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1 Introduction 

The World Health Organization (WHO) estimates that there are 347 million people 
living with diabetes around the globe, and that more than 80% of diabetes-related 
fatalities take place in various nations. According to projections made by the WHO, 
diabetes would rank as the seventh greatest cause of death in the year 2030. 
Diabetes can induce a condition called diabetic retinopathy, which damages the 
retina by causing blood or fluid to flow from blood vessels in the retina. The diabetic 
retinopathy may be broken down into two stages: early and advanced. The first kind 
of diabetic retinopathy is called non-proliferative diabetic retinopathy (NPDR), while 
the second type is called proliferative diabetic retinopathy (PDR). Cotton wool spots 
are the name given to the yellow and white dots. They are brought on by microinfarcts 
that occur in the retinal nerve fibre layer. The axoplasm of exploded retinal ganglion 
cell axons is extruded like toothpaste from the cell. You should be on the lookout for 
Patches that look like cotton wool scattered over the optic disc and along the temporal 
vascular arcades. Exudates is the term that’s used to describe those golden specks. 
These lipid remnants are the result of serous fluid leaking out of capillaries that have 
been damaged. And retinal haemorrhage is a condition of the eye in which bleeding 
occurs into the tissue that is located on the back wall of the eye and is responsible 
for retentive vision. A retinal haemorrhage can be caused by hypertension, retinal
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Fig. 1 Workflow for detection of cotton wool spot, exudates and haemorrhages 

vein occlusion, which refers to the blocking of a retinal vein, or diabetes mellitus, 
which causes the formation of tiny blood vessels in the retina that are fragile and 
easily destroyed. Shaking the head, especially in very young newborns, or receiving 
a significant blow to the head can also cause retinal haemorrhages [1]. Shaking 
can also cause retinal haemorrhages. Blood vessels are enhanced and segmented by 
utilising Gabor wavelet and multilayered thresholding, respectively. This computer-
aided technique for the early diagnosis of DR was proposed by Usman M. Akram 
and others. After that, they localised the optic disc by using a thresholding and an 
average filter, and then determined the border of the optic disc by using a Hough 
transform and edge detection. After the blood vessels and optic disc (OD) have been 
separated from one another, a hybrid fuzzy classifier is used to identify dark and 
bright lesions [2] (Fig. 1). 

Rupa V. L. and P. S. Kulkarni details the process of extracting a variety of elements 
from fundus pictures, including exudates, microaneurysms, optic Disc, macula, blood 
vessels, and textural attributes such as entropy, amongst other things. In addition, the 
genetic algorithm and the multilayer feed forward neural network are utilised for 
the categorization of diabetic retinopathy lesions. The work that is being suggested 
has a primary emphasis on detecting and classifying [3]. This technique achieves a 
sensitivity of 80% while also maintaining a specificity of 83%. There are a number 
of different lesions that manifest themselves, including microaneurysms, haemor-
rhages, cotton wool patches, and exudates. Exudates have a tendency to gather in a 
ring around the location of the diseased vessel and seem as yellowish-white deposits 
with well-defined borders, while cotton wool patches are also present. Since it has 
a clearly defined border, exudates are simpler to distinguish from the backdrop than 
cotton wool spots are. This is because of the difference in texture. In order to identify 
these lesions, the cotton wool patches and exudates need to be separated from the 
background using the appropriate method. Therefore, the purpose of this research is
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to suggest refining the edge in order to ease the segmentation procedure for cotton 
wool spots and exudates by reducing ramp width [4]. 

2 Methodology 

In the proposed approach, the fundus pictures first undergo preprocessing, which aims 
to eliminate noise from those images. Remove the optical disc from consideration. 
In order to get rid of the optical disc, we extract the green channel from the RGB 
image. This is done since the green channel has a higher intensity than the red 
and blue channels. After that, perform histogram equalisation so that the image is 
improved. After that, perform the intensity transformation so that the optic disc 
is brought to the forefront. After that, perform the function of the complement. 
The OD may then be removed by deleting the complement image and replacing 
it with an intensity modified image. In addition to this, remove the mask from the 
fundus picture. The process of extracting the fundus mask begins with the removal 
of the red channel from the RGB picture, followed by the use of binarization with 
a threshold. Following the completion of the preprocessing step, we use the symlet 
wavelet algorithm to extract diabetic retinopathy lesions. Wavelet analysis is notable 
for having the critical attribute of flawless reconstruction. This refers to the process 
of reassembling a deconstructed signal or picture into its original form without any 
information being lost in the process. In the process of wavelet transformation, there 
are a few different fundamental functions that might be utilised as the mother wavelet. 
Because the mother wavelet is responsible for producing all wavelet functions that 
are utilised in the transformation through translation and scaling, it is the mother 
wavelet that dictates the properties of the wavelet transform that is produced. In order 
to make good use of the wavelet transform, it is necessary to take into consideration 
the specifics of the application (Fig. 2).

Following figure shows the fundus image mask and removal of optic disc (OD) 
(Figs. 3 and 4).

Under consideration and select an acceptable mother wavelet. The shapes of the 
wavelets and their capacity to perform signal analysis in a certain context are taken 
into consideration when selecting the wavelets to use. Orthogonal and biorthog-
onal wavelet families are the two primary groups that may be identified from one 
another. The Daubechies, Coiflet, and Symlet wavelet families are all considered to 
be orthogonal [5]. The extraction of diabetic retinopathy lesions is accomplished with 
the help of symlet wavelet. Including but not limited to cotton wool spot, exudates, 
and haemorrhages.
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Fig. 2 Extracted diabetic retinopathy lesions

3 Result 

Long-term diabetes and fluctuating blood glucose levels can develop diabetic 
retinopathy, which is now the most prevalent cause of vision loss globally. It has 
developed into a serious issue among people of working age that requires speedy 
response to prevent future eyesight loss. Develop a graphical user interface tool for 
the diagnosis of diabetic retinopathy complications such cotton wool spots, haemor-
rhages, and exudates (EX). Digital image processing techniques and wavelet decom-
position with the help of symlet wavelet are utilised by our team in the process of 
detecting diabetic retinopathy lesions. The graphical user interface (GUI) tool was 
designed with MATLAB 2013a. Use certain online databases in addition to the local 
fundus image database that was created by Dr. Manoj Saswades for the purpose of 
evaluating this method. The specifics of the databases are shown in the Table 1.

Following the extraction of diabetic retinopathy lesions, statistical analysis is 
performed by calculating the mean, the variance, the standard deviation, and the 
correlation. The statistical approach for cotton wool spot is presented in the following 
Table 2.
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Fig. 3 Fundus mask

3.1 Statistical Operation on Cotton Wool Spots 

M.(x). = 
491.7 

30
= 16.39 

M.(y) = 
502.7 

30 
= 16.76 

Var.(x) =
∑(

x − X
)

N
= 

475.31 

30 
= 15.85 

Var.(y) =
∑(

y − Y
)

N
= 

485.94 

30 
= 16.19 

Std.(x) : √ 
Variance(x) = √

15.85 = 3.99 

Std.(y) : √ 
Variance(y) = √

16.19 = 4.03
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Fig. 4 Optic disc removal from fundus image

Table 1 Fundus image 
database Sr. No Name of fundus database Total images 

1 HRF (Diabetic retinopathy) [21] 15 

2 HRF (Glaucoma) [21] 15 

3 Diarect DB 1 [22] 89 

4 DRIVE [23] 40 

5 STARE [23] 402 

6 Saswade (Local) 500

Correlation: 
Where

∑(
x − X

) = 475.31,
∑(

y − Y
) = 485.94
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Table 2 Statistical techniques on diabetic retinopathy lesions 

Sr. 
No 

Manual 
counting 
of 
CWS (x) 

CWS by 
algorithm (y) 

Manual counting 
of 
haemorrhages (x) 

Haemorrhages 
by 
algorithm (y) 

Manual 
counting of 
exudates (x) 

Exudates by 
algorithm (y) 

1 612 912 120,070 120,080 35 42 

2 984 985 110,070 110,071 47 49 

3 932 932 131,600 131,602 102 106 

4 889 905 145,410 145,414 31 31 

5 204 204 138,320 138,320 68 68 

6 795 795 98,868 98,869 18 18 

7 891 891 80,622 80,627 41 41 

8 138 138 90,982 90,989 96 96 

9 137 147 113,110 113,110 89 89 

10 688 688 104,120 104,120 48 48 

11 474 474 98,650 98,650 21 21 

12 100 100 82,427 82,428 48 48 

13 136 136 121,290 121,290 302 309 

14 143 143 116,040 116,040 37 37 

15 149 149 80,753 80,753 66 66 

16 31 31 75,480 75,480 65 65 

17 88 89 87,198 87,198 39 39 

18 320 322 193,540 193,540 154 155 

19 734 734 109,350 109,350 8 8 

20 817 817 128,770 128,770 37 37

∑(
x − X

)2 = 225919.60,
∑(

y − Y
)2 = 236137.69 

r = 475.31 ∗ 485.94 √
225919.60 ∗ 236137.69 

r = 
230972.15 

230971.51 
= 1 

The value of the coefficient, denoted by r, might fall anywhere between +1 and 
−1. If one of the variables has a value of 0, it means that there is no connection 
between the other two variables. If the value is larger than zero, this shows that 
there is a positive link between the two variables; this indicates that the value of the 
other variable will also increase whenever the value of the first variable increases. 
A number that is less than zero shows an inverse relationship; this means that as
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the value of one variable increases, the value of the other variable decreases. This 
is shown by the fact that an inverse relationship is denoted by a number that is less 
than zero. 

3.2 Statistical Operation on Haemorrhages 

M.(x) = 
110105.37 

30
= 3670.17 

M.(y) = 
110106.77 

30
= 3670.2 

Var.(x) =
∑(

x − X
)

N
= 

106435.2 

30
= 3547.84 

Var.(y) =
∑(

y − Y
)

N
= 

106436.57 

30
= 3547.89 

Std.(x) : √ 
Variance(x) = √

3547.84 = 59.57 

Std.(y) : √ 
Variance(y) = √

3547.89 = 59.57 

Correlation 
Where

∑(
x − X

) = 106435.2,
∑(

y − Y
) = 106436.57,

∑(
x − X

)2 = 11328451799.1,
∑(

y − Y
)2 = 11328749819.6. 

r = 106435.2 ∗ 106436.57 √
11328451799.1 ∗ 11328749819.6 

r = 
11328597615.27 

11328597615.22 
= 1
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3.3 Statistical Operation on Exudates 

M.(x) = 
52.86666667 

30
= 1.77 

M.(y) = 
54.2 

30 
= 1.81 

Var.(x) =
∑(

x − X
)

N
= 

51.11 

30 
= 1.71 

Var.(y) =
∑(

y − Y
)

N
= 

52.40 

30
= 1.75 

Std.(x) : √ 
Variance(x) = 

√
1.71 = 1.31 

Std.(y) : √ 
Variance(y) = 

√
1.75 = 1.33 

Correlation: 

r =
∑(

x − X
)∑(

y − Y
)

/
∑(

x − X
)2 ∑(

y − Y
)2 

(1) 

where

∑(
x − X

) = 51.11,
∑(

y − Y
) = 52.40,

∑(
x − X

)2 = 2612.24,
∑(

y − Y
)2 = 2745.76 

r = 51.11 ∗ 52.40 √
2612.24 ∗ 2745.76 

r = 2678.17 2678.17 = 1 

3.4 K-Means Clustering 

K-means is a clustering technique. Clustering algorithms are unsupervised 
approaches for dividing a larger dataset into more manageable groups. The moniker 
that can be used to a priori label unsupervised data indicates that they do not originate 
from clearly defined categories. In machine learning, the challenge of unsupervised 
learning is to look for latent structure in unlabelled data. Since there are no error or 
reward signals to aid in the identification of workable solutions, learners are taught
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Fig. 5 K-means clustering 

using examples without labels. Now, supervised learning and reinforcement learning 
may be distinguished from unsupervised learning (Fig. 5). 

3.5 ROC Curve 

The area under the receiver operating characteristic curve (AUC-ROC) is a perfor-
mance assessment that can be used for classification problems using a variety of 
threshold settings. The ROC is a probability curve, and the AUC is the degree of 
separability, sometimes known as a measure of separability. It indicates the degree 
to which the model is able to differentiate between different classes. The higher the 
area under the curve (AUC), the more accurately the model can predict that 0 classes 
will be 0 and 1 classes will be 1. By analogy, a higher AUC indicates that the model 
is more able to differentiate between patients who have the disease and those who 
do not have the disease (Fig. 6).
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Fig. 6 ROC curve for performance analysis 

4 Conclusion 

In order to assist in the diagnosis of diabetic retinopathy lesions, we make use of 
digital image processing techniques as well as symlet wavelet. After the lesions have 
been removed, we then make use of statistical approaches such as computing the 
mean, standard deviation, variance, and correlation. Additionally, we have designed 
a diagnostic tool for diabetic retinopathy that features a graphical user interface 
(GUI). This tool is used to locate lesions caused by diabetic retinopathy. Which is 
of great use to the ophthalmologist in reaching a diagnosis of the illnesses when it 
comes to the matter at hand. When evaluated via the lens of statistical methodology, 
the proposed algorithm demonstrated a success rate of 94%. Working with a dataset 
that is both balanced and multimodal could be the focus of work to be done in the 
future. The second thing is to combine deep neural networks with techniques such 
as supervised learning and unsupervised learning [6–21]. 
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