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Abstract Understanding the soil moisture dynamic at the watershed-scale is essen-
tial for hydrological applications (i.e., drought monitoring, flood forecasting, irriga-
tion, etc.) and river basin management activities. Globally, in-situ measured accurate 
soil moisture data at the watershed-scale is quite scarce due to the high mainte-
nance cost of large-density sensor networks and complex/challenging conditions 
for soil moisture field campaigns. Characterizing the soil moisture variability at the 
watershed-scale requires a robust in-situ monitoring strategy at the point-scale to 
balance representativeness and minimization of monitoring cost. Thus, this study 
determined an optimal sampling design to capture the spatiotemporal variability of 
soil moisture at the watershed-scale. The study was conducted for the typical eastern 
Indian conditions of extreme seasonal variability that lead from very wet (during 
monsoon) to dry (during hot summer). Soil moisture measurements were carried 
out at 83 locations in an agricultural watershed of 500 km2 for 56 days across a year. 
A hand-held soil moisture probe (ThetaProbe) was used for the measurements from 
June 2016 to July 2017. Based on the analyzes of 41,832 measurements collected 
during field measurements, it was found that the maximum numbers of required 
locations necessary to estimate watershed-mean soil moisture within ±2% absolute 
error are 30. Moreover, the five most representative locations identified through time 
stability analysis were found to be sufficient for capturing the temporal pattern of 
watershed-mean soil moisture with a root-mean-square error of ±2.17%. The find-
ings will be helpful in providing guidelines for optimizing short-term measurement 
and a robust sensor network to assess the watershed-scale soil moisture dynamics. 
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1 Introduction 

Surface soil moisture is a key dynamic hydrological state variable [28] that affects 
various hydrological process. Spatiotemporal variation of surface soil moisture 
significantly affects the watershed-scale soil moisture dynamics, which may result in 
variations of surface atmospheric feedback, runoff dynamics, groundwater recharge, 
and crop yield. Understanding surface soil moisture dynamics at a watershed-scale 
with reasonable temporal and spatial resolution is required for hydrological modeling 
[7, 19, 30], climate modeling and weather prediction [1, 12, 20] and agricultural 
modeling [2, 23, 31]. Thus, precise measurements of surface soil moisture at the 
watershed-scale are necessary to fulfill the requirements of various applications. 

The spatiotemporal variation in geophysical characteristics such as rainfall, vege-
tation cover, soil properties, and topography over a watershed-scale makes soil mois-
ture distribution highly nonlinear across time and space. Therefore, measuring soil 
moisture in a large watershed (>100 km2) to represent the average soil moisture 
dynamic accurately is challenging. The conventional in-situ point scale measurement 
(i.e., gravimetric sampling) of soil moisture is precise. Still, gravimetric sampling is 
not practicable for watershed-scale soil moisture measurement, where many in-situ 
observations are needed at frequent intervals. The use of electronic sensors-based 
geophysical techniques with fixed-type automatic data-logging devices for contin-
uous in-situ soil moisture measurement eliminates the need for time-intensive gravi-
metric sampling [6]. But, it is expensive to maintain a sufficiently large-density sensor 
network for watershed-scale soil moisture assessment. Soil moisture scaling theory 
and soil moisture spatiotemporal variability analysis reveals that a reliable estimate 
of large-scale soil moisture could be obtained using a few-point observation [3, 10, 
13, 22]. Inline this context, past studies show the potential of soil moisture spatiotem-
poral variability analysis with a few statistical analyzes to determine the number of 
required samples (NRS) to estimate mean soil moisture of a large area [3–5, 14, 29]. 
In addition, a hypothesis on the temporal stability of soil moisture spatial pattern 
[27] provided an opportunity to minimize the NRS to capture the temporal pattern 
of the soil moisture over a large region [4, 5, 10 and 11]. 

Notably, these studies also suggested that areal mean soil moisture assessment 
using a few-point observation and scale of temporal stability must be established 
using dense soil moisture measurements over a large region. However, due to 
expenses and limited conditions experienced in soil moisture field campaigns, moni-
toring is complex, and soil moisture spatiotemporal variability analysis in an area 
greater than 100 km2 [5] is poorly understood. Over the past, studies focused on 
measuring soil moisture and its variability analysis either favoring the large spatial 
scale [8, 14, 17, 18] or long time periods [4, 15, 16, 21], but very few consider both of 
them [5, 9]. Besides, tropical regions are rarely studied for soil moisture variability 
analysis, which may hold key differences from previous studies due to very high 
variability in soil moisture from very dry to very wet soil conditions. 

In view of the facts mentioned above, the present study aimed to investigate the 
long-term soil moisture spatiotemporal variability over a large tropical agricultural
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watershed (>100 km2) for the optimal sampling design of soil moisture measure-
ments. For this objective, frequent in-situ measurements at various point locations 
were carried out in an eastern Indian watershed of 500 km2 to capture different soil 
wetness conditions for a year. 

2 Study Area and Measurements 

2.1 Study Area 

An agricultural watershed, namely, Rana watershed of approximately 500 km2, 
located in the middle region of the Mahanadi River basin of eastern India, is selected 
for this study (Fig. 1). The climate of the watershed is tropical, having marked season-
ality in rainfall with the long dry season. The average annual rainfall of the study 
area is 1458 mm, mainly occurring (about 70%) in the southwest monsoon season 
of June to September [24]. Due to the tropical climate, the study area experiences 
very high temperatures during April and May. The mean annual temperature of this 
region is 27.4 °C with maximum and minimum temperatures of 42.2 °C and 11.3 °C. 
Due to the high climate variability, the study watershed experiences varying soil 
wetness conditions, i.e., very dry to very wet and back to very dry conditions. Paddy 
is a dominant crop in the study region and is usually cultivated during the southwest 
monsoon season. Elevation in the watershed ranges between 22 and 299 m (see Fig. 
for the topography view). Based on the soil textural analysis of various locations of 
the watershed it was found that soil texture class of the watershed varies considerably 
from sandy loam to clay, where a major portion of the watershed has sandy loam, 
followed by sandy clay loam and clay loam.

2.2 Soil Moisture Measurements 

With the aim of achieving dense sampling at a large spatial scale for a long period, 
83 locations (i.e., 79 agricultural fields and 4 grasslands) were selected within the 
watershed of 500 km2 for measuring soil moisture (see Fig. 1). In addition to the 
vegetation, the criteria for choosing the sampling locations were geophysical char-
acteristics that affect the spatiotemporal variation of the soil moisture, such as soil 
texture and elevation. The choice of sampling periods was based on the criterion of 
minimum interaction with human activities, such as tillage. Therefore, soil moisture 
measurements were initiated in June when the paddy crop was planted in most fields. 
Samplings were not carried out for a one-month duration (10 December 2016−10 
January 2017) due to tillage activities after the paddy crop in a few areas of the 
watershed for the cultivation of pulse crops (i.e., moong). Overall, soil moisture 
measurements were conducted for nearly one year, from 20 June 2016 to 12 July
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Fig. 1 a Location of Mahanadi river basin in India b Location of the study area, Rana watershed 
in Mahanadi River basin c Topographic overhead view of Rana watershed with sampling locations

2017, to capture the entire range of soil moisture variability from dry to wet and 
wet to dry conditions. Due to unfavorable conditions, sampling was not carried out 
frequently from August to October because of heavy rainfall and standing water 
in most paddy fields. Similarly, measurements were not taken frequently in April 
and May because of the soil’s hardness (i.e., very dry condition). Overall, a total of 
56 days of soil moisture sampling was carried out in one year. A view of soil moisture 
measurements during field campaigns is presented in Fig. 2a. The temporal pattern 
of the watershed-mean soil moisture based on soil moisture sampling at 83 sampling 
locations is also shown in Fig. 2b.

Soil moisture was sampled using an impedance probe (ThetaProbe, type ML3 and 
HH2 recording device, Delta-T Devices, Cambridge, England) which consists of four 
sharpened, 6 cm long stainless-steel rods. For each sampling location, three-point 
measurements of ThetaProbe were taken at 10–15 m separation distances, and each 
measurement consisted of three ThetaProbe samples. A total of nine ThetaProbe 
samples were taken from each sampling location to reduce the uncertainty in the 
estimates of mean soil moisture of a sampling location. Figure 3 shows a view of 
the sampling design and soil moisture measurements. During each sampling day, 
747 soil moisture measurements were carried out, and a total of 41,832 samples 
were collected in 56 sampling days. In addition, on each sampling day, 10% of the 
total locations were also sampled with gravimetric sampling. Gravimetric samples 
were taken adjacent to one of the ThetaProbe samples with a soil core sampler 
having a fixed volume of 137 cm3 with a 6 cm depth. The measured impedance from 
ThetaProbe was calibrated using gravimetric-based volumetric soil moisture content. 
A single generalized calibration of Thetaprobe was developed [25] for the watershed 
and used for precise soil moisture measurements at each sampling location.
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Fig. 2 a A view of soil moisture measurements during different stages of the paddy crop and field 
conditions throughout the year. b Temporal pattern of the watershed-mean volumetric soil moisture 
(VSM), along with error bars of ±1 standard deviation in space. The blue bars represent a variation 
of daily rainfall measured by a weather station in the watershed

3 Methodology 

The statistical properties of each sampling day and whole field campaign are analyzed 
in terms of their variability in space and time for the soil moisture spatiotemporal 
variability analysis as given below: 

Let θi jk  the soil moisture measured at point i, sampling location j and sampling 
day k, then the spatial mean of the sampling location and sampling day, θ jk , is given  
by. 

θ jk  = 
1 

Np 

Np∑

i=1 

θi jk (1)
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Fig. 3 Sampling design at each sampling location, where a large blue circle represents the sampling 
location and three-point measurements at the sampling location forming a triangle is shown with 
a gray circle. Small black circles show the shape of ThetaProbe measurement, and the red circle 
represents the position of the gravimetric sample. A view of the gravimetric sample collection in 
the rice field is presented through photographs

where Np is the number of measurement points at the sapling location j. Similarly, 
the spatial mean of each sampling day, θk , can be defined as. 

θk = 
1 

N 

N∑

j=1 

θ jk (2) 

where N is the number of sampling locations. Also, the temporal mean for each 
sampling location, θ j , can be defined as: 

θ j = 
1 

M 

M∑

k=1 

θ jk (3) 

where M is the number of sampling days. 
The coefficient of variation of each sampling day in space, CVk , is calculated as 

follows: 

CVk = 
σk 

θ k 
= 

√
1 

N−1 

N∑
j=1

(
θ jk  − θk

(2 

θk 
(4) 

where σ k is the standard deviation in space for a sampling day. 
Determination of standard deviation helps in the assessment of an optimal number 

of sampling locations (ONL) for estimating the mean soil moisture within a speci-
fied range of absolute error. The robust monitoring strategy has been optimized for
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the watershed-mean soil moisture assessment through soil moisture spatiotemporal 
variability analysis using a statistical approach and time stability method. 

3.1 ONL Analyzes Using a Statistical Approach 

ONL, for watershed-mean soil moisture (θk) assessment within a specific value of 
absolute error, has been determined using Eq. 5 given by Gilbert (1987) and is 
expressed as: 

ON  L  =
(
t1−α/2,ON  L−1 

σE 

AE

)2 
(5) 

where σ E is a standard error, t1-α/2,ONL-1 is the value of the student’s t-distribution at a 
significance level α, and depending on the sample dimensions ONL; AE represents 
the absolute error (% v/v). If a reliable value of σ E is not available, CV can be used to 
estimate ONL (Gilbert, 1987). For this, a functional relationship between the CVk as 
well as σ k and the θk is investigated. An exponential function CVk = k1. e−k2θk was 
used to fit the CVk -θk relationship for characterizing the variations of soil moisture, 
as usually employed for soil moisture campaigns [3, 14], where k1 and k2 are the 
model fitting parameters. Based on the CVk -θk fitting, a relationship between σ k and 
θk can be derived as σk = k1 . θk . e−k2θk . Further, the σ k -θk relationship is used to 
calculate the uncertainty in watershed-mean soil moisture assessment from a certain 
number of soil moisture samples, including its evolution with drying or wetting. 

Moreover, the exponential law described by CVk -θk , is employed to determine 
the ONL to achieve a specified uncertainty using σ k -θk . Equation 6 is solved by 
an iterative procedure to estimate the ONL at a 5% significance level for different 
absolute errors (AE). The iterative process is repeated until |ON  Ll − ON  Ll−1| ≤ ε, 
where ε is a control value, 0.5 in this study. 

ON  Ll =
(
t0.975,ON  L(l−1)−1 

k1 . θk . e−k2θk 

AE

)2 

, l = 1, 2, 3, ... (6) 

The statistical approach quantifies the ONL to determine the sampling size for 
capturing the spatial variability of soil moisture at the watershed-scale. But most 
hydrological applications require a temporal pattern of watershed-mean soil mois-
ture. Besides, the exact position of the ONL in the study domain is essential to set 
up a soil moisture sensor network. Since the statistical approach fails to characterize 
the temporal pattern of the watershed-mean soil moisture, a time stability method is 
used to identify locations where the soil moisture can be considered “representative” 
of the entire area of study at the temporal scale.
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3.2 ONL Analyzes Using Temporal Stability Analysis 

The temporal stability analysis [27] identifies the sampling locations that maintain 
a consistent temporal relationship with the areal mean soil moisture with little vari-
ability. This study conducts temporal stability analysis based on the parametric test 
of the relative differences in soil moisture. For each sampling location j and total 
sampling days M, the mean relative difference of soil moisture, δ j (% v/v), and 
variance of the relative difference, σ (δj)2, is estimated as: 

δ j = 
1 

M 

M∑

k=1 

θ jk  − θk 
θk 

(7.1) 

σ(δ  j )2 = 1 

M − 1 

M∑

k=1

(
θ jk  − θk 

θk 
− δ j

)2 

(7.2) 

δ j , at a sampling location computes the location’s bias and helps to identify 
whether a particular location is wetter or drier than the areal mean. Generally, a 
“representative” location to capture the temporal pattern of the areal mean soil mois-
ture can be identified by the low value of

||δ j
|| and/or standard deviation of the relative 

difference, σ(δj). [17] considered combining δ j and σ(δj) statistical metrics relative 
difference and presented a comprehensive evaluation criterion (CEC) to include both 
the bias and accuracy to locate the best time-stable locations. 

CEC  j =
√(

δ j
(2 + σ

(
δ j

(2 
(8) 

Based on the rank-ordered CECj, the sampling location with the highest time 
stability is identified as the one with the lowest CECj value. 

4 Results and Discussion 

The temporal pattern of measured soil moisture was found to be highly linked to 
rainfall (see Fig. 2b). The measured soil moisture statistical analysis shows that the 
spatial CVk ranges between 0.151 and 0.901. CVk was found to be very high during 
dry periods, whereas low in wet periods and, on average equal to 0.404. On the other 
hand, the temporal CVj was found to have an average of 0.723, considerably higher 
than CVk, and ranges between 0.578 and 0.887. This confirms that soil moisture 
temporal variability is more significant than spatial variability and indicates that 
ONL to capture the temporal pattern of the watershed-mean soil moisture can be 
derived in this study region. The high CVk value follows the findings reported in the 
past investigation on soil moisture variability in relation to the spatial variability of
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soil moisture and the dimension of the investigated area [3–5, 14]. Specifically, the 
spatial CVk increases with the increase in the area, where average CVk ranges from 
0.06 to 0.20 for the area of 1 m2 and 250 km2, respectively, at 0–15 cm depth in 
central Italy [5]. Comparing σ k and CVk values presented in [14], the values found 
for the eastern Indian watershed are very similar. 

4.1 ONL to Capture Watershed-Mean Soil Moisture 

Based on the in-situ measurements, an analytical relationship was fitted between θk 
and the CVk for the growing season, non-growing season, and the whole year, as 
presented in Table 1, and Fig. 4a. Further, the fitted parameters of CVk verses θk 
relationship were utilized to derive a relationship between σk verses θk as shown 
in Fig. 4b to capture the spatial variability of soil moisture. The distribution of σ k 
verses θk shows that σ k increases until θk reaches around 30% and decreases beyond 
that, whereas CVk shows a rapid decreasing pattern with increasing θk . It was  also  
observed that CVk has a very less scattered pattern as θk decreases during the growing 
season but is found to be a widely scattered pattern during the non-growing season. 
Overall, a decreasing exponential pattern of CVk−θk and a convex upward trend in 
σ k−θk reported in this study is similar to those reported in previous studies across 
the world [3–5, 13, 14, 17] (Fig. 4). 

Further, the fitted decreasing exponential pattern of CVk, θk was used to quantify 
the ONL as a function of the average wetness condition and in relation to a prefixed 
significance level and varying absolute errors. Figure 5a. demonstrates the ONL 
(using Eq. 6) to capture the watershed-mean soil moisture with a 5% significance 
level and within an absolute error of ±2%, during different seasons. The ONLs 
were found to be equal to 30 for the growing season and fewer for the non-growing 
season, equivalent to 20, whereas a maximum ONL of 25 is needed for the whole year 
to assess watershed-mean soil moisture. The maximum ONL found to be 30 that is 
during the growing season confirms the effectiveness of the sampling design adopted 
for this study, where 83 locations were monitored. Analysis of different absolute 
errors for ONL shows that fewer resources are needed on higher absolute error (> 
±2%) for watershed-mean soil moisture estimation (Fig. 5b). The reported analysis 
reveals that ~10 to 15 sampling locations are sufficient to capture the spatial pattern of 
the watershed-mean having an area of 500 km2 with a more relevant range of absolute

Table 1 The exponential 
fitting parameters of CVk 

versus θk relationship and the 
corresponding coefficient of 
determination (R2) 

Season CVk versus θk relationship 

k1 k2 R2 

Growing season 1.537 – 0.043 0.994 

Non-growing season 0.592 – 0.028 0.543 

Whole year 0.573 – 0.020 0.498
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Fig. 4 Analytical relationship between watershed-mean soil moisture (θk ) and statistical charac-
teristics a coefficient of variation (CVk), b standard deviation (σk) of soil moisture measurements 
at watershed-scale during each sampling day for the growing season, non-growing season, and the 
whole year

error between ±4% and ±6%. The ONL obtained in this study matches with the 
ONL found for different hydroclimatic regions and geomorphological conditions 
with varying spatial scales, ranging between 15 and 40 sampling locations [4, 5, 14]. 
Since the computation of the “average” error on the soil moisture temporal pattern is 
necessary [4]), a temporal pattern of spatial mean soil moisture is analyzed to assess 
ONL for a reliable estimate of watershed-mean soil moisture. 

Fig. 5 The optimal number of locations to capture the watershed-mean soil moisture at a 5% 
significance level during different seasons a with ±2% absolute error and b at different absolute 
errors
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4.2 ONL to Capture the Temporal Pattern 
of Watershed-Mean Soil Moisture 

The most temporally stable locations that can serve as representative locations to 
capture the watershed-mean soil moisture were identified using time stability analysis 
based on the parametric test of relative differences (Eq. 7). Figure 6a shows the time 
stability characteristics, mean relative difference (δ j ), ranked from smallest to largest 
along with ±1 standard deviation. The sampling locations representing positive δ j 
values constantly overestimate the watershed-mean soil moisture, whereas negative 
values of δ j represents underestimation of the watershed-mean soil moisture consis-
tently. Generally, the range of variation in δ j increases with the investigated area 
size [5]. The CEC (Eq. 8) has the ability to effectively eliminate systematic bias as 
well as accurately capture the watershed-mean soil moisture at each sampling time. 
The selected most time-stable location based on the lowest CEC value was found to 
capture the watershed-mean soil moisture with a high correlation (R2 = 0.852) but 
with a high Root-Mean-Square error (RMSE) of 5.573%. Though only one repre-
sentative location has the capability to capture the temporal variation pattern of the 
watershed-mean soil moisture with high correlation, it fails to provide a reasonable 
accuracy (RMSE of ±4% or better). Notably, this contradicts the previous study’s 
finding [5], where one representative site can capture the temporal pattern of areal 
mean soil moisture with reasonable accuracy at a regional scale of 200 km2. In further 
analysis, it was found that the five most time-stable locations of the study watershed 
can capture watershed-mean soil moisture with an excellent correlation (R2 = 0.981) 
and RMSE of ± 2.17%. The scatter plot in Fig. 6b shows ensemble soil moisture of 
the identified five best time-stable locations that can represent watershed-mean soil 
moisture with an error range of ±4%. These analyzes imply that the five time-stable 
sampling locations could be utilized to capture the temporal pattern of watershed-
mean soil moisture with reasonable accuracy and confirm the robust optimal sampling 
design for the watershed of 500 km2. The spatial distribution of the five most time-
stable locations in the watershed along with other sampling locations (Fig. 7), shows 
that identified sampling locations are well distributed across the watershed. Remark-
ably it was also found that the identified time-stable locations have different elevations 
and soil texture conditions.

5 Conclusion 

On the analyzes of 41,832 in-situ soil moisture samples collected during one year 
at 83 sampling locations in a watershed of 500 km2, it can be concluded that the 
dense in-situ measurements help to characterize the soil moisture spatiotemporal 
variability at the watershed-scale. The characterization of soil moisture spatiotem-
poral variability reveals that sampling at a few locations (~30 locations) is sufficient 
for capturing the spatial pattern of the soil moisture at a watershed of 500 km2. In
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Fig. 6 a Rank ordered mean relative difference of soil moisture at each sampling location with 
±1 standard deviation error bars. The solid line is a comprehensive evaluation criterion (CEC) to 
identify the best time-stable locations. The thick bars are the five best time-stable locations in the 
watershed based on the CEC. b Comparison of watershed-mean VSM with the ensemble VSM of 
the identified five best time-stable locations to achieve a reasonable accuracy (RMSE of ±4% or 
better)

comparison, very fewer resources, and nearly five representative or time-stable loca-
tions are required to capture the temporal variation pattern of the watershed-mean 
soil moisture within an RMSE of ~ ±2%. However, the optimal sampling design 
strategy must be transferred to ungauged regions to avoid the monitoring cost of dense 
measurements. The selection of representative locations a priori in ungauged areas 
to capture the temporal variation pattern of the areal mean soil moisture is possible 
with various geophysical characteristics information. A few past studies [17, 26], 
reveal that soil properties and topography are significant geophysical parameters that 
jointly control spatiotemporal persistence. However, more detailed investigations are 
needed towards transferring optimal sampling design strategy to the ungauged area 
by assessing the effects of heterogeneities of similar or different geophysical proper-
ties in other regions and for different space and time scales. In this study, a large soil 
moisture dataset at a watershed-scale has been generated through several intensive 
field campaigns for tropical regions where soil moisture information is sparse. The 
optimal sampling design based on long-term intensive sampling can be utilized as 
a guideline for designing a robust sensor-based network at the watershed-scale and 
could be helpful in planning sampling for satellite soil moisture product validation. 
The data used for optimal sampling design focuses only on one watershed in the trop-
ical region of India. Therefore, further analysis is needed using in-situ soil moisture 
measurements of other watersheds in tropical climates and possibly other climate 
regions to assess the applicability of such an approach.
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Fig. 7 The elevation map of the watershed shows 83 soil moisture sampling locations. Locations 
marked with a circle are the five most representative or time-stable locations of the watershed
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