust access control module.

3 Methodology

Our chaincodes, written in JavaScript, have been installed in Hyperledger Fabric
2.3.1. Only those users who are identified in the system’s asset identification field
can access the document information. There must be an electronic copy of every
document that is connected to the information provided by the insured. So, IPFS
stores the images of the documents by cryptographically hashing them, creating a
unique content identifier (CID) for each image. Additionally, they are linked to the
appropriate assets. By doing this, we can instantly detect any altered or destroyed
images, given that the accompanying asset’s hash will likewise change. Any time an
asset is created, added to, updated, or removed from a block, a transaction involving
that asset is recorded. Nobody can effectively alter or modify the information pro-
vided in the system in this way without notifying others. The main concept of our
system is illustrated in Fig. 1.

Securing Farm Insurance Using a Private-Permissioned … 351

3.1 Resources of the Network

Any object that has information is a resource in the Hyperledger Fabric and is called
an asset. Details included within an asset can be seen as key value pairs, which signify
the value of anything, from the tangible to the intangible. With hyperledger fabric,
we can manipulate these assets via chaincode-dependent transactions. In our work,
each farm is considered an asset, and for each of these assets, there are 11 attributes
which correspond to different relevant and unique information about the farms.

An asset of our private blockchain, which is built on hyperledger fabric, is char-
acterized by these attributes. A new asset ID is constructed each time information
regarding a new farm is provided, permitting the ledger to be queried for that per-
son’s farm information. Only by performing transactions is it possible to modify and
update this information in future. Participants in our system fall into one of three
categories: (i) system admin, (ii) network admin, and (iii) user. The users in this
scenario are farm owners who may only request information updates and read infor-
mation about their insurance transactions. Admin has broader access and control over
system resources than users have, which is covered in more detail in the following
subsections. The configuration setup is done by Peer Admin; similarly identities to
new participants are appointed by Network Admin. The relation between assets and
participants is depicted in Fig. 2.

3.2 Initiating and Processing Transactions

A private blockchain is a distributed ledger that operates as a closed database secured
with cryptographic concepts and the organization’s needs. Only those with permis-
sion can run a full node, make transactions, or validate/authenticate the blockchain
changes. The changes needed to be made in our blockchain are related to the cre-
ation of insurance, which will require reshaping of the assets. After each transaction
is recorded, in order to change any record, 51% of the participants must reach consen-
sus. The farm’s hash from IPFS is stored so that the insurer can access this information
at any time and update as needed. These updates can also be verified by the asset
manager to make sure all the alterations are correct. Transactions are additionally
employed to store the farm’s IPFS hash, permitting the farm owners to access their
farm’s data. When a user performs a transaction, the asset ID is associated with the
transaction’s transaction ID. Owing to the immutability of blockchain transactions,
asset managers are given access to an unalterable log that they can audit at any time in
future. Asset managers utilize this transactional data to securely look at information,
including earlier iterations of asset records and what modifications have been made
to the assets.

352 N. T. Haque et al.

Fig. 2 Resources required for the proposed system

3.3 Deployment of Transactions Inside Historian Registry

The registry carrying the records of transactions is known as the Historian Registry.
The Historian Registry is updated after each transaction is submitted and verified
to be correct. And thus, a complete history of every transaction made within the
network is created. In this record, along with the transaction history, information
about who made the transaction and their identities are also preserved. A report
of this Historian Registry is created in hyperledger fabric that includes transaction
information such as timestamp, initiator ID, details of the changes made and a list of
successful transactions that occurred. The Historian Registry cannot be viewed by
anyone; only people with permissioned access and proper roles can inspect it. The
declaration and definition of the queries are contained in the query document. Both
untampered information and assets are subjected to queries. The Historian Registry
and Asset Registry demonstrate the modifications recorded about the assets when
a transaction is reported, along with the participant information and their identities

Securing Farm Insurance Using a Private-Permissioned … 353

Fig. 3 Functionalities of asset and historian registries

in reporting such transactions. The Historian Registry’s listing does not include the
rejected transactions. Correspondingly, the Fabric runtime also refers to a number
of configuration-related tasks it performs as transactions. The transactions which we
identified and sought to conduct in our system can be divided into the following,
(i) CreateAsset, (ii) ReadAsset, (iii) UpdateAsset, (iv) DeleteAsset, (v) AssetEx-
ists, (vi) TransferAsset, (vii) GetAllAssets, (viii) SearchAssets. Additionally, IPFS
hash is linked to the assets. We may access the Historian Registry to obtain all of
our private blockchain transactions, which are all preserved in blocks. In conjunc-
tion with asset ID, the Historian Registry is also categorized by asset ID, which is
responsible for carrying out the transaction, and transaction genre. Like traditional
databases, hyperledger fabric facilitates queries, by utilizing this feature inside the
Historian Registry, any transaction’s status may be confirmed. Figure 3 shows the
implementation of queries to acquire asset, transaction, and heavyweight data from
IPFS.

354 N. T. Haque et al.

3.4 Regulating Access Using Access Control Module

The hyperledger fabric is a type of private blockchain that has access control as a
unique feature. It refers to a script that lists the policies of a specific company. This
feature allows our system to restrict a participant’s access to the system’s resources
according to their designation and assigned function. We can limit the use of diverse
systems utilizing create, read, update and delete (CRUD) procedures because of the
extent of customizability. For instance, an insured can retrieve an insurance cover
note from Asset Registry and view what alterations were made to the document
from Historian Registry. They cannot, however, alter the documents directly. They
are permitted to use the “RequestModification” transaction to update any inaccurate
information in the document. The peer and network administrators, on the other
hand, are eligible to update the assets since they are granted permissions in the access
control script. The Historian Registry cannot be destroyed, hence accountability is
preserved.

3.5 IPFS Hosting Electronic Copies of the Documents

In Hyperledger Fabric, a constraint of the blockchain is that only textual data may be
recorded inside the blocks. Images and other large pieces of data cannot be directly
uploaded to the ledger. For our system, we need to keep image files like each appli-
cant’s NID photo, a GD copy, etc. Therefore, we require a data storage system
where the files’ electronic copies will be kept. For this, we took advantage of the
decentralized, peer-to-peer interplanetary file system (IPFS). However, before we
can connect our system to the IPFS network, we must first install and initialize the
IPFS client. The client is ready to upload an image file to IPFS when the daemon
has been started. Following that, we must launch a new Ubuntu terminal from the
picture file location. To upload the document’s pdf, perform the bash command “ipfs
add [nameoftheimagefile]”. As a result, a hash is produced. Following that, this hash
is added to the asset it belongs to using chaincode and transactions. Any changes
made to the uploaded soft copy will significantly alter the hash..The soft copy of the
document is downloaded and saved where the terminal is open when the command
“ipfs get [hash]” is issued.

4 Result Analysis

We had to create a real implementation using the Ubuntu 20.04 LTS operating system
and a Docker container because hyperledger fabric lacks a testing environment simi-
lar to composers (Hyperledger Composer Playground). For carrying out the necessary
duties, such as producing endorsement responses, creating blocks, and broadcasting

Securing Farm Insurance Using a Private-Permissioned … 355

Fig. 4 Setting up hyperledger fabric

Fig. 5 Uploading and retrieving insurance information from IPFS

them throughout the network; the endorsers, peers, and orderers were created. The
chaincodes are written in Javascript. In Fig. 4, the installation of prerequisites is
shown, along with the fabric setup and activation.

After uploading the relevant electronic copy of the farm insurance, the IPFS
generated a content identifier, which is what the hash in each specific asset for the
farm insurance refers to. The IPFS daemon is started, followed by the initialization of
IPFS, which is covered in the “methodology” section, in order to upload and receive
the CID of farm insurance. The farm insurance’s soft copy is uploaded using the
command “ipfs add [fileName],” and it is retrieved using “ipfs get [hash]”, as seen
in Fig. 5.

Using the “CreateAsset” transaction listed in the chaincode, we generated numer-
ous assets. The name of the specific transaction, together with any required parame-
ters, must be supplied to the Fabric network in order for it to be executed. The process
to initiate and execute the “CreateAsset” transaction has been shown in Fig. 6. We
programmed this specific transaction, so that, after generating the asset, the user is
given the success message through the asset details in the Ubuntu bash. Additionally,
as shown in Fig. 6, the “AssetExists” transaction allows users to see if a certain asset
is present in the Fabric network by providing an asset ID as an input. The output
displays “true” if it exists and “false” otherwise.

Any existing asset may be updated using the “UpdateAsset” transaction, but in
order to do so, the fabric network must receive the name of the specific transaction

356 N. T. Haque et al.

Fig. 6 Execution of “CreateAsset” and “AssetExists” transactions

Fig. 7 Execution of “UpdateAsset” and “ReadAsset” transactions

as well as any necessary parameters as shown in Fig. 7. The “ReadAsset” transaction
(Fig. 7), which accepts the asset ID as an input, and the “SearchAssets” transaction
(Fig. 8a), allow users to get specific assets from our system. In “SearchAssets”, any
asset parameter from the assets can be used, instead of the NID. The asset ID must
be entered when using the “DeleteAsset” operation to remove any asset, as shown
using Fig. 8a and b. A demonstration of using the “GetAllAssets” transaction to get
all the data associated with the farm insurance is displayed in Fig. 8b.

In addition, we developed our system using both Ethereum and Bitcoin. We used
the Remix IDE and the solidity programming language to build our Ethereum-
based solution. From GitHub, we downloaded an example Bitcoin project that
uses the “Python-bitcoinlib” package to implement Bitcoin. All three solutions,
including hyperledger fabric, had their throughput evaluated. For Ethereum, the
“block.number” and “block.timestamp” functions from the solidity programming
language were utilized; for Bitcoin implementation, the “time.time” and “time.now”
functions from the “time” library of Python were used. Table 1 shows that fabric
appears to be even better suited for getting farm insurance than the other two sys-
tems since it has the lowest throughput of the three blockchain-based systems.

Securing Farm Insurance Using a Private-Permissioned … 357

Fig. 8 Searching and deleting assets from asset registry

Table 1 Throughput comparison among the fabric-based system, Ethereum and Bitcoin

Amount of
transactions (Txns)

Required time in
hyperledger (s)

Required time in
Ethereum (s)

Required time in
Bitcoin (s)

620 18.6 40.4 89.3

550 16.7 39.7 86.4

470 13.4 37.6 84.2

365 12.5 35.3 83.5

240 10.8 33.8 81.1

170 8.9 32.5 79.6

Required time to execute per transaction on average

Hyperledger Ethereum Bitcoin

0.021 0.183 0.642

358 N. T. Haque et al.

5 Conclusion and Future Recommendations

In our research, we developed a system that allows a person who owns a farm to secure
farm insurance using the hyperledger fabric private blockchain, which is intended
to provide protection to farm owners in the case of a catastrophe or loss that farm
owners cannot afford. It also addresses all essential blockchain elements including
tracking, verification, and validation. To verify that our chaincodes are accurate, a
few contractual tests have been carried out. IPFS makes sure that all information
saved on the blockchain network is encrypted, allowing only the insurance buyer to
read and distribute it as they see fit.

We experienced a few complexities while developing the system. For example,
each fabric version causes a change in the chaincode commands. As we used version
2.3.1, its chaincodes may not work in other versions. Also, there is no testing platform
for fabric; the entire system can only be tested after implementation.

Moreover, we did not create any front end for our system which makes it hard to
utilize the system. In future, we hope to develop a Web client for our system to make
the system user-friendly. In addition, we hope to utilize the OCR functionality which
recognizes texts of the digital image. By using such technology to scan images, users
would be able to automatically add data or information from any image, eliminating
the need for human entry.

References

1. Aleksieva V, Valchanov H, Huliyan A (2019) Application of smart contracts based on Ethereum
blockchain for the purpose of insurance services. In: 2019 international conference on biomed-
ical innovations and applications (BIA). IEEE, pp 1–4

2. Gatteschi V, Lamberti F, Demartini C, Pranteda C, Santamaría V (2018) Blockchain and smart
contracts for insurance: is the technology mature enough? Future Internet 10(2):20

3. Hassan A, Ali M, Ahammed R, Khan MM, Alsufyani N, Alsufyani A et al (2021) Secured
insurance framework using blockchain and smart contract. Sci Program 2021

4. Jha N, Prashar D, Khalaf OI, Alotaibi Y, Alsufyani A, Alghamdi S (2021) Blockchain based crop
insurance: a decentralized insurance system for modernization of Indian farmers. Sustainability
13(16):8921

5. Lepoint T, Ciocarlie G, Eldefrawy K (2018) Blockcis—a blockchain-based cyber insurance
system. In: 2018 IEEE international conference on cloud engineering (IC2E). IEEE, pp 378–
384

6. Loukil F, Boukadi K, Hussain R, Abed M (2021) Ciosy: a collaborative blockchain-based
insurance system. Electronics 10(11):1343

7. Nguyen T, Das A, Tran L (2019) Neo smart contract for drought-based insurance. In: 2019
IEEE Canadian conference of electrical and computer engineering (CCECE). IEEE, pp 1–4

8. Raikwar M, Mazumdar S, Ruj S, Gupta SS, Chattopadhyay A, Lam KY (2018) A blockchain
framework for insurance processes. In: 2018 9th IFIP international conference on new tech-
nologies, mobility and security (NTMS). IEEE, pp 1–4

9. Reno S, Haque M (2023) Utilizing off-chain storage protocol for solving the trilemma issue of
blockchain. In: Emerging technologies in data mining and information security. Springer, pp
169–179

Securing Farm Insurance Using a Private-Permissioned … 359

10. Roriz R, Pereira JL (2019) Avoiding insurance fraud: a blockchain-based solution for the
vehicle sector. Procedia Comput Sci 164:211–218

11. Vakilinia I, Badsha S, Sengupta S (2018) Crowdfunding the insurance of a cyber-product using
blockchain. In: 2018 9th IEEE annual ubiquitous computing, electronics & mobile communi-
cation conference (UEMCON). IEEE, pp 964–970

12. Zhou L, Wang L, Sun Y (2018) Mistore: a blockchain-based medical insurance storage system.
J Med Syst 42(8):1–17

	 Securing Farm Insurance Using a Private-Permissioned Blockchain Driven by Hyperledger Fabric and IPFS
	1 Introduction
	2 Literature Review
	3 Methodology
	3.1 Resources of the Network
	3.2 Initiating and Processing Transactions
	3.3 Deployment of Transactions Inside Historian Registry
	3.4 Regulating Access Using Access Control Module
	3.5 IPFS Hosting Electronic Copies of the Documents

	4 Result Analysis
	5 Conclusion and Future Recommendations
	References

