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1 Introduction 

Lossless encoding [4] is the compression technique used when it’s required to 
preserve the quality of the original and the decompressed material. Furthermore, 
it reduces the file’s size without altering the data’s original content. In essence, loss-
less audio puts preservation of detail above file size reduction [6]. Today, a variety 
of classical [9, 11] and neural network-based [10] techniques are utilised to handle a 
variety of problems. RNN is a special type of neural network which is being applied 
particularly to these kinds of audio encoding, privacy as well as perseverance prob-
lems. Each layer’s output is recorded and sent back into the system’s input via RNN 
[12], which uses this principle to forecast each layer’s output. 

The proposed lossless audio encoder is designed utilising 2D matrix segmentation 
based on recurrent neural networks, i.e. RNN. The encoder technique consists of the 
following 3 phases. 

In the first stage, audio samples are divided into three components. 

(a) The signed integer parts. 
(b) The first two digits following the decimal point, that is, the tenths and 

hundredths. 
(c) Next two digits, i.e., digits of the thousandths and ten thousandths positions. 

Construct a 2D matrix to represent these data. This statistical technique was devel-
oped utilising a regression model built on RNN. Each of these integers is transformed 
into a 7-bit binary stream and represented in the latent space in the second step.
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Fig. 1 Flow diagram of the proposed technique 

Finally, the repetition eliminating standard Run-length encoding (RLE) [5] 
technique is used to further compress the binary encoded streams. 

The proposed encoding and decoding flow diagram is depicted in Fig. 1. 
The remaining sections of this document are structured as follows: The method is 

described in Sect. 2. In Sects. 2.1 and 2.2, respectively, the encoding and decoding 
techniques are covered. Network architecture and training are displayed in Sect. 3. 
Section 4 presents the findings and analyses. Conclusions are drawn in Sect. 5 that 
follows the references. 

2 The Technique 

The present method produces compressed audio using a 2D matrix segmentation 
algorithm which is implied by the rules of RNN. Dynamic 2D matrix-based segmen-
tation is used to divide decimal signed audio samples during the encoding stage 
(considered a 4-point post fraction for the system constraint). A signed integer 
component and two sets of double digits after the decimal point constitute each 
of the three sections of the audio samples. Figure 2 shows how the encoding process 
works. 

Fig. 2 Encoding example
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Fig. 3 Decoding example 

Figure 2 explains the overview of the encoding process with 6 audio sampled 
values. 

Encoding and decoding are done in the opposite order. The decoding processes 
for the previously encoded data are shown in Fig. 3. 

The encoding and decoding procedures are depicted in Sects. 2.1 and 2.2 
respectively. 

2.1 Encoding Technique 

The encoding algorithm is described in Algorithm 1. It demonstrates the segmentation 
of the audio samples and their eventual encoding into binary streams. 

Algorithm 1: Matrix Segmentation Method 
Input: A fragment of the audio 

Output: Encoding audio 

Method: The steps of the encoding process are as follows: 

Step 1: The input audio samples are checked whether they are positive or negative. 
If positive go to step 1.1 (positive_module) else step 1.2 (negative_module). 

The dynamic rules as listed below are used to segment each audio samples. 

Step 1.1 (positive_module): 

i. The whole number portion of the passed decimal number, i.e. 0 is captured. It is 
added to the first column of the matrix. 

Let the matrix defined by M[i][ j] , where i is the number of audio samples and 
j is number of columns (considering, j = 3). That means the matrix is 3 column 
matrices. Therefore, M[i][0] = 0. 

ii. Multiply the decimal number by 10,000. 
iii. Divide by 100 and take the quotient. The quotient part is moved to the second 

column of the same row.
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M[i][1] = Quotient part 

iv. Remainder part pushed to the third column of the same row. 

M[i][2] = remainder part 

Step 1.2 (negetive_module): 
The dynamic rule listed below is used to segment each audio samples: 

i. The whole number portion of the passed decimal number, i.e. −0 is captured. 
It is added to the first column of the matrix. 

M[i][0] = −0 

ii. The decimal number is multiplied by 10,000. 
iii. Divide by 100 to get the quotient. The quotient part is moved to the second 

column of the same row. 

M[i][1] = Quotient part 

iv. Remainder part pushed to the third column of the same row. 

M[i][2] = remainder part 

Step 2: All the audio sampled values are passed to the segregation rule engine 
mentioned in step 1. After processing samples, the matrix formed of data passed 
to step 3 for binary conversion. 

Step 3: The first column of first row and first column element is checked. 

For i = 0 to length (matrix row): 
If M[i][0] < 0 then: 

Transform element at position M[i][0] with single 
binary bit ‘1’ 

Else: 
Transform element at position M[i][0] with single 
binary bit ‘0’ 

Each element of M[i][1] and M[i][2] is converted to a binary stream using a 7-bit 
binary number. 

Therefore, each audio sample is encoded as a 15-bit binary stream. 
At the end of this step, a binary encoded binary stream is generated. 

Step 4: Binary encoded stream is passed to run-length encoding (RLE) encoder for 
further compression.
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2.2 Decoding Technique 

Algorithm 2 describes the decompression technique. The decompression algorithm 
reconstructs the original audio from the encoded data stream. 

Algorithm 2: Decompression technique 
Input: Encoded binary stream. 

Output: Reconstructed audio signal. 

Method: The decoding procedure is described in following steps: 

Step 1: Input encoded stream is fed to Run-length encoding (RLE) decoder. At the 
end of this step the binary stream is reconstructed. 

Step 2: Binary stream segregated into blocks of 15 binary bits. 

Step 3: Process each of the blocks using the below dynamic rule: 

i. First binary bit is decoded to 0 or −0 corresponds to binary bit ‘0’ or ‘1’, 
respectively. 

ii. Append decimal point after 0 or −0. 
iii. Next 7 binary bits are converted to decimal values. 

capture the double digit as is. 

iv. Adjoining, 7 binary bits are also converted to decimal values. 

capture the double digit as is. 

v. Process all the blocks and regenerate the audio samples. 

Therefore, finally the audio signal is reconstructed. 

3 Network Architecture and Training 

The sequential order of time series data, like audio, must be followed in order to be 
understood. Traditional feed-forward networks assume that each input is independent 
of the others, however in a time series setting, each input depends on the inputs that 
came before it. 

One of the most challenging areas is deep neural network (DNN)-based sequential 
data processing for audio signals since DNN requires inputs with a fixed dimension. 
Recurrent neural networks (RNN)-based sequence to sequence learning has been 
proposed in machine translation to learn fixed length representations of variable 
length sequences [13].
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Fig. 4 Fully connected 
recurrent neural network 

Hence, for the encoder and decoder strategy, the RNN-based network architecture 
is applied. 

The proposed recurrent neural network model was trained with encoding and 
decoding algorithm described in Sects. 2.1 and 2.2 respectively. The mean squared 
error loss is applied to analyse the network. Single layer selected for the experiment 
with 16 hidden units and 3 output. All experimentation was performed with Keras 
using TensorFlow its back end, running under Windows 10 operating system. 

A fully connected recurrent neural network is shown in Fig. 4. In this instance, 
“X” represents the input layer, “h” the hidden layer, and “y” the output layer. The 
network parameters A, B, and C are used to enhance the model’s output. The input 
at any given time, t, is a mixture of the input at x(t) and x. (t − 1). The output at any 
given time is fetched back to the network in order to improve it. 

Figure 5 shows the processing in the recurrent neural network. 

h(t) = fc((h(t − 1), x(t)) (1)

here, h(t) denotes new state, f c denotes function with parameter c, h(t − 1) denotes 
old state, and x(t) denotes input vector at time step t. 

5000 epochs were considered for the experiment to evaluate the performance of 
the suggested model. The hyperparameters of the experiment were designed by trial 
and error. The configuration details of the suggested model parameters are described 
in Table 2. The suggested model accurately predicts and recreates the original audio 
data with incredibly minor deviations. The suggested model’s estimated mean square 
error is 0.0426. We have carried out a performance evaluation of the proposed model 
using two additional, pre-existing prediction benchmarks, the Lasso regression, and
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Fig. 5 Processing recurrent neural network

Table 1 Compares the 
suggested model’s 
performance to those of other 
deep learning models 

Ridge 0.0578 

Lasso 0.0516 

Proposed model 0.0426 

Table 2 Network parameters 
Learning rate 0.01 

Epoch 5000 

Hidden unit 16 

Output 3 

Timestep 1 

the Ridge regression. The suggested model’s loss value is contrasted with that of the 
two other models described in Table 1. 

3.1 Dataset 

For the model’s training, the “audio_model_dataset” custom dataset has been created. 
1000 audio files totalling 3 s each make up the dataset. There are five different 
categories of audio songs: (I) Rabindra Sangeet, (II) Classical, (III) Rock, (IV) Pop, 
and (V) Sufi. The training dataset has not divided into separate portions for testing. 
Instead, 25 audio songs are used, each with a standard length of 5 s, that fall into the 
aforementioned 5 categories.
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3.2 Environment 

The proposed model is programmed in Python 3.6 using the Keras and Tensorflow 
framework. The infrastructure used for the experiment is described below: 

i. 64-bit operating system. 
ii. 16 GB of RAM. 
iii. Intel Core i7-4790S Processor. 
iv. 1 TB Hard drive.  

3.3 Network Configuration Parameters 

During the experiment, various parameters have been used to train the model and 
measure the loss of the model and accuracy model. Present suggested model produces 
less loss when compared to other models of a similar nature. The list of parameters 
utilised in the model network is shown in Table 2. 

4 Results and Analysis 

Compression ratio [10, 11] is used to judge the compression capacity of a compression 
technique. Compression ratio is calculated as below: 

Compression ratio = 
Uncompressed audio file size 

Compressed audio file size 
(2) 

Therefore, after applying the compression technique, required space is to be 
reduced. Equation 3 represents the space saving metric respect to the compressed 
audio. 

Space saving(%) = 1 − 
Compressed audio file size 

Unompressed audio file size 
∗ 100 (3) 

The compression ratio of the selected songs is compared using FLAC [3], 
WavPack Lossless [2], and Monkey’s Audio [1]. The compression quality of the 
proposed method is compared graphically to that of three different systems as shown 
in Fig. 6. Comparing the proposed strategy to other referred techniques, Table 3 
demonstrates that it has the highest compression ratio. Additionally, it offers each 
group the highest compression ratio (i.e. Rabindra Sangeet, Pop, Classical, Sufi, and 
Rock).
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Fig. 6 Graphs showing the compression ratios for the proposed method, FLAC, WavPack lossless, 
and Monkey’s Audio

5 Conclusion 

The proposed lossless audio compression technique achieved a higher compression 
rate in comparison to already accessible tools for lossless audio compression. The 
reconstructed song is also achieved similar quality as original. The broadened focus 
of this research is the possibility for further compression ratio enhancement along 
with increasing privacy and perseverance of the audio data. In the future, it will also 
intend to further reduce the loss by expanding the dataset and adding more epochs.
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Table 3 Compression performance 

Song type Audio 
files 
(.wav) 
(10 s) 

Compression ratio (%) 

Techniques 

Monkey’s 
Audio [1] 

WavPack [2] FLAC [3] Present 
technique 

Avg. Over all 
avg. 

Avg. Over all 
avg. 

Avg. Over all 
avg. 

Avg. Over all 
avg. 

Rabindra 
Tagore 

rabi_1 54.89 56.35 48.46 50.14 48.18 48.28 88.02 89.81 

rabi_2 

rabi_3 

rabi_4 

rabi_5 

Pop pop_1 67.41 64.13 64.34 88.36 

pop_2 

pop_3 

pop_4 

pop_5 

Classical classical_ 
1 

55.55 50.03 50.78 89.81 

classical_ 
2 

classical_ 
3 

classical_ 
4 

classical_ 
5 

Sufi sufi_1 49.68 43.18 43.21 88.96 

sufi_2 

sufi_3 

sufi_4 

sufi_5 

Rock rock_1 54.22 44.97 34.9 90.23 

rock_2 

rock_3 

rock_4 

rock_5
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