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1 Introduction 

Cloud is a network that provides on-demand services to the end user over the Internet 
[1, 2]. Among several services, computing is an essential service provided by the 
cloud, so users can opt to process and execute their tasks on the cloud computing 
environment rather than on their local machines [1, 3]. By using limited resources, 
the cloud uses resource scheduling algorithms and executes the tasks on the cloud 
Virtual Machines (VMs) by trying to maintain a smooth flow of high task execution 
and maintain its on-demand availability characteristics [4, 5]. However, the cloud 
faces major issues and challenges with respect to improper load balancing when the 
requests are high, and the cloud resources are not available [2]. With accurate load 
balancing, the cloud can provide better cost and time for processing and executing 
tasks, otherwise will output limited results. Hence, it becomes essential to study 
the resource scheduling algorithms with respect to load balancing. The resource 
scheduling algorithms considered for this study are Max–Min (MX–MN), Minimum 
Completion Time (MCT), and Min–Min (MN–MN). The tasks are executed in a 
simulation environment and results are compared with respect to the load-balancing 
mechanism. The reinforcement learning (RL) [5] mechanism is proposed at the end to 
improve the load balancing and resource scheduling mechanisms. The research paper 
is organized as follows: Sect. 2 provides the literature review. Section 3 includes the 
experimental setup. Section 4 includes the mathematical model for load balancing. 
Section 5 includes the empirical analysis, followed by the conclusion in Sect. 6.
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2 Literature Review 

The load-balancing problem is an NP-hard problem. Several researchers have 
designed and presented their work to address and solve this load-balancing issue. 
The researchers have proposed a hybrid task scheduling algorithm made from the 
MX–MN, MN–MN, and genetic algorithm to reduce the makespan and enhance the 
load balances between the resources [6]. The major use of this hybrid algorithm is the 
genetic algorithm which decides which tasks should use MX–MN and which ones 
should use MN–MN. This paper proposed a load-balancing virtual network functions 
deployment scheme to balance the physical machine loads to save the deployment 
and migration costs [3]. To improve the poor resource scheduling performance, the 
researchers have proposed a fuzzy iterative algorithm for the cloud computing envi-
ronment [7]. The experimental results of this algorithm depict that it can improve the 
load-balancing mechanism and management efficiency of the cloud platform. This 
paper presents a load-balancing mechanism applied to a software-defining network 
in a cloud environment [8]. To balance the load in the host machines, a strategy is 
presented based on machine learning for Virtual Machine replacement [9]. 

The researchers have provided a load-balancing scheme to the proposed three-
layer mobile hybrid hierarchical peer-to-peer model to balance the load with 
increasing mobile edge computing servers and query loads [10]. A load-balanced 
service scheduling approach is presented in this paper, which considers load 
balancing when scheduling requests to resources using classifications such as impor-
tant, real time, or time tolerant [11]. This approach also considers the rate of failure 
of resources to provide better reliability to all the requests. A scheduling method 
named dynamic resource allocation for the purpose of load balancing is proposed 
to improve the load imbalance, which affects the scheduling efficiency and resource 
utilization [4]. The researchers have proposed a load-balancing algorithm to dynam-
ically balance the cloud load in the present work [12]. A novel load-balancing task 
scheduling algorithm is proposed by combining the dragonfly and firefly algorithms 
[13]. The researchers have proposed scheduling algorithms for the heterogenous 
cloud environment to balance the load and time of resources [14]. 

The researchers have provided a mechanism to ensure that each node in the cloud 
is appropriately balanced [15]. A hybrid soft computing-inspired technique is intro-
duced to achieve an optimal load of the VMs by tutoring the cloud environment 
[16]. This technique gives better load-balancing results when compared to other 
existing algorithms. To minimize the load balancing and overall migration over-
head, the researchers have proposed a load-balancing method to provide a probable 
assurance against resource overloading with VM migration [17]. The researchers 
have presented two algorithms to distribute the cloud physical resources to obtain 
load-balancing consolidated systems with minimum power, memory, and time or 
processing [18]. The researchers have contributed three algorithms to improve the 
load-balancing mechanism [19]. The researchers have proposed a combination of the 
swarm intelligence algorithm of an artificial bee colony with the heuristic algorithm 
to improve the load balancing and makespan and minimize the makespan [20].
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Fig. 1 Architecture of the conducted experiment 

3 Experimental Setup 

An experiment was conducted in the WorkflowSim environment where the Cyber-
shake tasks are processed and executed on the cloud VMs in four scenarios. The 
Cybershake 30, 50, 100, and 1000 tasks are processed and executed in each scenario 
on the cloud VMs in the series: 5, 10, 15, …, and 50. All these tasks are submitted 
to the cloud for processing and execution. The cloud accepts these tasks and places 
them in the ready queue, which contains a list of all the tasks waiting to be assigned a 
VM. The respective resource scheduling algorithm selects the tasks from this ready 
queue, performs the load-balancing mechanism, and appropriately schedules it to 
the target VM. Figure 1 depicts the architecture of the conducted experiment. 

4 Mathematical Model for Load Balancing 

This section includes the mathematical model for load balancing using the resource 
scheduling algorithms MX–MN, MCT, and MN–MN. 

The task set of the Cybershake dataset used for the experiment is as follows: 

Task set = T1 + T2 + T3 +  · · ·  +  Tn. 

The Virtual Machine (VM) set can be depicted as follows: 

VM set = VM1 + VM2 + VM3 +  · · ·  +  VMm . 

Every VM processes and executes tasks, and the count of tasks that the VM has 
processed and executed is as follows: 

VM(x) = 
m∑

i=0 

[VMi = x].
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The ideal expected load for each VM ‘m’ processing ‘n’ number of tasks in a 
certain scenario is as follows: 

Average(A) = 
n 

m 
. 

To measure load balance of a VM ‘VMi,’ the amount of deviation caused by the 
VM ‘VMi’ from the ideal expected average load ‘A’ can be calculated as 

Deviation(VMi ) = Absolute

(
m∑

i=0 

[VMi = x] −  A

)
. 

Load balancing using MX–MN scheduling algorithm: The MX–MN algorithm 
first finds the minimum execution time (ET) from all the tasks. Later, it chooses the 
task ‘T ’ with maximum ET from them, depicted as follows: 

MX--MN(T ) = Max

[
Min

[
n∑

i=0 

E.T.(Ti )

]]
. 

Load balancing using MCT scheduling algorithm: The MCT algorithm schedules 
the task ‘T ’ based on the expected Minimum Completion Time (CT) among all the 
tasks, which can be depicted as follows: 

MCT(T ) = Min

[
n∑

i=0 

C.T.(Ti )

]
. 

Load balancing using MN–MN scheduling algorithm: The MN–MN algorithm 
first finds the minimum execution time (ET) from all the tasks. Later, it chooses the 
task ‘T ’ with minimum ET from them. The below equation depicts the same: 

MN--MN(T ) = Min

[
Min

[
n∑

i=0 

E.T.(Ti )

]]
. 

5 Empirical Analysis of the Results and Their Implications 

This section includes the detailed empirical analysis of the results of the experiment 
conducted with respect to the load-balancing mechanism along with their implica-
tions, which is further divided into four sub-sections: Sections 5.1, 5.2, 5.3, and 5.4
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include the empirical analysis with respect to load balancing for Cybershake 30, 50, 
100, and 1000 tasks, respectively. 

5.1 Scenario 1: Empirical Analysis with Respect 
to Cybershake 30 Tasks 

Table 1 depicts the deviation percentage of algorithms for Cybershake 30 tasks. 
Figure 2 depicts the deviation graph of algorithms for Cybershake 30. 

Table 1 Deviation 
percentage of load balancing 
for Cybershake 30 

VMs MX–MN MCT MN–MN 

5 56.7742 42.5806 61.9355 

10 37.276 56.6308 91.0394 

15 37.276 56.6308 91.0394 

20 37.276 56.6308 91.0394 

25 37.276 56.6308 91.0394 

30 37.276 56.6308 91.0394 

35 37.276 56.6308 91.0394 

40 37.276 56.6308 91.0394 

45 37.276 56.6308 91.0394 

50 37.276 56.6308 91.0394 

Fig. 2 Deviation graph for resource scheduling algorithms for Cybershake 30
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Table 2 Empirical analysis of load balancing with respect to Cybershake 30 tasks 

Parameter MX–MN MCT MN–MN 

Linear regression equation y = −1.60x + 45.0 y = 0.76x + 51.01 y = 1.58x + 79.39 
Regression line slope − 1.6035 0.7664 1.5875 

Y-intercept 45.07 51.011 79.398 

Relationship Negative Positive Positive 

R2 value 0.2727 0.2727 0.2727 

VM–LB analysis ↑ VM = ↑  LB ↑ VM = ↓  LB ↑ VM = ↓  LB 
Performance MX–MN ≈ MCT ≈ MN–MN 

Table 2 depicts the empirical analysis of load balancing for the resource scheduling 
algorithms with respect to Cybershake 30 tasks. 

From Fig. 2, Tables 1 and 2, following points can be observed for Cybershake 30 
tasks: 

• ↑ VM = ↑  LB: As VMs increase, load balancing improves for MX–MN. 
• ↑VM = ↓LB: As VMs increase, load balancing degrades for MCT and MN–MN. 
• Performance (MX–MN) ≈ Performance (MCT) ≈ Performance (MN–MN). 

5.2 Empirical Analysis with Respect to Cybershake 50 Tasks 

Table 3 depicts the deviation percentage of algorithms for Cybershake 50 tasks. 
Figure 3 depicts the deviation graph of algorithms for Cybershake 50.
Table 4 depicts the empirical analysis of load balancing for the resource scheduling 

algorithms with respect to Cybershake 50 tasks.
From Fig. 3, Tables 3 and 4, following points can be observed for Cybershake 50 

tasks:

Table 3 Deviation 
percentage of load balancing 
for Cybershake 50 

VMs MX–MN MCT MN–MN 

5 29.8039 49.4118 33.7255 

10 58.0392 69.8039 61.1765 

15 61.1765 80.0000 81.5686 

20 66.1765 87.2549 87.9902 

25 66.1765 87.2549 87.9902 

30 66.1765 87.2549 87.9902 

35 66.1765 87.2549 87.9902 

40 66.1765 87.2549 87.9902 

45 66.1765 87.2549 87.9902 

50 66.1765 87.2549 87.9902 
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Fig. 3 Deviation graph for resource scheduling algorithms for Cybershake 50

Table 4 Empirical analysis of load balancing with respect to Cybershake 50 tasks 

Parameter MX–MN MCT MN–MN 

Linear regression equation y = 2.48x + 47.58 y = 3.02x + 64.36 y = 4.29x + 55.63 
Regression line slope 2.4807 3.0244 4.292 

Y-intercept 47.582 64.366 55.634 

Relationship Positive Positive Positive 

R2 value 0.4343 0.5398 0.5171 

VM–LB analysis ↑ VM = ↓  LB ↑ VM = ↓  LB ↑ VM = ↓  LB 
Performance MX–MN > MN–MN > MCT

• ↑ VM = ↓  LB: As VMs increases, load balancing degrades for all algorithms. 
• Performance (MX–MN) > Performance (MN–MN) > Performance (MCT). 

5.3 Empirical Analysis with Respect to Cybershake 100 Tasks 

Table 5 depicts the deviation percentage of algorithms for Cybershake 100 tasks.
Figure 4 depicts the deviation graph of algorithms for Cybershake 100.
Table 6 depicts the empirical analysis of load balancing for the resource scheduling 

algorithms with respect to Cybershake 100 tasks.
From Fig. 4, Tables 5 and 6, following points can be observed for Cybershake 

100 tasks:

• ↑ VM = ↓  LB: As VMs increase, load balancing degrades for all algorithms.
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Table 5 Deviation 
percentage of load balancing 
for Cybershake 100 

VMs MX–MN MCT MN–MN 

5 18.2178 41.1881 11.0891 

10 40.5941 38.8119 39.0099 

15 20.5941 50.165 48.1848 

20 44.9505 54.7525 58.9109 

25 56.7129 72.7129 76.7525 

30 64.7808 77.5106 81.8953 

35 64.7808 77.5106 81.8953 

40 64.7808 77.5106 81.8953 

45 64.7808 77.5106 81.8953 

50 64.7808 77.5106 81.8953

Fig. 4 Deviation graph for resource scheduling algorithms for Cybershake 100

Table 6 Empirical analysis of load balancing with respect to Cybershake 100 tasks 

Parameter MX–MN MCT MN–MN 

Linear regression equation y = 5.31x + 21.26 y = 4.89x + 37.59 y = 7.15x + 25.00 
Regression line slope 5.3143 4.8945 7.1521 

Y-intercept 21.268 37.599 25.006 

Relationship Positive Positive Positive 

R2 value 0.7459 0.8175 0.7725 

VM–LB analysis ↑ VM = ↓  LB ↑ VM = ↓  LB ↑ VM = ↓  LB 
Performance MX–MN > MN–MN > MCT
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Table 7 Deviation 
percentage of load balancing 
for Cybershake 1000 

VMs MX–MN MCT MN–MN 

5 2.5175 3.3567 1.9581 

10 2.9571 11.6684 7.9321 

15 7.1795 21.2055 8.9644 

20 3.5665 20.2698 10.9091 

25 4.9791 22.6654 13.8982 

30 19.374 28.2918 13.4333 

35 21.3387 38.2818 17.8622 

40 34.6554 37.2828 15.3247 

45 6.9842 41.7317 17.0541 

50 4.5795 43.2808 20.4956 

• Performance (MX–MN) > Performance (MN–MN) > Performance (MCT). 

5.4 Empirical Analysis with Respect to Cybershake 1000 
Tasks 

Table 7 depicts the deviation percentage of algorithms for Cybershake 1000 tasks. 
Figure 5 depicts the deviation graph of algorithms for Cybershake 1000. 
Table 8 depicts the empirical analysis of load balancing for the resource scheduling 

algorithms with respect to Cybershake 100 tasks.

Fig. 5 Deviation graph for resource scheduling algorithms for Cybershake 1000 
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Table 8 Empirical analysis of load balancing with respect to Cybershake 1000 tasks 

Parameter MX–MN MCT MN–MN 

Linear regression equation y = 1.52x + 2.41 y = 4.30x + 3.14 y = 1.71x + 3.35 
Regression line slope 1.5263 4.3019 1.7145 

Y-intercept 2.4185 3.1431 3.3536 

Relationship Positive Positive Positive 

R2 value 0.1855 0.9494 0.8966 

VM–LB analysis ↑ VM = ↓  LB ↑ VM = ↓  LB ↑ VM = ↓  LB 
Performance MX–MN > MN–MN > MCT 

From Fig. 5, Tables 7 and 8, following points can be observed for Cybershake 
1000 tasks: 

• ↑ VM = ↓  LB: As VMs increase, load balancing degrades for all algorithms. 
• Performance (MX–MN) > Performance (MN–MN) > Performance (MCT). 

6 Conclusion 

Load balancing plays a critical role in improving cloud performance. With an 
enhanced load-balancing technique, the performance of the cloud will be enhanced; 
otherwise, the cloud faces increased downtime with improper load balancing. There-
fore, it becomes vital to study the resource scheduling algorithms with respect 
to the load-balancing mechanism. In this research paper, the Cybershake 30, 50, 
100, and 1000 tasks were processed and executed in the WorkflowSim environment 
utilizing the resource scheduling algorithms MX–MN, MCT, and MN–MN under 
four different scenarios. Based on the experiment, results, and empirical analysis, it 
can be concluded that the load balancing degrades as the number of tasks increases 
in each scenario. The performance of all these algorithms is similar when the task 
size is comparatively smaller. With a gradual increase in the tasks in every scenario, 
the MX–MN algorithm gives the best performance, followed by performances of 
MN–MN and MCT algorithms, respectively. To improve the load-balancing mech-
anism, the cloud system should be provided with an intelligence mechanism. The 
machine learning (ML) technique of reinforcement learning (RL) is well known for 
enhancing the performance of any system when applied to it. RL’s mechanism is 
similar to how humans learn, i.e., using feedback, trial and error, and past experi-
ences. The significant advantage of applying RL to the cloud is that no past data is 
required for the cloud to learn. The cloud will first be in a learning phase with RL. 
Over time, the cloud system will understand and adapt load balancing, improve its 
resource scheduling, and ultimately improve the overall cloud performance.
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