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Abstract Land Use Land Cover (LULC) significantly affects hydrological variables 
like streamflow. This chapter studies the effects of change in LULC over streamflow 
in the Sabari Basin, India. The LULC change detection analysis has been carried 
out for three decades (1985–1995, 1995–2005, 2005–2020). The LULC classes 
(Barren land, Built-up Area, Cropland, Fallow land, Forest, Grassland, Plantations, 
Shrubland, Wasteland, and Waterbodies) are analyzed. The change for individual 
classes and converted area analysis from one class to another is also conducted. 
By the end of 2005, the built-up area, cropland, and shrubland were increasing by 
12.1%, 0.43%, and 3.25%, respectively, when compared to 1985, and the remaining 
classes were decreasing by each decade. Monthly streamflow is modeled for 30 years 
(1982–2012) using the Soil and Water Assessment Tool (SWAT). Two Sub-basins 
(Saradaput and Konta) are considered for the analysis. The R2 between the modeled 
and the observed data in the Saradaput and Konta Sub-basins is 0.78 and 0.74, 
respectively. The results indicate that urbanization and agricultural intensification 
have contributed to increased streamflow. These LULC change detection can be 
further used in modeling this basin using different hydrological models to compare 
the performance of the different models in this basin. 
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1 Introduction 

India is one of the most water-stress countries in the world. The impending water 
supply in India is becoming most uncertain. Anthropogenic activities such as defor-
estation, overconsuming water resources and releasing aerosols into the atmosphere 
in their daily life, and many more aspects lead the climate to change rapidly. Climate
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and Land use changes are some of the significant factors in altering the hydrological 
cycle. In recent years, the implication of these changes has been investigated. They 
increased the extreme events in magnitude and intensity, creating and intensifying 
many other water resources-related problems [12]. Rainfall is a crucial resource for 
worldwide socio-economic activity and is vital in the hydrological cycle. In India, 
most of the agriculture is rainfed. Rainfall and baseflow influence the high and low 
streamflow extremes, which are crucial for flood management, hydropower, naviga-
tion, and ecological concerns [17]. Hence, understanding the consequences of LULC 
change on the hydrological cycle is necessary [4]. The hydrology of river basins 
is significantly affected by LULC changes, mainly through variations in baseflow 
during floods [6] and average annual discharge [7]. Several investigations demon-
strated a connection between land use changes and other mechanisms in the local 
hydrological cycle [3, 20, 21]. Akbar et al. [1] followed the Markov approach to 
forecast the future LULC after generating the historical LULC maps to study its 
effects on urbanization. It resulted in a decrease in the water bodies and vegetation 
and increased the urban area by 2040. 

The effects of climate change and LULC on basin hydrology can be analyzed 
using hydrologic models. SWAT is a semi-distributed hydrological model that can 
simulate more precisely by considering several hydrological parameters and their 
interconnections. Along with them, it considers the topographical features of the 
watershed and decentralizes the watershed at a continuous time step [23]. Using 
SWAT, a study on Kenya’s Sondu Basin shows the model’s ability in African water-
sheds [13]. Zhang et al. [24] compared SWAT with their developed SWAT-T model 
regarding the response of a hydrological catchment to LULC change. The Change 
in LULC affected all hydrological variables, among which streamflow is promi-
nent. Sahana and Timbadiya [19] considered the Upper Godavari Basin to study the 
climate change and LULC effects for different GCMs in different scenarios using 
SWAT. A thorough knowledge of the river basin’s water balance and parameters is 
crucial when constructing a reliable hydrologic model [16]. The conventional fixed 
parameterization is compared with the varied parameterization approach resulting 
in a better performance of the varied approach. Du et al. [8] used this approach in 
studying the watershed hydrology in urban regions of China. This chapter has two 
objectives—(i) to find the LULC changes over Sabari River Basin (SRB) from 1985 
to 2015, (ii) using the classified LULC map, model the streamflow in the Sabari basin 
and to observe the anomalies.
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2 Study Area and Data Source 

2.1 Sabari River Basin (SRB) 

The GRB is the second-longest and third-largest river in India. The Sabari Basin 
is located between 17°31'33'' N to 19°6'42'' N latitudes and 81°3'36'' E to 83°3'5''
E longitudes. The annual average rainfall is approximately 1250 mm. Saradaput 
and Konta sub-basins are considered to study streamflow anomalies. The Konta 
is the largest sub-basin of SRB. The Saradaput and Konta stations are located at 
18°36'45”N, 82°08'34”E and 17°47'56'' N, 81°23'34'' E, respectively. The basin 
map and its position in India are presented in Fig. 1. 

2.2 Data Used 

The Landsat images for the years 1985, 1995, 2005, and 2015 are collected from 
the USGS web portal. ASTER Digital Elevation Model (DEM) of 30 m resolution is 
downloaded from the NASA web portal (https://www.earthdata.nasa.gov/news/new-
aster-gdem). The daily rainfall data at 0.25° × 0.25° resolution [18] and temperature

Fig. 1 Study area map 

https://www.earthdata.nasa.gov/news/new-aster-gdem
https://www.earthdata.nasa.gov/news/new-aster-gdem
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data at 1° × 1° resolution [22] for the GRB are obtained from IMD, Pune. The 
weather data is collected from the NCEP-NCAR website. FAO (Food and Agriculture 
Organization) soil map is utilized for this sub-basin. 

3 Methodology 

See Fig. 2. 

3.1 LULC Change Detection 

The raw Landsat images for the years 1985, 1995, 2005, and 2015 are classified using 
the Normalized Difference Vegetation Index (NDVI). Among different normalized 
difference indices developed for remotely sensed imagery, NDVI is the most widely 
used index [5]. The image is classified into six classes: cropland, built-up area, dense 
vegetation, sparse vegetation, range land, and waterbodies, depending on the NDVI

Fig. 2 Methodological 
flowchart 



Modelling of Streamflow Considering the Effects of Land Use Land … 225

ranges. The NDVI classification is used due to the vegetative occupancy in the Sabari 
basin. The two LULC maps are overlaid to detect the change in each class. 

3.2 SWAT Model 

SWAT is developed by (USDA-ARS) [2] and is used to find the anomalies in the 
streamflow concerning the change in the LULC for different decades. The model 
works based on the water balance equation represented by Eq. 1 and SWAT distributes 
the basin into sub-basins that will eventually connect with the system. Hydrologic 
Response Units are also generated with the sole allocation of gradient, soil type, and 
land cover [14]. The weather data is defined using the observed data. To estimate the 
surface runoff for the selected catchments, the model utilizes the SCS-CN method 
represented by Eqs. 2 and 3. The model is simulated monthly from 1979 to 2014, 
skipping three years by considering the lag effect. 

SW f = SW 0 + 
n∑

j=1 

(Pd − Qs − ET  j − Wseep − Qg) (1) 

Q = (P−0.2 s)2 

P+0.8s if R > 0.2 s  
Q = 0 if  R ≤ 0.2 s  

(2) 

s = 254
(
100 

CN  
− 1

)
(3) 

where SWf = Final Soil water content; SW0 = Initial Soil Water content; Pd = daily 
Precipitation; Qs = Surface flow; Qg = Return flow; ETj = Evapotranspiration on jth 
day; W seep = Soil interflow; n = time. All units are in mm. CN is the curve number; 
s is the retention parameter depending on the topographical features and soil water 
content. The equation for the retention parameter is represented by Eq. 3. 

3.3 Model Calibration and Validation 

SWAT is calibrated using SWAT-CUP by optimizing the parameters and determining 
the parameters’ sensitivity toward hydrological processes such as streamflow [11]. 
Therefore, in many significant applications, the calibration process might become 
challenging. Because of SWAT, CUP’s intelligence, model parameters can be set, 
optimized, and manually modified after every iteration of calibration. Multi-objective 
optimization has been carried out by considering NSE, R2, and PBias as the objective 
functions. For this study, 11 parameters were priorly selected, corresponding to their 
sensitivity and impact on the water balance [9].
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R2 = 1 − 
Sum of Squares of Residuals 

Total sum of the squares 
(4) 

SE  = 1 −
∑T 

t=1 X
t 
m − Xt 

0∑T 
t=1 X

t 
0 − X0 

(5) 

PBIAS =
∑T 

t=1(X
t 
0 − Xt 

m)∑T 
t=1 X

t 
0 

× 100 (6) 

where Xt 
m = Modeled data at time t; Xt 

0 = Observed data at time t; X0 = Observed 
mean. 

4 Results and Discussions 

4.1 LULC Analysis 

The classified decadal LULC maps are shown in Fig. 3. The magnitude of each class 
in each decade, along with the proportionate change in the LULC from 1985 to 2015, 
is represented in Table 1. The analysis shows that the SRB is a dominant vegetative 
basin with overall vegetation (cropland, dense vegetation, and sparse vegetation) area 
of 19,974 km2 in a total basin area of 20,840 km2. The  remaining area is covered by a  
built-up area of 125 km2 and water bodies of 740 km2. It is observed that from 1985 
to 2015, the built-up area almost doubled (94.95%), whereas the dense and sparse 
vegetation was reduced by 5% and 4%, respectively. The cropland in the Sabari 
basin increased by 8.8%, and waterbodies decreased by 32% during 1985–2015. 
The reduced area of the water bodies, dense and sparse vegetation, is converted into 
cropland and built-up area. Most of the reduced dense and sparse vegetated area is 
converted into cropland.

4.2 Performance of the SWAT Model 

The model is developed using the topographical and meteorological data for 1979– 
2014, considering three years (1979–1982) as a lag time. The performance, sensitivity 
analysis, calibration, and validation of the model using SWAT-CUP are performed. 
The slope of the SRB varies between 0 and 70%. There are four different soil classes 
as per the FAO soil map in the study area. The SWAT generates a total of 180 HRUs 
in the SRB. 

The hydrographs of the Sardaput and Konta basins are presented in Figs. 4 and 5. 
The hydrographs are plotted for three decades 1985–1995, 1995–2005, and 2005– 
2015. The observed average decadal streamflow during pre-monsoon, monsoon, and
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Fig. 3 Decadal LULC maps of Sabari basin 

Table 1 Magnitude and % change in the LULC 

Class Decade % Change between 1985 and 2015 

1985 1995 2005 2015 

Built-up area 125.8 138.1 126.8 245.3 94.96 

Cropland 8274 8288 8293 9007 8.86 

Dense vegetation 8944 8926 8908 8490 −5.08 

Sparse vegetation 2755 2623 2815 2635 −4.35 

Water bodies 740.3 864 697.9 502.5 −32.12

post-monsoon seasons in the Saradaput is increased by 4 m3/s (3.7%), decreased 
by 25 m3/s (8.15%) and increased by 3.75 m3/s (5.09%), respectively, by 2015. In 
comparison with the first decade 1985–95. For the Konta basin, it has increased 
by 8 m3/s (3.1%), decreased by 195 m3/s (34%), and decreased by 35 m3/s (5%) 
in pre-monsoon, monsoon, and post-monsoon seasons, respectively. However, the 
simulated values are quite converse to the observed data. The simulated decadal 
streamflow data for pre-monsoon, monsoon, and post-monsoon seasons in Saradaput 
are decreasing by 9 m3/s (4%), 9 m3/s (5.8%), and 1.8 m3/s (15.27%), respectively. In 
the Konta basin, it has decreased by 35 m3/s (5%), increased by 355 m3/s (5%) and 22 
m3/s (10%) in pre-monsoon, monsoon and post-monsoon seasons, respectively. The
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plots of Saradaput and Konta for the decadal analysis of the observed and modeled 
streamflow are presented in Figs. 4 and 5, respectively. 

Fig. 4 Observed versus simulated discharge for saradaput sub-basin
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Fig. 5 Observed versus simulated discharge for Konta sub-basin 

NSE, PBias, and R2 are used to check the SWAT performance regarding the 
sensitivity of parameters. The model is calibrated (1979–2003) and validated (2004– 
2013) monthly using SWAT-CUP. 11 parameters are selected for sensitivity analysis 
and after nine iterations of each 400 simulations, a specific value is fitted within the 
described range. The parameters, description, and fitted value for the best simulation
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Table 2 Selected parameters and their fitted values 

Sl. 
No. 

Parameter_ 
Name 

Description Fitted_Value 

1 CN2 Curve number for moisture condition II 67.270103 

2 ALPHA_BF Baseflow alpha factor 0.536313 

3 GW_DELAY Groundwater delay 226.575745 

4 GWQMN Threshold depth of water for return flow 753.507507 

5 GW_REVAP Groundwater re-evaporation coefficient 0.020185 

6 REVAPMN Threshold depth of water in the shallow aquifer for 
“revap” to occur 

656.408997 

7 CH_N2 Manning’s ‘n’ value in the main channel 0.083838 

8 CH_K2 Effective hydraulic conductivity 28.366709 

9 SOL_AWC Soil available water capacity 1.002764 

10 ESCO Soil evaporation compensation facto 0.583095 

11 EPCO Plant uptake compensation Factor 0.612328 

Table 3 Performance stats 
for Saradaput and Konta 
sub-basins 

Period Performance metric Saradaput Konta 

Calibration R2 0.78 0.58 

NSE 0.51 0.35 

PBIAS (%) −5.8 −4.2 

Validation R2 0.74 0.62 

NSE 0.53 0.42 

PBIAS (%) −3.8 −4.6 

are shown in Table 3. Further, the values of the selected objective functions for the 
best simulation in both the Saradaput and Konta locations are shown in Table 2. 
Irrespective of the catchment area, the correlation between the extreme events is 
0.42. In the case of ordinary events, if the catchment area is small such as Saradaput, 
the correlation is 0.81, and for a larger sub-basin area, the correlation is 0.75. In 
Sadaraput, the model performs well with R2 coefficients of 0.78 and 0.74 with an 
efficiency of 0.52 and 0.53 in calibration and validation, respectively. For Konta, the 
R2 is reduced to 0.58 and 0.62 with an efficiency of 0.35 and 0.42 in calibration and 
validation, respectively. Therefore in both cases, the model is overestimated. 

4.3 Water Balance Components 

In SRB, evapotranspiration is the prominent water balance component that consumes 
about 74% of the rainfall, as it is a vegetation-dominant sub-basin. The surface flow
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is 8% due to more infiltration in the basin. The remaining rainfall is percolated into 
the soil depending on the soil condition. From the percolated soil, 4% returns to the 
surface flow (return flow). The aquifer recharge is 1% for the deep and the remaining 
precipitation is stored in the shallow aquifer which is readily available. A similar 
study on a high vegetation basin is conducted by Koneti et al. [15] and Guug et al. 
[10] also showed that evapotranspiration is the highest component of these types of 
basins. 

5 Conclusion 

The increased built-up area might decrease the infiltration capacity, leading to 
increased surface runoff in the Saradaput sub-basin. The LULC maps represent that 
most of the decreased cropland is converted into a built-up area. The modeled stream-
flow contains bias, due to a considerable difference between the observed and the 
modeled data for the Konta sub-basin in terms of the catchment area. In this study, 
the SWAT model showed relatively low accuracy in capturing the hydrograph peaks 
in Konta sub-basin than in the Saradaput sub-basin. It is due to the larger area of the 
Konta sub-basin consisting of vegetation which leads to the more evapotranspiration 
when compared to Saradaput sub-basin. While in both the sub-basins, the recession 
limbs are almost all properly captured due to the range of the groundwater delay 
and base flow parameters. Overall, the streamflow variations are associated with the 
change in LULC and it is evident from this study that the built-up area doubled in 
2015 when compared with the land cover data of 1985. It is due to the drastic increase 
in population over the SRB. The growing population demands more land resources 
for their basic needs, i.e., food and shelter. Therefore, the vegetated land is turned 
into agriculture and built-up land. The present study is very helpful in understanding 
the effects of LULC changes on streamflow in other similar basins. 
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