
Perseverance of the Audio Data using
RNN Implied Matrix Segmentation
based Lossless Encoder

Asish Debnath and Uttam Kr. Mondal

1 Introduction

Lossless encoding [4] is the compression technique used when it’s required to
preserve the quality of the original and the decompressed material. Furthermore,
it reduces the file’s size without altering the data’s original content. In essence, loss-
less audio puts preservation of detail above file size reduction [6]. Today, a variety
of classical [9, 11] and neural network-based [10] techniques are utilised to handle a
variety of problems. RNN is a special type of neural network which is being applied
particularly to these kinds of audio encoding, privacy as well as perseverance prob-
lems. Each layer’s output is recorded and sent back into the system’s input via RNN
[12], which uses this principle to forecast each layer’s output.

The proposed lossless audio encoder is designed utilising 2D matrix segmentation
based on recurrent neural networks, i.e. RNN. The encoder technique consists of the
following 3 phases.

In the first stage, audio samples are divided into three components.

(a) The signed integer parts.
(b) The first two digits following the decimal point, that is, the tenths and

hundredths.
(c) Next two digits, i.e., digits of the thousandths and ten thousandths positions.

Construct a 2D matrix to represent these data. This statistical technique was devel-
oped utilising a regression model built on RNN. Each of these integers is transformed
into a 7-bit binary stream and represented in the latent space in the second step.

A. Debnath (B) · U. Kr. Mondal
Vidyasagar University, Midnapore, West Bengal, India

U. Kr. Mondal
e-mail: Uttam_ku_82@yahoo.co.in

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
J. K. Mandal et al. (eds.), Proceedings of International Conference on Network Security
and Blockchain Technology, Lecture Notes in Networks and Systems 738,
https://doi.org/10.1007/978-981-99-4433-0_11

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-4433-0_11&domain=pdf
mailto:Uttam_ku_82@yahoo.co.in
https://doi.org/10.1007/978-981-99-4433-0_11

124 A. Debnath and U. Kr. Mondal

Fig. 1 Flow diagram of the proposed technique

Finally, the repetition eliminating standard Run-length encoding (RLE) [5]
technique is used to further compress the binary encoded streams.

The proposed encoding and decoding flow diagram is depicted in Fig. 1.
The remaining sections of this document are structured as follows: The method is

described in Sect. 2. In Sects. 2.1 and 2.2, respectively, the encoding and decoding
techniques are covered. Network architecture and training are displayed in Sect. 3.
Section 4 presents the findings and analyses. Conclusions are drawn in Sect. 5 that
follows the references.

2 The Technique

The present method produces compressed audio using a 2D matrix segmentation
algorithm which is implied by the rules of RNN. Dynamic 2D matrix-based segmen-
tation is used to divide decimal signed audio samples during the encoding stage
(considered a 4-point post fraction for the system constraint). A signed integer
component and two sets of double digits after the decimal point constitute each
of the three sections of the audio samples. Figure 2 shows how the encoding process
works.

Fig. 2 Encoding example

Perseverance of the Audio Data using RNN Implied Matrix … 125

Fig. 3 Decoding example

Figure 2 explains the overview of the encoding process with 6 audio sampled
values.

Encoding and decoding are done in the opposite order. The decoding processes
for the previously encoded data are shown in Fig. 3.

The encoding and decoding procedures are depicted in Sects. 2.1 and 2.2
respectively.

2.1 Encoding Technique

The encoding algorithm is described in Algorithm 1. It demonstrates the segmentation
of the audio samples and their eventual encoding into binary streams.

Algorithm 1: Matrix Segmentation Method
Input: A fragment of the audio

Output: Encoding audio

Method: The steps of the encoding process are as follows:

Step 1: The input audio samples are checked whether they are positive or negative.
If positive go to step 1.1 (positive_module) else step 1.2 (negative_module).

The dynamic rules as listed below are used to segment each audio samples.

Step 1.1 (positive_module):

i. The whole number portion of the passed decimal number, i.e. 0 is captured. It is
added to the first column of the matrix.

Let the matrix defined by M[i][j] , where i is the number of audio samples and
j is number of columns (considering, j = 3). That means the matrix is 3 column
matrices. Therefore, M[i][0] = 0.

ii. Multiply the decimal number by 10,000.
iii. Divide by 100 and take the quotient. The quotient part is moved to the second

column of the same row.

126 A. Debnath and U. Kr. Mondal

M[i][1] = Quotient part

iv. Remainder part pushed to the third column of the same row.

M[i][2] = remainder part

Step 1.2 (negetive_module):
The dynamic rule listed below is used to segment each audio samples:

i. The whole number portion of the passed decimal number, i.e. −0 is captured.
It is added to the first column of the matrix.

M[i][0] = −0

ii. The decimal number is multiplied by 10,000.
iii. Divide by 100 to get the quotient. The quotient part is moved to the second

column of the same row.

M[i][1] = Quotient part

iv. Remainder part pushed to the third column of the same row.

M[i][2] = remainder part

Step 2: All the audio sampled values are passed to the segregation rule engine
mentioned in step 1. After processing samples, the matrix formed of data passed
to step 3 for binary conversion.

Step 3: The first column of first row and first column element is checked.

For i = 0 to length (matrix row):
If M[i][0] < 0 then:

Transform element at position M[i][0] with single
binary bit ‘1’

Else:
Transform element at position M[i][0] with single
binary bit ‘0’

Each element of M[i][1] and M[i][2] is converted to a binary stream using a 7-bit
binary number.

Therefore, each audio sample is encoded as a 15-bit binary stream.
At the end of this step, a binary encoded binary stream is generated.

Step 4: Binary encoded stream is passed to run-length encoding (RLE) encoder for
further compression.

Perseverance of the Audio Data using RNN Implied Matrix … 127

2.2 Decoding Technique

Algorithm 2 describes the decompression technique. The decompression algorithm
reconstructs the original audio from the encoded data stream.

Algorithm 2: Decompression technique
Input: Encoded binary stream.

Output: Reconstructed audio signal.

Method: The decoding procedure is described in following steps:

Step 1: Input encoded stream is fed to Run-length encoding (RLE) decoder. At the
end of this step the binary stream is reconstructed.

Step 2: Binary stream segregated into blocks of 15 binary bits.

Step 3: Process each of the blocks using the below dynamic rule:

i. First binary bit is decoded to 0 or −0 corresponds to binary bit ‘0’ or ‘1’,
respectively.

ii. Append decimal point after 0 or −0.
iii. Next 7 binary bits are converted to decimal values.

capture the double digit as is.

iv. Adjoining, 7 binary bits are also converted to decimal values.

capture the double digit as is.

v. Process all the blocks and regenerate the audio samples.

Therefore, finally the audio signal is reconstructed.

3 Network Architecture and Training

The sequential order of time series data, like audio, must be followed in order to be
understood. Traditional feed-forward networks assume that each input is independent
of the others, however in a time series setting, each input depends on the inputs that
came before it.

One of the most challenging areas is deep neural network (DNN)-based sequential
data processing for audio signals since DNN requires inputs with a fixed dimension.
Recurrent neural networks (RNN)-based sequence to sequence learning has been
proposed in machine translation to learn fixed length representations of variable
length sequences [13].

128 A. Debnath and U. Kr. Mondal

Fig. 4 Fully connected
recurrent neural network

Hence, for the encoder and decoder strategy, the RNN-based network architecture
is applied.

The proposed recurrent neural network model was trained with encoding and
decoding algorithm described in Sects. 2.1 and 2.2 respectively. The mean squared
error loss is applied to analyse the network. Single layer selected for the experiment
with 16 hidden units and 3 output. All experimentation was performed with Keras
using TensorFlow its back end, running under Windows 10 operating system.

A fully connected recurrent neural network is shown in Fig. 4. In this instance,
“X” represents the input layer, “h” the hidden layer, and “y” the output layer. The
network parameters A, B, and C are used to enhance the model’s output. The input
at any given time, t, is a mixture of the input at x(t) and x. (t − 1). The output at any
given time is fetched back to the network in order to improve it.

Figure 5 shows the processing in the recurrent neural network.

h(t) = fc((h(t − 1), x(t)) (1)

here, h(t) denotes new state, f c denotes function with parameter c, h(t − 1) denotes
old state, and x(t) denotes input vector at time step t.

5000 epochs were considered for the experiment to evaluate the performance of
the suggested model. The hyperparameters of the experiment were designed by trial
and error. The configuration details of the suggested model parameters are described
in Table 2. The suggested model accurately predicts and recreates the original audio
data with incredibly minor deviations. The suggested model’s estimated mean square
error is 0.0426. We have carried out a performance evaluation of the proposed model
using two additional, pre-existing prediction benchmarks, the Lasso regression, and

Perseverance of the Audio Data using RNN Implied Matrix … 129

Fig. 5 Processing recurrent neural network

Table 1 Compares the
suggested model’s
performance to those of other
deep learning models

Ridge 0.0578

Lasso 0.0516

Proposed model 0.0426

Table 2 Network parameters
Learning rate 0.01

Epoch 5000

Hidden unit 16

Output 3

Timestep 1

the Ridge regression. The suggested model’s loss value is contrasted with that of the
two other models described in Table 1.

3.1 Dataset

For the model’s training, the “audio_model_dataset” custom dataset has been created.
1000 audio files totalling 3 s each make up the dataset. There are five different
categories of audio songs: (I) Rabindra Sangeet, (II) Classical, (III) Rock, (IV) Pop,
and (V) Sufi. The training dataset has not divided into separate portions for testing.
Instead, 25 audio songs are used, each with a standard length of 5 s, that fall into the
aforementioned 5 categories.

130 A. Debnath and U. Kr. Mondal

3.2 Environment

The proposed model is programmed in Python 3.6 using the Keras and Tensorflow
framework. The infrastructure used for the experiment is described below:

i. 64-bit operating system.
ii. 16 GB of RAM.
iii. Intel Core i7-4790S Processor.
iv. 1 TB Hard drive.

3.3 Network Configuration Parameters

During the experiment, various parameters have been used to train the model and
measure the loss of the model and accuracy model. Present suggested model produces
less loss when compared to other models of a similar nature. The list of parameters
utilised in the model network is shown in Table 2.

4 Results and Analysis

Compression ratio [10, 11] is used to judge the compression capacity of a compression
technique. Compression ratio is calculated as below:

Compression ratio =
Uncompressed audio file size

Compressed audio file size
(2)

Therefore, after applying the compression technique, required space is to be
reduced. Equation 3 represents the space saving metric respect to the compressed
audio.

Space saving(%) = 1 −
Compressed audio file size

Unompressed audio file size
∗ 100 (3)

The compression ratio of the selected songs is compared using FLAC [3],
WavPack Lossless [2], and Monkey’s Audio [1]. The compression quality of the
proposed method is compared graphically to that of three different systems as shown
in Fig. 6. Comparing the proposed strategy to other referred techniques, Table 3
demonstrates that it has the highest compression ratio. Additionally, it offers each
group the highest compression ratio (i.e. Rabindra Sangeet, Pop, Classical, Sufi, and
Rock).

Perseverance of the Audio Data using RNN Implied Matrix … 131

Fig. 6 Graphs showing the compression ratios for the proposed method, FLAC, WavPack lossless,
and Monkey’s Audio

5 Conclusion

The proposed lossless audio compression technique achieved a higher compression
rate in comparison to already accessible tools for lossless audio compression. The
reconstructed song is also achieved similar quality as original. The broadened focus
of this research is the possibility for further compression ratio enhancement along
with increasing privacy and perseverance of the audio data. In the future, it will also
intend to further reduce the loss by expanding the dataset and adding more epochs.

132 A. Debnath and U. Kr. Mondal

Table 3 Compression performance

Song type Audio
files
(.wav)
(10 s)

Compression ratio (%)

Techniques

Monkey’s
Audio [1]

WavPack [2] FLAC [3] Present
technique

Avg. Over all
avg.

Avg. Over all
avg.

Avg. Over all
avg.

Avg. Over all
avg.

Rabindra
Tagore

rabi_1 54.89 56.35 48.46 50.14 48.18 48.28 88.02 89.81

rabi_2

rabi_3

rabi_4

rabi_5

Pop pop_1 67.41 64.13 64.34 88.36

pop_2

pop_3

pop_4

pop_5

Classical classical_
1

55.55 50.03 50.78 89.81

classical_
2

classical_
3

classical_
4

classical_
5

Sufi sufi_1 49.68 43.18 43.21 88.96

sufi_2

sufi_3

sufi_4

sufi_5

Rock rock_1 54.22 44.97 34.9 90.23

rock_2

rock_3

rock_4

rock_5

Perseverance of the Audio Data using RNN Implied Matrix … 133

References

1. https://www.monkeysaudio.com/
2. https://www.wavpack.com/
3. Coalson J (2017) Xiph.org foundation. FLAC: Free lossless audio codec. https://xiph.org/flac/

index
4. Ghido F, Tabus I (2012) Sparse modeling for lossless audio compression. IEEE Trans Audio

Speech Lang Process 21(1):14–28
5. Arif M, Anand RS (2012) Run length encoding for speech data compression. In: 2012 IEEE

international conference on computational intelligence and computing research, pp 1–5. https://
doi.org/10.1109/ICCIC.2012.6510185

6. Sharma K, Gupta K (2017) Lossless data compression techniques and their performance. In:
2017 international conference on computing, communication and automation (ICCCA). IEEE,
pp 256–261

7. Nowak N, Zabierowski W (2011) Methods of sound data compression–comparison of different
standards. (4)

8. Mohdar FJ, Al-Otaibi MS, Aboalsamh HA (2011) Audio compression testing tool for multi-
media applications. In: Image processing and communications challenges, vol 3. Springer, pp
409–418

9. Mondal UK, Debnath A (2021) Developing a dynamic cluster quantization based lossless
audio compression (DCQLAC). Multimed Tools Appl 80:8257–8280. https://doi.org/10.1007/
s11042-020-09886-3

10. Mondal UKr, Debnath A, Mandal JK (2020) Intelligent computing: image processing based
applications, vol 1157. ISBN 978-981-15-4287-9

11. Mondal UKr, Debnath A (2022) Multimedia Tools Appl 81(28):40385. https://doi.org/10.1007/
s11042-022-12556-1

12. Sherstinsky A (2020) Fundamentals of recurrent neural network (RNN) and long short-term
memory (LSTM) network. Physica D Nonlinear Phenomena 404:132306. https://doi.org/10.
1016/j.physd.2019.132306

13. Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks.
In: Advances in neural information processing systems, vol 27

14. Pedro HTC, Larson DP, Coimbra CF (2019) A comprehensive dataset for the acceler-
ated development and benchmarking of solar forecasting methods. J Renew Sustain Energ
11:036102

https://www.monkeysaudio.com/
https://www.wavpack.com/
https://xiph.org/flac/index
https://xiph.org/flac/index
https://doi.org/10.1109/ICCIC.2012.6510185
https://doi.org/10.1109/ICCIC.2012.6510185
https://doi.org/10.1007/s11042-020-09886-3
https://doi.org/10.1007/s11042-020-09886-3
https://doi.org/10.1007/s11042-022-12556-1
https://doi.org/10.1007/s11042-022-12556-1
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1016/j.physd.2019.132306

	 Perseverance of the Audio Data using RNN Implied Matrix Segmentation based Lossless Encoder
	1 Introduction
	2 The Technique
	2.1 Encoding Technique
	2.2 Decoding Technique

	3 Network Architecture and Training
	3.1 Dataset
	3.2 Environment
	3.3 Network Configuration Parameters

	4 Results and Analysis
	5 Conclusion
	References

