
Mathematical Model for Improving
Cloud Load Balancing Using Scheduling
Algorithms

Prathamesh Vijay Lahande and Parag Ravikant Kaveri

1 Introduction

Cloud is a network that provides on-demand services to the end user over the Internet
[1, 2]. Among several services, computing is an essential service provided by the
cloud, so users can opt to process and execute their tasks on the cloud computing
environment rather than on their local machines [1, 3]. By using limited resources,
the cloud uses resource scheduling algorithms and executes the tasks on the cloud
Virtual Machines (VMs) by trying to maintain a smooth flow of high task execution
and maintain its on-demand availability characteristics [4, 5]. However, the cloud
faces major issues and challenges with respect to improper load balancing when the
requests are high, and the cloud resources are not available [2]. With accurate load
balancing, the cloud can provide better cost and time for processing and executing
tasks, otherwise will output limited results. Hence, it becomes essential to study
the resource scheduling algorithms with respect to load balancing. The resource
scheduling algorithms considered for this study are Max–Min (MX–MN), Minimum
Completion Time (MCT), and Min–Min (MN–MN). The tasks are executed in a
simulation environment and results are compared with respect to the load-balancing
mechanism. The reinforcement learning (RL) [5] mechanism is proposed at the end to
improve the load balancing and resource scheduling mechanisms. The research paper
is organized as follows: Sect. 2 provides the literature review. Section 3 includes the
experimental setup. Section 4 includes the mathematical model for load balancing.
Section 5 includes the empirical analysis, followed by the conclusion in Sect. 6.

P. V. Lahande · P. R. Kaveri (B)
Symbiosis Institute of Computer Studies and Research, Symbiosis International (Deemed
University), Pune, India
e-mail: parag.kaveri@sicsr.ac.in

P. V. Lahande
e-mail: prathamesh.lahande@sicsr.ac.in

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
J. K. Mandal et al. (eds.), Proceedings of International Conference on Network Security
and Blockchain Technology, Lecture Notes in Networks and Systems 738,
https://doi.org/10.1007/978-981-99-4433-0_28

333

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-4433-0_28&domain=pdf
mailto:parag.kaveri@sicsr.ac.in
mailto:prathamesh.lahande@sicsr.ac.in
https://doi.org/10.1007/978-981-99-4433-0_28

334 P. V. Lahande and P. R. Kaveri

2 Literature Review

The load-balancing problem is an NP-hard problem. Several researchers have
designed and presented their work to address and solve this load-balancing issue.
The researchers have proposed a hybrid task scheduling algorithm made from the
MX–MN, MN–MN, and genetic algorithm to reduce the makespan and enhance the
load balances between the resources [6]. The major use of this hybrid algorithm is the
genetic algorithm which decides which tasks should use MX–MN and which ones
should use MN–MN. This paper proposed a load-balancing virtual network functions
deployment scheme to balance the physical machine loads to save the deployment
and migration costs [3]. To improve the poor resource scheduling performance, the
researchers have proposed a fuzzy iterative algorithm for the cloud computing envi-
ronment [7]. The experimental results of this algorithm depict that it can improve the
load-balancing mechanism and management efficiency of the cloud platform. This
paper presents a load-balancing mechanism applied to a software-defining network
in a cloud environment [8]. To balance the load in the host machines, a strategy is
presented based on machine learning for Virtual Machine replacement [9].

The researchers have provided a load-balancing scheme to the proposed three-
layer mobile hybrid hierarchical peer-to-peer model to balance the load with
increasing mobile edge computing servers and query loads [10]. A load-balanced
service scheduling approach is presented in this paper, which considers load
balancing when scheduling requests to resources using classifications such as impor-
tant, real time, or time tolerant [11]. This approach also considers the rate of failure
of resources to provide better reliability to all the requests. A scheduling method
named dynamic resource allocation for the purpose of load balancing is proposed
to improve the load imbalance, which affects the scheduling efficiency and resource
utilization [4]. The researchers have proposed a load-balancing algorithm to dynam-
ically balance the cloud load in the present work [12]. A novel load-balancing task
scheduling algorithm is proposed by combining the dragonfly and firefly algorithms
[13]. The researchers have proposed scheduling algorithms for the heterogenous
cloud environment to balance the load and time of resources [14].

The researchers have provided a mechanism to ensure that each node in the cloud
is appropriately balanced [15]. A hybrid soft computing-inspired technique is intro-
duced to achieve an optimal load of the VMs by tutoring the cloud environment
[16]. This technique gives better load-balancing results when compared to other
existing algorithms. To minimize the load balancing and overall migration over-
head, the researchers have proposed a load-balancing method to provide a probable
assurance against resource overloading with VM migration [17]. The researchers
have presented two algorithms to distribute the cloud physical resources to obtain
load-balancing consolidated systems with minimum power, memory, and time or
processing [18]. The researchers have contributed three algorithms to improve the
load-balancing mechanism [19]. The researchers have proposed a combination of the
swarm intelligence algorithm of an artificial bee colony with the heuristic algorithm
to improve the load balancing and makespan and minimize the makespan [20].

Mathematical Model for Improving Cloud Load Balancing Using … 335

Fig. 1 Architecture of the conducted experiment

3 Experimental Setup

An experiment was conducted in the WorkflowSim environment where the Cyber-
shake tasks are processed and executed on the cloud VMs in four scenarios. The
Cybershake 30, 50, 100, and 1000 tasks are processed and executed in each scenario
on the cloud VMs in the series: 5, 10, 15, …, and 50. All these tasks are submitted
to the cloud for processing and execution. The cloud accepts these tasks and places
them in the ready queue, which contains a list of all the tasks waiting to be assigned a
VM. The respective resource scheduling algorithm selects the tasks from this ready
queue, performs the load-balancing mechanism, and appropriately schedules it to
the target VM. Figure 1 depicts the architecture of the conducted experiment.

4 Mathematical Model for Load Balancing

This section includes the mathematical model for load balancing using the resource
scheduling algorithms MX–MN, MCT, and MN–MN.

The task set of the Cybershake dataset used for the experiment is as follows:

Task set = T1 + T2 + T3 + · · · + Tn.

The Virtual Machine (VM) set can be depicted as follows:

VM set = VM1 + VM2 + VM3 + · · · + VMm .

Every VM processes and executes tasks, and the count of tasks that the VM has
processed and executed is as follows:

VM(x) =
m∑

i=0

[VMi = x].

336 P. V. Lahande and P. R. Kaveri

The ideal expected load for each VM ‘m’ processing ‘n’ number of tasks in a
certain scenario is as follows:

Average(A) =
n

m
.

To measure load balance of a VM ‘VMi,’ the amount of deviation caused by the
VM ‘VMi’ from the ideal expected average load ‘A’ can be calculated as

Deviation(VMi) = Absolute

(
m∑

i=0

[VMi = x] − A

)
.

Load balancing using MX–MN scheduling algorithm: The MX–MN algorithm
first finds the minimum execution time (ET) from all the tasks. Later, it chooses the
task ‘T ’ with maximum ET from them, depicted as follows:

MX--MN(T) = Max

[
Min

[
n∑

i=0

E.T.(Ti)

]]
.

Load balancing using MCT scheduling algorithm: The MCT algorithm schedules
the task ‘T ’ based on the expected Minimum Completion Time (CT) among all the
tasks, which can be depicted as follows:

MCT(T) = Min

[
n∑

i=0

C.T.(Ti)

]
.

Load balancing using MN–MN scheduling algorithm: The MN–MN algorithm
first finds the minimum execution time (ET) from all the tasks. Later, it chooses the
task ‘T ’ with minimum ET from them. The below equation depicts the same:

MN--MN(T) = Min

[
Min

[
n∑

i=0

E.T.(Ti)

]]
.

5 Empirical Analysis of the Results and Their Implications

This section includes the detailed empirical analysis of the results of the experiment
conducted with respect to the load-balancing mechanism along with their implica-
tions, which is further divided into four sub-sections: Sections 5.1, 5.2, 5.3, and 5.4

Mathematical Model for Improving Cloud Load Balancing Using … 337

include the empirical analysis with respect to load balancing for Cybershake 30, 50,
100, and 1000 tasks, respectively.

5.1 Scenario 1: Empirical Analysis with Respect
to Cybershake 30 Tasks

Table 1 depicts the deviation percentage of algorithms for Cybershake 30 tasks.
Figure 2 depicts the deviation graph of algorithms for Cybershake 30.

Table 1 Deviation
percentage of load balancing
for Cybershake 30

VMs MX–MN MCT MN–MN

5 56.7742 42.5806 61.9355

10 37.276 56.6308 91.0394

15 37.276 56.6308 91.0394

20 37.276 56.6308 91.0394

25 37.276 56.6308 91.0394

30 37.276 56.6308 91.0394

35 37.276 56.6308 91.0394

40 37.276 56.6308 91.0394

45 37.276 56.6308 91.0394

50 37.276 56.6308 91.0394

Fig. 2 Deviation graph for resource scheduling algorithms for Cybershake 30

338 P. V. Lahande and P. R. Kaveri

Table 2 Empirical analysis of load balancing with respect to Cybershake 30 tasks

Parameter MX–MN MCT MN–MN

Linear regression equation y = −1.60x + 45.0 y = 0.76x + 51.01 y = 1.58x + 79.39
Regression line slope − 1.6035 0.7664 1.5875

Y-intercept 45.07 51.011 79.398

Relationship Negative Positive Positive

R2 value 0.2727 0.2727 0.2727

VM–LB analysis ↑ VM = ↑ LB ↑ VM = ↓ LB ↑ VM = ↓ LB
Performance MX–MN ≈ MCT ≈ MN–MN

Table 2 depicts the empirical analysis of load balancing for the resource scheduling
algorithms with respect to Cybershake 30 tasks.

From Fig. 2, Tables 1 and 2, following points can be observed for Cybershake 30
tasks:

• ↑ VM = ↑ LB: As VMs increase, load balancing improves for MX–MN.
• ↑VM = ↓LB: As VMs increase, load balancing degrades for MCT and MN–MN.
• Performance (MX–MN) ≈ Performance (MCT) ≈ Performance (MN–MN).

5.2 Empirical Analysis with Respect to Cybershake 50 Tasks

Table 3 depicts the deviation percentage of algorithms for Cybershake 50 tasks.
Figure 3 depicts the deviation graph of algorithms for Cybershake 50.
Table 4 depicts the empirical analysis of load balancing for the resource scheduling

algorithms with respect to Cybershake 50 tasks.
From Fig. 3, Tables 3 and 4, following points can be observed for Cybershake 50

tasks:

Table 3 Deviation
percentage of load balancing
for Cybershake 50

VMs MX–MN MCT MN–MN

5 29.8039 49.4118 33.7255

10 58.0392 69.8039 61.1765

15 61.1765 80.0000 81.5686

20 66.1765 87.2549 87.9902

25 66.1765 87.2549 87.9902

30 66.1765 87.2549 87.9902

35 66.1765 87.2549 87.9902

40 66.1765 87.2549 87.9902

45 66.1765 87.2549 87.9902

50 66.1765 87.2549 87.9902

Mathematical Model for Improving Cloud Load Balancing Using … 339

Fig. 3 Deviation graph for resource scheduling algorithms for Cybershake 50

Table 4 Empirical analysis of load balancing with respect to Cybershake 50 tasks

Parameter MX–MN MCT MN–MN

Linear regression equation y = 2.48x + 47.58 y = 3.02x + 64.36 y = 4.29x + 55.63
Regression line slope 2.4807 3.0244 4.292

Y-intercept 47.582 64.366 55.634

Relationship Positive Positive Positive

R2 value 0.4343 0.5398 0.5171

VM–LB analysis ↑ VM = ↓ LB ↑ VM = ↓ LB ↑ VM = ↓ LB
Performance MX–MN > MN–MN > MCT

• ↑ VM = ↓ LB: As VMs increases, load balancing degrades for all algorithms.
• Performance (MX–MN) > Performance (MN–MN) > Performance (MCT).

5.3 Empirical Analysis with Respect to Cybershake 100 Tasks

Table 5 depicts the deviation percentage of algorithms for Cybershake 100 tasks.
Figure 4 depicts the deviation graph of algorithms for Cybershake 100.
Table 6 depicts the empirical analysis of load balancing for the resource scheduling

algorithms with respect to Cybershake 100 tasks.
From Fig. 4, Tables 5 and 6, following points can be observed for Cybershake

100 tasks:

• ↑ VM = ↓ LB: As VMs increase, load balancing degrades for all algorithms.

340 P. V. Lahande and P. R. Kaveri

Table 5 Deviation
percentage of load balancing
for Cybershake 100

VMs MX–MN MCT MN–MN

5 18.2178 41.1881 11.0891

10 40.5941 38.8119 39.0099

15 20.5941 50.165 48.1848

20 44.9505 54.7525 58.9109

25 56.7129 72.7129 76.7525

30 64.7808 77.5106 81.8953

35 64.7808 77.5106 81.8953

40 64.7808 77.5106 81.8953

45 64.7808 77.5106 81.8953

50 64.7808 77.5106 81.8953

Fig. 4 Deviation graph for resource scheduling algorithms for Cybershake 100

Table 6 Empirical analysis of load balancing with respect to Cybershake 100 tasks

Parameter MX–MN MCT MN–MN

Linear regression equation y = 5.31x + 21.26 y = 4.89x + 37.59 y = 7.15x + 25.00
Regression line slope 5.3143 4.8945 7.1521

Y-intercept 21.268 37.599 25.006

Relationship Positive Positive Positive

R2 value 0.7459 0.8175 0.7725

VM–LB analysis ↑ VM = ↓ LB ↑ VM = ↓ LB ↑ VM = ↓ LB
Performance MX–MN > MN–MN > MCT

Mathematical Model for Improving Cloud Load Balancing Using … 341

Table 7 Deviation
percentage of load balancing
for Cybershake 1000

VMs MX–MN MCT MN–MN

5 2.5175 3.3567 1.9581

10 2.9571 11.6684 7.9321

15 7.1795 21.2055 8.9644

20 3.5665 20.2698 10.9091

25 4.9791 22.6654 13.8982

30 19.374 28.2918 13.4333

35 21.3387 38.2818 17.8622

40 34.6554 37.2828 15.3247

45 6.9842 41.7317 17.0541

50 4.5795 43.2808 20.4956

• Performance (MX–MN) > Performance (MN–MN) > Performance (MCT).

5.4 Empirical Analysis with Respect to Cybershake 1000
Tasks

Table 7 depicts the deviation percentage of algorithms for Cybershake 1000 tasks.
Figure 5 depicts the deviation graph of algorithms for Cybershake 1000.
Table 8 depicts the empirical analysis of load balancing for the resource scheduling

algorithms with respect to Cybershake 100 tasks.

Fig. 5 Deviation graph for resource scheduling algorithms for Cybershake 1000

342 P. V. Lahande and P. R. Kaveri

Table 8 Empirical analysis of load balancing with respect to Cybershake 1000 tasks

Parameter MX–MN MCT MN–MN

Linear regression equation y = 1.52x + 2.41 y = 4.30x + 3.14 y = 1.71x + 3.35
Regression line slope 1.5263 4.3019 1.7145

Y-intercept 2.4185 3.1431 3.3536

Relationship Positive Positive Positive

R2 value 0.1855 0.9494 0.8966

VM–LB analysis ↑ VM = ↓ LB ↑ VM = ↓ LB ↑ VM = ↓ LB
Performance MX–MN > MN–MN > MCT

From Fig. 5, Tables 7 and 8, following points can be observed for Cybershake
1000 tasks:

• ↑ VM = ↓ LB: As VMs increase, load balancing degrades for all algorithms.
• Performance (MX–MN) > Performance (MN–MN) > Performance (MCT).

6 Conclusion

Load balancing plays a critical role in improving cloud performance. With an
enhanced load-balancing technique, the performance of the cloud will be enhanced;
otherwise, the cloud faces increased downtime with improper load balancing. There-
fore, it becomes vital to study the resource scheduling algorithms with respect
to the load-balancing mechanism. In this research paper, the Cybershake 30, 50,
100, and 1000 tasks were processed and executed in the WorkflowSim environment
utilizing the resource scheduling algorithms MX–MN, MCT, and MN–MN under
four different scenarios. Based on the experiment, results, and empirical analysis, it
can be concluded that the load balancing degrades as the number of tasks increases
in each scenario. The performance of all these algorithms is similar when the task
size is comparatively smaller. With a gradual increase in the tasks in every scenario,
the MX–MN algorithm gives the best performance, followed by performances of
MN–MN and MCT algorithms, respectively. To improve the load-balancing mech-
anism, the cloud system should be provided with an intelligence mechanism. The
machine learning (ML) technique of reinforcement learning (RL) is well known for
enhancing the performance of any system when applied to it. RL’s mechanism is
similar to how humans learn, i.e., using feedback, trial and error, and past experi-
ences. The significant advantage of applying RL to the cloud is that no past data is
required for the cloud to learn. The cloud will first be in a learning phase with RL.
Over time, the cloud system will understand and adapt load balancing, improve its
resource scheduling, and ultimately improve the overall cloud performance.

Mathematical Model for Improving Cloud Load Balancing Using … 343

References

1. Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rabkin
A, Stoica I, Zaharia M (2010) A view of cloud computing. Commun ACM 53(4):50–58

2. Dillon T, Wu C, Chang E (2010) Cloud computing: issues and challenges. In: 2010 24th IEEE
international conference on advanced information networking and applications

3. Wang YC, Wu SH (2022) Efficient deployment of virtual network functions to achieve load
balance in cloud networks. In: 2022 23rd Asia-Pacific network operations and management
symposium (APNOMS)

4. Chhabra S, Singh AK (2021) Dynamic resource allocation method for load balance scheduling
over cloud data center networks. J Web Eng

5. Vengerov D (2007) A reinforcement learning approach to dynamic resource allocation. Eng
Appl Artif Intell 20(3):383–390

6. Aref IS, Kadum J, Kadum A (2022) Optimization of max-min and min-min task scheduling
algorithms using G.A in cloud computing. In: 2022 5th International conference on engineering
technology and its applications (IICETA)

7. Bin D, Yu T, Li X (2021) Research on load balancing dispatching method of power network
based on cloud computing. J Phys Conf Ser 1852(2):022047

8. Omer YAH, Mohammedel-Amin MA, Mustafa ABA (2021) Load balance in cloud computing
using software defined networking. In: 2020 International conference on computer, control,
electrical, and electronics engineering (ICCCEEE)

9. Ghasemi A, Toroghi Haghighat A (2020) A multi-objective load balancing algorithm for virtual
machine placement in cloud data centers based on machine learning. Computing 102(9):2049–
2072

10. Duan Z, Tian C, Zhang N, Zhou M, Yu B, Wang X, Guo J, Wu Y (2022) A novel load balancing
scheme for mobile edge computing. J Syst Softw 186:111195

11. Alqahtani F, Amoon M, Nasr AA (2021) Reliable scheduling and load balancing for requests
in cloud-fog computing. Peer Peer Netw Appl 14(4):1905–1916

12. Negi S, Rauthan MMS, Vaisla KS, Panwar N (2021) CMODLB: an efficient load balancing
approach in cloud computing environment. J Supercomput 77(8):8787–8839

13. Neelima P, Reddy ARM (2020) An efficient load balancing system using adaptive dragonfly
algorithm in cloud computing. Clust Comput 23(4):2891–2899

14. Lin W, Peng G, Bian X, Xu S, Chang V, Li Y (2019) Scheduling algorithms for heterogeneous
cloud environment: main resource load balancing algorithm and time balancing algorithm. J
Grid Comput 17(4):699–726

15. Kaviarasan R, Harikrishna P, Arulmurugan A (2022) Load balancing in cloud environment
using enhanced migration and adjustment operator-based monarch butterfly optimization. Adv
Eng Softw 169:103128

16. Negi S, Panwar N, Rauthan MMS, Vaisla KS (2021) Novel hybrid ANN and clustering inspired
load balancing algorithm in cloud environment. Appl Soft Comput 113:107963

17. Yu L, Chen L, Cai Z, Shen H, Liang Y, Pan Y (2020) Stochastic load balancing for virtual
resource management in datacenters. IEEE Trans Cloud Comput 8(2):459–472

18. Nashaat H, Ashry N, Rizk R (2019) Smart elastic scheduling algorithm for virtual machine
migration in cloud computing. J Supercomput 75(7):3842–3865

19. Saber W, Moussa W, Ghuniem AM, Rizk R (2021) Hybrid load balance based on genetic
algorithm in cloud environment. Int J Electr Comput Eng (IJECE) 11(3):2477

20. Kruekaew B, Kimpan W (2020) Enhancing of artificial bee colony algorithm for virtual machine
scheduling and load balancing problem in cloud computing. Int J Comput Intell Syst 13(1):496

	 Mathematical Model for Improving Cloud Load Balancing Using Scheduling Algorithms
	1 Introduction
	2 Literature Review
	3 Experimental Setup
	4 Mathematical Model for Load Balancing
	5 Empirical Analysis of the Results and Their Implications
	5.1 Scenario 1: Empirical Analysis with Respect to Cybershake 30 Tasks
	5.2 Empirical Analysis with Respect to Cybershake 50 Tasks
	5.3 Empirical Analysis with Respect to Cybershake 100 Tasks
	5.4 Empirical Analysis with Respect to Cybershake 1000 Tasks

	6 Conclusion
	References

